1 /* 2 * soc-core.c -- ALSA SoC Audio Layer 3 * 4 * Copyright 2005 Wolfson Microelectronics PLC. 5 * Copyright 2005 Openedhand Ltd. 6 * Copyright (C) 2010 Slimlogic Ltd. 7 * Copyright (C) 2010 Texas Instruments Inc. 8 * 9 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 10 * with code, comments and ideas from :- 11 * Richard Purdie <richard@openedhand.com> 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * TODO: 19 * o Add hw rules to enforce rates, etc. 20 * o More testing with other codecs/machines. 21 * o Add more codecs and platforms to ensure good API coverage. 22 * o Support TDM on PCM and I2S 23 */ 24 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/init.h> 28 #include <linux/delay.h> 29 #include <linux/pm.h> 30 #include <linux/bitops.h> 31 #include <linux/debugfs.h> 32 #include <linux/platform_device.h> 33 #include <linux/slab.h> 34 #include <sound/ac97_codec.h> 35 #include <sound/core.h> 36 #include <sound/jack.h> 37 #include <sound/pcm.h> 38 #include <sound/pcm_params.h> 39 #include <sound/soc.h> 40 #include <sound/initval.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/asoc.h> 44 45 #define NAME_SIZE 32 46 47 static DEFINE_MUTEX(pcm_mutex); 48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq); 49 50 #ifdef CONFIG_DEBUG_FS 51 static struct dentry *debugfs_root; 52 #endif 53 54 static DEFINE_MUTEX(client_mutex); 55 static LIST_HEAD(card_list); 56 static LIST_HEAD(dai_list); 57 static LIST_HEAD(platform_list); 58 static LIST_HEAD(codec_list); 59 60 static int snd_soc_register_card(struct snd_soc_card *card); 61 static int snd_soc_unregister_card(struct snd_soc_card *card); 62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num); 63 64 /* 65 * This is a timeout to do a DAPM powerdown after a stream is closed(). 66 * It can be used to eliminate pops between different playback streams, e.g. 67 * between two audio tracks. 68 */ 69 static int pmdown_time = 5000; 70 module_param(pmdown_time, int, 0); 71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 72 73 /* codec register dump */ 74 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf) 75 { 76 int ret, i, step = 1, count = 0; 77 78 if (!codec->driver->reg_cache_size) 79 return 0; 80 81 if (codec->driver->reg_cache_step) 82 step = codec->driver->reg_cache_step; 83 84 count += sprintf(buf, "%s registers\n", codec->name); 85 for (i = 0; i < codec->driver->reg_cache_size; i += step) { 86 if (codec->driver->readable_register && !codec->driver->readable_register(i)) 87 continue; 88 89 count += sprintf(buf + count, "%2x: ", i); 90 if (count >= PAGE_SIZE - 1) 91 break; 92 93 if (codec->driver->display_register) { 94 count += codec->driver->display_register(codec, buf + count, 95 PAGE_SIZE - count, i); 96 } else { 97 /* If the read fails it's almost certainly due to 98 * the register being volatile and the device being 99 * powered off. 100 */ 101 ret = snd_soc_read(codec, i); 102 if (ret >= 0) 103 count += snprintf(buf + count, 104 PAGE_SIZE - count, 105 "%4x", ret); 106 else 107 count += snprintf(buf + count, 108 PAGE_SIZE - count, 109 "<no data: %d>", ret); 110 } 111 112 if (count >= PAGE_SIZE - 1) 113 break; 114 115 count += snprintf(buf + count, PAGE_SIZE - count, "\n"); 116 if (count >= PAGE_SIZE - 1) 117 break; 118 } 119 120 /* Truncate count; min() would cause a warning */ 121 if (count >= PAGE_SIZE) 122 count = PAGE_SIZE - 1; 123 124 return count; 125 } 126 static ssize_t codec_reg_show(struct device *dev, 127 struct device_attribute *attr, char *buf) 128 { 129 struct snd_soc_pcm_runtime *rtd = 130 container_of(dev, struct snd_soc_pcm_runtime, dev); 131 132 return soc_codec_reg_show(rtd->codec, buf); 133 } 134 135 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 136 137 static ssize_t pmdown_time_show(struct device *dev, 138 struct device_attribute *attr, char *buf) 139 { 140 struct snd_soc_pcm_runtime *rtd = 141 container_of(dev, struct snd_soc_pcm_runtime, dev); 142 143 return sprintf(buf, "%ld\n", rtd->pmdown_time); 144 } 145 146 static ssize_t pmdown_time_set(struct device *dev, 147 struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 struct snd_soc_pcm_runtime *rtd = 151 container_of(dev, struct snd_soc_pcm_runtime, dev); 152 int ret; 153 154 ret = strict_strtol(buf, 10, &rtd->pmdown_time); 155 if (ret) 156 return ret; 157 158 return count; 159 } 160 161 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set); 162 163 #ifdef CONFIG_DEBUG_FS 164 static int codec_reg_open_file(struct inode *inode, struct file *file) 165 { 166 file->private_data = inode->i_private; 167 return 0; 168 } 169 170 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 171 size_t count, loff_t *ppos) 172 { 173 ssize_t ret; 174 struct snd_soc_codec *codec = file->private_data; 175 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 176 if (!buf) 177 return -ENOMEM; 178 ret = soc_codec_reg_show(codec, buf); 179 if (ret >= 0) 180 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 181 kfree(buf); 182 return ret; 183 } 184 185 static ssize_t codec_reg_write_file(struct file *file, 186 const char __user *user_buf, size_t count, loff_t *ppos) 187 { 188 char buf[32]; 189 int buf_size; 190 char *start = buf; 191 unsigned long reg, value; 192 int step = 1; 193 struct snd_soc_codec *codec = file->private_data; 194 195 buf_size = min(count, (sizeof(buf)-1)); 196 if (copy_from_user(buf, user_buf, buf_size)) 197 return -EFAULT; 198 buf[buf_size] = 0; 199 200 if (codec->driver->reg_cache_step) 201 step = codec->driver->reg_cache_step; 202 203 while (*start == ' ') 204 start++; 205 reg = simple_strtoul(start, &start, 16); 206 if ((reg >= codec->driver->reg_cache_size) || (reg % step)) 207 return -EINVAL; 208 while (*start == ' ') 209 start++; 210 if (strict_strtoul(start, 16, &value)) 211 return -EINVAL; 212 snd_soc_write(codec, reg, value); 213 return buf_size; 214 } 215 216 static const struct file_operations codec_reg_fops = { 217 .open = codec_reg_open_file, 218 .read = codec_reg_read_file, 219 .write = codec_reg_write_file, 220 .llseek = default_llseek, 221 }; 222 223 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 224 { 225 struct dentry *debugfs_card_root = codec->card->debugfs_card_root; 226 227 codec->debugfs_codec_root = debugfs_create_dir(codec->name, 228 debugfs_card_root); 229 if (!codec->debugfs_codec_root) { 230 printk(KERN_WARNING 231 "ASoC: Failed to create codec debugfs directory\n"); 232 return; 233 } 234 235 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 236 codec->debugfs_codec_root, 237 codec, &codec_reg_fops); 238 if (!codec->debugfs_reg) 239 printk(KERN_WARNING 240 "ASoC: Failed to create codec register debugfs file\n"); 241 242 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm", 243 codec->debugfs_codec_root); 244 if (!codec->dapm.debugfs_dapm) 245 printk(KERN_WARNING 246 "Failed to create DAPM debugfs directory\n"); 247 248 snd_soc_dapm_debugfs_init(&codec->dapm); 249 } 250 251 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 252 { 253 debugfs_remove_recursive(codec->debugfs_codec_root); 254 } 255 256 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf, 257 size_t count, loff_t *ppos) 258 { 259 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 260 ssize_t len, ret = 0; 261 struct snd_soc_codec *codec; 262 263 if (!buf) 264 return -ENOMEM; 265 266 list_for_each_entry(codec, &codec_list, list) { 267 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 268 codec->name); 269 if (len >= 0) 270 ret += len; 271 if (ret > PAGE_SIZE) { 272 ret = PAGE_SIZE; 273 break; 274 } 275 } 276 277 if (ret >= 0) 278 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 279 280 kfree(buf); 281 282 return ret; 283 } 284 285 static const struct file_operations codec_list_fops = { 286 .read = codec_list_read_file, 287 .llseek = default_llseek,/* read accesses f_pos */ 288 }; 289 290 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf, 291 size_t count, loff_t *ppos) 292 { 293 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 294 ssize_t len, ret = 0; 295 struct snd_soc_dai *dai; 296 297 if (!buf) 298 return -ENOMEM; 299 300 list_for_each_entry(dai, &dai_list, list) { 301 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name); 302 if (len >= 0) 303 ret += len; 304 if (ret > PAGE_SIZE) { 305 ret = PAGE_SIZE; 306 break; 307 } 308 } 309 310 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 311 312 kfree(buf); 313 314 return ret; 315 } 316 317 static const struct file_operations dai_list_fops = { 318 .read = dai_list_read_file, 319 .llseek = default_llseek,/* read accesses f_pos */ 320 }; 321 322 static ssize_t platform_list_read_file(struct file *file, 323 char __user *user_buf, 324 size_t count, loff_t *ppos) 325 { 326 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 327 ssize_t len, ret = 0; 328 struct snd_soc_platform *platform; 329 330 if (!buf) 331 return -ENOMEM; 332 333 list_for_each_entry(platform, &platform_list, list) { 334 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 335 platform->name); 336 if (len >= 0) 337 ret += len; 338 if (ret > PAGE_SIZE) { 339 ret = PAGE_SIZE; 340 break; 341 } 342 } 343 344 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 345 346 kfree(buf); 347 348 return ret; 349 } 350 351 static const struct file_operations platform_list_fops = { 352 .read = platform_list_read_file, 353 .llseek = default_llseek,/* read accesses f_pos */ 354 }; 355 356 static void soc_init_card_debugfs(struct snd_soc_card *card) 357 { 358 card->debugfs_card_root = debugfs_create_dir(card->name, 359 debugfs_root); 360 if (!card->debugfs_card_root) { 361 dev_warn(card->dev, 362 "ASoC: Failed to create codec debugfs directory\n"); 363 return; 364 } 365 366 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644, 367 card->debugfs_card_root, 368 &card->pop_time); 369 if (!card->debugfs_pop_time) 370 dev_warn(card->dev, 371 "Failed to create pop time debugfs file\n"); 372 } 373 374 static void soc_cleanup_card_debugfs(struct snd_soc_card *card) 375 { 376 debugfs_remove_recursive(card->debugfs_card_root); 377 } 378 379 #else 380 381 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 382 { 383 } 384 385 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 386 { 387 } 388 389 static inline void soc_init_card_debugfs(struct snd_soc_card *card) 390 { 391 } 392 393 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card) 394 { 395 } 396 #endif 397 398 #ifdef CONFIG_SND_SOC_AC97_BUS 399 /* unregister ac97 codec */ 400 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 401 { 402 if (codec->ac97->dev.bus) 403 device_unregister(&codec->ac97->dev); 404 return 0; 405 } 406 407 /* stop no dev release warning */ 408 static void soc_ac97_device_release(struct device *dev){} 409 410 /* register ac97 codec to bus */ 411 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 412 { 413 int err; 414 415 codec->ac97->dev.bus = &ac97_bus_type; 416 codec->ac97->dev.parent = codec->card->dev; 417 codec->ac97->dev.release = soc_ac97_device_release; 418 419 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 420 codec->card->snd_card->number, 0, codec->name); 421 err = device_register(&codec->ac97->dev); 422 if (err < 0) { 423 snd_printk(KERN_ERR "Can't register ac97 bus\n"); 424 codec->ac97->dev.bus = NULL; 425 return err; 426 } 427 return 0; 428 } 429 #endif 430 431 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream) 432 { 433 struct snd_soc_pcm_runtime *rtd = substream->private_data; 434 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 435 struct snd_soc_dai *codec_dai = rtd->codec_dai; 436 int ret; 437 438 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates || 439 rtd->dai_link->symmetric_rates) { 440 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", 441 rtd->rate); 442 443 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 444 SNDRV_PCM_HW_PARAM_RATE, 445 rtd->rate, 446 rtd->rate); 447 if (ret < 0) { 448 dev_err(&rtd->dev, 449 "Unable to apply rate symmetry constraint: %d\n", ret); 450 return ret; 451 } 452 } 453 454 return 0; 455 } 456 457 /* 458 * Called by ALSA when a PCM substream is opened, the runtime->hw record is 459 * then initialized and any private data can be allocated. This also calls 460 * startup for the cpu DAI, platform, machine and codec DAI. 461 */ 462 static int soc_pcm_open(struct snd_pcm_substream *substream) 463 { 464 struct snd_soc_pcm_runtime *rtd = substream->private_data; 465 struct snd_pcm_runtime *runtime = substream->runtime; 466 struct snd_soc_platform *platform = rtd->platform; 467 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 468 struct snd_soc_dai *codec_dai = rtd->codec_dai; 469 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver; 470 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver; 471 int ret = 0; 472 473 mutex_lock(&pcm_mutex); 474 475 /* startup the audio subsystem */ 476 if (cpu_dai->driver->ops->startup) { 477 ret = cpu_dai->driver->ops->startup(substream, cpu_dai); 478 if (ret < 0) { 479 printk(KERN_ERR "asoc: can't open interface %s\n", 480 cpu_dai->name); 481 goto out; 482 } 483 } 484 485 if (platform->driver->ops->open) { 486 ret = platform->driver->ops->open(substream); 487 if (ret < 0) { 488 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name); 489 goto platform_err; 490 } 491 } 492 493 if (codec_dai->driver->ops->startup) { 494 ret = codec_dai->driver->ops->startup(substream, codec_dai); 495 if (ret < 0) { 496 printk(KERN_ERR "asoc: can't open codec %s\n", 497 codec_dai->name); 498 goto codec_dai_err; 499 } 500 } 501 502 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) { 503 ret = rtd->dai_link->ops->startup(substream); 504 if (ret < 0) { 505 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name); 506 goto machine_err; 507 } 508 } 509 510 /* Check that the codec and cpu DAIs are compatible */ 511 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 512 runtime->hw.rate_min = 513 max(codec_dai_drv->playback.rate_min, 514 cpu_dai_drv->playback.rate_min); 515 runtime->hw.rate_max = 516 min(codec_dai_drv->playback.rate_max, 517 cpu_dai_drv->playback.rate_max); 518 runtime->hw.channels_min = 519 max(codec_dai_drv->playback.channels_min, 520 cpu_dai_drv->playback.channels_min); 521 runtime->hw.channels_max = 522 min(codec_dai_drv->playback.channels_max, 523 cpu_dai_drv->playback.channels_max); 524 runtime->hw.formats = 525 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats; 526 runtime->hw.rates = 527 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates; 528 if (codec_dai_drv->playback.rates 529 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 530 runtime->hw.rates |= cpu_dai_drv->playback.rates; 531 if (cpu_dai_drv->playback.rates 532 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 533 runtime->hw.rates |= codec_dai_drv->playback.rates; 534 } else { 535 runtime->hw.rate_min = 536 max(codec_dai_drv->capture.rate_min, 537 cpu_dai_drv->capture.rate_min); 538 runtime->hw.rate_max = 539 min(codec_dai_drv->capture.rate_max, 540 cpu_dai_drv->capture.rate_max); 541 runtime->hw.channels_min = 542 max(codec_dai_drv->capture.channels_min, 543 cpu_dai_drv->capture.channels_min); 544 runtime->hw.channels_max = 545 min(codec_dai_drv->capture.channels_max, 546 cpu_dai_drv->capture.channels_max); 547 runtime->hw.formats = 548 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats; 549 runtime->hw.rates = 550 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates; 551 if (codec_dai_drv->capture.rates 552 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 553 runtime->hw.rates |= cpu_dai_drv->capture.rates; 554 if (cpu_dai_drv->capture.rates 555 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 556 runtime->hw.rates |= codec_dai_drv->capture.rates; 557 } 558 559 snd_pcm_limit_hw_rates(runtime); 560 if (!runtime->hw.rates) { 561 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n", 562 codec_dai->name, cpu_dai->name); 563 goto config_err; 564 } 565 if (!runtime->hw.formats) { 566 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n", 567 codec_dai->name, cpu_dai->name); 568 goto config_err; 569 } 570 if (!runtime->hw.channels_min || !runtime->hw.channels_max) { 571 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n", 572 codec_dai->name, cpu_dai->name); 573 goto config_err; 574 } 575 576 /* Symmetry only applies if we've already got an active stream. */ 577 if (cpu_dai->active || codec_dai->active) { 578 ret = soc_pcm_apply_symmetry(substream); 579 if (ret != 0) 580 goto config_err; 581 } 582 583 pr_debug("asoc: %s <-> %s info:\n", 584 codec_dai->name, cpu_dai->name); 585 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates); 586 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min, 587 runtime->hw.channels_max); 588 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min, 589 runtime->hw.rate_max); 590 591 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 592 cpu_dai->playback_active++; 593 codec_dai->playback_active++; 594 } else { 595 cpu_dai->capture_active++; 596 codec_dai->capture_active++; 597 } 598 cpu_dai->active++; 599 codec_dai->active++; 600 rtd->codec->active++; 601 mutex_unlock(&pcm_mutex); 602 return 0; 603 604 config_err: 605 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 606 rtd->dai_link->ops->shutdown(substream); 607 608 machine_err: 609 if (codec_dai->driver->ops->shutdown) 610 codec_dai->driver->ops->shutdown(substream, codec_dai); 611 612 codec_dai_err: 613 if (platform->driver->ops->close) 614 platform->driver->ops->close(substream); 615 616 platform_err: 617 if (cpu_dai->driver->ops->shutdown) 618 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 619 out: 620 mutex_unlock(&pcm_mutex); 621 return ret; 622 } 623 624 /* 625 * Power down the audio subsystem pmdown_time msecs after close is called. 626 * This is to ensure there are no pops or clicks in between any music tracks 627 * due to DAPM power cycling. 628 */ 629 static void close_delayed_work(struct work_struct *work) 630 { 631 struct snd_soc_pcm_runtime *rtd = 632 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work); 633 struct snd_soc_dai *codec_dai = rtd->codec_dai; 634 635 mutex_lock(&pcm_mutex); 636 637 pr_debug("pop wq checking: %s status: %s waiting: %s\n", 638 codec_dai->driver->playback.stream_name, 639 codec_dai->playback_active ? "active" : "inactive", 640 codec_dai->pop_wait ? "yes" : "no"); 641 642 /* are we waiting on this codec DAI stream */ 643 if (codec_dai->pop_wait == 1) { 644 codec_dai->pop_wait = 0; 645 snd_soc_dapm_stream_event(rtd, 646 codec_dai->driver->playback.stream_name, 647 SND_SOC_DAPM_STREAM_STOP); 648 } 649 650 mutex_unlock(&pcm_mutex); 651 } 652 653 /* 654 * Called by ALSA when a PCM substream is closed. Private data can be 655 * freed here. The cpu DAI, codec DAI, machine and platform are also 656 * shutdown. 657 */ 658 static int soc_codec_close(struct snd_pcm_substream *substream) 659 { 660 struct snd_soc_pcm_runtime *rtd = substream->private_data; 661 struct snd_soc_platform *platform = rtd->platform; 662 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 663 struct snd_soc_dai *codec_dai = rtd->codec_dai; 664 struct snd_soc_codec *codec = rtd->codec; 665 666 mutex_lock(&pcm_mutex); 667 668 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 669 cpu_dai->playback_active--; 670 codec_dai->playback_active--; 671 } else { 672 cpu_dai->capture_active--; 673 codec_dai->capture_active--; 674 } 675 676 cpu_dai->active--; 677 codec_dai->active--; 678 codec->active--; 679 680 /* Muting the DAC suppresses artifacts caused during digital 681 * shutdown, for example from stopping clocks. 682 */ 683 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 684 snd_soc_dai_digital_mute(codec_dai, 1); 685 686 if (cpu_dai->driver->ops->shutdown) 687 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 688 689 if (codec_dai->driver->ops->shutdown) 690 codec_dai->driver->ops->shutdown(substream, codec_dai); 691 692 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 693 rtd->dai_link->ops->shutdown(substream); 694 695 if (platform->driver->ops->close) 696 platform->driver->ops->close(substream); 697 cpu_dai->runtime = NULL; 698 699 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 700 /* start delayed pop wq here for playback streams */ 701 codec_dai->pop_wait = 1; 702 schedule_delayed_work(&rtd->delayed_work, 703 msecs_to_jiffies(rtd->pmdown_time)); 704 } else { 705 /* capture streams can be powered down now */ 706 snd_soc_dapm_stream_event(rtd, 707 codec_dai->driver->capture.stream_name, 708 SND_SOC_DAPM_STREAM_STOP); 709 } 710 711 mutex_unlock(&pcm_mutex); 712 return 0; 713 } 714 715 /* 716 * Called by ALSA when the PCM substream is prepared, can set format, sample 717 * rate, etc. This function is non atomic and can be called multiple times, 718 * it can refer to the runtime info. 719 */ 720 static int soc_pcm_prepare(struct snd_pcm_substream *substream) 721 { 722 struct snd_soc_pcm_runtime *rtd = substream->private_data; 723 struct snd_soc_platform *platform = rtd->platform; 724 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 725 struct snd_soc_dai *codec_dai = rtd->codec_dai; 726 int ret = 0; 727 728 mutex_lock(&pcm_mutex); 729 730 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) { 731 ret = rtd->dai_link->ops->prepare(substream); 732 if (ret < 0) { 733 printk(KERN_ERR "asoc: machine prepare error\n"); 734 goto out; 735 } 736 } 737 738 if (platform->driver->ops->prepare) { 739 ret = platform->driver->ops->prepare(substream); 740 if (ret < 0) { 741 printk(KERN_ERR "asoc: platform prepare error\n"); 742 goto out; 743 } 744 } 745 746 if (codec_dai->driver->ops->prepare) { 747 ret = codec_dai->driver->ops->prepare(substream, codec_dai); 748 if (ret < 0) { 749 printk(KERN_ERR "asoc: codec DAI prepare error\n"); 750 goto out; 751 } 752 } 753 754 if (cpu_dai->driver->ops->prepare) { 755 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai); 756 if (ret < 0) { 757 printk(KERN_ERR "asoc: cpu DAI prepare error\n"); 758 goto out; 759 } 760 } 761 762 /* cancel any delayed stream shutdown that is pending */ 763 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 764 codec_dai->pop_wait) { 765 codec_dai->pop_wait = 0; 766 cancel_delayed_work(&rtd->delayed_work); 767 } 768 769 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 770 snd_soc_dapm_stream_event(rtd, 771 codec_dai->driver->playback.stream_name, 772 SND_SOC_DAPM_STREAM_START); 773 else 774 snd_soc_dapm_stream_event(rtd, 775 codec_dai->driver->capture.stream_name, 776 SND_SOC_DAPM_STREAM_START); 777 778 snd_soc_dai_digital_mute(codec_dai, 0); 779 780 out: 781 mutex_unlock(&pcm_mutex); 782 return ret; 783 } 784 785 /* 786 * Called by ALSA when the hardware params are set by application. This 787 * function can also be called multiple times and can allocate buffers 788 * (using snd_pcm_lib_* ). It's non-atomic. 789 */ 790 static int soc_pcm_hw_params(struct snd_pcm_substream *substream, 791 struct snd_pcm_hw_params *params) 792 { 793 struct snd_soc_pcm_runtime *rtd = substream->private_data; 794 struct snd_soc_platform *platform = rtd->platform; 795 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 796 struct snd_soc_dai *codec_dai = rtd->codec_dai; 797 int ret = 0; 798 799 mutex_lock(&pcm_mutex); 800 801 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) { 802 ret = rtd->dai_link->ops->hw_params(substream, params); 803 if (ret < 0) { 804 printk(KERN_ERR "asoc: machine hw_params failed\n"); 805 goto out; 806 } 807 } 808 809 if (codec_dai->driver->ops->hw_params) { 810 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai); 811 if (ret < 0) { 812 printk(KERN_ERR "asoc: can't set codec %s hw params\n", 813 codec_dai->name); 814 goto codec_err; 815 } 816 } 817 818 if (cpu_dai->driver->ops->hw_params) { 819 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai); 820 if (ret < 0) { 821 printk(KERN_ERR "asoc: interface %s hw params failed\n", 822 cpu_dai->name); 823 goto interface_err; 824 } 825 } 826 827 if (platform->driver->ops->hw_params) { 828 ret = platform->driver->ops->hw_params(substream, params); 829 if (ret < 0) { 830 printk(KERN_ERR "asoc: platform %s hw params failed\n", 831 platform->name); 832 goto platform_err; 833 } 834 } 835 836 rtd->rate = params_rate(params); 837 838 out: 839 mutex_unlock(&pcm_mutex); 840 return ret; 841 842 platform_err: 843 if (cpu_dai->driver->ops->hw_free) 844 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 845 846 interface_err: 847 if (codec_dai->driver->ops->hw_free) 848 codec_dai->driver->ops->hw_free(substream, codec_dai); 849 850 codec_err: 851 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 852 rtd->dai_link->ops->hw_free(substream); 853 854 mutex_unlock(&pcm_mutex); 855 return ret; 856 } 857 858 /* 859 * Frees resources allocated by hw_params, can be called multiple times 860 */ 861 static int soc_pcm_hw_free(struct snd_pcm_substream *substream) 862 { 863 struct snd_soc_pcm_runtime *rtd = substream->private_data; 864 struct snd_soc_platform *platform = rtd->platform; 865 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 866 struct snd_soc_dai *codec_dai = rtd->codec_dai; 867 struct snd_soc_codec *codec = rtd->codec; 868 869 mutex_lock(&pcm_mutex); 870 871 /* apply codec digital mute */ 872 if (!codec->active) 873 snd_soc_dai_digital_mute(codec_dai, 1); 874 875 /* free any machine hw params */ 876 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 877 rtd->dai_link->ops->hw_free(substream); 878 879 /* free any DMA resources */ 880 if (platform->driver->ops->hw_free) 881 platform->driver->ops->hw_free(substream); 882 883 /* now free hw params for the DAIs */ 884 if (codec_dai->driver->ops->hw_free) 885 codec_dai->driver->ops->hw_free(substream, codec_dai); 886 887 if (cpu_dai->driver->ops->hw_free) 888 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 889 890 mutex_unlock(&pcm_mutex); 891 return 0; 892 } 893 894 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 895 { 896 struct snd_soc_pcm_runtime *rtd = substream->private_data; 897 struct snd_soc_platform *platform = rtd->platform; 898 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 899 struct snd_soc_dai *codec_dai = rtd->codec_dai; 900 int ret; 901 902 if (codec_dai->driver->ops->trigger) { 903 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai); 904 if (ret < 0) 905 return ret; 906 } 907 908 if (platform->driver->ops->trigger) { 909 ret = platform->driver->ops->trigger(substream, cmd); 910 if (ret < 0) 911 return ret; 912 } 913 914 if (cpu_dai->driver->ops->trigger) { 915 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai); 916 if (ret < 0) 917 return ret; 918 } 919 return 0; 920 } 921 922 /* 923 * soc level wrapper for pointer callback 924 * If cpu_dai, codec_dai, platform driver has the delay callback, than 925 * the runtime->delay will be updated accordingly. 926 */ 927 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream) 928 { 929 struct snd_soc_pcm_runtime *rtd = substream->private_data; 930 struct snd_soc_platform *platform = rtd->platform; 931 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 932 struct snd_soc_dai *codec_dai = rtd->codec_dai; 933 struct snd_pcm_runtime *runtime = substream->runtime; 934 snd_pcm_uframes_t offset = 0; 935 snd_pcm_sframes_t delay = 0; 936 937 if (platform->driver->ops->pointer) 938 offset = platform->driver->ops->pointer(substream); 939 940 if (cpu_dai->driver->ops->delay) 941 delay += cpu_dai->driver->ops->delay(substream, cpu_dai); 942 943 if (codec_dai->driver->ops->delay) 944 delay += codec_dai->driver->ops->delay(substream, codec_dai); 945 946 if (platform->driver->delay) 947 delay += platform->driver->delay(substream, codec_dai); 948 949 runtime->delay = delay; 950 951 return offset; 952 } 953 954 /* ASoC PCM operations */ 955 static struct snd_pcm_ops soc_pcm_ops = { 956 .open = soc_pcm_open, 957 .close = soc_codec_close, 958 .hw_params = soc_pcm_hw_params, 959 .hw_free = soc_pcm_hw_free, 960 .prepare = soc_pcm_prepare, 961 .trigger = soc_pcm_trigger, 962 .pointer = soc_pcm_pointer, 963 }; 964 965 #ifdef CONFIG_PM 966 /* powers down audio subsystem for suspend */ 967 static int soc_suspend(struct device *dev) 968 { 969 struct platform_device *pdev = to_platform_device(dev); 970 struct snd_soc_card *card = platform_get_drvdata(pdev); 971 struct snd_soc_codec *codec; 972 int i; 973 974 /* If the initialization of this soc device failed, there is no codec 975 * associated with it. Just bail out in this case. 976 */ 977 if (list_empty(&card->codec_dev_list)) 978 return 0; 979 980 /* Due to the resume being scheduled into a workqueue we could 981 * suspend before that's finished - wait for it to complete. 982 */ 983 snd_power_lock(card->snd_card); 984 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0); 985 snd_power_unlock(card->snd_card); 986 987 /* we're going to block userspace touching us until resume completes */ 988 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot); 989 990 /* mute any active DACs */ 991 for (i = 0; i < card->num_rtd; i++) { 992 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 993 struct snd_soc_dai_driver *drv = dai->driver; 994 995 if (card->rtd[i].dai_link->ignore_suspend) 996 continue; 997 998 if (drv->ops->digital_mute && dai->playback_active) 999 drv->ops->digital_mute(dai, 1); 1000 } 1001 1002 /* suspend all pcms */ 1003 for (i = 0; i < card->num_rtd; i++) { 1004 if (card->rtd[i].dai_link->ignore_suspend) 1005 continue; 1006 1007 snd_pcm_suspend_all(card->rtd[i].pcm); 1008 } 1009 1010 if (card->suspend_pre) 1011 card->suspend_pre(pdev, PMSG_SUSPEND); 1012 1013 for (i = 0; i < card->num_rtd; i++) { 1014 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1015 struct snd_soc_platform *platform = card->rtd[i].platform; 1016 1017 if (card->rtd[i].dai_link->ignore_suspend) 1018 continue; 1019 1020 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control) 1021 cpu_dai->driver->suspend(cpu_dai); 1022 if (platform->driver->suspend && !platform->suspended) { 1023 platform->driver->suspend(cpu_dai); 1024 platform->suspended = 1; 1025 } 1026 } 1027 1028 /* close any waiting streams and save state */ 1029 for (i = 0; i < card->num_rtd; i++) { 1030 flush_delayed_work_sync(&card->rtd[i].delayed_work); 1031 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level; 1032 } 1033 1034 for (i = 0; i < card->num_rtd; i++) { 1035 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1036 1037 if (card->rtd[i].dai_link->ignore_suspend) 1038 continue; 1039 1040 if (driver->playback.stream_name != NULL) 1041 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1042 SND_SOC_DAPM_STREAM_SUSPEND); 1043 1044 if (driver->capture.stream_name != NULL) 1045 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1046 SND_SOC_DAPM_STREAM_SUSPEND); 1047 } 1048 1049 /* suspend all CODECs */ 1050 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 1051 /* If there are paths active then the CODEC will be held with 1052 * bias _ON and should not be suspended. */ 1053 if (!codec->suspended && codec->driver->suspend) { 1054 switch (codec->dapm.bias_level) { 1055 case SND_SOC_BIAS_STANDBY: 1056 case SND_SOC_BIAS_OFF: 1057 codec->driver->suspend(codec, PMSG_SUSPEND); 1058 codec->suspended = 1; 1059 break; 1060 default: 1061 dev_dbg(codec->dev, "CODEC is on over suspend\n"); 1062 break; 1063 } 1064 } 1065 } 1066 1067 for (i = 0; i < card->num_rtd; i++) { 1068 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1069 1070 if (card->rtd[i].dai_link->ignore_suspend) 1071 continue; 1072 1073 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control) 1074 cpu_dai->driver->suspend(cpu_dai); 1075 } 1076 1077 if (card->suspend_post) 1078 card->suspend_post(pdev, PMSG_SUSPEND); 1079 1080 return 0; 1081 } 1082 1083 /* deferred resume work, so resume can complete before we finished 1084 * setting our codec back up, which can be very slow on I2C 1085 */ 1086 static void soc_resume_deferred(struct work_struct *work) 1087 { 1088 struct snd_soc_card *card = 1089 container_of(work, struct snd_soc_card, deferred_resume_work); 1090 struct platform_device *pdev = to_platform_device(card->dev); 1091 struct snd_soc_codec *codec; 1092 int i; 1093 1094 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 1095 * so userspace apps are blocked from touching us 1096 */ 1097 1098 dev_dbg(card->dev, "starting resume work\n"); 1099 1100 /* Bring us up into D2 so that DAPM starts enabling things */ 1101 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2); 1102 1103 if (card->resume_pre) 1104 card->resume_pre(pdev); 1105 1106 /* resume AC97 DAIs */ 1107 for (i = 0; i < card->num_rtd; i++) { 1108 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1109 1110 if (card->rtd[i].dai_link->ignore_suspend) 1111 continue; 1112 1113 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control) 1114 cpu_dai->driver->resume(cpu_dai); 1115 } 1116 1117 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 1118 /* If the CODEC was idle over suspend then it will have been 1119 * left with bias OFF or STANDBY and suspended so we must now 1120 * resume. Otherwise the suspend was suppressed. 1121 */ 1122 if (codec->driver->resume && codec->suspended) { 1123 switch (codec->dapm.bias_level) { 1124 case SND_SOC_BIAS_STANDBY: 1125 case SND_SOC_BIAS_OFF: 1126 codec->driver->resume(codec); 1127 codec->suspended = 0; 1128 break; 1129 default: 1130 dev_dbg(codec->dev, "CODEC was on over suspend\n"); 1131 break; 1132 } 1133 } 1134 } 1135 1136 for (i = 0; i < card->num_rtd; i++) { 1137 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1138 1139 if (card->rtd[i].dai_link->ignore_suspend) 1140 continue; 1141 1142 if (driver->playback.stream_name != NULL) 1143 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1144 SND_SOC_DAPM_STREAM_RESUME); 1145 1146 if (driver->capture.stream_name != NULL) 1147 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1148 SND_SOC_DAPM_STREAM_RESUME); 1149 } 1150 1151 /* unmute any active DACs */ 1152 for (i = 0; i < card->num_rtd; i++) { 1153 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 1154 struct snd_soc_dai_driver *drv = dai->driver; 1155 1156 if (card->rtd[i].dai_link->ignore_suspend) 1157 continue; 1158 1159 if (drv->ops->digital_mute && dai->playback_active) 1160 drv->ops->digital_mute(dai, 0); 1161 } 1162 1163 for (i = 0; i < card->num_rtd; i++) { 1164 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1165 struct snd_soc_platform *platform = card->rtd[i].platform; 1166 1167 if (card->rtd[i].dai_link->ignore_suspend) 1168 continue; 1169 1170 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control) 1171 cpu_dai->driver->resume(cpu_dai); 1172 if (platform->driver->resume && platform->suspended) { 1173 platform->driver->resume(cpu_dai); 1174 platform->suspended = 0; 1175 } 1176 } 1177 1178 if (card->resume_post) 1179 card->resume_post(pdev); 1180 1181 dev_dbg(card->dev, "resume work completed\n"); 1182 1183 /* userspace can access us now we are back as we were before */ 1184 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0); 1185 } 1186 1187 /* powers up audio subsystem after a suspend */ 1188 static int soc_resume(struct device *dev) 1189 { 1190 struct platform_device *pdev = to_platform_device(dev); 1191 struct snd_soc_card *card = platform_get_drvdata(pdev); 1192 int i; 1193 1194 /* AC97 devices might have other drivers hanging off them so 1195 * need to resume immediately. Other drivers don't have that 1196 * problem and may take a substantial amount of time to resume 1197 * due to I/O costs and anti-pop so handle them out of line. 1198 */ 1199 for (i = 0; i < card->num_rtd; i++) { 1200 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1201 if (cpu_dai->driver->ac97_control) { 1202 dev_dbg(dev, "Resuming AC97 immediately\n"); 1203 soc_resume_deferred(&card->deferred_resume_work); 1204 } else { 1205 dev_dbg(dev, "Scheduling resume work\n"); 1206 if (!schedule_work(&card->deferred_resume_work)) 1207 dev_err(dev, "resume work item may be lost\n"); 1208 } 1209 } 1210 1211 return 0; 1212 } 1213 #else 1214 #define soc_suspend NULL 1215 #define soc_resume NULL 1216 #endif 1217 1218 static struct snd_soc_dai_ops null_dai_ops = { 1219 }; 1220 1221 static int soc_bind_dai_link(struct snd_soc_card *card, int num) 1222 { 1223 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1224 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1225 struct snd_soc_codec *codec; 1226 struct snd_soc_platform *platform; 1227 struct snd_soc_dai *codec_dai, *cpu_dai; 1228 1229 if (rtd->complete) 1230 return 1; 1231 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num); 1232 1233 /* do we already have the CPU DAI for this link ? */ 1234 if (rtd->cpu_dai) { 1235 goto find_codec; 1236 } 1237 /* no, then find CPU DAI from registered DAIs*/ 1238 list_for_each_entry(cpu_dai, &dai_list, list) { 1239 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) { 1240 1241 if (!try_module_get(cpu_dai->dev->driver->owner)) 1242 return -ENODEV; 1243 1244 rtd->cpu_dai = cpu_dai; 1245 goto find_codec; 1246 } 1247 } 1248 dev_dbg(card->dev, "CPU DAI %s not registered\n", 1249 dai_link->cpu_dai_name); 1250 1251 find_codec: 1252 /* do we already have the CODEC for this link ? */ 1253 if (rtd->codec) { 1254 goto find_platform; 1255 } 1256 1257 /* no, then find CODEC from registered CODECs*/ 1258 list_for_each_entry(codec, &codec_list, list) { 1259 if (!strcmp(codec->name, dai_link->codec_name)) { 1260 rtd->codec = codec; 1261 1262 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/ 1263 list_for_each_entry(codec_dai, &dai_list, list) { 1264 if (codec->dev == codec_dai->dev && 1265 !strcmp(codec_dai->name, dai_link->codec_dai_name)) { 1266 rtd->codec_dai = codec_dai; 1267 goto find_platform; 1268 } 1269 } 1270 dev_dbg(card->dev, "CODEC DAI %s not registered\n", 1271 dai_link->codec_dai_name); 1272 1273 goto find_platform; 1274 } 1275 } 1276 dev_dbg(card->dev, "CODEC %s not registered\n", 1277 dai_link->codec_name); 1278 1279 find_platform: 1280 /* do we already have the CODEC DAI for this link ? */ 1281 if (rtd->platform) { 1282 goto out; 1283 } 1284 /* no, then find CPU DAI from registered DAIs*/ 1285 list_for_each_entry(platform, &platform_list, list) { 1286 if (!strcmp(platform->name, dai_link->platform_name)) { 1287 rtd->platform = platform; 1288 goto out; 1289 } 1290 } 1291 1292 dev_dbg(card->dev, "platform %s not registered\n", 1293 dai_link->platform_name); 1294 return 0; 1295 1296 out: 1297 /* mark rtd as complete if we found all 4 of our client devices */ 1298 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) { 1299 rtd->complete = 1; 1300 card->num_rtd++; 1301 } 1302 return 1; 1303 } 1304 1305 static void soc_remove_codec(struct snd_soc_codec *codec) 1306 { 1307 int err; 1308 1309 if (codec->driver->remove) { 1310 err = codec->driver->remove(codec); 1311 if (err < 0) 1312 dev_err(codec->dev, 1313 "asoc: failed to remove %s: %d\n", 1314 codec->name, err); 1315 } 1316 1317 /* Make sure all DAPM widgets are freed */ 1318 snd_soc_dapm_free(&codec->dapm); 1319 1320 soc_cleanup_codec_debugfs(codec); 1321 codec->probed = 0; 1322 list_del(&codec->card_list); 1323 module_put(codec->dev->driver->owner); 1324 } 1325 1326 static void soc_remove_dai_link(struct snd_soc_card *card, int num) 1327 { 1328 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1329 struct snd_soc_codec *codec = rtd->codec; 1330 struct snd_soc_platform *platform = rtd->platform; 1331 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1332 int err; 1333 1334 /* unregister the rtd device */ 1335 if (rtd->dev_registered) { 1336 device_remove_file(&rtd->dev, &dev_attr_pmdown_time); 1337 device_remove_file(&rtd->dev, &dev_attr_codec_reg); 1338 device_unregister(&rtd->dev); 1339 rtd->dev_registered = 0; 1340 } 1341 1342 /* remove the CODEC DAI */ 1343 if (codec_dai && codec_dai->probed) { 1344 if (codec_dai->driver->remove) { 1345 err = codec_dai->driver->remove(codec_dai); 1346 if (err < 0) 1347 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name); 1348 } 1349 codec_dai->probed = 0; 1350 list_del(&codec_dai->card_list); 1351 } 1352 1353 /* remove the platform */ 1354 if (platform && platform->probed) { 1355 if (platform->driver->remove) { 1356 err = platform->driver->remove(platform); 1357 if (err < 0) 1358 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name); 1359 } 1360 platform->probed = 0; 1361 list_del(&platform->card_list); 1362 module_put(platform->dev->driver->owner); 1363 } 1364 1365 /* remove the CODEC */ 1366 if (codec && codec->probed) 1367 soc_remove_codec(codec); 1368 1369 /* remove the cpu_dai */ 1370 if (cpu_dai && cpu_dai->probed) { 1371 if (cpu_dai->driver->remove) { 1372 err = cpu_dai->driver->remove(cpu_dai); 1373 if (err < 0) 1374 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name); 1375 } 1376 cpu_dai->probed = 0; 1377 list_del(&cpu_dai->card_list); 1378 module_put(cpu_dai->dev->driver->owner); 1379 } 1380 } 1381 1382 static void soc_set_name_prefix(struct snd_soc_card *card, 1383 struct snd_soc_codec *codec) 1384 { 1385 int i; 1386 1387 if (card->codec_conf == NULL) 1388 return; 1389 1390 for (i = 0; i < card->num_configs; i++) { 1391 struct snd_soc_codec_conf *map = &card->codec_conf[i]; 1392 if (map->dev_name && !strcmp(codec->name, map->dev_name)) { 1393 codec->name_prefix = map->name_prefix; 1394 break; 1395 } 1396 } 1397 } 1398 1399 static int soc_probe_codec(struct snd_soc_card *card, 1400 struct snd_soc_codec *codec) 1401 { 1402 int ret = 0; 1403 1404 codec->card = card; 1405 codec->dapm.card = card; 1406 soc_set_name_prefix(card, codec); 1407 1408 if (codec->driver->probe) { 1409 ret = codec->driver->probe(codec); 1410 if (ret < 0) { 1411 dev_err(codec->dev, 1412 "asoc: failed to probe CODEC %s: %d\n", 1413 codec->name, ret); 1414 return ret; 1415 } 1416 } 1417 1418 soc_init_codec_debugfs(codec); 1419 1420 /* mark codec as probed and add to card codec list */ 1421 if (!try_module_get(codec->dev->driver->owner)) 1422 return -ENODEV; 1423 1424 codec->probed = 1; 1425 list_add(&codec->card_list, &card->codec_dev_list); 1426 list_add(&codec->dapm.list, &card->dapm_list); 1427 1428 return ret; 1429 } 1430 1431 static void rtd_release(struct device *dev) {} 1432 1433 static int soc_post_component_init(struct snd_soc_card *card, 1434 struct snd_soc_codec *codec, 1435 int num, int dailess) 1436 { 1437 struct snd_soc_dai_link *dai_link = NULL; 1438 struct snd_soc_aux_dev *aux_dev = NULL; 1439 struct snd_soc_pcm_runtime *rtd; 1440 const char *temp, *name; 1441 int ret = 0; 1442 1443 if (!dailess) { 1444 dai_link = &card->dai_link[num]; 1445 rtd = &card->rtd[num]; 1446 name = dai_link->name; 1447 } else { 1448 aux_dev = &card->aux_dev[num]; 1449 rtd = &card->rtd_aux[num]; 1450 name = aux_dev->name; 1451 } 1452 rtd->card = card; 1453 1454 /* machine controls, routes and widgets are not prefixed */ 1455 temp = codec->name_prefix; 1456 codec->name_prefix = NULL; 1457 1458 /* do machine specific initialization */ 1459 if (!dailess && dai_link->init) 1460 ret = dai_link->init(rtd); 1461 else if (dailess && aux_dev->init) 1462 ret = aux_dev->init(&codec->dapm); 1463 if (ret < 0) { 1464 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret); 1465 return ret; 1466 } 1467 codec->name_prefix = temp; 1468 1469 /* Make sure all DAPM widgets are instantiated */ 1470 snd_soc_dapm_new_widgets(&codec->dapm); 1471 snd_soc_dapm_sync(&codec->dapm); 1472 1473 /* register the rtd device */ 1474 rtd->codec = codec; 1475 rtd->dev.parent = card->dev; 1476 rtd->dev.release = rtd_release; 1477 rtd->dev.init_name = name; 1478 ret = device_register(&rtd->dev); 1479 if (ret < 0) { 1480 dev_err(card->dev, 1481 "asoc: failed to register runtime device: %d\n", ret); 1482 return ret; 1483 } 1484 rtd->dev_registered = 1; 1485 1486 /* add DAPM sysfs entries for this codec */ 1487 ret = snd_soc_dapm_sys_add(&rtd->dev); 1488 if (ret < 0) 1489 dev_err(codec->dev, 1490 "asoc: failed to add codec dapm sysfs entries: %d\n", 1491 ret); 1492 1493 /* add codec sysfs entries */ 1494 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg); 1495 if (ret < 0) 1496 dev_err(codec->dev, 1497 "asoc: failed to add codec sysfs files: %d\n", ret); 1498 1499 return 0; 1500 } 1501 1502 static int soc_probe_dai_link(struct snd_soc_card *card, int num) 1503 { 1504 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1505 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1506 struct snd_soc_codec *codec = rtd->codec; 1507 struct snd_soc_platform *platform = rtd->platform; 1508 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1509 int ret; 1510 1511 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num); 1512 1513 /* config components */ 1514 codec_dai->codec = codec; 1515 cpu_dai->platform = platform; 1516 codec_dai->card = card; 1517 cpu_dai->card = card; 1518 1519 /* set default power off timeout */ 1520 rtd->pmdown_time = pmdown_time; 1521 1522 /* probe the cpu_dai */ 1523 if (!cpu_dai->probed) { 1524 if (cpu_dai->driver->probe) { 1525 ret = cpu_dai->driver->probe(cpu_dai); 1526 if (ret < 0) { 1527 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n", 1528 cpu_dai->name); 1529 return ret; 1530 } 1531 } 1532 cpu_dai->probed = 1; 1533 /* mark cpu_dai as probed and add to card cpu_dai list */ 1534 list_add(&cpu_dai->card_list, &card->dai_dev_list); 1535 } 1536 1537 /* probe the CODEC */ 1538 if (!codec->probed) { 1539 ret = soc_probe_codec(card, codec); 1540 if (ret < 0) 1541 return ret; 1542 } 1543 1544 /* probe the platform */ 1545 if (!platform->probed) { 1546 if (platform->driver->probe) { 1547 ret = platform->driver->probe(platform); 1548 if (ret < 0) { 1549 printk(KERN_ERR "asoc: failed to probe platform %s\n", 1550 platform->name); 1551 return ret; 1552 } 1553 } 1554 /* mark platform as probed and add to card platform list */ 1555 1556 if (!try_module_get(platform->dev->driver->owner)) 1557 return -ENODEV; 1558 1559 platform->probed = 1; 1560 list_add(&platform->card_list, &card->platform_dev_list); 1561 } 1562 1563 /* probe the CODEC DAI */ 1564 if (!codec_dai->probed) { 1565 if (codec_dai->driver->probe) { 1566 ret = codec_dai->driver->probe(codec_dai); 1567 if (ret < 0) { 1568 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n", 1569 codec_dai->name); 1570 return ret; 1571 } 1572 } 1573 1574 /* mark cpu_dai as probed and add to card cpu_dai list */ 1575 codec_dai->probed = 1; 1576 list_add(&codec_dai->card_list, &card->dai_dev_list); 1577 } 1578 1579 /* DAPM dai link stream work */ 1580 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work); 1581 1582 ret = soc_post_component_init(card, codec, num, 0); 1583 if (ret) 1584 return ret; 1585 1586 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time); 1587 if (ret < 0) 1588 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n"); 1589 1590 /* create the pcm */ 1591 ret = soc_new_pcm(rtd, num); 1592 if (ret < 0) { 1593 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name); 1594 return ret; 1595 } 1596 1597 /* add platform data for AC97 devices */ 1598 if (rtd->codec_dai->driver->ac97_control) 1599 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata); 1600 1601 return 0; 1602 } 1603 1604 #ifdef CONFIG_SND_SOC_AC97_BUS 1605 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) 1606 { 1607 int ret; 1608 1609 /* Only instantiate AC97 if not already done by the adaptor 1610 * for the generic AC97 subsystem. 1611 */ 1612 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) { 1613 /* 1614 * It is possible that the AC97 device is already registered to 1615 * the device subsystem. This happens when the device is created 1616 * via snd_ac97_mixer(). Currently only SoC codec that does so 1617 * is the generic AC97 glue but others migh emerge. 1618 * 1619 * In those cases we don't try to register the device again. 1620 */ 1621 if (!rtd->codec->ac97_created) 1622 return 0; 1623 1624 ret = soc_ac97_dev_register(rtd->codec); 1625 if (ret < 0) { 1626 printk(KERN_ERR "asoc: AC97 device register failed\n"); 1627 return ret; 1628 } 1629 1630 rtd->codec->ac97_registered = 1; 1631 } 1632 return 0; 1633 } 1634 1635 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec) 1636 { 1637 if (codec->ac97_registered) { 1638 soc_ac97_dev_unregister(codec); 1639 codec->ac97_registered = 0; 1640 } 1641 } 1642 #endif 1643 1644 static int soc_probe_aux_dev(struct snd_soc_card *card, int num) 1645 { 1646 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; 1647 struct snd_soc_codec *codec; 1648 int ret = -ENODEV; 1649 1650 /* find CODEC from registered CODECs*/ 1651 list_for_each_entry(codec, &codec_list, list) { 1652 if (!strcmp(codec->name, aux_dev->codec_name)) { 1653 if (codec->probed) { 1654 dev_err(codec->dev, 1655 "asoc: codec already probed"); 1656 ret = -EBUSY; 1657 goto out; 1658 } 1659 goto found; 1660 } 1661 } 1662 /* codec not found */ 1663 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name); 1664 goto out; 1665 1666 found: 1667 ret = soc_probe_codec(card, codec); 1668 if (ret < 0) 1669 return ret; 1670 1671 ret = soc_post_component_init(card, codec, num, 1); 1672 1673 out: 1674 return ret; 1675 } 1676 1677 static void soc_remove_aux_dev(struct snd_soc_card *card, int num) 1678 { 1679 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; 1680 struct snd_soc_codec *codec = rtd->codec; 1681 1682 /* unregister the rtd device */ 1683 if (rtd->dev_registered) { 1684 device_remove_file(&rtd->dev, &dev_attr_codec_reg); 1685 device_unregister(&rtd->dev); 1686 rtd->dev_registered = 0; 1687 } 1688 1689 if (codec && codec->probed) 1690 soc_remove_codec(codec); 1691 } 1692 1693 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec, 1694 enum snd_soc_compress_type compress_type) 1695 { 1696 int ret; 1697 1698 if (codec->cache_init) 1699 return 0; 1700 1701 /* override the compress_type if necessary */ 1702 if (compress_type && codec->compress_type != compress_type) 1703 codec->compress_type = compress_type; 1704 ret = snd_soc_cache_init(codec); 1705 if (ret < 0) { 1706 dev_err(codec->dev, "Failed to set cache compression type: %d\n", 1707 ret); 1708 return ret; 1709 } 1710 codec->cache_init = 1; 1711 return 0; 1712 } 1713 1714 static void snd_soc_instantiate_card(struct snd_soc_card *card) 1715 { 1716 struct platform_device *pdev = to_platform_device(card->dev); 1717 struct snd_soc_codec *codec; 1718 struct snd_soc_codec_conf *codec_conf; 1719 enum snd_soc_compress_type compress_type; 1720 int ret, i; 1721 1722 mutex_lock(&card->mutex); 1723 1724 if (card->instantiated) { 1725 mutex_unlock(&card->mutex); 1726 return; 1727 } 1728 1729 /* bind DAIs */ 1730 for (i = 0; i < card->num_links; i++) 1731 soc_bind_dai_link(card, i); 1732 1733 /* bind completed ? */ 1734 if (card->num_rtd != card->num_links) { 1735 mutex_unlock(&card->mutex); 1736 return; 1737 } 1738 1739 /* initialize the register cache for each available codec */ 1740 list_for_each_entry(codec, &codec_list, list) { 1741 if (codec->cache_init) 1742 continue; 1743 /* check to see if we need to override the compress_type */ 1744 for (i = 0; i < card->num_configs; ++i) { 1745 codec_conf = &card->codec_conf[i]; 1746 if (!strcmp(codec->name, codec_conf->dev_name)) { 1747 compress_type = codec_conf->compress_type; 1748 if (compress_type && compress_type 1749 != codec->compress_type) 1750 break; 1751 } 1752 } 1753 if (i == card->num_configs) { 1754 /* no need to override the compress_type so 1755 * go ahead and do the standard thing */ 1756 ret = snd_soc_init_codec_cache(codec, 0); 1757 if (ret < 0) { 1758 mutex_unlock(&card->mutex); 1759 return; 1760 } 1761 continue; 1762 } 1763 /* override the compress_type with the one supplied in 1764 * the machine driver */ 1765 ret = snd_soc_init_codec_cache(codec, compress_type); 1766 if (ret < 0) { 1767 mutex_unlock(&card->mutex); 1768 return; 1769 } 1770 } 1771 1772 /* card bind complete so register a sound card */ 1773 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, 1774 card->owner, 0, &card->snd_card); 1775 if (ret < 0) { 1776 printk(KERN_ERR "asoc: can't create sound card for card %s\n", 1777 card->name); 1778 mutex_unlock(&card->mutex); 1779 return; 1780 } 1781 card->snd_card->dev = card->dev; 1782 1783 #ifdef CONFIG_PM 1784 /* deferred resume work */ 1785 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 1786 #endif 1787 1788 /* initialise the sound card only once */ 1789 if (card->probe) { 1790 ret = card->probe(pdev); 1791 if (ret < 0) 1792 goto card_probe_error; 1793 } 1794 1795 for (i = 0; i < card->num_links; i++) { 1796 ret = soc_probe_dai_link(card, i); 1797 if (ret < 0) { 1798 pr_err("asoc: failed to instantiate card %s: %d\n", 1799 card->name, ret); 1800 goto probe_dai_err; 1801 } 1802 } 1803 1804 for (i = 0; i < card->num_aux_devs; i++) { 1805 ret = soc_probe_aux_dev(card, i); 1806 if (ret < 0) { 1807 pr_err("asoc: failed to add auxiliary devices %s: %d\n", 1808 card->name, ret); 1809 goto probe_aux_dev_err; 1810 } 1811 } 1812 1813 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname), 1814 "%s", card->name); 1815 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname), 1816 "%s", card->name); 1817 1818 ret = snd_card_register(card->snd_card); 1819 if (ret < 0) { 1820 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name); 1821 goto probe_aux_dev_err; 1822 } 1823 1824 #ifdef CONFIG_SND_SOC_AC97_BUS 1825 /* register any AC97 codecs */ 1826 for (i = 0; i < card->num_rtd; i++) { 1827 ret = soc_register_ac97_dai_link(&card->rtd[i]); 1828 if (ret < 0) { 1829 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name); 1830 while (--i >= 0) 1831 soc_unregister_ac97_dai_link(card->rtd[i].codec); 1832 goto probe_aux_dev_err; 1833 } 1834 } 1835 #endif 1836 1837 card->instantiated = 1; 1838 mutex_unlock(&card->mutex); 1839 return; 1840 1841 probe_aux_dev_err: 1842 for (i = 0; i < card->num_aux_devs; i++) 1843 soc_remove_aux_dev(card, i); 1844 1845 probe_dai_err: 1846 for (i = 0; i < card->num_links; i++) 1847 soc_remove_dai_link(card, i); 1848 1849 card_probe_error: 1850 if (card->remove) 1851 card->remove(pdev); 1852 1853 snd_card_free(card->snd_card); 1854 1855 mutex_unlock(&card->mutex); 1856 } 1857 1858 /* 1859 * Attempt to initialise any uninitialised cards. Must be called with 1860 * client_mutex. 1861 */ 1862 static void snd_soc_instantiate_cards(void) 1863 { 1864 struct snd_soc_card *card; 1865 list_for_each_entry(card, &card_list, list) 1866 snd_soc_instantiate_card(card); 1867 } 1868 1869 /* probes a new socdev */ 1870 static int soc_probe(struct platform_device *pdev) 1871 { 1872 struct snd_soc_card *card = platform_get_drvdata(pdev); 1873 int ret = 0; 1874 1875 /* Bodge while we unpick instantiation */ 1876 card->dev = &pdev->dev; 1877 INIT_LIST_HEAD(&card->dai_dev_list); 1878 INIT_LIST_HEAD(&card->codec_dev_list); 1879 INIT_LIST_HEAD(&card->platform_dev_list); 1880 INIT_LIST_HEAD(&card->widgets); 1881 INIT_LIST_HEAD(&card->paths); 1882 INIT_LIST_HEAD(&card->dapm_list); 1883 1884 soc_init_card_debugfs(card); 1885 1886 ret = snd_soc_register_card(card); 1887 if (ret != 0) { 1888 dev_err(&pdev->dev, "Failed to register card\n"); 1889 return ret; 1890 } 1891 1892 return 0; 1893 } 1894 1895 /* removes a socdev */ 1896 static int soc_remove(struct platform_device *pdev) 1897 { 1898 struct snd_soc_card *card = platform_get_drvdata(pdev); 1899 int i; 1900 1901 if (card->instantiated) { 1902 1903 /* make sure any delayed work runs */ 1904 for (i = 0; i < card->num_rtd; i++) { 1905 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1906 flush_delayed_work_sync(&rtd->delayed_work); 1907 } 1908 1909 /* remove auxiliary devices */ 1910 for (i = 0; i < card->num_aux_devs; i++) 1911 soc_remove_aux_dev(card, i); 1912 1913 /* remove and free each DAI */ 1914 for (i = 0; i < card->num_rtd; i++) 1915 soc_remove_dai_link(card, i); 1916 1917 soc_cleanup_card_debugfs(card); 1918 1919 /* remove the card */ 1920 if (card->remove) 1921 card->remove(pdev); 1922 1923 kfree(card->rtd); 1924 snd_card_free(card->snd_card); 1925 } 1926 snd_soc_unregister_card(card); 1927 return 0; 1928 } 1929 1930 static int soc_poweroff(struct device *dev) 1931 { 1932 struct platform_device *pdev = to_platform_device(dev); 1933 struct snd_soc_card *card = platform_get_drvdata(pdev); 1934 int i; 1935 1936 if (!card->instantiated) 1937 return 0; 1938 1939 /* Flush out pmdown_time work - we actually do want to run it 1940 * now, we're shutting down so no imminent restart. */ 1941 for (i = 0; i < card->num_rtd; i++) { 1942 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1943 flush_delayed_work_sync(&rtd->delayed_work); 1944 } 1945 1946 snd_soc_dapm_shutdown(card); 1947 1948 return 0; 1949 } 1950 1951 static const struct dev_pm_ops soc_pm_ops = { 1952 .suspend = soc_suspend, 1953 .resume = soc_resume, 1954 .poweroff = soc_poweroff, 1955 }; 1956 1957 /* ASoC platform driver */ 1958 static struct platform_driver soc_driver = { 1959 .driver = { 1960 .name = "soc-audio", 1961 .owner = THIS_MODULE, 1962 .pm = &soc_pm_ops, 1963 }, 1964 .probe = soc_probe, 1965 .remove = soc_remove, 1966 }; 1967 1968 /* create a new pcm */ 1969 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num) 1970 { 1971 struct snd_soc_codec *codec = rtd->codec; 1972 struct snd_soc_platform *platform = rtd->platform; 1973 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1974 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1975 struct snd_pcm *pcm; 1976 char new_name[64]; 1977 int ret = 0, playback = 0, capture = 0; 1978 1979 /* check client and interface hw capabilities */ 1980 snprintf(new_name, sizeof(new_name), "%s %s-%d", 1981 rtd->dai_link->stream_name, codec_dai->name, num); 1982 1983 if (codec_dai->driver->playback.channels_min) 1984 playback = 1; 1985 if (codec_dai->driver->capture.channels_min) 1986 capture = 1; 1987 1988 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name); 1989 ret = snd_pcm_new(rtd->card->snd_card, new_name, 1990 num, playback, capture, &pcm); 1991 if (ret < 0) { 1992 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name); 1993 return ret; 1994 } 1995 1996 rtd->pcm = pcm; 1997 pcm->private_data = rtd; 1998 soc_pcm_ops.mmap = platform->driver->ops->mmap; 1999 soc_pcm_ops.pointer = platform->driver->ops->pointer; 2000 soc_pcm_ops.ioctl = platform->driver->ops->ioctl; 2001 soc_pcm_ops.copy = platform->driver->ops->copy; 2002 soc_pcm_ops.silence = platform->driver->ops->silence; 2003 soc_pcm_ops.ack = platform->driver->ops->ack; 2004 soc_pcm_ops.page = platform->driver->ops->page; 2005 2006 if (playback) 2007 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops); 2008 2009 if (capture) 2010 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops); 2011 2012 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm); 2013 if (ret < 0) { 2014 printk(KERN_ERR "asoc: platform pcm constructor failed\n"); 2015 return ret; 2016 } 2017 2018 pcm->private_free = platform->driver->pcm_free; 2019 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name, 2020 cpu_dai->name); 2021 return ret; 2022 } 2023 2024 /** 2025 * snd_soc_codec_volatile_register: Report if a register is volatile. 2026 * 2027 * @codec: CODEC to query. 2028 * @reg: Register to query. 2029 * 2030 * Boolean function indiciating if a CODEC register is volatile. 2031 */ 2032 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg) 2033 { 2034 if (codec->driver->volatile_register) 2035 return codec->driver->volatile_register(reg); 2036 else 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register); 2040 2041 /** 2042 * snd_soc_new_ac97_codec - initailise AC97 device 2043 * @codec: audio codec 2044 * @ops: AC97 bus operations 2045 * @num: AC97 codec number 2046 * 2047 * Initialises AC97 codec resources for use by ad-hoc devices only. 2048 */ 2049 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 2050 struct snd_ac97_bus_ops *ops, int num) 2051 { 2052 mutex_lock(&codec->mutex); 2053 2054 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 2055 if (codec->ac97 == NULL) { 2056 mutex_unlock(&codec->mutex); 2057 return -ENOMEM; 2058 } 2059 2060 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 2061 if (codec->ac97->bus == NULL) { 2062 kfree(codec->ac97); 2063 codec->ac97 = NULL; 2064 mutex_unlock(&codec->mutex); 2065 return -ENOMEM; 2066 } 2067 2068 codec->ac97->bus->ops = ops; 2069 codec->ac97->num = num; 2070 2071 /* 2072 * Mark the AC97 device to be created by us. This way we ensure that the 2073 * device will be registered with the device subsystem later on. 2074 */ 2075 codec->ac97_created = 1; 2076 2077 mutex_unlock(&codec->mutex); 2078 return 0; 2079 } 2080 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 2081 2082 /** 2083 * snd_soc_free_ac97_codec - free AC97 codec device 2084 * @codec: audio codec 2085 * 2086 * Frees AC97 codec device resources. 2087 */ 2088 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 2089 { 2090 mutex_lock(&codec->mutex); 2091 #ifdef CONFIG_SND_SOC_AC97_BUS 2092 soc_unregister_ac97_dai_link(codec); 2093 #endif 2094 kfree(codec->ac97->bus); 2095 kfree(codec->ac97); 2096 codec->ac97 = NULL; 2097 codec->ac97_created = 0; 2098 mutex_unlock(&codec->mutex); 2099 } 2100 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 2101 2102 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg) 2103 { 2104 unsigned int ret; 2105 2106 ret = codec->read(codec, reg); 2107 dev_dbg(codec->dev, "read %x => %x\n", reg, ret); 2108 trace_snd_soc_reg_read(codec, reg, ret); 2109 2110 return ret; 2111 } 2112 EXPORT_SYMBOL_GPL(snd_soc_read); 2113 2114 unsigned int snd_soc_write(struct snd_soc_codec *codec, 2115 unsigned int reg, unsigned int val) 2116 { 2117 dev_dbg(codec->dev, "write %x = %x\n", reg, val); 2118 trace_snd_soc_reg_write(codec, reg, val); 2119 return codec->write(codec, reg, val); 2120 } 2121 EXPORT_SYMBOL_GPL(snd_soc_write); 2122 2123 /** 2124 * snd_soc_update_bits - update codec register bits 2125 * @codec: audio codec 2126 * @reg: codec register 2127 * @mask: register mask 2128 * @value: new value 2129 * 2130 * Writes new register value. 2131 * 2132 * Returns 1 for change else 0. 2133 */ 2134 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 2135 unsigned int mask, unsigned int value) 2136 { 2137 int change; 2138 unsigned int old, new; 2139 2140 old = snd_soc_read(codec, reg); 2141 new = (old & ~mask) | value; 2142 change = old != new; 2143 if (change) 2144 snd_soc_write(codec, reg, new); 2145 2146 return change; 2147 } 2148 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 2149 2150 /** 2151 * snd_soc_update_bits_locked - update codec register bits 2152 * @codec: audio codec 2153 * @reg: codec register 2154 * @mask: register mask 2155 * @value: new value 2156 * 2157 * Writes new register value, and takes the codec mutex. 2158 * 2159 * Returns 1 for change else 0. 2160 */ 2161 int snd_soc_update_bits_locked(struct snd_soc_codec *codec, 2162 unsigned short reg, unsigned int mask, 2163 unsigned int value) 2164 { 2165 int change; 2166 2167 mutex_lock(&codec->mutex); 2168 change = snd_soc_update_bits(codec, reg, mask, value); 2169 mutex_unlock(&codec->mutex); 2170 2171 return change; 2172 } 2173 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked); 2174 2175 /** 2176 * snd_soc_test_bits - test register for change 2177 * @codec: audio codec 2178 * @reg: codec register 2179 * @mask: register mask 2180 * @value: new value 2181 * 2182 * Tests a register with a new value and checks if the new value is 2183 * different from the old value. 2184 * 2185 * Returns 1 for change else 0. 2186 */ 2187 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 2188 unsigned int mask, unsigned int value) 2189 { 2190 int change; 2191 unsigned int old, new; 2192 2193 old = snd_soc_read(codec, reg); 2194 new = (old & ~mask) | value; 2195 change = old != new; 2196 2197 return change; 2198 } 2199 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 2200 2201 /** 2202 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters 2203 * @substream: the pcm substream 2204 * @hw: the hardware parameters 2205 * 2206 * Sets the substream runtime hardware parameters. 2207 */ 2208 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 2209 const struct snd_pcm_hardware *hw) 2210 { 2211 struct snd_pcm_runtime *runtime = substream->runtime; 2212 runtime->hw.info = hw->info; 2213 runtime->hw.formats = hw->formats; 2214 runtime->hw.period_bytes_min = hw->period_bytes_min; 2215 runtime->hw.period_bytes_max = hw->period_bytes_max; 2216 runtime->hw.periods_min = hw->periods_min; 2217 runtime->hw.periods_max = hw->periods_max; 2218 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max; 2219 runtime->hw.fifo_size = hw->fifo_size; 2220 return 0; 2221 } 2222 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams); 2223 2224 /** 2225 * snd_soc_cnew - create new control 2226 * @_template: control template 2227 * @data: control private data 2228 * @long_name: control long name 2229 * 2230 * Create a new mixer control from a template control. 2231 * 2232 * Returns 0 for success, else error. 2233 */ 2234 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 2235 void *data, char *long_name) 2236 { 2237 struct snd_kcontrol_new template; 2238 2239 memcpy(&template, _template, sizeof(template)); 2240 if (long_name) 2241 template.name = long_name; 2242 template.index = 0; 2243 2244 return snd_ctl_new1(&template, data); 2245 } 2246 EXPORT_SYMBOL_GPL(snd_soc_cnew); 2247 2248 /** 2249 * snd_soc_add_controls - add an array of controls to a codec. 2250 * Convienience function to add a list of controls. Many codecs were 2251 * duplicating this code. 2252 * 2253 * @codec: codec to add controls to 2254 * @controls: array of controls to add 2255 * @num_controls: number of elements in the array 2256 * 2257 * Return 0 for success, else error. 2258 */ 2259 int snd_soc_add_controls(struct snd_soc_codec *codec, 2260 const struct snd_kcontrol_new *controls, int num_controls) 2261 { 2262 struct snd_card *card = codec->card->snd_card; 2263 char prefixed_name[44], *name; 2264 int err, i; 2265 2266 for (i = 0; i < num_controls; i++) { 2267 const struct snd_kcontrol_new *control = &controls[i]; 2268 if (codec->name_prefix) { 2269 snprintf(prefixed_name, sizeof(prefixed_name), "%s %s", 2270 codec->name_prefix, control->name); 2271 name = prefixed_name; 2272 } else { 2273 name = control->name; 2274 } 2275 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name)); 2276 if (err < 0) { 2277 dev_err(codec->dev, "%s: Failed to add %s: %d\n", 2278 codec->name, name, err); 2279 return err; 2280 } 2281 } 2282 2283 return 0; 2284 } 2285 EXPORT_SYMBOL_GPL(snd_soc_add_controls); 2286 2287 /** 2288 * snd_soc_info_enum_double - enumerated double mixer info callback 2289 * @kcontrol: mixer control 2290 * @uinfo: control element information 2291 * 2292 * Callback to provide information about a double enumerated 2293 * mixer control. 2294 * 2295 * Returns 0 for success. 2296 */ 2297 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 2298 struct snd_ctl_elem_info *uinfo) 2299 { 2300 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2301 2302 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2303 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 2304 uinfo->value.enumerated.items = e->max; 2305 2306 if (uinfo->value.enumerated.item > e->max - 1) 2307 uinfo->value.enumerated.item = e->max - 1; 2308 strcpy(uinfo->value.enumerated.name, 2309 e->texts[uinfo->value.enumerated.item]); 2310 return 0; 2311 } 2312 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 2313 2314 /** 2315 * snd_soc_get_enum_double - enumerated double mixer get callback 2316 * @kcontrol: mixer control 2317 * @ucontrol: control element information 2318 * 2319 * Callback to get the value of a double enumerated mixer. 2320 * 2321 * Returns 0 for success. 2322 */ 2323 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 2324 struct snd_ctl_elem_value *ucontrol) 2325 { 2326 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2327 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2328 unsigned int val, bitmask; 2329 2330 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2331 ; 2332 val = snd_soc_read(codec, e->reg); 2333 ucontrol->value.enumerated.item[0] 2334 = (val >> e->shift_l) & (bitmask - 1); 2335 if (e->shift_l != e->shift_r) 2336 ucontrol->value.enumerated.item[1] = 2337 (val >> e->shift_r) & (bitmask - 1); 2338 2339 return 0; 2340 } 2341 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 2342 2343 /** 2344 * snd_soc_put_enum_double - enumerated double mixer put callback 2345 * @kcontrol: mixer control 2346 * @ucontrol: control element information 2347 * 2348 * Callback to set the value of a double enumerated mixer. 2349 * 2350 * Returns 0 for success. 2351 */ 2352 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 2353 struct snd_ctl_elem_value *ucontrol) 2354 { 2355 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2356 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2357 unsigned int val; 2358 unsigned int mask, bitmask; 2359 2360 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2361 ; 2362 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2363 return -EINVAL; 2364 val = ucontrol->value.enumerated.item[0] << e->shift_l; 2365 mask = (bitmask - 1) << e->shift_l; 2366 if (e->shift_l != e->shift_r) { 2367 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2368 return -EINVAL; 2369 val |= ucontrol->value.enumerated.item[1] << e->shift_r; 2370 mask |= (bitmask - 1) << e->shift_r; 2371 } 2372 2373 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2374 } 2375 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 2376 2377 /** 2378 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback 2379 * @kcontrol: mixer control 2380 * @ucontrol: control element information 2381 * 2382 * Callback to get the value of a double semi enumerated mixer. 2383 * 2384 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2385 * used for handling bitfield coded enumeration for example. 2386 * 2387 * Returns 0 for success. 2388 */ 2389 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 2390 struct snd_ctl_elem_value *ucontrol) 2391 { 2392 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2393 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2394 unsigned int reg_val, val, mux; 2395 2396 reg_val = snd_soc_read(codec, e->reg); 2397 val = (reg_val >> e->shift_l) & e->mask; 2398 for (mux = 0; mux < e->max; mux++) { 2399 if (val == e->values[mux]) 2400 break; 2401 } 2402 ucontrol->value.enumerated.item[0] = mux; 2403 if (e->shift_l != e->shift_r) { 2404 val = (reg_val >> e->shift_r) & e->mask; 2405 for (mux = 0; mux < e->max; mux++) { 2406 if (val == e->values[mux]) 2407 break; 2408 } 2409 ucontrol->value.enumerated.item[1] = mux; 2410 } 2411 2412 return 0; 2413 } 2414 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double); 2415 2416 /** 2417 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback 2418 * @kcontrol: mixer control 2419 * @ucontrol: control element information 2420 * 2421 * Callback to set the value of a double semi enumerated mixer. 2422 * 2423 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2424 * used for handling bitfield coded enumeration for example. 2425 * 2426 * Returns 0 for success. 2427 */ 2428 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 2429 struct snd_ctl_elem_value *ucontrol) 2430 { 2431 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2432 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2433 unsigned int val; 2434 unsigned int mask; 2435 2436 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2437 return -EINVAL; 2438 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l; 2439 mask = e->mask << e->shift_l; 2440 if (e->shift_l != e->shift_r) { 2441 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2442 return -EINVAL; 2443 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r; 2444 mask |= e->mask << e->shift_r; 2445 } 2446 2447 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2448 } 2449 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double); 2450 2451 /** 2452 * snd_soc_info_enum_ext - external enumerated single mixer info callback 2453 * @kcontrol: mixer control 2454 * @uinfo: control element information 2455 * 2456 * Callback to provide information about an external enumerated 2457 * single mixer. 2458 * 2459 * Returns 0 for success. 2460 */ 2461 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 2462 struct snd_ctl_elem_info *uinfo) 2463 { 2464 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2465 2466 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2467 uinfo->count = 1; 2468 uinfo->value.enumerated.items = e->max; 2469 2470 if (uinfo->value.enumerated.item > e->max - 1) 2471 uinfo->value.enumerated.item = e->max - 1; 2472 strcpy(uinfo->value.enumerated.name, 2473 e->texts[uinfo->value.enumerated.item]); 2474 return 0; 2475 } 2476 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext); 2477 2478 /** 2479 * snd_soc_info_volsw_ext - external single mixer info callback 2480 * @kcontrol: mixer control 2481 * @uinfo: control element information 2482 * 2483 * Callback to provide information about a single external mixer control. 2484 * 2485 * Returns 0 for success. 2486 */ 2487 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 2488 struct snd_ctl_elem_info *uinfo) 2489 { 2490 int max = kcontrol->private_value; 2491 2492 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 2493 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2494 else 2495 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2496 2497 uinfo->count = 1; 2498 uinfo->value.integer.min = 0; 2499 uinfo->value.integer.max = max; 2500 return 0; 2501 } 2502 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext); 2503 2504 /** 2505 * snd_soc_info_volsw - single mixer info callback 2506 * @kcontrol: mixer control 2507 * @uinfo: control element information 2508 * 2509 * Callback to provide information about a single mixer control. 2510 * 2511 * Returns 0 for success. 2512 */ 2513 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 2514 struct snd_ctl_elem_info *uinfo) 2515 { 2516 struct soc_mixer_control *mc = 2517 (struct soc_mixer_control *)kcontrol->private_value; 2518 int platform_max; 2519 unsigned int shift = mc->shift; 2520 unsigned int rshift = mc->rshift; 2521 2522 if (!mc->platform_max) 2523 mc->platform_max = mc->max; 2524 platform_max = mc->platform_max; 2525 2526 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2527 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2528 else 2529 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2530 2531 uinfo->count = shift == rshift ? 1 : 2; 2532 uinfo->value.integer.min = 0; 2533 uinfo->value.integer.max = platform_max; 2534 return 0; 2535 } 2536 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 2537 2538 /** 2539 * snd_soc_get_volsw - single mixer get callback 2540 * @kcontrol: mixer control 2541 * @ucontrol: control element information 2542 * 2543 * Callback to get the value of a single mixer control. 2544 * 2545 * Returns 0 for success. 2546 */ 2547 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 2548 struct snd_ctl_elem_value *ucontrol) 2549 { 2550 struct soc_mixer_control *mc = 2551 (struct soc_mixer_control *)kcontrol->private_value; 2552 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2553 unsigned int reg = mc->reg; 2554 unsigned int shift = mc->shift; 2555 unsigned int rshift = mc->rshift; 2556 int max = mc->max; 2557 unsigned int mask = (1 << fls(max)) - 1; 2558 unsigned int invert = mc->invert; 2559 2560 ucontrol->value.integer.value[0] = 2561 (snd_soc_read(codec, reg) >> shift) & mask; 2562 if (shift != rshift) 2563 ucontrol->value.integer.value[1] = 2564 (snd_soc_read(codec, reg) >> rshift) & mask; 2565 if (invert) { 2566 ucontrol->value.integer.value[0] = 2567 max - ucontrol->value.integer.value[0]; 2568 if (shift != rshift) 2569 ucontrol->value.integer.value[1] = 2570 max - ucontrol->value.integer.value[1]; 2571 } 2572 2573 return 0; 2574 } 2575 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 2576 2577 /** 2578 * snd_soc_put_volsw - single mixer put callback 2579 * @kcontrol: mixer control 2580 * @ucontrol: control element information 2581 * 2582 * Callback to set the value of a single mixer control. 2583 * 2584 * Returns 0 for success. 2585 */ 2586 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 2587 struct snd_ctl_elem_value *ucontrol) 2588 { 2589 struct soc_mixer_control *mc = 2590 (struct soc_mixer_control *)kcontrol->private_value; 2591 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2592 unsigned int reg = mc->reg; 2593 unsigned int shift = mc->shift; 2594 unsigned int rshift = mc->rshift; 2595 int max = mc->max; 2596 unsigned int mask = (1 << fls(max)) - 1; 2597 unsigned int invert = mc->invert; 2598 unsigned int val, val2, val_mask; 2599 2600 val = (ucontrol->value.integer.value[0] & mask); 2601 if (invert) 2602 val = max - val; 2603 val_mask = mask << shift; 2604 val = val << shift; 2605 if (shift != rshift) { 2606 val2 = (ucontrol->value.integer.value[1] & mask); 2607 if (invert) 2608 val2 = max - val2; 2609 val_mask |= mask << rshift; 2610 val |= val2 << rshift; 2611 } 2612 return snd_soc_update_bits_locked(codec, reg, val_mask, val); 2613 } 2614 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 2615 2616 /** 2617 * snd_soc_info_volsw_2r - double mixer info callback 2618 * @kcontrol: mixer control 2619 * @uinfo: control element information 2620 * 2621 * Callback to provide information about a double mixer control that 2622 * spans 2 codec registers. 2623 * 2624 * Returns 0 for success. 2625 */ 2626 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 2627 struct snd_ctl_elem_info *uinfo) 2628 { 2629 struct soc_mixer_control *mc = 2630 (struct soc_mixer_control *)kcontrol->private_value; 2631 int platform_max; 2632 2633 if (!mc->platform_max) 2634 mc->platform_max = mc->max; 2635 platform_max = mc->platform_max; 2636 2637 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2638 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2639 else 2640 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2641 2642 uinfo->count = 2; 2643 uinfo->value.integer.min = 0; 2644 uinfo->value.integer.max = platform_max; 2645 return 0; 2646 } 2647 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r); 2648 2649 /** 2650 * snd_soc_get_volsw_2r - double mixer get callback 2651 * @kcontrol: mixer control 2652 * @ucontrol: control element information 2653 * 2654 * Callback to get the value of a double mixer control that spans 2 registers. 2655 * 2656 * Returns 0 for success. 2657 */ 2658 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 2659 struct snd_ctl_elem_value *ucontrol) 2660 { 2661 struct soc_mixer_control *mc = 2662 (struct soc_mixer_control *)kcontrol->private_value; 2663 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2664 unsigned int reg = mc->reg; 2665 unsigned int reg2 = mc->rreg; 2666 unsigned int shift = mc->shift; 2667 int max = mc->max; 2668 unsigned int mask = (1 << fls(max)) - 1; 2669 unsigned int invert = mc->invert; 2670 2671 ucontrol->value.integer.value[0] = 2672 (snd_soc_read(codec, reg) >> shift) & mask; 2673 ucontrol->value.integer.value[1] = 2674 (snd_soc_read(codec, reg2) >> shift) & mask; 2675 if (invert) { 2676 ucontrol->value.integer.value[0] = 2677 max - ucontrol->value.integer.value[0]; 2678 ucontrol->value.integer.value[1] = 2679 max - ucontrol->value.integer.value[1]; 2680 } 2681 2682 return 0; 2683 } 2684 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r); 2685 2686 /** 2687 * snd_soc_put_volsw_2r - double mixer set callback 2688 * @kcontrol: mixer control 2689 * @ucontrol: control element information 2690 * 2691 * Callback to set the value of a double mixer control that spans 2 registers. 2692 * 2693 * Returns 0 for success. 2694 */ 2695 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 2696 struct snd_ctl_elem_value *ucontrol) 2697 { 2698 struct soc_mixer_control *mc = 2699 (struct soc_mixer_control *)kcontrol->private_value; 2700 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2701 unsigned int reg = mc->reg; 2702 unsigned int reg2 = mc->rreg; 2703 unsigned int shift = mc->shift; 2704 int max = mc->max; 2705 unsigned int mask = (1 << fls(max)) - 1; 2706 unsigned int invert = mc->invert; 2707 int err; 2708 unsigned int val, val2, val_mask; 2709 2710 val_mask = mask << shift; 2711 val = (ucontrol->value.integer.value[0] & mask); 2712 val2 = (ucontrol->value.integer.value[1] & mask); 2713 2714 if (invert) { 2715 val = max - val; 2716 val2 = max - val2; 2717 } 2718 2719 val = val << shift; 2720 val2 = val2 << shift; 2721 2722 err = snd_soc_update_bits_locked(codec, reg, val_mask, val); 2723 if (err < 0) 2724 return err; 2725 2726 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2); 2727 return err; 2728 } 2729 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r); 2730 2731 /** 2732 * snd_soc_info_volsw_s8 - signed mixer info callback 2733 * @kcontrol: mixer control 2734 * @uinfo: control element information 2735 * 2736 * Callback to provide information about a signed mixer control. 2737 * 2738 * Returns 0 for success. 2739 */ 2740 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 2741 struct snd_ctl_elem_info *uinfo) 2742 { 2743 struct soc_mixer_control *mc = 2744 (struct soc_mixer_control *)kcontrol->private_value; 2745 int platform_max; 2746 int min = mc->min; 2747 2748 if (!mc->platform_max) 2749 mc->platform_max = mc->max; 2750 platform_max = mc->platform_max; 2751 2752 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2753 uinfo->count = 2; 2754 uinfo->value.integer.min = 0; 2755 uinfo->value.integer.max = platform_max - min; 2756 return 0; 2757 } 2758 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2759 2760 /** 2761 * snd_soc_get_volsw_s8 - signed mixer get callback 2762 * @kcontrol: mixer control 2763 * @ucontrol: control element information 2764 * 2765 * Callback to get the value of a signed mixer control. 2766 * 2767 * Returns 0 for success. 2768 */ 2769 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2770 struct snd_ctl_elem_value *ucontrol) 2771 { 2772 struct soc_mixer_control *mc = 2773 (struct soc_mixer_control *)kcontrol->private_value; 2774 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2775 unsigned int reg = mc->reg; 2776 int min = mc->min; 2777 int val = snd_soc_read(codec, reg); 2778 2779 ucontrol->value.integer.value[0] = 2780 ((signed char)(val & 0xff))-min; 2781 ucontrol->value.integer.value[1] = 2782 ((signed char)((val >> 8) & 0xff))-min; 2783 return 0; 2784 } 2785 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2786 2787 /** 2788 * snd_soc_put_volsw_sgn - signed mixer put callback 2789 * @kcontrol: mixer control 2790 * @ucontrol: control element information 2791 * 2792 * Callback to set the value of a signed mixer control. 2793 * 2794 * Returns 0 for success. 2795 */ 2796 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2797 struct snd_ctl_elem_value *ucontrol) 2798 { 2799 struct soc_mixer_control *mc = 2800 (struct soc_mixer_control *)kcontrol->private_value; 2801 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2802 unsigned int reg = mc->reg; 2803 int min = mc->min; 2804 unsigned int val; 2805 2806 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2807 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2808 2809 return snd_soc_update_bits_locked(codec, reg, 0xffff, val); 2810 } 2811 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 2812 2813 /** 2814 * snd_soc_limit_volume - Set new limit to an existing volume control. 2815 * 2816 * @codec: where to look for the control 2817 * @name: Name of the control 2818 * @max: new maximum limit 2819 * 2820 * Return 0 for success, else error. 2821 */ 2822 int snd_soc_limit_volume(struct snd_soc_codec *codec, 2823 const char *name, int max) 2824 { 2825 struct snd_card *card = codec->card->snd_card; 2826 struct snd_kcontrol *kctl; 2827 struct soc_mixer_control *mc; 2828 int found = 0; 2829 int ret = -EINVAL; 2830 2831 /* Sanity check for name and max */ 2832 if (unlikely(!name || max <= 0)) 2833 return -EINVAL; 2834 2835 list_for_each_entry(kctl, &card->controls, list) { 2836 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { 2837 found = 1; 2838 break; 2839 } 2840 } 2841 if (found) { 2842 mc = (struct soc_mixer_control *)kctl->private_value; 2843 if (max <= mc->max) { 2844 mc->platform_max = max; 2845 ret = 0; 2846 } 2847 } 2848 return ret; 2849 } 2850 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 2851 2852 /** 2853 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size 2854 * mixer info callback 2855 * @kcontrol: mixer control 2856 * @uinfo: control element information 2857 * 2858 * Returns 0 for success. 2859 */ 2860 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2861 struct snd_ctl_elem_info *uinfo) 2862 { 2863 struct soc_mixer_control *mc = 2864 (struct soc_mixer_control *)kcontrol->private_value; 2865 int max = mc->max; 2866 int min = mc->min; 2867 2868 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2869 uinfo->count = 2; 2870 uinfo->value.integer.min = 0; 2871 uinfo->value.integer.max = max-min; 2872 2873 return 0; 2874 } 2875 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx); 2876 2877 /** 2878 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size 2879 * mixer get callback 2880 * @kcontrol: mixer control 2881 * @uinfo: control element information 2882 * 2883 * Returns 0 for success. 2884 */ 2885 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2886 struct snd_ctl_elem_value *ucontrol) 2887 { 2888 struct soc_mixer_control *mc = 2889 (struct soc_mixer_control *)kcontrol->private_value; 2890 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2891 unsigned int mask = (1<<mc->shift)-1; 2892 int min = mc->min; 2893 int val = snd_soc_read(codec, mc->reg) & mask; 2894 int valr = snd_soc_read(codec, mc->rreg) & mask; 2895 2896 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask; 2897 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask; 2898 return 0; 2899 } 2900 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx); 2901 2902 /** 2903 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size 2904 * mixer put callback 2905 * @kcontrol: mixer control 2906 * @uinfo: control element information 2907 * 2908 * Returns 0 for success. 2909 */ 2910 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2911 struct snd_ctl_elem_value *ucontrol) 2912 { 2913 struct soc_mixer_control *mc = 2914 (struct soc_mixer_control *)kcontrol->private_value; 2915 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2916 unsigned int mask = (1<<mc->shift)-1; 2917 int min = mc->min; 2918 int ret; 2919 unsigned int val, valr, oval, ovalr; 2920 2921 val = ((ucontrol->value.integer.value[0]+min) & 0xff); 2922 val &= mask; 2923 valr = ((ucontrol->value.integer.value[1]+min) & 0xff); 2924 valr &= mask; 2925 2926 oval = snd_soc_read(codec, mc->reg) & mask; 2927 ovalr = snd_soc_read(codec, mc->rreg) & mask; 2928 2929 ret = 0; 2930 if (oval != val) { 2931 ret = snd_soc_write(codec, mc->reg, val); 2932 if (ret < 0) 2933 return ret; 2934 } 2935 if (ovalr != valr) { 2936 ret = snd_soc_write(codec, mc->rreg, valr); 2937 if (ret < 0) 2938 return ret; 2939 } 2940 2941 return 0; 2942 } 2943 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx); 2944 2945 /** 2946 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 2947 * @dai: DAI 2948 * @clk_id: DAI specific clock ID 2949 * @freq: new clock frequency in Hz 2950 * @dir: new clock direction - input/output. 2951 * 2952 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 2953 */ 2954 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 2955 unsigned int freq, int dir) 2956 { 2957 if (dai->driver && dai->driver->ops->set_sysclk) 2958 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir); 2959 else 2960 return -EINVAL; 2961 } 2962 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 2963 2964 /** 2965 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 2966 * @dai: DAI 2967 * @div_id: DAI specific clock divider ID 2968 * @div: new clock divisor. 2969 * 2970 * Configures the clock dividers. This is used to derive the best DAI bit and 2971 * frame clocks from the system or master clock. It's best to set the DAI bit 2972 * and frame clocks as low as possible to save system power. 2973 */ 2974 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 2975 int div_id, int div) 2976 { 2977 if (dai->driver && dai->driver->ops->set_clkdiv) 2978 return dai->driver->ops->set_clkdiv(dai, div_id, div); 2979 else 2980 return -EINVAL; 2981 } 2982 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 2983 2984 /** 2985 * snd_soc_dai_set_pll - configure DAI PLL. 2986 * @dai: DAI 2987 * @pll_id: DAI specific PLL ID 2988 * @source: DAI specific source for the PLL 2989 * @freq_in: PLL input clock frequency in Hz 2990 * @freq_out: requested PLL output clock frequency in Hz 2991 * 2992 * Configures and enables PLL to generate output clock based on input clock. 2993 */ 2994 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, 2995 unsigned int freq_in, unsigned int freq_out) 2996 { 2997 if (dai->driver && dai->driver->ops->set_pll) 2998 return dai->driver->ops->set_pll(dai, pll_id, source, 2999 freq_in, freq_out); 3000 else 3001 return -EINVAL; 3002 } 3003 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 3004 3005 /** 3006 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 3007 * @dai: DAI 3008 * @fmt: SND_SOC_DAIFMT_ format value. 3009 * 3010 * Configures the DAI hardware format and clocking. 3011 */ 3012 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 3013 { 3014 if (dai->driver && dai->driver->ops->set_fmt) 3015 return dai->driver->ops->set_fmt(dai, fmt); 3016 else 3017 return -EINVAL; 3018 } 3019 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 3020 3021 /** 3022 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 3023 * @dai: DAI 3024 * @tx_mask: bitmask representing active TX slots. 3025 * @rx_mask: bitmask representing active RX slots. 3026 * @slots: Number of slots in use. 3027 * @slot_width: Width in bits for each slot. 3028 * 3029 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 3030 * specific. 3031 */ 3032 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 3033 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 3034 { 3035 if (dai->driver && dai->driver->ops->set_tdm_slot) 3036 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask, 3037 slots, slot_width); 3038 else 3039 return -EINVAL; 3040 } 3041 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 3042 3043 /** 3044 * snd_soc_dai_set_channel_map - configure DAI audio channel map 3045 * @dai: DAI 3046 * @tx_num: how many TX channels 3047 * @tx_slot: pointer to an array which imply the TX slot number channel 3048 * 0~num-1 uses 3049 * @rx_num: how many RX channels 3050 * @rx_slot: pointer to an array which imply the RX slot number channel 3051 * 0~num-1 uses 3052 * 3053 * configure the relationship between channel number and TDM slot number. 3054 */ 3055 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai, 3056 unsigned int tx_num, unsigned int *tx_slot, 3057 unsigned int rx_num, unsigned int *rx_slot) 3058 { 3059 if (dai->driver && dai->driver->ops->set_channel_map) 3060 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot, 3061 rx_num, rx_slot); 3062 else 3063 return -EINVAL; 3064 } 3065 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map); 3066 3067 /** 3068 * snd_soc_dai_set_tristate - configure DAI system or master clock. 3069 * @dai: DAI 3070 * @tristate: tristate enable 3071 * 3072 * Tristates the DAI so that others can use it. 3073 */ 3074 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 3075 { 3076 if (dai->driver && dai->driver->ops->set_tristate) 3077 return dai->driver->ops->set_tristate(dai, tristate); 3078 else 3079 return -EINVAL; 3080 } 3081 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 3082 3083 /** 3084 * snd_soc_dai_digital_mute - configure DAI system or master clock. 3085 * @dai: DAI 3086 * @mute: mute enable 3087 * 3088 * Mutes the DAI DAC. 3089 */ 3090 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute) 3091 { 3092 if (dai->driver && dai->driver->ops->digital_mute) 3093 return dai->driver->ops->digital_mute(dai, mute); 3094 else 3095 return -EINVAL; 3096 } 3097 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 3098 3099 /** 3100 * snd_soc_register_card - Register a card with the ASoC core 3101 * 3102 * @card: Card to register 3103 * 3104 * Note that currently this is an internal only function: it will be 3105 * exposed to machine drivers after further backporting of ASoC v2 3106 * registration APIs. 3107 */ 3108 static int snd_soc_register_card(struct snd_soc_card *card) 3109 { 3110 int i; 3111 3112 if (!card->name || !card->dev) 3113 return -EINVAL; 3114 3115 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * 3116 (card->num_links + card->num_aux_devs), 3117 GFP_KERNEL); 3118 if (card->rtd == NULL) 3119 return -ENOMEM; 3120 card->rtd_aux = &card->rtd[card->num_links]; 3121 3122 for (i = 0; i < card->num_links; i++) 3123 card->rtd[i].dai_link = &card->dai_link[i]; 3124 3125 INIT_LIST_HEAD(&card->list); 3126 card->instantiated = 0; 3127 mutex_init(&card->mutex); 3128 3129 mutex_lock(&client_mutex); 3130 list_add(&card->list, &card_list); 3131 snd_soc_instantiate_cards(); 3132 mutex_unlock(&client_mutex); 3133 3134 dev_dbg(card->dev, "Registered card '%s'\n", card->name); 3135 3136 return 0; 3137 } 3138 3139 /** 3140 * snd_soc_unregister_card - Unregister a card with the ASoC core 3141 * 3142 * @card: Card to unregister 3143 * 3144 * Note that currently this is an internal only function: it will be 3145 * exposed to machine drivers after further backporting of ASoC v2 3146 * registration APIs. 3147 */ 3148 static int snd_soc_unregister_card(struct snd_soc_card *card) 3149 { 3150 mutex_lock(&client_mutex); 3151 list_del(&card->list); 3152 mutex_unlock(&client_mutex); 3153 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name); 3154 3155 return 0; 3156 } 3157 3158 /* 3159 * Simplify DAI link configuration by removing ".-1" from device names 3160 * and sanitizing names. 3161 */ 3162 static char *fmt_single_name(struct device *dev, int *id) 3163 { 3164 char *found, name[NAME_SIZE]; 3165 int id1, id2; 3166 3167 if (dev_name(dev) == NULL) 3168 return NULL; 3169 3170 strlcpy(name, dev_name(dev), NAME_SIZE); 3171 3172 /* are we a "%s.%d" name (platform and SPI components) */ 3173 found = strstr(name, dev->driver->name); 3174 if (found) { 3175 /* get ID */ 3176 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) { 3177 3178 /* discard ID from name if ID == -1 */ 3179 if (*id == -1) 3180 found[strlen(dev->driver->name)] = '\0'; 3181 } 3182 3183 } else { 3184 /* I2C component devices are named "bus-addr" */ 3185 if (sscanf(name, "%x-%x", &id1, &id2) == 2) { 3186 char tmp[NAME_SIZE]; 3187 3188 /* create unique ID number from I2C addr and bus */ 3189 *id = ((id1 & 0xffff) << 16) + id2; 3190 3191 /* sanitize component name for DAI link creation */ 3192 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name); 3193 strlcpy(name, tmp, NAME_SIZE); 3194 } else 3195 *id = 0; 3196 } 3197 3198 return kstrdup(name, GFP_KERNEL); 3199 } 3200 3201 /* 3202 * Simplify DAI link naming for single devices with multiple DAIs by removing 3203 * any ".-1" and using the DAI name (instead of device name). 3204 */ 3205 static inline char *fmt_multiple_name(struct device *dev, 3206 struct snd_soc_dai_driver *dai_drv) 3207 { 3208 if (dai_drv->name == NULL) { 3209 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n", 3210 dev_name(dev)); 3211 return NULL; 3212 } 3213 3214 return kstrdup(dai_drv->name, GFP_KERNEL); 3215 } 3216 3217 /** 3218 * snd_soc_register_dai - Register a DAI with the ASoC core 3219 * 3220 * @dai: DAI to register 3221 */ 3222 int snd_soc_register_dai(struct device *dev, 3223 struct snd_soc_dai_driver *dai_drv) 3224 { 3225 struct snd_soc_dai *dai; 3226 3227 dev_dbg(dev, "dai register %s\n", dev_name(dev)); 3228 3229 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3230 if (dai == NULL) 3231 return -ENOMEM; 3232 3233 /* create DAI component name */ 3234 dai->name = fmt_single_name(dev, &dai->id); 3235 if (dai->name == NULL) { 3236 kfree(dai); 3237 return -ENOMEM; 3238 } 3239 3240 dai->dev = dev; 3241 dai->driver = dai_drv; 3242 if (!dai->driver->ops) 3243 dai->driver->ops = &null_dai_ops; 3244 3245 mutex_lock(&client_mutex); 3246 list_add(&dai->list, &dai_list); 3247 snd_soc_instantiate_cards(); 3248 mutex_unlock(&client_mutex); 3249 3250 pr_debug("Registered DAI '%s'\n", dai->name); 3251 3252 return 0; 3253 } 3254 EXPORT_SYMBOL_GPL(snd_soc_register_dai); 3255 3256 /** 3257 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core 3258 * 3259 * @dai: DAI to unregister 3260 */ 3261 void snd_soc_unregister_dai(struct device *dev) 3262 { 3263 struct snd_soc_dai *dai; 3264 3265 list_for_each_entry(dai, &dai_list, list) { 3266 if (dev == dai->dev) 3267 goto found; 3268 } 3269 return; 3270 3271 found: 3272 mutex_lock(&client_mutex); 3273 list_del(&dai->list); 3274 mutex_unlock(&client_mutex); 3275 3276 pr_debug("Unregistered DAI '%s'\n", dai->name); 3277 kfree(dai->name); 3278 kfree(dai); 3279 } 3280 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai); 3281 3282 /** 3283 * snd_soc_register_dais - Register multiple DAIs with the ASoC core 3284 * 3285 * @dai: Array of DAIs to register 3286 * @count: Number of DAIs 3287 */ 3288 int snd_soc_register_dais(struct device *dev, 3289 struct snd_soc_dai_driver *dai_drv, size_t count) 3290 { 3291 struct snd_soc_dai *dai; 3292 int i, ret = 0; 3293 3294 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count); 3295 3296 for (i = 0; i < count; i++) { 3297 3298 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3299 if (dai == NULL) { 3300 ret = -ENOMEM; 3301 goto err; 3302 } 3303 3304 /* create DAI component name */ 3305 dai->name = fmt_multiple_name(dev, &dai_drv[i]); 3306 if (dai->name == NULL) { 3307 kfree(dai); 3308 ret = -EINVAL; 3309 goto err; 3310 } 3311 3312 dai->dev = dev; 3313 dai->driver = &dai_drv[i]; 3314 if (dai->driver->id) 3315 dai->id = dai->driver->id; 3316 else 3317 dai->id = i; 3318 if (!dai->driver->ops) 3319 dai->driver->ops = &null_dai_ops; 3320 3321 mutex_lock(&client_mutex); 3322 list_add(&dai->list, &dai_list); 3323 mutex_unlock(&client_mutex); 3324 3325 pr_debug("Registered DAI '%s'\n", dai->name); 3326 } 3327 3328 mutex_lock(&client_mutex); 3329 snd_soc_instantiate_cards(); 3330 mutex_unlock(&client_mutex); 3331 return 0; 3332 3333 err: 3334 for (i--; i >= 0; i--) 3335 snd_soc_unregister_dai(dev); 3336 3337 return ret; 3338 } 3339 EXPORT_SYMBOL_GPL(snd_soc_register_dais); 3340 3341 /** 3342 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core 3343 * 3344 * @dai: Array of DAIs to unregister 3345 * @count: Number of DAIs 3346 */ 3347 void snd_soc_unregister_dais(struct device *dev, size_t count) 3348 { 3349 int i; 3350 3351 for (i = 0; i < count; i++) 3352 snd_soc_unregister_dai(dev); 3353 } 3354 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais); 3355 3356 /** 3357 * snd_soc_register_platform - Register a platform with the ASoC core 3358 * 3359 * @platform: platform to register 3360 */ 3361 int snd_soc_register_platform(struct device *dev, 3362 struct snd_soc_platform_driver *platform_drv) 3363 { 3364 struct snd_soc_platform *platform; 3365 3366 dev_dbg(dev, "platform register %s\n", dev_name(dev)); 3367 3368 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL); 3369 if (platform == NULL) 3370 return -ENOMEM; 3371 3372 /* create platform component name */ 3373 platform->name = fmt_single_name(dev, &platform->id); 3374 if (platform->name == NULL) { 3375 kfree(platform); 3376 return -ENOMEM; 3377 } 3378 3379 platform->dev = dev; 3380 platform->driver = platform_drv; 3381 3382 mutex_lock(&client_mutex); 3383 list_add(&platform->list, &platform_list); 3384 snd_soc_instantiate_cards(); 3385 mutex_unlock(&client_mutex); 3386 3387 pr_debug("Registered platform '%s'\n", platform->name); 3388 3389 return 0; 3390 } 3391 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 3392 3393 /** 3394 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 3395 * 3396 * @platform: platform to unregister 3397 */ 3398 void snd_soc_unregister_platform(struct device *dev) 3399 { 3400 struct snd_soc_platform *platform; 3401 3402 list_for_each_entry(platform, &platform_list, list) { 3403 if (dev == platform->dev) 3404 goto found; 3405 } 3406 return; 3407 3408 found: 3409 mutex_lock(&client_mutex); 3410 list_del(&platform->list); 3411 mutex_unlock(&client_mutex); 3412 3413 pr_debug("Unregistered platform '%s'\n", platform->name); 3414 kfree(platform->name); 3415 kfree(platform); 3416 } 3417 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 3418 3419 static u64 codec_format_map[] = { 3420 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 3421 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 3422 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 3423 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 3424 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 3425 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 3426 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3427 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3428 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 3429 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 3430 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 3431 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 3432 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 3433 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 3434 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 3435 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 3436 }; 3437 3438 /* Fix up the DAI formats for endianness: codecs don't actually see 3439 * the endianness of the data but we're using the CPU format 3440 * definitions which do need to include endianness so we ensure that 3441 * codec DAIs always have both big and little endian variants set. 3442 */ 3443 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 3444 { 3445 int i; 3446 3447 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 3448 if (stream->formats & codec_format_map[i]) 3449 stream->formats |= codec_format_map[i]; 3450 } 3451 3452 /** 3453 * snd_soc_register_codec - Register a codec with the ASoC core 3454 * 3455 * @codec: codec to register 3456 */ 3457 int snd_soc_register_codec(struct device *dev, 3458 const struct snd_soc_codec_driver *codec_drv, 3459 struct snd_soc_dai_driver *dai_drv, 3460 int num_dai) 3461 { 3462 size_t reg_size; 3463 struct snd_soc_codec *codec; 3464 int ret, i; 3465 3466 dev_dbg(dev, "codec register %s\n", dev_name(dev)); 3467 3468 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); 3469 if (codec == NULL) 3470 return -ENOMEM; 3471 3472 /* create CODEC component name */ 3473 codec->name = fmt_single_name(dev, &codec->id); 3474 if (codec->name == NULL) { 3475 kfree(codec); 3476 return -ENOMEM; 3477 } 3478 3479 if (codec_drv->compress_type) 3480 codec->compress_type = codec_drv->compress_type; 3481 else 3482 codec->compress_type = SND_SOC_FLAT_COMPRESSION; 3483 3484 codec->write = codec_drv->write; 3485 codec->read = codec_drv->read; 3486 codec->dapm.bias_level = SND_SOC_BIAS_OFF; 3487 codec->dapm.dev = dev; 3488 codec->dapm.codec = codec; 3489 codec->dev = dev; 3490 codec->driver = codec_drv; 3491 codec->num_dai = num_dai; 3492 mutex_init(&codec->mutex); 3493 3494 /* allocate CODEC register cache */ 3495 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) { 3496 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size; 3497 /* it is necessary to make a copy of the default register cache 3498 * because in the case of using a compression type that requires 3499 * the default register cache to be marked as __devinitconst the 3500 * kernel might have freed the array by the time we initialize 3501 * the cache. 3502 */ 3503 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default, 3504 reg_size, GFP_KERNEL); 3505 if (!codec->reg_def_copy) { 3506 ret = -ENOMEM; 3507 goto fail; 3508 } 3509 } 3510 3511 for (i = 0; i < num_dai; i++) { 3512 fixup_codec_formats(&dai_drv[i].playback); 3513 fixup_codec_formats(&dai_drv[i].capture); 3514 } 3515 3516 /* register any DAIs */ 3517 if (num_dai) { 3518 ret = snd_soc_register_dais(dev, dai_drv, num_dai); 3519 if (ret < 0) 3520 goto fail; 3521 } 3522 3523 mutex_lock(&client_mutex); 3524 list_add(&codec->list, &codec_list); 3525 snd_soc_instantiate_cards(); 3526 mutex_unlock(&client_mutex); 3527 3528 pr_debug("Registered codec '%s'\n", codec->name); 3529 return 0; 3530 3531 fail: 3532 kfree(codec->reg_def_copy); 3533 codec->reg_def_copy = NULL; 3534 kfree(codec->name); 3535 kfree(codec); 3536 return ret; 3537 } 3538 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 3539 3540 /** 3541 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 3542 * 3543 * @codec: codec to unregister 3544 */ 3545 void snd_soc_unregister_codec(struct device *dev) 3546 { 3547 struct snd_soc_codec *codec; 3548 int i; 3549 3550 list_for_each_entry(codec, &codec_list, list) { 3551 if (dev == codec->dev) 3552 goto found; 3553 } 3554 return; 3555 3556 found: 3557 if (codec->num_dai) 3558 for (i = 0; i < codec->num_dai; i++) 3559 snd_soc_unregister_dai(dev); 3560 3561 mutex_lock(&client_mutex); 3562 list_del(&codec->list); 3563 mutex_unlock(&client_mutex); 3564 3565 pr_debug("Unregistered codec '%s'\n", codec->name); 3566 3567 snd_soc_cache_exit(codec); 3568 kfree(codec->reg_def_copy); 3569 kfree(codec->name); 3570 kfree(codec); 3571 } 3572 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 3573 3574 static int __init snd_soc_init(void) 3575 { 3576 #ifdef CONFIG_DEBUG_FS 3577 debugfs_root = debugfs_create_dir("asoc", NULL); 3578 if (IS_ERR(debugfs_root) || !debugfs_root) { 3579 printk(KERN_WARNING 3580 "ASoC: Failed to create debugfs directory\n"); 3581 debugfs_root = NULL; 3582 } 3583 3584 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL, 3585 &codec_list_fops)) 3586 pr_warn("ASoC: Failed to create CODEC list debugfs file\n"); 3587 3588 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL, 3589 &dai_list_fops)) 3590 pr_warn("ASoC: Failed to create DAI list debugfs file\n"); 3591 3592 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL, 3593 &platform_list_fops)) 3594 pr_warn("ASoC: Failed to create platform list debugfs file\n"); 3595 #endif 3596 3597 return platform_driver_register(&soc_driver); 3598 } 3599 module_init(snd_soc_init); 3600 3601 static void __exit snd_soc_exit(void) 3602 { 3603 #ifdef CONFIG_DEBUG_FS 3604 debugfs_remove_recursive(debugfs_root); 3605 #endif 3606 platform_driver_unregister(&soc_driver); 3607 } 3608 module_exit(snd_soc_exit); 3609 3610 /* Module information */ 3611 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 3612 MODULE_DESCRIPTION("ALSA SoC Core"); 3613 MODULE_LICENSE("GPL"); 3614 MODULE_ALIAS("platform:soc-audio"); 3615