xref: /openbmc/linux/sound/soc/soc-core.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *         with code, comments and ideas from :-
9  *         Richard Purdie <richard@openedhand.com>
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  TODO:
17  *   o Add hw rules to enforce rates, etc.
18  *   o More testing with other codecs/machines.
19  *   o Add more codecs and platforms to ensure good API coverage.
20  *   o Support TDM on PCM and I2S
21  */
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41 
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45 
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51 
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54 
55 /*
56  * This is a timeout to do a DAPM powerdown after a stream is closed().
57  * It can be used to eliminate pops between different playback streams, e.g.
58  * between two audio tracks.
59  */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63 
64 /*
65  * This function forces any delayed work to be queued and run.
66  */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 	int ret;
70 
71 	/* cancel any work waiting to be queued. */
72 	ret = cancel_delayed_work(dwork);
73 
74 	/* if there was any work waiting then we run it now and
75 	 * wait for it's completion */
76 	if (ret) {
77 		schedule_delayed_work(dwork, 0);
78 		flush_scheduled_work();
79 	}
80 	return ret;
81 }
82 
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 	if (codec->ac97->dev.bus)
88 		device_unregister(&codec->ac97->dev);
89 	return 0;
90 }
91 
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94 
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 	int err;
99 
100 	codec->ac97->dev.bus = &ac97_bus_type;
101 	codec->ac97->dev.parent = NULL;
102 	codec->ac97->dev.release = soc_ac97_device_release;
103 
104 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 		     codec->card->number, 0, codec->name);
106 	err = device_register(&codec->ac97->dev);
107 	if (err < 0) {
108 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 		codec->ac97->dev.bus = NULL;
110 		return err;
111 	}
112 	return 0;
113 }
114 #endif
115 
116 /*
117  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118  * then initialized and any private data can be allocated. This also calls
119  * startup for the cpu DAI, platform, machine and codec DAI.
120  */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 	struct snd_soc_device *socdev = rtd->socdev;
125 	struct snd_soc_card *card = socdev->card;
126 	struct snd_pcm_runtime *runtime = substream->runtime;
127 	struct snd_soc_dai_link *machine = rtd->dai;
128 	struct snd_soc_platform *platform = card->platform;
129 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 	struct snd_soc_dai *codec_dai = machine->codec_dai;
131 	int ret = 0;
132 
133 	mutex_lock(&pcm_mutex);
134 
135 	/* startup the audio subsystem */
136 	if (cpu_dai->ops->startup) {
137 		ret = cpu_dai->ops->startup(substream, cpu_dai);
138 		if (ret < 0) {
139 			printk(KERN_ERR "asoc: can't open interface %s\n",
140 				cpu_dai->name);
141 			goto out;
142 		}
143 	}
144 
145 	if (platform->pcm_ops->open) {
146 		ret = platform->pcm_ops->open(substream);
147 		if (ret < 0) {
148 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 			goto platform_err;
150 		}
151 	}
152 
153 	if (codec_dai->ops->startup) {
154 		ret = codec_dai->ops->startup(substream, codec_dai);
155 		if (ret < 0) {
156 			printk(KERN_ERR "asoc: can't open codec %s\n",
157 				codec_dai->name);
158 			goto codec_dai_err;
159 		}
160 	}
161 
162 	if (machine->ops && machine->ops->startup) {
163 		ret = machine->ops->startup(substream);
164 		if (ret < 0) {
165 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 			goto machine_err;
167 		}
168 	}
169 
170 	/* Check that the codec and cpu DAI's are compatible */
171 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 		runtime->hw.rate_min =
173 			max(codec_dai->playback.rate_min,
174 			    cpu_dai->playback.rate_min);
175 		runtime->hw.rate_max =
176 			min(codec_dai->playback.rate_max,
177 			    cpu_dai->playback.rate_max);
178 		runtime->hw.channels_min =
179 			max(codec_dai->playback.channels_min,
180 				cpu_dai->playback.channels_min);
181 		runtime->hw.channels_max =
182 			min(codec_dai->playback.channels_max,
183 				cpu_dai->playback.channels_max);
184 		runtime->hw.formats =
185 			codec_dai->playback.formats & cpu_dai->playback.formats;
186 		runtime->hw.rates =
187 			codec_dai->playback.rates & cpu_dai->playback.rates;
188 	} else {
189 		runtime->hw.rate_min =
190 			max(codec_dai->capture.rate_min,
191 			    cpu_dai->capture.rate_min);
192 		runtime->hw.rate_max =
193 			min(codec_dai->capture.rate_max,
194 			    cpu_dai->capture.rate_max);
195 		runtime->hw.channels_min =
196 			max(codec_dai->capture.channels_min,
197 				cpu_dai->capture.channels_min);
198 		runtime->hw.channels_max =
199 			min(codec_dai->capture.channels_max,
200 				cpu_dai->capture.channels_max);
201 		runtime->hw.formats =
202 			codec_dai->capture.formats & cpu_dai->capture.formats;
203 		runtime->hw.rates =
204 			codec_dai->capture.rates & cpu_dai->capture.rates;
205 	}
206 
207 	snd_pcm_limit_hw_rates(runtime);
208 	if (!runtime->hw.rates) {
209 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 			codec_dai->name, cpu_dai->name);
211 		goto machine_err;
212 	}
213 	if (!runtime->hw.formats) {
214 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 			codec_dai->name, cpu_dai->name);
216 		goto machine_err;
217 	}
218 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 			codec_dai->name, cpu_dai->name);
221 		goto machine_err;
222 	}
223 
224 	pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 		 runtime->hw.channels_max);
228 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 		 runtime->hw.rate_max);
230 
231 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 		cpu_dai->playback.active = codec_dai->playback.active = 1;
233 	else
234 		cpu_dai->capture.active = codec_dai->capture.active = 1;
235 	cpu_dai->active = codec_dai->active = 1;
236 	cpu_dai->runtime = runtime;
237 	card->codec->active++;
238 	mutex_unlock(&pcm_mutex);
239 	return 0;
240 
241 machine_err:
242 	if (machine->ops && machine->ops->shutdown)
243 		machine->ops->shutdown(substream);
244 
245 codec_dai_err:
246 	if (platform->pcm_ops->close)
247 		platform->pcm_ops->close(substream);
248 
249 platform_err:
250 	if (cpu_dai->ops->shutdown)
251 		cpu_dai->ops->shutdown(substream, cpu_dai);
252 out:
253 	mutex_unlock(&pcm_mutex);
254 	return ret;
255 }
256 
257 /*
258  * Power down the audio subsystem pmdown_time msecs after close is called.
259  * This is to ensure there are no pops or clicks in between any music tracks
260  * due to DAPM power cycling.
261  */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 	struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 						 delayed_work.work);
266 	struct snd_soc_device *socdev = card->socdev;
267 	struct snd_soc_codec *codec = card->codec;
268 	struct snd_soc_dai *codec_dai;
269 	int i;
270 
271 	mutex_lock(&pcm_mutex);
272 	for (i = 0; i < codec->num_dai; i++) {
273 		codec_dai = &codec->dai[i];
274 
275 		pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 			 codec_dai->playback.stream_name,
277 			 codec_dai->playback.active ? "active" : "inactive",
278 			 codec_dai->pop_wait ? "yes" : "no");
279 
280 		/* are we waiting on this codec DAI stream */
281 		if (codec_dai->pop_wait == 1) {
282 
283 			/* Reduce power if no longer active */
284 			if (codec->active == 0) {
285 				pr_debug("pop wq D1 %s %s\n", codec->name,
286 					 codec_dai->playback.stream_name);
287 				snd_soc_dapm_set_bias_level(socdev,
288 					SND_SOC_BIAS_PREPARE);
289 			}
290 
291 			codec_dai->pop_wait = 0;
292 			snd_soc_dapm_stream_event(codec,
293 				codec_dai->playback.stream_name,
294 				SND_SOC_DAPM_STREAM_STOP);
295 
296 			/* Fall into standby if no longer active */
297 			if (codec->active == 0) {
298 				pr_debug("pop wq D3 %s %s\n", codec->name,
299 					 codec_dai->playback.stream_name);
300 				snd_soc_dapm_set_bias_level(socdev,
301 					SND_SOC_BIAS_STANDBY);
302 			}
303 		}
304 	}
305 	mutex_unlock(&pcm_mutex);
306 }
307 
308 /*
309  * Called by ALSA when a PCM substream is closed. Private data can be
310  * freed here. The cpu DAI, codec DAI, machine and platform are also
311  * shutdown.
312  */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 	struct snd_soc_device *socdev = rtd->socdev;
317 	struct snd_soc_card *card = socdev->card;
318 	struct snd_soc_dai_link *machine = rtd->dai;
319 	struct snd_soc_platform *platform = card->platform;
320 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 	struct snd_soc_dai *codec_dai = machine->codec_dai;
322 	struct snd_soc_codec *codec = card->codec;
323 
324 	mutex_lock(&pcm_mutex);
325 
326 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 		cpu_dai->playback.active = codec_dai->playback.active = 0;
328 	else
329 		cpu_dai->capture.active = codec_dai->capture.active = 0;
330 
331 	if (codec_dai->playback.active == 0 &&
332 		codec_dai->capture.active == 0) {
333 		cpu_dai->active = codec_dai->active = 0;
334 	}
335 	codec->active--;
336 
337 	/* Muting the DAC suppresses artifacts caused during digital
338 	 * shutdown, for example from stopping clocks.
339 	 */
340 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 		snd_soc_dai_digital_mute(codec_dai, 1);
342 
343 	if (cpu_dai->ops->shutdown)
344 		cpu_dai->ops->shutdown(substream, cpu_dai);
345 
346 	if (codec_dai->ops->shutdown)
347 		codec_dai->ops->shutdown(substream, codec_dai);
348 
349 	if (machine->ops && machine->ops->shutdown)
350 		machine->ops->shutdown(substream);
351 
352 	if (platform->pcm_ops->close)
353 		platform->pcm_ops->close(substream);
354 	cpu_dai->runtime = NULL;
355 
356 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 		/* start delayed pop wq here for playback streams */
358 		codec_dai->pop_wait = 1;
359 		schedule_delayed_work(&card->delayed_work,
360 			msecs_to_jiffies(pmdown_time));
361 	} else {
362 		/* capture streams can be powered down now */
363 		snd_soc_dapm_stream_event(codec,
364 			codec_dai->capture.stream_name,
365 			SND_SOC_DAPM_STREAM_STOP);
366 
367 		if (codec->active == 0 && codec_dai->pop_wait == 0)
368 			snd_soc_dapm_set_bias_level(socdev,
369 						SND_SOC_BIAS_STANDBY);
370 	}
371 
372 	mutex_unlock(&pcm_mutex);
373 	return 0;
374 }
375 
376 /*
377  * Called by ALSA when the PCM substream is prepared, can set format, sample
378  * rate, etc.  This function is non atomic and can be called multiple times,
379  * it can refer to the runtime info.
380  */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 	struct snd_soc_device *socdev = rtd->socdev;
385 	struct snd_soc_card *card = socdev->card;
386 	struct snd_soc_dai_link *machine = rtd->dai;
387 	struct snd_soc_platform *platform = card->platform;
388 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 	struct snd_soc_dai *codec_dai = machine->codec_dai;
390 	struct snd_soc_codec *codec = card->codec;
391 	int ret = 0;
392 
393 	mutex_lock(&pcm_mutex);
394 
395 	if (machine->ops && machine->ops->prepare) {
396 		ret = machine->ops->prepare(substream);
397 		if (ret < 0) {
398 			printk(KERN_ERR "asoc: machine prepare error\n");
399 			goto out;
400 		}
401 	}
402 
403 	if (platform->pcm_ops->prepare) {
404 		ret = platform->pcm_ops->prepare(substream);
405 		if (ret < 0) {
406 			printk(KERN_ERR "asoc: platform prepare error\n");
407 			goto out;
408 		}
409 	}
410 
411 	if (codec_dai->ops->prepare) {
412 		ret = codec_dai->ops->prepare(substream, codec_dai);
413 		if (ret < 0) {
414 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 			goto out;
416 		}
417 	}
418 
419 	if (cpu_dai->ops->prepare) {
420 		ret = cpu_dai->ops->prepare(substream, cpu_dai);
421 		if (ret < 0) {
422 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 			goto out;
424 		}
425 	}
426 
427 	/* cancel any delayed stream shutdown that is pending */
428 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 	    codec_dai->pop_wait) {
430 		codec_dai->pop_wait = 0;
431 		cancel_delayed_work(&card->delayed_work);
432 	}
433 
434 	/* do we need to power up codec */
435 	if (codec->bias_level != SND_SOC_BIAS_ON) {
436 		snd_soc_dapm_set_bias_level(socdev,
437 					    SND_SOC_BIAS_PREPARE);
438 
439 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 			snd_soc_dapm_stream_event(codec,
441 					codec_dai->playback.stream_name,
442 					SND_SOC_DAPM_STREAM_START);
443 		else
444 			snd_soc_dapm_stream_event(codec,
445 					codec_dai->capture.stream_name,
446 					SND_SOC_DAPM_STREAM_START);
447 
448 		snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 		snd_soc_dai_digital_mute(codec_dai, 0);
450 
451 	} else {
452 		/* codec already powered - power on widgets */
453 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 			snd_soc_dapm_stream_event(codec,
455 					codec_dai->playback.stream_name,
456 					SND_SOC_DAPM_STREAM_START);
457 		else
458 			snd_soc_dapm_stream_event(codec,
459 					codec_dai->capture.stream_name,
460 					SND_SOC_DAPM_STREAM_START);
461 
462 		snd_soc_dai_digital_mute(codec_dai, 0);
463 	}
464 
465 out:
466 	mutex_unlock(&pcm_mutex);
467 	return ret;
468 }
469 
470 /*
471  * Called by ALSA when the hardware params are set by application. This
472  * function can also be called multiple times and can allocate buffers
473  * (using snd_pcm_lib_* ). It's non-atomic.
474  */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 				struct snd_pcm_hw_params *params)
477 {
478 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 	struct snd_soc_device *socdev = rtd->socdev;
480 	struct snd_soc_dai_link *machine = rtd->dai;
481 	struct snd_soc_card *card = socdev->card;
482 	struct snd_soc_platform *platform = card->platform;
483 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 	struct snd_soc_dai *codec_dai = machine->codec_dai;
485 	int ret = 0;
486 
487 	mutex_lock(&pcm_mutex);
488 
489 	if (machine->ops && machine->ops->hw_params) {
490 		ret = machine->ops->hw_params(substream, params);
491 		if (ret < 0) {
492 			printk(KERN_ERR "asoc: machine hw_params failed\n");
493 			goto out;
494 		}
495 	}
496 
497 	if (codec_dai->ops->hw_params) {
498 		ret = codec_dai->ops->hw_params(substream, params, codec_dai);
499 		if (ret < 0) {
500 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 				codec_dai->name);
502 			goto codec_err;
503 		}
504 	}
505 
506 	if (cpu_dai->ops->hw_params) {
507 		ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
508 		if (ret < 0) {
509 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 				cpu_dai->name);
511 			goto interface_err;
512 		}
513 	}
514 
515 	if (platform->pcm_ops->hw_params) {
516 		ret = platform->pcm_ops->hw_params(substream, params);
517 		if (ret < 0) {
518 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 				platform->name);
520 			goto platform_err;
521 		}
522 	}
523 
524 out:
525 	mutex_unlock(&pcm_mutex);
526 	return ret;
527 
528 platform_err:
529 	if (cpu_dai->ops->hw_free)
530 		cpu_dai->ops->hw_free(substream, cpu_dai);
531 
532 interface_err:
533 	if (codec_dai->ops->hw_free)
534 		codec_dai->ops->hw_free(substream, codec_dai);
535 
536 codec_err:
537 	if (machine->ops && machine->ops->hw_free)
538 		machine->ops->hw_free(substream);
539 
540 	mutex_unlock(&pcm_mutex);
541 	return ret;
542 }
543 
544 /*
545  * Free's resources allocated by hw_params, can be called multiple times
546  */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 	struct snd_soc_device *socdev = rtd->socdev;
551 	struct snd_soc_dai_link *machine = rtd->dai;
552 	struct snd_soc_card *card = socdev->card;
553 	struct snd_soc_platform *platform = card->platform;
554 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 	struct snd_soc_dai *codec_dai = machine->codec_dai;
556 	struct snd_soc_codec *codec = card->codec;
557 
558 	mutex_lock(&pcm_mutex);
559 
560 	/* apply codec digital mute */
561 	if (!codec->active)
562 		snd_soc_dai_digital_mute(codec_dai, 1);
563 
564 	/* free any machine hw params */
565 	if (machine->ops && machine->ops->hw_free)
566 		machine->ops->hw_free(substream);
567 
568 	/* free any DMA resources */
569 	if (platform->pcm_ops->hw_free)
570 		platform->pcm_ops->hw_free(substream);
571 
572 	/* now free hw params for the DAI's  */
573 	if (codec_dai->ops->hw_free)
574 		codec_dai->ops->hw_free(substream, codec_dai);
575 
576 	if (cpu_dai->ops->hw_free)
577 		cpu_dai->ops->hw_free(substream, cpu_dai);
578 
579 	mutex_unlock(&pcm_mutex);
580 	return 0;
581 }
582 
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 	struct snd_soc_device *socdev = rtd->socdev;
587 	struct snd_soc_card *card= socdev->card;
588 	struct snd_soc_dai_link *machine = rtd->dai;
589 	struct snd_soc_platform *platform = card->platform;
590 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 	struct snd_soc_dai *codec_dai = machine->codec_dai;
592 	int ret;
593 
594 	if (codec_dai->ops->trigger) {
595 		ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
596 		if (ret < 0)
597 			return ret;
598 	}
599 
600 	if (platform->pcm_ops->trigger) {
601 		ret = platform->pcm_ops->trigger(substream, cmd);
602 		if (ret < 0)
603 			return ret;
604 	}
605 
606 	if (cpu_dai->ops->trigger) {
607 		ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
608 		if (ret < 0)
609 			return ret;
610 	}
611 	return 0;
612 }
613 
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 	.open		= soc_pcm_open,
617 	.close		= soc_codec_close,
618 	.hw_params	= soc_pcm_hw_params,
619 	.hw_free	= soc_pcm_hw_free,
620 	.prepare	= soc_pcm_prepare,
621 	.trigger	= soc_pcm_trigger,
622 };
623 
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 	struct snd_soc_card *card = socdev->card;
630 	struct snd_soc_platform *platform = card->platform;
631 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 	struct snd_soc_codec *codec = card->codec;
633 	int i;
634 
635 	/* Due to the resume being scheduled into a workqueue we could
636 	* suspend before that's finished - wait for it to complete.
637 	 */
638 	snd_power_lock(codec->card);
639 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 	snd_power_unlock(codec->card);
641 
642 	/* we're going to block userspace touching us until resume completes */
643 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644 
645 	/* mute any active DAC's */
646 	for (i = 0; i < card->num_links; i++) {
647 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 		if (dai->ops->digital_mute && dai->playback.active)
649 			dai->ops->digital_mute(dai, 1);
650 	}
651 
652 	/* suspend all pcms */
653 	for (i = 0; i < card->num_links; i++)
654 		snd_pcm_suspend_all(card->dai_link[i].pcm);
655 
656 	if (card->suspend_pre)
657 		card->suspend_pre(pdev, state);
658 
659 	for (i = 0; i < card->num_links; i++) {
660 		struct snd_soc_dai  *cpu_dai = card->dai_link[i].cpu_dai;
661 		if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 			cpu_dai->suspend(cpu_dai);
663 		if (platform->suspend)
664 			platform->suspend(cpu_dai);
665 	}
666 
667 	/* close any waiting streams and save state */
668 	run_delayed_work(&card->delayed_work);
669 	codec->suspend_bias_level = codec->bias_level;
670 
671 	for (i = 0; i < codec->num_dai; i++) {
672 		char *stream = codec->dai[i].playback.stream_name;
673 		if (stream != NULL)
674 			snd_soc_dapm_stream_event(codec, stream,
675 				SND_SOC_DAPM_STREAM_SUSPEND);
676 		stream = codec->dai[i].capture.stream_name;
677 		if (stream != NULL)
678 			snd_soc_dapm_stream_event(codec, stream,
679 				SND_SOC_DAPM_STREAM_SUSPEND);
680 	}
681 
682 	if (codec_dev->suspend)
683 		codec_dev->suspend(pdev, state);
684 
685 	for (i = 0; i < card->num_links; i++) {
686 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 		if (cpu_dai->suspend && cpu_dai->ac97_control)
688 			cpu_dai->suspend(cpu_dai);
689 	}
690 
691 	if (card->suspend_post)
692 		card->suspend_post(pdev, state);
693 
694 	return 0;
695 }
696 
697 /* deferred resume work, so resume can complete before we finished
698  * setting our codec back up, which can be very slow on I2C
699  */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 	struct snd_soc_card *card = container_of(work,
703 						 struct snd_soc_card,
704 						 deferred_resume_work);
705 	struct snd_soc_device *socdev = card->socdev;
706 	struct snd_soc_platform *platform = card->platform;
707 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 	struct snd_soc_codec *codec = card->codec;
709 	struct platform_device *pdev = to_platform_device(socdev->dev);
710 	int i;
711 
712 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 	 * so userspace apps are blocked from touching us
714 	 */
715 
716 	dev_dbg(socdev->dev, "starting resume work\n");
717 
718 	if (card->resume_pre)
719 		card->resume_pre(pdev);
720 
721 	for (i = 0; i < card->num_links; i++) {
722 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 		if (cpu_dai->resume && cpu_dai->ac97_control)
724 			cpu_dai->resume(cpu_dai);
725 	}
726 
727 	if (codec_dev->resume)
728 		codec_dev->resume(pdev);
729 
730 	for (i = 0; i < codec->num_dai; i++) {
731 		char *stream = codec->dai[i].playback.stream_name;
732 		if (stream != NULL)
733 			snd_soc_dapm_stream_event(codec, stream,
734 				SND_SOC_DAPM_STREAM_RESUME);
735 		stream = codec->dai[i].capture.stream_name;
736 		if (stream != NULL)
737 			snd_soc_dapm_stream_event(codec, stream,
738 				SND_SOC_DAPM_STREAM_RESUME);
739 	}
740 
741 	/* unmute any active DACs */
742 	for (i = 0; i < card->num_links; i++) {
743 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 		if (dai->ops->digital_mute && dai->playback.active)
745 			dai->ops->digital_mute(dai, 0);
746 	}
747 
748 	for (i = 0; i < card->num_links; i++) {
749 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 		if (cpu_dai->resume && !cpu_dai->ac97_control)
751 			cpu_dai->resume(cpu_dai);
752 		if (platform->resume)
753 			platform->resume(cpu_dai);
754 	}
755 
756 	if (card->resume_post)
757 		card->resume_post(pdev);
758 
759 	dev_dbg(socdev->dev, "resume work completed\n");
760 
761 	/* userspace can access us now we are back as we were before */
762 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764 
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 	struct snd_soc_card *card = socdev->card;
770 
771 	dev_dbg(socdev->dev, "scheduling resume work\n");
772 
773 	if (!schedule_work(&card->deferred_resume_work))
774 		dev_err(socdev->dev, "resume work item may be lost\n");
775 
776 	return 0;
777 }
778 
779 #else
780 #define soc_suspend	NULL
781 #define soc_resume	NULL
782 #endif
783 
784 static void snd_soc_instantiate_card(struct snd_soc_card *card)
785 {
786 	struct platform_device *pdev = container_of(card->dev,
787 						    struct platform_device,
788 						    dev);
789 	struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
790 	struct snd_soc_platform *platform;
791 	struct snd_soc_dai *dai;
792 	int i, found, ret, ac97;
793 
794 	if (card->instantiated)
795 		return;
796 
797 	found = 0;
798 	list_for_each_entry(platform, &platform_list, list)
799 		if (card->platform == platform) {
800 			found = 1;
801 			break;
802 		}
803 	if (!found) {
804 		dev_dbg(card->dev, "Platform %s not registered\n",
805 			card->platform->name);
806 		return;
807 	}
808 
809 	ac97 = 0;
810 	for (i = 0; i < card->num_links; i++) {
811 		found = 0;
812 		list_for_each_entry(dai, &dai_list, list)
813 			if (card->dai_link[i].cpu_dai == dai) {
814 				found = 1;
815 				break;
816 			}
817 		if (!found) {
818 			dev_dbg(card->dev, "DAI %s not registered\n",
819 				card->dai_link[i].cpu_dai->name);
820 			return;
821 		}
822 
823 		if (card->dai_link[i].cpu_dai->ac97_control)
824 			ac97 = 1;
825 	}
826 
827 	/* If we have AC97 in the system then don't wait for the
828 	 * codec.  This will need revisiting if we have to handle
829 	 * systems with mixed AC97 and non-AC97 parts.  Only check for
830 	 * DAIs currently; we can't do this per link since some AC97
831 	 * codecs have non-AC97 DAIs.
832 	 */
833 	if (!ac97)
834 		for (i = 0; i < card->num_links; i++) {
835 			found = 0;
836 			list_for_each_entry(dai, &dai_list, list)
837 				if (card->dai_link[i].codec_dai == dai) {
838 					found = 1;
839 					break;
840 				}
841 			if (!found) {
842 				dev_dbg(card->dev, "DAI %s not registered\n",
843 					card->dai_link[i].codec_dai->name);
844 				return;
845 			}
846 		}
847 
848 	/* Note that we do not current check for codec components */
849 
850 	dev_dbg(card->dev, "All components present, instantiating\n");
851 
852 	/* Found everything, bring it up */
853 	if (card->probe) {
854 		ret = card->probe(pdev);
855 		if (ret < 0)
856 			return;
857 	}
858 
859 	for (i = 0; i < card->num_links; i++) {
860 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
861 		if (cpu_dai->probe) {
862 			ret = cpu_dai->probe(pdev, cpu_dai);
863 			if (ret < 0)
864 				goto cpu_dai_err;
865 		}
866 	}
867 
868 	if (codec_dev->probe) {
869 		ret = codec_dev->probe(pdev);
870 		if (ret < 0)
871 			goto cpu_dai_err;
872 	}
873 
874 	if (platform->probe) {
875 		ret = platform->probe(pdev);
876 		if (ret < 0)
877 			goto platform_err;
878 	}
879 
880 	/* DAPM stream work */
881 	INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
882 #ifdef CONFIG_PM
883 	/* deferred resume work */
884 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
885 #endif
886 
887 	card->instantiated = 1;
888 
889 	return;
890 
891 platform_err:
892 	if (codec_dev->remove)
893 		codec_dev->remove(pdev);
894 
895 cpu_dai_err:
896 	for (i--; i >= 0; i--) {
897 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
898 		if (cpu_dai->remove)
899 			cpu_dai->remove(pdev, cpu_dai);
900 	}
901 
902 	if (card->remove)
903 		card->remove(pdev);
904 }
905 
906 /*
907  * Attempt to initialise any uninitalised cards.  Must be called with
908  * client_mutex.
909  */
910 static void snd_soc_instantiate_cards(void)
911 {
912 	struct snd_soc_card *card;
913 	list_for_each_entry(card, &card_list, list)
914 		snd_soc_instantiate_card(card);
915 }
916 
917 /* probes a new socdev */
918 static int soc_probe(struct platform_device *pdev)
919 {
920 	int ret = 0;
921 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
922 	struct snd_soc_card *card = socdev->card;
923 
924 	/* Bodge while we push things out of socdev */
925 	card->socdev = socdev;
926 
927 	/* Bodge while we unpick instantiation */
928 	card->dev = &pdev->dev;
929 	ret = snd_soc_register_card(card);
930 	if (ret != 0) {
931 		dev_err(&pdev->dev, "Failed to register card\n");
932 		return ret;
933 	}
934 
935 	return 0;
936 }
937 
938 /* removes a socdev */
939 static int soc_remove(struct platform_device *pdev)
940 {
941 	int i;
942 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
943 	struct snd_soc_card *card = socdev->card;
944 	struct snd_soc_platform *platform = card->platform;
945 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
946 
947 	run_delayed_work(&card->delayed_work);
948 
949 	if (platform->remove)
950 		platform->remove(pdev);
951 
952 	if (codec_dev->remove)
953 		codec_dev->remove(pdev);
954 
955 	for (i = 0; i < card->num_links; i++) {
956 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
957 		if (cpu_dai->remove)
958 			cpu_dai->remove(pdev, cpu_dai);
959 	}
960 
961 	if (card->remove)
962 		card->remove(pdev);
963 
964 	snd_soc_unregister_card(card);
965 
966 	return 0;
967 }
968 
969 /* ASoC platform driver */
970 static struct platform_driver soc_driver = {
971 	.driver		= {
972 		.name		= "soc-audio",
973 		.owner		= THIS_MODULE,
974 	},
975 	.probe		= soc_probe,
976 	.remove		= soc_remove,
977 	.suspend	= soc_suspend,
978 	.resume		= soc_resume,
979 };
980 
981 /* create a new pcm */
982 static int soc_new_pcm(struct snd_soc_device *socdev,
983 	struct snd_soc_dai_link *dai_link, int num)
984 {
985 	struct snd_soc_card *card = socdev->card;
986 	struct snd_soc_codec *codec = card->codec;
987 	struct snd_soc_platform *platform = card->platform;
988 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
989 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
990 	struct snd_soc_pcm_runtime *rtd;
991 	struct snd_pcm *pcm;
992 	char new_name[64];
993 	int ret = 0, playback = 0, capture = 0;
994 
995 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
996 	if (rtd == NULL)
997 		return -ENOMEM;
998 
999 	rtd->dai = dai_link;
1000 	rtd->socdev = socdev;
1001 	codec_dai->codec = card->codec;
1002 
1003 	/* check client and interface hw capabilities */
1004 	sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1005 		num);
1006 
1007 	if (codec_dai->playback.channels_min)
1008 		playback = 1;
1009 	if (codec_dai->capture.channels_min)
1010 		capture = 1;
1011 
1012 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1013 		capture, &pcm);
1014 	if (ret < 0) {
1015 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1016 			codec->name);
1017 		kfree(rtd);
1018 		return ret;
1019 	}
1020 
1021 	dai_link->pcm = pcm;
1022 	pcm->private_data = rtd;
1023 	soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1024 	soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1025 	soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1026 	soc_pcm_ops.copy = platform->pcm_ops->copy;
1027 	soc_pcm_ops.silence = platform->pcm_ops->silence;
1028 	soc_pcm_ops.ack = platform->pcm_ops->ack;
1029 	soc_pcm_ops.page = platform->pcm_ops->page;
1030 
1031 	if (playback)
1032 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1033 
1034 	if (capture)
1035 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1036 
1037 	ret = platform->pcm_new(codec->card, codec_dai, pcm);
1038 	if (ret < 0) {
1039 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1040 		kfree(rtd);
1041 		return ret;
1042 	}
1043 
1044 	pcm->private_free = platform->pcm_free;
1045 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1046 		cpu_dai->name);
1047 	return ret;
1048 }
1049 
1050 /* codec register dump */
1051 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1052 {
1053 	int i, step = 1, count = 0;
1054 
1055 	if (!codec->reg_cache_size)
1056 		return 0;
1057 
1058 	if (codec->reg_cache_step)
1059 		step = codec->reg_cache_step;
1060 
1061 	count += sprintf(buf, "%s registers\n", codec->name);
1062 	for (i = 0; i < codec->reg_cache_size; i += step) {
1063 		count += sprintf(buf + count, "%2x: ", i);
1064 		if (count >= PAGE_SIZE - 1)
1065 			break;
1066 
1067 		if (codec->display_register)
1068 			count += codec->display_register(codec, buf + count,
1069 							 PAGE_SIZE - count, i);
1070 		else
1071 			count += snprintf(buf + count, PAGE_SIZE - count,
1072 					  "%4x", codec->read(codec, i));
1073 
1074 		if (count >= PAGE_SIZE - 1)
1075 			break;
1076 
1077 		count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1078 		if (count >= PAGE_SIZE - 1)
1079 			break;
1080 	}
1081 
1082 	/* Truncate count; min() would cause a warning */
1083 	if (count >= PAGE_SIZE)
1084 		count = PAGE_SIZE - 1;
1085 
1086 	return count;
1087 }
1088 static ssize_t codec_reg_show(struct device *dev,
1089 	struct device_attribute *attr, char *buf)
1090 {
1091 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
1092 	return soc_codec_reg_show(devdata->card->codec, buf);
1093 }
1094 
1095 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1096 
1097 #ifdef CONFIG_DEBUG_FS
1098 static int codec_reg_open_file(struct inode *inode, struct file *file)
1099 {
1100 	file->private_data = inode->i_private;
1101 	return 0;
1102 }
1103 
1104 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1105 			       size_t count, loff_t *ppos)
1106 {
1107 	ssize_t ret;
1108 	struct snd_soc_codec *codec = file->private_data;
1109 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1110 	if (!buf)
1111 		return -ENOMEM;
1112 	ret = soc_codec_reg_show(codec, buf);
1113 	if (ret >= 0)
1114 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1115 	kfree(buf);
1116 	return ret;
1117 }
1118 
1119 static ssize_t codec_reg_write_file(struct file *file,
1120 		const char __user *user_buf, size_t count, loff_t *ppos)
1121 {
1122 	char buf[32];
1123 	int buf_size;
1124 	char *start = buf;
1125 	unsigned long reg, value;
1126 	int step = 1;
1127 	struct snd_soc_codec *codec = file->private_data;
1128 
1129 	buf_size = min(count, (sizeof(buf)-1));
1130 	if (copy_from_user(buf, user_buf, buf_size))
1131 		return -EFAULT;
1132 	buf[buf_size] = 0;
1133 
1134 	if (codec->reg_cache_step)
1135 		step = codec->reg_cache_step;
1136 
1137 	while (*start == ' ')
1138 		start++;
1139 	reg = simple_strtoul(start, &start, 16);
1140 	if ((reg >= codec->reg_cache_size) || (reg % step))
1141 		return -EINVAL;
1142 	while (*start == ' ')
1143 		start++;
1144 	if (strict_strtoul(start, 16, &value))
1145 		return -EINVAL;
1146 	codec->write(codec, reg, value);
1147 	return buf_size;
1148 }
1149 
1150 static const struct file_operations codec_reg_fops = {
1151 	.open = codec_reg_open_file,
1152 	.read = codec_reg_read_file,
1153 	.write = codec_reg_write_file,
1154 };
1155 
1156 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1157 {
1158 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1159 						 debugfs_root, codec,
1160 						 &codec_reg_fops);
1161 	if (!codec->debugfs_reg)
1162 		printk(KERN_WARNING
1163 		       "ASoC: Failed to create codec register debugfs file\n");
1164 
1165 	codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1166 						     debugfs_root,
1167 						     &codec->pop_time);
1168 	if (!codec->debugfs_pop_time)
1169 		printk(KERN_WARNING
1170 		       "Failed to create pop time debugfs file\n");
1171 }
1172 
1173 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1174 {
1175 	debugfs_remove(codec->debugfs_pop_time);
1176 	debugfs_remove(codec->debugfs_reg);
1177 }
1178 
1179 #else
1180 
1181 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1182 {
1183 }
1184 
1185 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1186 {
1187 }
1188 #endif
1189 
1190 /**
1191  * snd_soc_new_ac97_codec - initailise AC97 device
1192  * @codec: audio codec
1193  * @ops: AC97 bus operations
1194  * @num: AC97 codec number
1195  *
1196  * Initialises AC97 codec resources for use by ad-hoc devices only.
1197  */
1198 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1199 	struct snd_ac97_bus_ops *ops, int num)
1200 {
1201 	mutex_lock(&codec->mutex);
1202 
1203 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1204 	if (codec->ac97 == NULL) {
1205 		mutex_unlock(&codec->mutex);
1206 		return -ENOMEM;
1207 	}
1208 
1209 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1210 	if (codec->ac97->bus == NULL) {
1211 		kfree(codec->ac97);
1212 		codec->ac97 = NULL;
1213 		mutex_unlock(&codec->mutex);
1214 		return -ENOMEM;
1215 	}
1216 
1217 	codec->ac97->bus->ops = ops;
1218 	codec->ac97->num = num;
1219 	mutex_unlock(&codec->mutex);
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1223 
1224 /**
1225  * snd_soc_free_ac97_codec - free AC97 codec device
1226  * @codec: audio codec
1227  *
1228  * Frees AC97 codec device resources.
1229  */
1230 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1231 {
1232 	mutex_lock(&codec->mutex);
1233 	kfree(codec->ac97->bus);
1234 	kfree(codec->ac97);
1235 	codec->ac97 = NULL;
1236 	mutex_unlock(&codec->mutex);
1237 }
1238 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1239 
1240 /**
1241  * snd_soc_update_bits - update codec register bits
1242  * @codec: audio codec
1243  * @reg: codec register
1244  * @mask: register mask
1245  * @value: new value
1246  *
1247  * Writes new register value.
1248  *
1249  * Returns 1 for change else 0.
1250  */
1251 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1252 				unsigned short mask, unsigned short value)
1253 {
1254 	int change;
1255 	unsigned short old, new;
1256 
1257 	mutex_lock(&io_mutex);
1258 	old = snd_soc_read(codec, reg);
1259 	new = (old & ~mask) | value;
1260 	change = old != new;
1261 	if (change)
1262 		snd_soc_write(codec, reg, new);
1263 
1264 	mutex_unlock(&io_mutex);
1265 	return change;
1266 }
1267 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1268 
1269 /**
1270  * snd_soc_test_bits - test register for change
1271  * @codec: audio codec
1272  * @reg: codec register
1273  * @mask: register mask
1274  * @value: new value
1275  *
1276  * Tests a register with a new value and checks if the new value is
1277  * different from the old value.
1278  *
1279  * Returns 1 for change else 0.
1280  */
1281 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1282 				unsigned short mask, unsigned short value)
1283 {
1284 	int change;
1285 	unsigned short old, new;
1286 
1287 	mutex_lock(&io_mutex);
1288 	old = snd_soc_read(codec, reg);
1289 	new = (old & ~mask) | value;
1290 	change = old != new;
1291 	mutex_unlock(&io_mutex);
1292 
1293 	return change;
1294 }
1295 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1296 
1297 /**
1298  * snd_soc_new_pcms - create new sound card and pcms
1299  * @socdev: the SoC audio device
1300  * @idx: ALSA card index
1301  * @xid: card identification
1302  *
1303  * Create a new sound card based upon the codec and interface pcms.
1304  *
1305  * Returns 0 for success, else error.
1306  */
1307 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1308 {
1309 	struct snd_soc_card *card = socdev->card;
1310 	struct snd_soc_codec *codec = card->codec;
1311 	int ret, i;
1312 
1313 	mutex_lock(&codec->mutex);
1314 
1315 	/* register a sound card */
1316 	ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1317 	if (ret < 0) {
1318 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1319 			codec->name);
1320 		mutex_unlock(&codec->mutex);
1321 		return ret;
1322 	}
1323 
1324 	codec->card->dev = socdev->dev;
1325 	codec->card->private_data = codec;
1326 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1327 
1328 	/* create the pcms */
1329 	for (i = 0; i < card->num_links; i++) {
1330 		ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1331 		if (ret < 0) {
1332 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1333 				card->dai_link[i].stream_name);
1334 			mutex_unlock(&codec->mutex);
1335 			return ret;
1336 		}
1337 	}
1338 
1339 	mutex_unlock(&codec->mutex);
1340 	return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1343 
1344 /**
1345  * snd_soc_init_card - register sound card
1346  * @socdev: the SoC audio device
1347  *
1348  * Register a SoC sound card. Also registers an AC97 device if the
1349  * codec is AC97 for ad hoc devices.
1350  *
1351  * Returns 0 for success, else error.
1352  */
1353 int snd_soc_init_card(struct snd_soc_device *socdev)
1354 {
1355 	struct snd_soc_card *card = socdev->card;
1356 	struct snd_soc_codec *codec = card->codec;
1357 	int ret = 0, i, ac97 = 0, err = 0;
1358 
1359 	for (i = 0; i < card->num_links; i++) {
1360 		if (card->dai_link[i].init) {
1361 			err = card->dai_link[i].init(codec);
1362 			if (err < 0) {
1363 				printk(KERN_ERR "asoc: failed to init %s\n",
1364 					card->dai_link[i].stream_name);
1365 				continue;
1366 			}
1367 		}
1368 		if (card->dai_link[i].codec_dai->ac97_control)
1369 			ac97 = 1;
1370 	}
1371 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1372 		 "%s",  card->name);
1373 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1374 		 "%s (%s)", card->name, codec->name);
1375 
1376 	ret = snd_card_register(codec->card);
1377 	if (ret < 0) {
1378 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1379 				codec->name);
1380 		goto out;
1381 	}
1382 
1383 	mutex_lock(&codec->mutex);
1384 #ifdef CONFIG_SND_SOC_AC97_BUS
1385 	/* Only instantiate AC97 if not already done by the adaptor
1386 	 * for the generic AC97 subsystem.
1387 	 */
1388 	if (ac97 && strcmp(codec->name, "AC97") != 0) {
1389 		ret = soc_ac97_dev_register(codec);
1390 		if (ret < 0) {
1391 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1392 			snd_card_free(codec->card);
1393 			mutex_unlock(&codec->mutex);
1394 			goto out;
1395 		}
1396 	}
1397 #endif
1398 
1399 	err = snd_soc_dapm_sys_add(socdev->dev);
1400 	if (err < 0)
1401 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1402 
1403 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1404 	if (err < 0)
1405 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1406 
1407 	soc_init_codec_debugfs(codec);
1408 	mutex_unlock(&codec->mutex);
1409 
1410 out:
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1414 
1415 /**
1416  * snd_soc_free_pcms - free sound card and pcms
1417  * @socdev: the SoC audio device
1418  *
1419  * Frees sound card and pcms associated with the socdev.
1420  * Also unregister the codec if it is an AC97 device.
1421  */
1422 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1423 {
1424 	struct snd_soc_codec *codec = socdev->card->codec;
1425 #ifdef CONFIG_SND_SOC_AC97_BUS
1426 	struct snd_soc_dai *codec_dai;
1427 	int i;
1428 #endif
1429 
1430 	mutex_lock(&codec->mutex);
1431 	soc_cleanup_codec_debugfs(codec);
1432 #ifdef CONFIG_SND_SOC_AC97_BUS
1433 	for (i = 0; i < codec->num_dai; i++) {
1434 		codec_dai = &codec->dai[i];
1435 		if (codec_dai->ac97_control && codec->ac97 &&
1436 		    strcmp(codec->name, "AC97") != 0) {
1437 			soc_ac97_dev_unregister(codec);
1438 			goto free_card;
1439 		}
1440 	}
1441 free_card:
1442 #endif
1443 
1444 	if (codec->card)
1445 		snd_card_free(codec->card);
1446 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1447 	mutex_unlock(&codec->mutex);
1448 }
1449 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1450 
1451 /**
1452  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1453  * @substream: the pcm substream
1454  * @hw: the hardware parameters
1455  *
1456  * Sets the substream runtime hardware parameters.
1457  */
1458 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1459 	const struct snd_pcm_hardware *hw)
1460 {
1461 	struct snd_pcm_runtime *runtime = substream->runtime;
1462 	runtime->hw.info = hw->info;
1463 	runtime->hw.formats = hw->formats;
1464 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1465 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1466 	runtime->hw.periods_min = hw->periods_min;
1467 	runtime->hw.periods_max = hw->periods_max;
1468 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1469 	runtime->hw.fifo_size = hw->fifo_size;
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1473 
1474 /**
1475  * snd_soc_cnew - create new control
1476  * @_template: control template
1477  * @data: control private data
1478  * @long_name: control long name
1479  *
1480  * Create a new mixer control from a template control.
1481  *
1482  * Returns 0 for success, else error.
1483  */
1484 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1485 	void *data, char *long_name)
1486 {
1487 	struct snd_kcontrol_new template;
1488 
1489 	memcpy(&template, _template, sizeof(template));
1490 	if (long_name)
1491 		template.name = long_name;
1492 	template.index = 0;
1493 
1494 	return snd_ctl_new1(&template, data);
1495 }
1496 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1497 
1498 /**
1499  * snd_soc_add_controls - add an array of controls to a codec.
1500  * Convienience function to add a list of controls. Many codecs were
1501  * duplicating this code.
1502  *
1503  * @codec: codec to add controls to
1504  * @controls: array of controls to add
1505  * @num_controls: number of elements in the array
1506  *
1507  * Return 0 for success, else error.
1508  */
1509 int snd_soc_add_controls(struct snd_soc_codec *codec,
1510 	const struct snd_kcontrol_new *controls, int num_controls)
1511 {
1512 	struct snd_card *card = codec->card;
1513 	int err, i;
1514 
1515 	for (i = 0; i < num_controls; i++) {
1516 		const struct snd_kcontrol_new *control = &controls[i];
1517 		err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1518 		if (err < 0) {
1519 			dev_err(codec->dev, "%s: Failed to add %s\n",
1520 				codec->name, control->name);
1521 			return err;
1522 		}
1523 	}
1524 
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1528 
1529 /**
1530  * snd_soc_info_enum_double - enumerated double mixer info callback
1531  * @kcontrol: mixer control
1532  * @uinfo: control element information
1533  *
1534  * Callback to provide information about a double enumerated
1535  * mixer control.
1536  *
1537  * Returns 0 for success.
1538  */
1539 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1540 	struct snd_ctl_elem_info *uinfo)
1541 {
1542 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1543 
1544 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1545 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1546 	uinfo->value.enumerated.items = e->max;
1547 
1548 	if (uinfo->value.enumerated.item > e->max - 1)
1549 		uinfo->value.enumerated.item = e->max - 1;
1550 	strcpy(uinfo->value.enumerated.name,
1551 		e->texts[uinfo->value.enumerated.item]);
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1555 
1556 /**
1557  * snd_soc_get_enum_double - enumerated double mixer get callback
1558  * @kcontrol: mixer control
1559  * @ucontrol: control element information
1560  *
1561  * Callback to get the value of a double enumerated mixer.
1562  *
1563  * Returns 0 for success.
1564  */
1565 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1566 	struct snd_ctl_elem_value *ucontrol)
1567 {
1568 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1569 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1570 	unsigned short val, bitmask;
1571 
1572 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1573 		;
1574 	val = snd_soc_read(codec, e->reg);
1575 	ucontrol->value.enumerated.item[0]
1576 		= (val >> e->shift_l) & (bitmask - 1);
1577 	if (e->shift_l != e->shift_r)
1578 		ucontrol->value.enumerated.item[1] =
1579 			(val >> e->shift_r) & (bitmask - 1);
1580 
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1584 
1585 /**
1586  * snd_soc_put_enum_double - enumerated double mixer put callback
1587  * @kcontrol: mixer control
1588  * @ucontrol: control element information
1589  *
1590  * Callback to set the value of a double enumerated mixer.
1591  *
1592  * Returns 0 for success.
1593  */
1594 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1595 	struct snd_ctl_elem_value *ucontrol)
1596 {
1597 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1598 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1599 	unsigned short val;
1600 	unsigned short mask, bitmask;
1601 
1602 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1603 		;
1604 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1605 		return -EINVAL;
1606 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1607 	mask = (bitmask - 1) << e->shift_l;
1608 	if (e->shift_l != e->shift_r) {
1609 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1610 			return -EINVAL;
1611 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1612 		mask |= (bitmask - 1) << e->shift_r;
1613 	}
1614 
1615 	return snd_soc_update_bits(codec, e->reg, mask, val);
1616 }
1617 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1618 
1619 /**
1620  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1621  * @kcontrol: mixer control
1622  * @ucontrol: control element information
1623  *
1624  * Callback to get the value of a double semi enumerated mixer.
1625  *
1626  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1627  * used for handling bitfield coded enumeration for example.
1628  *
1629  * Returns 0 for success.
1630  */
1631 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1632 	struct snd_ctl_elem_value *ucontrol)
1633 {
1634 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1635 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1636 	unsigned short reg_val, val, mux;
1637 
1638 	reg_val = snd_soc_read(codec, e->reg);
1639 	val = (reg_val >> e->shift_l) & e->mask;
1640 	for (mux = 0; mux < e->max; mux++) {
1641 		if (val == e->values[mux])
1642 			break;
1643 	}
1644 	ucontrol->value.enumerated.item[0] = mux;
1645 	if (e->shift_l != e->shift_r) {
1646 		val = (reg_val >> e->shift_r) & e->mask;
1647 		for (mux = 0; mux < e->max; mux++) {
1648 			if (val == e->values[mux])
1649 				break;
1650 		}
1651 		ucontrol->value.enumerated.item[1] = mux;
1652 	}
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1657 
1658 /**
1659  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1660  * @kcontrol: mixer control
1661  * @ucontrol: control element information
1662  *
1663  * Callback to set the value of a double semi enumerated mixer.
1664  *
1665  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1666  * used for handling bitfield coded enumeration for example.
1667  *
1668  * Returns 0 for success.
1669  */
1670 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1671 	struct snd_ctl_elem_value *ucontrol)
1672 {
1673 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1674 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1675 	unsigned short val;
1676 	unsigned short mask;
1677 
1678 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1679 		return -EINVAL;
1680 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1681 	mask = e->mask << e->shift_l;
1682 	if (e->shift_l != e->shift_r) {
1683 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1684 			return -EINVAL;
1685 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1686 		mask |= e->mask << e->shift_r;
1687 	}
1688 
1689 	return snd_soc_update_bits(codec, e->reg, mask, val);
1690 }
1691 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1692 
1693 /**
1694  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1695  * @kcontrol: mixer control
1696  * @uinfo: control element information
1697  *
1698  * Callback to provide information about an external enumerated
1699  * single mixer.
1700  *
1701  * Returns 0 for success.
1702  */
1703 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1704 	struct snd_ctl_elem_info *uinfo)
1705 {
1706 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1707 
1708 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1709 	uinfo->count = 1;
1710 	uinfo->value.enumerated.items = e->max;
1711 
1712 	if (uinfo->value.enumerated.item > e->max - 1)
1713 		uinfo->value.enumerated.item = e->max - 1;
1714 	strcpy(uinfo->value.enumerated.name,
1715 		e->texts[uinfo->value.enumerated.item]);
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1719 
1720 /**
1721  * snd_soc_info_volsw_ext - external single mixer info callback
1722  * @kcontrol: mixer control
1723  * @uinfo: control element information
1724  *
1725  * Callback to provide information about a single external mixer control.
1726  *
1727  * Returns 0 for success.
1728  */
1729 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1730 	struct snd_ctl_elem_info *uinfo)
1731 {
1732 	int max = kcontrol->private_value;
1733 
1734 	if (max == 1)
1735 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1736 	else
1737 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1738 
1739 	uinfo->count = 1;
1740 	uinfo->value.integer.min = 0;
1741 	uinfo->value.integer.max = max;
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1745 
1746 /**
1747  * snd_soc_info_volsw - single mixer info callback
1748  * @kcontrol: mixer control
1749  * @uinfo: control element information
1750  *
1751  * Callback to provide information about a single mixer control.
1752  *
1753  * Returns 0 for success.
1754  */
1755 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1756 	struct snd_ctl_elem_info *uinfo)
1757 {
1758 	struct soc_mixer_control *mc =
1759 		(struct soc_mixer_control *)kcontrol->private_value;
1760 	int max = mc->max;
1761 	unsigned int shift = mc->shift;
1762 	unsigned int rshift = mc->rshift;
1763 
1764 	if (max == 1)
1765 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1766 	else
1767 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1768 
1769 	uinfo->count = shift == rshift ? 1 : 2;
1770 	uinfo->value.integer.min = 0;
1771 	uinfo->value.integer.max = max;
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1775 
1776 /**
1777  * snd_soc_get_volsw - single mixer get callback
1778  * @kcontrol: mixer control
1779  * @ucontrol: control element information
1780  *
1781  * Callback to get the value of a single mixer control.
1782  *
1783  * Returns 0 for success.
1784  */
1785 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1786 	struct snd_ctl_elem_value *ucontrol)
1787 {
1788 	struct soc_mixer_control *mc =
1789 		(struct soc_mixer_control *)kcontrol->private_value;
1790 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1791 	unsigned int reg = mc->reg;
1792 	unsigned int shift = mc->shift;
1793 	unsigned int rshift = mc->rshift;
1794 	int max = mc->max;
1795 	unsigned int mask = (1 << fls(max)) - 1;
1796 	unsigned int invert = mc->invert;
1797 
1798 	ucontrol->value.integer.value[0] =
1799 		(snd_soc_read(codec, reg) >> shift) & mask;
1800 	if (shift != rshift)
1801 		ucontrol->value.integer.value[1] =
1802 			(snd_soc_read(codec, reg) >> rshift) & mask;
1803 	if (invert) {
1804 		ucontrol->value.integer.value[0] =
1805 			max - ucontrol->value.integer.value[0];
1806 		if (shift != rshift)
1807 			ucontrol->value.integer.value[1] =
1808 				max - ucontrol->value.integer.value[1];
1809 	}
1810 
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1814 
1815 /**
1816  * snd_soc_put_volsw - single mixer put callback
1817  * @kcontrol: mixer control
1818  * @ucontrol: control element information
1819  *
1820  * Callback to set the value of a single mixer control.
1821  *
1822  * Returns 0 for success.
1823  */
1824 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1825 	struct snd_ctl_elem_value *ucontrol)
1826 {
1827 	struct soc_mixer_control *mc =
1828 		(struct soc_mixer_control *)kcontrol->private_value;
1829 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1830 	unsigned int reg = mc->reg;
1831 	unsigned int shift = mc->shift;
1832 	unsigned int rshift = mc->rshift;
1833 	int max = mc->max;
1834 	unsigned int mask = (1 << fls(max)) - 1;
1835 	unsigned int invert = mc->invert;
1836 	unsigned short val, val2, val_mask;
1837 
1838 	val = (ucontrol->value.integer.value[0] & mask);
1839 	if (invert)
1840 		val = max - val;
1841 	val_mask = mask << shift;
1842 	val = val << shift;
1843 	if (shift != rshift) {
1844 		val2 = (ucontrol->value.integer.value[1] & mask);
1845 		if (invert)
1846 			val2 = max - val2;
1847 		val_mask |= mask << rshift;
1848 		val |= val2 << rshift;
1849 	}
1850 	return snd_soc_update_bits(codec, reg, val_mask, val);
1851 }
1852 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1853 
1854 /**
1855  * snd_soc_info_volsw_2r - double mixer info callback
1856  * @kcontrol: mixer control
1857  * @uinfo: control element information
1858  *
1859  * Callback to provide information about a double mixer control that
1860  * spans 2 codec registers.
1861  *
1862  * Returns 0 for success.
1863  */
1864 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1865 	struct snd_ctl_elem_info *uinfo)
1866 {
1867 	struct soc_mixer_control *mc =
1868 		(struct soc_mixer_control *)kcontrol->private_value;
1869 	int max = mc->max;
1870 
1871 	if (max == 1)
1872 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1873 	else
1874 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1875 
1876 	uinfo->count = 2;
1877 	uinfo->value.integer.min = 0;
1878 	uinfo->value.integer.max = max;
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1882 
1883 /**
1884  * snd_soc_get_volsw_2r - double mixer get callback
1885  * @kcontrol: mixer control
1886  * @ucontrol: control element information
1887  *
1888  * Callback to get the value of a double mixer control that spans 2 registers.
1889  *
1890  * Returns 0 for success.
1891  */
1892 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1893 	struct snd_ctl_elem_value *ucontrol)
1894 {
1895 	struct soc_mixer_control *mc =
1896 		(struct soc_mixer_control *)kcontrol->private_value;
1897 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1898 	unsigned int reg = mc->reg;
1899 	unsigned int reg2 = mc->rreg;
1900 	unsigned int shift = mc->shift;
1901 	int max = mc->max;
1902 	unsigned int mask = (1<<fls(max))-1;
1903 	unsigned int invert = mc->invert;
1904 
1905 	ucontrol->value.integer.value[0] =
1906 		(snd_soc_read(codec, reg) >> shift) & mask;
1907 	ucontrol->value.integer.value[1] =
1908 		(snd_soc_read(codec, reg2) >> shift) & mask;
1909 	if (invert) {
1910 		ucontrol->value.integer.value[0] =
1911 			max - ucontrol->value.integer.value[0];
1912 		ucontrol->value.integer.value[1] =
1913 			max - ucontrol->value.integer.value[1];
1914 	}
1915 
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1919 
1920 /**
1921  * snd_soc_put_volsw_2r - double mixer set callback
1922  * @kcontrol: mixer control
1923  * @ucontrol: control element information
1924  *
1925  * Callback to set the value of a double mixer control that spans 2 registers.
1926  *
1927  * Returns 0 for success.
1928  */
1929 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1930 	struct snd_ctl_elem_value *ucontrol)
1931 {
1932 	struct soc_mixer_control *mc =
1933 		(struct soc_mixer_control *)kcontrol->private_value;
1934 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1935 	unsigned int reg = mc->reg;
1936 	unsigned int reg2 = mc->rreg;
1937 	unsigned int shift = mc->shift;
1938 	int max = mc->max;
1939 	unsigned int mask = (1 << fls(max)) - 1;
1940 	unsigned int invert = mc->invert;
1941 	int err;
1942 	unsigned short val, val2, val_mask;
1943 
1944 	val_mask = mask << shift;
1945 	val = (ucontrol->value.integer.value[0] & mask);
1946 	val2 = (ucontrol->value.integer.value[1] & mask);
1947 
1948 	if (invert) {
1949 		val = max - val;
1950 		val2 = max - val2;
1951 	}
1952 
1953 	val = val << shift;
1954 	val2 = val2 << shift;
1955 
1956 	err = snd_soc_update_bits(codec, reg, val_mask, val);
1957 	if (err < 0)
1958 		return err;
1959 
1960 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1961 	return err;
1962 }
1963 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1964 
1965 /**
1966  * snd_soc_info_volsw_s8 - signed mixer info callback
1967  * @kcontrol: mixer control
1968  * @uinfo: control element information
1969  *
1970  * Callback to provide information about a signed mixer control.
1971  *
1972  * Returns 0 for success.
1973  */
1974 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1975 	struct snd_ctl_elem_info *uinfo)
1976 {
1977 	struct soc_mixer_control *mc =
1978 		(struct soc_mixer_control *)kcontrol->private_value;
1979 	int max = mc->max;
1980 	int min = mc->min;
1981 
1982 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1983 	uinfo->count = 2;
1984 	uinfo->value.integer.min = 0;
1985 	uinfo->value.integer.max = max-min;
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1989 
1990 /**
1991  * snd_soc_get_volsw_s8 - signed mixer get callback
1992  * @kcontrol: mixer control
1993  * @ucontrol: control element information
1994  *
1995  * Callback to get the value of a signed mixer control.
1996  *
1997  * Returns 0 for success.
1998  */
1999 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2000 	struct snd_ctl_elem_value *ucontrol)
2001 {
2002 	struct soc_mixer_control *mc =
2003 		(struct soc_mixer_control *)kcontrol->private_value;
2004 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2005 	unsigned int reg = mc->reg;
2006 	int min = mc->min;
2007 	int val = snd_soc_read(codec, reg);
2008 
2009 	ucontrol->value.integer.value[0] =
2010 		((signed char)(val & 0xff))-min;
2011 	ucontrol->value.integer.value[1] =
2012 		((signed char)((val >> 8) & 0xff))-min;
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2016 
2017 /**
2018  * snd_soc_put_volsw_sgn - signed mixer put callback
2019  * @kcontrol: mixer control
2020  * @ucontrol: control element information
2021  *
2022  * Callback to set the value of a signed mixer control.
2023  *
2024  * Returns 0 for success.
2025  */
2026 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2027 	struct snd_ctl_elem_value *ucontrol)
2028 {
2029 	struct soc_mixer_control *mc =
2030 		(struct soc_mixer_control *)kcontrol->private_value;
2031 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2032 	unsigned int reg = mc->reg;
2033 	int min = mc->min;
2034 	unsigned short val;
2035 
2036 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2037 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2038 
2039 	return snd_soc_update_bits(codec, reg, 0xffff, val);
2040 }
2041 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2042 
2043 /**
2044  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2045  * @dai: DAI
2046  * @clk_id: DAI specific clock ID
2047  * @freq: new clock frequency in Hz
2048  * @dir: new clock direction - input/output.
2049  *
2050  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2051  */
2052 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2053 	unsigned int freq, int dir)
2054 {
2055 	if (dai->ops->set_sysclk)
2056 		return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2057 	else
2058 		return -EINVAL;
2059 }
2060 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2061 
2062 /**
2063  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2064  * @dai: DAI
2065  * @div_id: DAI specific clock divider ID
2066  * @div: new clock divisor.
2067  *
2068  * Configures the clock dividers. This is used to derive the best DAI bit and
2069  * frame clocks from the system or master clock. It's best to set the DAI bit
2070  * and frame clocks as low as possible to save system power.
2071  */
2072 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2073 	int div_id, int div)
2074 {
2075 	if (dai->ops->set_clkdiv)
2076 		return dai->ops->set_clkdiv(dai, div_id, div);
2077 	else
2078 		return -EINVAL;
2079 }
2080 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2081 
2082 /**
2083  * snd_soc_dai_set_pll - configure DAI PLL.
2084  * @dai: DAI
2085  * @pll_id: DAI specific PLL ID
2086  * @freq_in: PLL input clock frequency in Hz
2087  * @freq_out: requested PLL output clock frequency in Hz
2088  *
2089  * Configures and enables PLL to generate output clock based on input clock.
2090  */
2091 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2092 	int pll_id, unsigned int freq_in, unsigned int freq_out)
2093 {
2094 	if (dai->ops->set_pll)
2095 		return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2096 	else
2097 		return -EINVAL;
2098 }
2099 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2100 
2101 /**
2102  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2103  * @dai: DAI
2104  * @fmt: SND_SOC_DAIFMT_ format value.
2105  *
2106  * Configures the DAI hardware format and clocking.
2107  */
2108 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2109 {
2110 	if (dai->ops->set_fmt)
2111 		return dai->ops->set_fmt(dai, fmt);
2112 	else
2113 		return -EINVAL;
2114 }
2115 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2116 
2117 /**
2118  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2119  * @dai: DAI
2120  * @mask: DAI specific mask representing used slots.
2121  * @slots: Number of slots in use.
2122  *
2123  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2124  * specific.
2125  */
2126 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2127 	unsigned int mask, int slots)
2128 {
2129 	if (dai->ops->set_sysclk)
2130 		return dai->ops->set_tdm_slot(dai, mask, slots);
2131 	else
2132 		return -EINVAL;
2133 }
2134 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2135 
2136 /**
2137  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2138  * @dai: DAI
2139  * @tristate: tristate enable
2140  *
2141  * Tristates the DAI so that others can use it.
2142  */
2143 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2144 {
2145 	if (dai->ops->set_sysclk)
2146 		return dai->ops->set_tristate(dai, tristate);
2147 	else
2148 		return -EINVAL;
2149 }
2150 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2151 
2152 /**
2153  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2154  * @dai: DAI
2155  * @mute: mute enable
2156  *
2157  * Mutes the DAI DAC.
2158  */
2159 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2160 {
2161 	if (dai->ops->digital_mute)
2162 		return dai->ops->digital_mute(dai, mute);
2163 	else
2164 		return -EINVAL;
2165 }
2166 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2167 
2168 /**
2169  * snd_soc_register_card - Register a card with the ASoC core
2170  *
2171  * @card: Card to register
2172  *
2173  * Note that currently this is an internal only function: it will be
2174  * exposed to machine drivers after further backporting of ASoC v2
2175  * registration APIs.
2176  */
2177 static int snd_soc_register_card(struct snd_soc_card *card)
2178 {
2179 	if (!card->name || !card->dev)
2180 		return -EINVAL;
2181 
2182 	INIT_LIST_HEAD(&card->list);
2183 	card->instantiated = 0;
2184 
2185 	mutex_lock(&client_mutex);
2186 	list_add(&card->list, &card_list);
2187 	snd_soc_instantiate_cards();
2188 	mutex_unlock(&client_mutex);
2189 
2190 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2191 
2192 	return 0;
2193 }
2194 
2195 /**
2196  * snd_soc_unregister_card - Unregister a card with the ASoC core
2197  *
2198  * @card: Card to unregister
2199  *
2200  * Note that currently this is an internal only function: it will be
2201  * exposed to machine drivers after further backporting of ASoC v2
2202  * registration APIs.
2203  */
2204 static int snd_soc_unregister_card(struct snd_soc_card *card)
2205 {
2206 	mutex_lock(&client_mutex);
2207 	list_del(&card->list);
2208 	mutex_unlock(&client_mutex);
2209 
2210 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2211 
2212 	return 0;
2213 }
2214 
2215 static struct snd_soc_dai_ops null_dai_ops = {
2216 };
2217 
2218 /**
2219  * snd_soc_register_dai - Register a DAI with the ASoC core
2220  *
2221  * @dai: DAI to register
2222  */
2223 int snd_soc_register_dai(struct snd_soc_dai *dai)
2224 {
2225 	if (!dai->name)
2226 		return -EINVAL;
2227 
2228 	/* The device should become mandatory over time */
2229 	if (!dai->dev)
2230 		printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2231 
2232 	if (!dai->ops)
2233 		dai->ops = &null_dai_ops;
2234 
2235 	INIT_LIST_HEAD(&dai->list);
2236 
2237 	mutex_lock(&client_mutex);
2238 	list_add(&dai->list, &dai_list);
2239 	snd_soc_instantiate_cards();
2240 	mutex_unlock(&client_mutex);
2241 
2242 	pr_debug("Registered DAI '%s'\n", dai->name);
2243 
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2247 
2248 /**
2249  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2250  *
2251  * @dai: DAI to unregister
2252  */
2253 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2254 {
2255 	mutex_lock(&client_mutex);
2256 	list_del(&dai->list);
2257 	mutex_unlock(&client_mutex);
2258 
2259 	pr_debug("Unregistered DAI '%s'\n", dai->name);
2260 }
2261 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2262 
2263 /**
2264  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2265  *
2266  * @dai: Array of DAIs to register
2267  * @count: Number of DAIs
2268  */
2269 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2270 {
2271 	int i, ret;
2272 
2273 	for (i = 0; i < count; i++) {
2274 		ret = snd_soc_register_dai(&dai[i]);
2275 		if (ret != 0)
2276 			goto err;
2277 	}
2278 
2279 	return 0;
2280 
2281 err:
2282 	for (i--; i >= 0; i--)
2283 		snd_soc_unregister_dai(&dai[i]);
2284 
2285 	return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2288 
2289 /**
2290  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2291  *
2292  * @dai: Array of DAIs to unregister
2293  * @count: Number of DAIs
2294  */
2295 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2296 {
2297 	int i;
2298 
2299 	for (i = 0; i < count; i++)
2300 		snd_soc_unregister_dai(&dai[i]);
2301 }
2302 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2303 
2304 /**
2305  * snd_soc_register_platform - Register a platform with the ASoC core
2306  *
2307  * @platform: platform to register
2308  */
2309 int snd_soc_register_platform(struct snd_soc_platform *platform)
2310 {
2311 	if (!platform->name)
2312 		return -EINVAL;
2313 
2314 	INIT_LIST_HEAD(&platform->list);
2315 
2316 	mutex_lock(&client_mutex);
2317 	list_add(&platform->list, &platform_list);
2318 	snd_soc_instantiate_cards();
2319 	mutex_unlock(&client_mutex);
2320 
2321 	pr_debug("Registered platform '%s'\n", platform->name);
2322 
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2326 
2327 /**
2328  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2329  *
2330  * @platform: platform to unregister
2331  */
2332 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2333 {
2334 	mutex_lock(&client_mutex);
2335 	list_del(&platform->list);
2336 	mutex_unlock(&client_mutex);
2337 
2338 	pr_debug("Unregistered platform '%s'\n", platform->name);
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2341 
2342 /**
2343  * snd_soc_register_codec - Register a codec with the ASoC core
2344  *
2345  * @codec: codec to register
2346  */
2347 int snd_soc_register_codec(struct snd_soc_codec *codec)
2348 {
2349 	if (!codec->name)
2350 		return -EINVAL;
2351 
2352 	/* The device should become mandatory over time */
2353 	if (!codec->dev)
2354 		printk(KERN_WARNING "No device for codec %s\n", codec->name);
2355 
2356 	INIT_LIST_HEAD(&codec->list);
2357 
2358 	mutex_lock(&client_mutex);
2359 	list_add(&codec->list, &codec_list);
2360 	snd_soc_instantiate_cards();
2361 	mutex_unlock(&client_mutex);
2362 
2363 	pr_debug("Registered codec '%s'\n", codec->name);
2364 
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2368 
2369 /**
2370  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2371  *
2372  * @codec: codec to unregister
2373  */
2374 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2375 {
2376 	mutex_lock(&client_mutex);
2377 	list_del(&codec->list);
2378 	mutex_unlock(&client_mutex);
2379 
2380 	pr_debug("Unregistered codec '%s'\n", codec->name);
2381 }
2382 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2383 
2384 static int __init snd_soc_init(void)
2385 {
2386 #ifdef CONFIG_DEBUG_FS
2387 	debugfs_root = debugfs_create_dir("asoc", NULL);
2388 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2389 		printk(KERN_WARNING
2390 		       "ASoC: Failed to create debugfs directory\n");
2391 		debugfs_root = NULL;
2392 	}
2393 #endif
2394 
2395 	return platform_driver_register(&soc_driver);
2396 }
2397 
2398 static void __exit snd_soc_exit(void)
2399 {
2400 #ifdef CONFIG_DEBUG_FS
2401 	debugfs_remove_recursive(debugfs_root);
2402 #endif
2403 	platform_driver_unregister(&soc_driver);
2404 }
2405 
2406 module_init(snd_soc_init);
2407 module_exit(snd_soc_exit);
2408 
2409 /* Module information */
2410 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2411 MODULE_DESCRIPTION("ALSA SoC Core");
2412 MODULE_LICENSE("GPL");
2413 MODULE_ALIAS("platform:soc-audio");
2414