1 /* 2 * soc-core.c -- ALSA SoC Audio Layer 3 * 4 * Copyright 2005 Wolfson Microelectronics PLC. 5 * Copyright 2005 Openedhand Ltd. 6 * Copyright (C) 2010 Slimlogic Ltd. 7 * Copyright (C) 2010 Texas Instruments Inc. 8 * 9 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 10 * with code, comments and ideas from :- 11 * Richard Purdie <richard@openedhand.com> 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * TODO: 19 * o Add hw rules to enforce rates, etc. 20 * o More testing with other codecs/machines. 21 * o Add more codecs and platforms to ensure good API coverage. 22 * o Support TDM on PCM and I2S 23 */ 24 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/init.h> 28 #include <linux/delay.h> 29 #include <linux/pm.h> 30 #include <linux/bitops.h> 31 #include <linux/debugfs.h> 32 #include <linux/platform_device.h> 33 #include <linux/pinctrl/consumer.h> 34 #include <linux/ctype.h> 35 #include <linux/slab.h> 36 #include <linux/of.h> 37 #include <linux/gpio.h> 38 #include <linux/of_gpio.h> 39 #include <sound/ac97_codec.h> 40 #include <sound/core.h> 41 #include <sound/jack.h> 42 #include <sound/pcm.h> 43 #include <sound/pcm_params.h> 44 #include <sound/soc.h> 45 #include <sound/soc-dpcm.h> 46 #include <sound/initval.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/asoc.h> 50 51 #define NAME_SIZE 32 52 53 #ifdef CONFIG_DEBUG_FS 54 struct dentry *snd_soc_debugfs_root; 55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root); 56 #endif 57 58 static DEFINE_MUTEX(client_mutex); 59 static LIST_HEAD(platform_list); 60 static LIST_HEAD(codec_list); 61 static LIST_HEAD(component_list); 62 63 /* 64 * This is a timeout to do a DAPM powerdown after a stream is closed(). 65 * It can be used to eliminate pops between different playback streams, e.g. 66 * between two audio tracks. 67 */ 68 static int pmdown_time = 5000; 69 module_param(pmdown_time, int, 0); 70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 71 72 struct snd_ac97_reset_cfg { 73 struct pinctrl *pctl; 74 struct pinctrl_state *pstate_reset; 75 struct pinctrl_state *pstate_warm_reset; 76 struct pinctrl_state *pstate_run; 77 int gpio_sdata; 78 int gpio_sync; 79 int gpio_reset; 80 }; 81 82 /* returns the minimum number of bytes needed to represent 83 * a particular given value */ 84 static int min_bytes_needed(unsigned long val) 85 { 86 int c = 0; 87 int i; 88 89 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c) 90 if (val & (1UL << i)) 91 break; 92 c = (sizeof val * 8) - c; 93 if (!c || (c % 8)) 94 c = (c + 8) / 8; 95 else 96 c /= 8; 97 return c; 98 } 99 100 /* fill buf which is 'len' bytes with a formatted 101 * string of the form 'reg: value\n' */ 102 static int format_register_str(struct snd_soc_codec *codec, 103 unsigned int reg, char *buf, size_t len) 104 { 105 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; 106 int regsize = codec->driver->reg_word_size * 2; 107 int ret; 108 char tmpbuf[len + 1]; 109 char regbuf[regsize + 1]; 110 111 /* since tmpbuf is allocated on the stack, warn the callers if they 112 * try to abuse this function */ 113 WARN_ON(len > 63); 114 115 /* +2 for ': ' and + 1 for '\n' */ 116 if (wordsize + regsize + 2 + 1 != len) 117 return -EINVAL; 118 119 ret = snd_soc_read(codec, reg); 120 if (ret < 0) { 121 memset(regbuf, 'X', regsize); 122 regbuf[regsize] = '\0'; 123 } else { 124 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret); 125 } 126 127 /* prepare the buffer */ 128 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf); 129 /* copy it back to the caller without the '\0' */ 130 memcpy(buf, tmpbuf, len); 131 132 return 0; 133 } 134 135 /* codec register dump */ 136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf, 137 size_t count, loff_t pos) 138 { 139 int i, step = 1; 140 int wordsize, regsize; 141 int len; 142 size_t total = 0; 143 loff_t p = 0; 144 145 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; 146 regsize = codec->driver->reg_word_size * 2; 147 148 len = wordsize + regsize + 2 + 1; 149 150 if (!codec->driver->reg_cache_size) 151 return 0; 152 153 if (codec->driver->reg_cache_step) 154 step = codec->driver->reg_cache_step; 155 156 for (i = 0; i < codec->driver->reg_cache_size; i += step) { 157 if (!snd_soc_codec_readable_register(codec, i)) 158 continue; 159 if (codec->driver->display_register) { 160 count += codec->driver->display_register(codec, buf + count, 161 PAGE_SIZE - count, i); 162 } else { 163 /* only support larger than PAGE_SIZE bytes debugfs 164 * entries for the default case */ 165 if (p >= pos) { 166 if (total + len >= count - 1) 167 break; 168 format_register_str(codec, i, buf + total, len); 169 total += len; 170 } 171 p += len; 172 } 173 } 174 175 total = min(total, count - 1); 176 177 return total; 178 } 179 180 static ssize_t codec_reg_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); 184 185 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0); 186 } 187 188 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 189 190 static ssize_t pmdown_time_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); 194 195 return sprintf(buf, "%ld\n", rtd->pmdown_time); 196 } 197 198 static ssize_t pmdown_time_set(struct device *dev, 199 struct device_attribute *attr, 200 const char *buf, size_t count) 201 { 202 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev); 203 int ret; 204 205 ret = kstrtol(buf, 10, &rtd->pmdown_time); 206 if (ret) 207 return ret; 208 209 return count; 210 } 211 212 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set); 213 214 #ifdef CONFIG_DEBUG_FS 215 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 216 size_t count, loff_t *ppos) 217 { 218 ssize_t ret; 219 struct snd_soc_codec *codec = file->private_data; 220 char *buf; 221 222 if (*ppos < 0 || !count) 223 return -EINVAL; 224 225 buf = kmalloc(count, GFP_KERNEL); 226 if (!buf) 227 return -ENOMEM; 228 229 ret = soc_codec_reg_show(codec, buf, count, *ppos); 230 if (ret >= 0) { 231 if (copy_to_user(user_buf, buf, ret)) { 232 kfree(buf); 233 return -EFAULT; 234 } 235 *ppos += ret; 236 } 237 238 kfree(buf); 239 return ret; 240 } 241 242 static ssize_t codec_reg_write_file(struct file *file, 243 const char __user *user_buf, size_t count, loff_t *ppos) 244 { 245 char buf[32]; 246 size_t buf_size; 247 char *start = buf; 248 unsigned long reg, value; 249 struct snd_soc_codec *codec = file->private_data; 250 int ret; 251 252 buf_size = min(count, (sizeof(buf)-1)); 253 if (copy_from_user(buf, user_buf, buf_size)) 254 return -EFAULT; 255 buf[buf_size] = 0; 256 257 while (*start == ' ') 258 start++; 259 reg = simple_strtoul(start, &start, 16); 260 while (*start == ' ') 261 start++; 262 ret = kstrtoul(start, 16, &value); 263 if (ret) 264 return ret; 265 266 /* Userspace has been fiddling around behind the kernel's back */ 267 add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE); 268 269 snd_soc_write(codec, reg, value); 270 return buf_size; 271 } 272 273 static const struct file_operations codec_reg_fops = { 274 .open = simple_open, 275 .read = codec_reg_read_file, 276 .write = codec_reg_write_file, 277 .llseek = default_llseek, 278 }; 279 280 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 281 { 282 struct dentry *debugfs_card_root = codec->card->debugfs_card_root; 283 284 codec->debugfs_codec_root = debugfs_create_dir(codec->name, 285 debugfs_card_root); 286 if (!codec->debugfs_codec_root) { 287 dev_warn(codec->dev, 288 "ASoC: Failed to create codec debugfs directory\n"); 289 return; 290 } 291 292 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root, 293 &codec->cache_sync); 294 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root, 295 &codec->cache_only); 296 297 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 298 codec->debugfs_codec_root, 299 codec, &codec_reg_fops); 300 if (!codec->debugfs_reg) 301 dev_warn(codec->dev, 302 "ASoC: Failed to create codec register debugfs file\n"); 303 304 snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root); 305 } 306 307 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 308 { 309 debugfs_remove_recursive(codec->debugfs_codec_root); 310 } 311 312 static void soc_init_platform_debugfs(struct snd_soc_platform *platform) 313 { 314 struct dentry *debugfs_card_root = platform->card->debugfs_card_root; 315 316 platform->debugfs_platform_root = debugfs_create_dir(platform->name, 317 debugfs_card_root); 318 if (!platform->debugfs_platform_root) { 319 dev_warn(platform->dev, 320 "ASoC: Failed to create platform debugfs directory\n"); 321 return; 322 } 323 324 snd_soc_dapm_debugfs_init(&platform->dapm, 325 platform->debugfs_platform_root); 326 } 327 328 static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform) 329 { 330 debugfs_remove_recursive(platform->debugfs_platform_root); 331 } 332 333 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf, 334 size_t count, loff_t *ppos) 335 { 336 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 337 ssize_t len, ret = 0; 338 struct snd_soc_codec *codec; 339 340 if (!buf) 341 return -ENOMEM; 342 343 list_for_each_entry(codec, &codec_list, list) { 344 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 345 codec->name); 346 if (len >= 0) 347 ret += len; 348 if (ret > PAGE_SIZE) { 349 ret = PAGE_SIZE; 350 break; 351 } 352 } 353 354 if (ret >= 0) 355 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 356 357 kfree(buf); 358 359 return ret; 360 } 361 362 static const struct file_operations codec_list_fops = { 363 .read = codec_list_read_file, 364 .llseek = default_llseek,/* read accesses f_pos */ 365 }; 366 367 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf, 368 size_t count, loff_t *ppos) 369 { 370 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 371 ssize_t len, ret = 0; 372 struct snd_soc_component *component; 373 struct snd_soc_dai *dai; 374 375 if (!buf) 376 return -ENOMEM; 377 378 list_for_each_entry(component, &component_list, list) { 379 list_for_each_entry(dai, &component->dai_list, list) { 380 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 381 dai->name); 382 if (len >= 0) 383 ret += len; 384 if (ret > PAGE_SIZE) { 385 ret = PAGE_SIZE; 386 break; 387 } 388 } 389 } 390 391 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 392 393 kfree(buf); 394 395 return ret; 396 } 397 398 static const struct file_operations dai_list_fops = { 399 .read = dai_list_read_file, 400 .llseek = default_llseek,/* read accesses f_pos */ 401 }; 402 403 static ssize_t platform_list_read_file(struct file *file, 404 char __user *user_buf, 405 size_t count, loff_t *ppos) 406 { 407 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 408 ssize_t len, ret = 0; 409 struct snd_soc_platform *platform; 410 411 if (!buf) 412 return -ENOMEM; 413 414 list_for_each_entry(platform, &platform_list, list) { 415 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 416 platform->name); 417 if (len >= 0) 418 ret += len; 419 if (ret > PAGE_SIZE) { 420 ret = PAGE_SIZE; 421 break; 422 } 423 } 424 425 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 426 427 kfree(buf); 428 429 return ret; 430 } 431 432 static const struct file_operations platform_list_fops = { 433 .read = platform_list_read_file, 434 .llseek = default_llseek,/* read accesses f_pos */ 435 }; 436 437 static void soc_init_card_debugfs(struct snd_soc_card *card) 438 { 439 card->debugfs_card_root = debugfs_create_dir(card->name, 440 snd_soc_debugfs_root); 441 if (!card->debugfs_card_root) { 442 dev_warn(card->dev, 443 "ASoC: Failed to create card debugfs directory\n"); 444 return; 445 } 446 447 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644, 448 card->debugfs_card_root, 449 &card->pop_time); 450 if (!card->debugfs_pop_time) 451 dev_warn(card->dev, 452 "ASoC: Failed to create pop time debugfs file\n"); 453 } 454 455 static void soc_cleanup_card_debugfs(struct snd_soc_card *card) 456 { 457 debugfs_remove_recursive(card->debugfs_card_root); 458 } 459 460 #else 461 462 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 463 { 464 } 465 466 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 467 { 468 } 469 470 static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform) 471 { 472 } 473 474 static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform) 475 { 476 } 477 478 static inline void soc_init_card_debugfs(struct snd_soc_card *card) 479 { 480 } 481 482 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card) 483 { 484 } 485 #endif 486 487 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card, 488 const char *dai_link, int stream) 489 { 490 int i; 491 492 for (i = 0; i < card->num_links; i++) { 493 if (card->rtd[i].dai_link->no_pcm && 494 !strcmp(card->rtd[i].dai_link->name, dai_link)) 495 return card->rtd[i].pcm->streams[stream].substream; 496 } 497 dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link); 498 return NULL; 499 } 500 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream); 501 502 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card, 503 const char *dai_link) 504 { 505 int i; 506 507 for (i = 0; i < card->num_links; i++) { 508 if (!strcmp(card->rtd[i].dai_link->name, dai_link)) 509 return &card->rtd[i]; 510 } 511 dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link); 512 return NULL; 513 } 514 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime); 515 516 #ifdef CONFIG_SND_SOC_AC97_BUS 517 /* unregister ac97 codec */ 518 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 519 { 520 if (codec->ac97->dev.bus) 521 device_unregister(&codec->ac97->dev); 522 return 0; 523 } 524 525 /* stop no dev release warning */ 526 static void soc_ac97_device_release(struct device *dev){} 527 528 /* register ac97 codec to bus */ 529 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 530 { 531 int err; 532 533 codec->ac97->dev.bus = &ac97_bus_type; 534 codec->ac97->dev.parent = codec->card->dev; 535 codec->ac97->dev.release = soc_ac97_device_release; 536 537 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 538 codec->card->snd_card->number, 0, codec->name); 539 err = device_register(&codec->ac97->dev); 540 if (err < 0) { 541 dev_err(codec->dev, "ASoC: Can't register ac97 bus\n"); 542 codec->ac97->dev.bus = NULL; 543 return err; 544 } 545 return 0; 546 } 547 #endif 548 549 static void codec2codec_close_delayed_work(struct work_struct *work) 550 { 551 /* Currently nothing to do for c2c links 552 * Since c2c links are internal nodes in the DAPM graph and 553 * don't interface with the outside world or application layer 554 * we don't have to do any special handling on close. 555 */ 556 } 557 558 #ifdef CONFIG_PM_SLEEP 559 /* powers down audio subsystem for suspend */ 560 int snd_soc_suspend(struct device *dev) 561 { 562 struct snd_soc_card *card = dev_get_drvdata(dev); 563 struct snd_soc_codec *codec; 564 int i; 565 566 /* If the initialization of this soc device failed, there is no codec 567 * associated with it. Just bail out in this case. 568 */ 569 if (list_empty(&card->codec_dev_list)) 570 return 0; 571 572 /* Due to the resume being scheduled into a workqueue we could 573 * suspend before that's finished - wait for it to complete. 574 */ 575 snd_power_lock(card->snd_card); 576 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0); 577 snd_power_unlock(card->snd_card); 578 579 /* we're going to block userspace touching us until resume completes */ 580 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot); 581 582 /* mute any active DACs */ 583 for (i = 0; i < card->num_rtd; i++) { 584 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 585 struct snd_soc_dai_driver *drv = dai->driver; 586 587 if (card->rtd[i].dai_link->ignore_suspend) 588 continue; 589 590 if (drv->ops->digital_mute && dai->playback_active) 591 drv->ops->digital_mute(dai, 1); 592 } 593 594 /* suspend all pcms */ 595 for (i = 0; i < card->num_rtd; i++) { 596 if (card->rtd[i].dai_link->ignore_suspend) 597 continue; 598 599 snd_pcm_suspend_all(card->rtd[i].pcm); 600 } 601 602 if (card->suspend_pre) 603 card->suspend_pre(card); 604 605 for (i = 0; i < card->num_rtd; i++) { 606 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 607 struct snd_soc_platform *platform = card->rtd[i].platform; 608 609 if (card->rtd[i].dai_link->ignore_suspend) 610 continue; 611 612 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control) 613 cpu_dai->driver->suspend(cpu_dai); 614 if (platform->driver->suspend && !platform->suspended) { 615 platform->driver->suspend(cpu_dai); 616 platform->suspended = 1; 617 } 618 } 619 620 /* close any waiting streams and save state */ 621 for (i = 0; i < card->num_rtd; i++) { 622 flush_delayed_work(&card->rtd[i].delayed_work); 623 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level; 624 } 625 626 for (i = 0; i < card->num_rtd; i++) { 627 628 if (card->rtd[i].dai_link->ignore_suspend) 629 continue; 630 631 snd_soc_dapm_stream_event(&card->rtd[i], 632 SNDRV_PCM_STREAM_PLAYBACK, 633 SND_SOC_DAPM_STREAM_SUSPEND); 634 635 snd_soc_dapm_stream_event(&card->rtd[i], 636 SNDRV_PCM_STREAM_CAPTURE, 637 SND_SOC_DAPM_STREAM_SUSPEND); 638 } 639 640 /* Recheck all analogue paths too */ 641 dapm_mark_io_dirty(&card->dapm); 642 snd_soc_dapm_sync(&card->dapm); 643 644 /* suspend all CODECs */ 645 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 646 /* If there are paths active then the CODEC will be held with 647 * bias _ON and should not be suspended. */ 648 if (!codec->suspended && codec->driver->suspend) { 649 switch (codec->dapm.bias_level) { 650 case SND_SOC_BIAS_STANDBY: 651 /* 652 * If the CODEC is capable of idle 653 * bias off then being in STANDBY 654 * means it's doing something, 655 * otherwise fall through. 656 */ 657 if (codec->dapm.idle_bias_off) { 658 dev_dbg(codec->dev, 659 "ASoC: idle_bias_off CODEC on over suspend\n"); 660 break; 661 } 662 case SND_SOC_BIAS_OFF: 663 codec->driver->suspend(codec); 664 codec->suspended = 1; 665 codec->cache_sync = 1; 666 if (codec->using_regmap) 667 regcache_mark_dirty(codec->control_data); 668 /* deactivate pins to sleep state */ 669 pinctrl_pm_select_sleep_state(codec->dev); 670 break; 671 default: 672 dev_dbg(codec->dev, 673 "ASoC: CODEC is on over suspend\n"); 674 break; 675 } 676 } 677 } 678 679 for (i = 0; i < card->num_rtd; i++) { 680 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 681 682 if (card->rtd[i].dai_link->ignore_suspend) 683 continue; 684 685 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control) 686 cpu_dai->driver->suspend(cpu_dai); 687 688 /* deactivate pins to sleep state */ 689 pinctrl_pm_select_sleep_state(cpu_dai->dev); 690 } 691 692 if (card->suspend_post) 693 card->suspend_post(card); 694 695 return 0; 696 } 697 EXPORT_SYMBOL_GPL(snd_soc_suspend); 698 699 /* deferred resume work, so resume can complete before we finished 700 * setting our codec back up, which can be very slow on I2C 701 */ 702 static void soc_resume_deferred(struct work_struct *work) 703 { 704 struct snd_soc_card *card = 705 container_of(work, struct snd_soc_card, deferred_resume_work); 706 struct snd_soc_codec *codec; 707 int i; 708 709 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 710 * so userspace apps are blocked from touching us 711 */ 712 713 dev_dbg(card->dev, "ASoC: starting resume work\n"); 714 715 /* Bring us up into D2 so that DAPM starts enabling things */ 716 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2); 717 718 if (card->resume_pre) 719 card->resume_pre(card); 720 721 /* resume AC97 DAIs */ 722 for (i = 0; i < card->num_rtd; i++) { 723 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 724 725 if (card->rtd[i].dai_link->ignore_suspend) 726 continue; 727 728 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control) 729 cpu_dai->driver->resume(cpu_dai); 730 } 731 732 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 733 /* If the CODEC was idle over suspend then it will have been 734 * left with bias OFF or STANDBY and suspended so we must now 735 * resume. Otherwise the suspend was suppressed. 736 */ 737 if (codec->driver->resume && codec->suspended) { 738 switch (codec->dapm.bias_level) { 739 case SND_SOC_BIAS_STANDBY: 740 case SND_SOC_BIAS_OFF: 741 codec->driver->resume(codec); 742 codec->suspended = 0; 743 break; 744 default: 745 dev_dbg(codec->dev, 746 "ASoC: CODEC was on over suspend\n"); 747 break; 748 } 749 } 750 } 751 752 for (i = 0; i < card->num_rtd; i++) { 753 754 if (card->rtd[i].dai_link->ignore_suspend) 755 continue; 756 757 snd_soc_dapm_stream_event(&card->rtd[i], 758 SNDRV_PCM_STREAM_PLAYBACK, 759 SND_SOC_DAPM_STREAM_RESUME); 760 761 snd_soc_dapm_stream_event(&card->rtd[i], 762 SNDRV_PCM_STREAM_CAPTURE, 763 SND_SOC_DAPM_STREAM_RESUME); 764 } 765 766 /* unmute any active DACs */ 767 for (i = 0; i < card->num_rtd; i++) { 768 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 769 struct snd_soc_dai_driver *drv = dai->driver; 770 771 if (card->rtd[i].dai_link->ignore_suspend) 772 continue; 773 774 if (drv->ops->digital_mute && dai->playback_active) 775 drv->ops->digital_mute(dai, 0); 776 } 777 778 for (i = 0; i < card->num_rtd; i++) { 779 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 780 struct snd_soc_platform *platform = card->rtd[i].platform; 781 782 if (card->rtd[i].dai_link->ignore_suspend) 783 continue; 784 785 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control) 786 cpu_dai->driver->resume(cpu_dai); 787 if (platform->driver->resume && platform->suspended) { 788 platform->driver->resume(cpu_dai); 789 platform->suspended = 0; 790 } 791 } 792 793 if (card->resume_post) 794 card->resume_post(card); 795 796 dev_dbg(card->dev, "ASoC: resume work completed\n"); 797 798 /* userspace can access us now we are back as we were before */ 799 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0); 800 801 /* Recheck all analogue paths too */ 802 dapm_mark_io_dirty(&card->dapm); 803 snd_soc_dapm_sync(&card->dapm); 804 } 805 806 /* powers up audio subsystem after a suspend */ 807 int snd_soc_resume(struct device *dev) 808 { 809 struct snd_soc_card *card = dev_get_drvdata(dev); 810 int i, ac97_control = 0; 811 812 /* If the initialization of this soc device failed, there is no codec 813 * associated with it. Just bail out in this case. 814 */ 815 if (list_empty(&card->codec_dev_list)) 816 return 0; 817 818 /* activate pins from sleep state */ 819 for (i = 0; i < card->num_rtd; i++) { 820 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 821 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai; 822 if (cpu_dai->active) 823 pinctrl_pm_select_default_state(cpu_dai->dev); 824 if (codec_dai->active) 825 pinctrl_pm_select_default_state(codec_dai->dev); 826 } 827 828 /* AC97 devices might have other drivers hanging off them so 829 * need to resume immediately. Other drivers don't have that 830 * problem and may take a substantial amount of time to resume 831 * due to I/O costs and anti-pop so handle them out of line. 832 */ 833 for (i = 0; i < card->num_rtd; i++) { 834 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 835 ac97_control |= cpu_dai->driver->ac97_control; 836 } 837 if (ac97_control) { 838 dev_dbg(dev, "ASoC: Resuming AC97 immediately\n"); 839 soc_resume_deferred(&card->deferred_resume_work); 840 } else { 841 dev_dbg(dev, "ASoC: Scheduling resume work\n"); 842 if (!schedule_work(&card->deferred_resume_work)) 843 dev_err(dev, "ASoC: resume work item may be lost\n"); 844 } 845 846 return 0; 847 } 848 EXPORT_SYMBOL_GPL(snd_soc_resume); 849 #else 850 #define snd_soc_suspend NULL 851 #define snd_soc_resume NULL 852 #endif 853 854 static const struct snd_soc_dai_ops null_dai_ops = { 855 }; 856 857 static int soc_bind_dai_link(struct snd_soc_card *card, int num) 858 { 859 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 860 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 861 struct snd_soc_component *component; 862 struct snd_soc_codec *codec; 863 struct snd_soc_platform *platform; 864 struct snd_soc_dai *codec_dai, *cpu_dai; 865 const char *platform_name; 866 867 dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num); 868 869 /* Find CPU DAI from registered DAIs*/ 870 list_for_each_entry(component, &component_list, list) { 871 if (dai_link->cpu_of_node && 872 component->dev->of_node != dai_link->cpu_of_node) 873 continue; 874 if (dai_link->cpu_name && 875 strcmp(dev_name(component->dev), dai_link->cpu_name)) 876 continue; 877 list_for_each_entry(cpu_dai, &component->dai_list, list) { 878 if (dai_link->cpu_dai_name && 879 strcmp(cpu_dai->name, dai_link->cpu_dai_name)) 880 continue; 881 882 rtd->cpu_dai = cpu_dai; 883 } 884 } 885 886 if (!rtd->cpu_dai) { 887 dev_err(card->dev, "ASoC: CPU DAI %s not registered\n", 888 dai_link->cpu_dai_name); 889 return -EPROBE_DEFER; 890 } 891 892 /* Find CODEC from registered CODECs */ 893 list_for_each_entry(codec, &codec_list, list) { 894 if (dai_link->codec_of_node) { 895 if (codec->dev->of_node != dai_link->codec_of_node) 896 continue; 897 } else { 898 if (strcmp(codec->name, dai_link->codec_name)) 899 continue; 900 } 901 902 rtd->codec = codec; 903 904 /* 905 * CODEC found, so find CODEC DAI from registered DAIs from 906 * this CODEC 907 */ 908 list_for_each_entry(codec_dai, &codec->component.dai_list, list) { 909 if (!strcmp(codec_dai->name, dai_link->codec_dai_name)) { 910 rtd->codec_dai = codec_dai; 911 break; 912 } 913 } 914 915 if (!rtd->codec_dai) { 916 dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n", 917 dai_link->codec_dai_name); 918 return -EPROBE_DEFER; 919 } 920 } 921 922 if (!rtd->codec) { 923 dev_err(card->dev, "ASoC: CODEC %s not registered\n", 924 dai_link->codec_name); 925 return -EPROBE_DEFER; 926 } 927 928 /* if there's no platform we match on the empty platform */ 929 platform_name = dai_link->platform_name; 930 if (!platform_name && !dai_link->platform_of_node) 931 platform_name = "snd-soc-dummy"; 932 933 /* find one from the set of registered platforms */ 934 list_for_each_entry(platform, &platform_list, list) { 935 if (dai_link->platform_of_node) { 936 if (platform->dev->of_node != 937 dai_link->platform_of_node) 938 continue; 939 } else { 940 if (strcmp(platform->name, platform_name)) 941 continue; 942 } 943 944 rtd->platform = platform; 945 } 946 if (!rtd->platform) { 947 dev_err(card->dev, "ASoC: platform %s not registered\n", 948 dai_link->platform_name); 949 return -EPROBE_DEFER; 950 } 951 952 card->num_rtd++; 953 954 return 0; 955 } 956 957 static int soc_remove_platform(struct snd_soc_platform *platform) 958 { 959 int ret; 960 961 if (platform->driver->remove) { 962 ret = platform->driver->remove(platform); 963 if (ret < 0) 964 dev_err(platform->dev, "ASoC: failed to remove %d\n", 965 ret); 966 } 967 968 /* Make sure all DAPM widgets are freed */ 969 snd_soc_dapm_free(&platform->dapm); 970 971 soc_cleanup_platform_debugfs(platform); 972 platform->probed = 0; 973 list_del(&platform->card_list); 974 module_put(platform->dev->driver->owner); 975 976 return 0; 977 } 978 979 static void soc_remove_codec(struct snd_soc_codec *codec) 980 { 981 int err; 982 983 if (codec->driver->remove) { 984 err = codec->driver->remove(codec); 985 if (err < 0) 986 dev_err(codec->dev, "ASoC: failed to remove %d\n", err); 987 } 988 989 /* Make sure all DAPM widgets are freed */ 990 snd_soc_dapm_free(&codec->dapm); 991 992 soc_cleanup_codec_debugfs(codec); 993 codec->probed = 0; 994 list_del(&codec->card_list); 995 module_put(codec->dev->driver->owner); 996 } 997 998 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order) 999 { 1000 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1001 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1002 int err; 1003 1004 /* unregister the rtd device */ 1005 if (rtd->dev_registered) { 1006 device_remove_file(rtd->dev, &dev_attr_pmdown_time); 1007 device_remove_file(rtd->dev, &dev_attr_codec_reg); 1008 device_unregister(rtd->dev); 1009 rtd->dev_registered = 0; 1010 } 1011 1012 /* remove the CODEC DAI */ 1013 if (codec_dai && codec_dai->probed && 1014 codec_dai->driver->remove_order == order) { 1015 if (codec_dai->driver->remove) { 1016 err = codec_dai->driver->remove(codec_dai); 1017 if (err < 0) 1018 dev_err(codec_dai->dev, 1019 "ASoC: failed to remove %s: %d\n", 1020 codec_dai->name, err); 1021 } 1022 codec_dai->probed = 0; 1023 list_del(&codec_dai->card_list); 1024 } 1025 1026 /* remove the cpu_dai */ 1027 if (cpu_dai && cpu_dai->probed && 1028 cpu_dai->driver->remove_order == order) { 1029 if (cpu_dai->driver->remove) { 1030 err = cpu_dai->driver->remove(cpu_dai); 1031 if (err < 0) 1032 dev_err(cpu_dai->dev, 1033 "ASoC: failed to remove %s: %d\n", 1034 cpu_dai->name, err); 1035 } 1036 cpu_dai->probed = 0; 1037 list_del(&cpu_dai->card_list); 1038 1039 if (!cpu_dai->codec) { 1040 snd_soc_dapm_free(&cpu_dai->dapm); 1041 module_put(cpu_dai->dev->driver->owner); 1042 } 1043 } 1044 } 1045 1046 static void soc_remove_link_components(struct snd_soc_card *card, int num, 1047 int order) 1048 { 1049 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1050 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1051 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1052 struct snd_soc_platform *platform = rtd->platform; 1053 struct snd_soc_codec *codec; 1054 1055 /* remove the platform */ 1056 if (platform && platform->probed && 1057 platform->driver->remove_order == order) { 1058 soc_remove_platform(platform); 1059 } 1060 1061 /* remove the CODEC-side CODEC */ 1062 if (codec_dai) { 1063 codec = codec_dai->codec; 1064 if (codec && codec->probed && 1065 codec->driver->remove_order == order) 1066 soc_remove_codec(codec); 1067 } 1068 1069 /* remove any CPU-side CODEC */ 1070 if (cpu_dai) { 1071 codec = cpu_dai->codec; 1072 if (codec && codec->probed && 1073 codec->driver->remove_order == order) 1074 soc_remove_codec(codec); 1075 } 1076 } 1077 1078 static void soc_remove_dai_links(struct snd_soc_card *card) 1079 { 1080 int dai, order; 1081 1082 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; 1083 order++) { 1084 for (dai = 0; dai < card->num_rtd; dai++) 1085 soc_remove_link_dais(card, dai, order); 1086 } 1087 1088 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; 1089 order++) { 1090 for (dai = 0; dai < card->num_rtd; dai++) 1091 soc_remove_link_components(card, dai, order); 1092 } 1093 1094 card->num_rtd = 0; 1095 } 1096 1097 static void soc_set_name_prefix(struct snd_soc_card *card, 1098 struct snd_soc_codec *codec) 1099 { 1100 int i; 1101 1102 if (card->codec_conf == NULL) 1103 return; 1104 1105 for (i = 0; i < card->num_configs; i++) { 1106 struct snd_soc_codec_conf *map = &card->codec_conf[i]; 1107 if (map->dev_name && !strcmp(codec->name, map->dev_name)) { 1108 codec->name_prefix = map->name_prefix; 1109 break; 1110 } 1111 } 1112 } 1113 1114 static int soc_probe_codec(struct snd_soc_card *card, 1115 struct snd_soc_codec *codec) 1116 { 1117 int ret = 0; 1118 const struct snd_soc_codec_driver *driver = codec->driver; 1119 struct snd_soc_dai *dai; 1120 1121 codec->card = card; 1122 codec->dapm.card = card; 1123 soc_set_name_prefix(card, codec); 1124 1125 if (!try_module_get(codec->dev->driver->owner)) 1126 return -ENODEV; 1127 1128 soc_init_codec_debugfs(codec); 1129 1130 if (driver->dapm_widgets) 1131 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets, 1132 driver->num_dapm_widgets); 1133 1134 /* Create DAPM widgets for each DAI stream */ 1135 list_for_each_entry(dai, &codec->component.dai_list, list) 1136 snd_soc_dapm_new_dai_widgets(&codec->dapm, dai); 1137 1138 codec->dapm.idle_bias_off = driver->idle_bias_off; 1139 1140 if (!codec->write && dev_get_regmap(codec->dev, NULL)) { 1141 /* Set the default I/O up try regmap */ 1142 ret = snd_soc_codec_set_cache_io(codec, NULL); 1143 if (ret < 0) { 1144 dev_err(codec->dev, 1145 "Failed to set cache I/O: %d\n", ret); 1146 goto err_probe; 1147 } 1148 } 1149 1150 if (driver->probe) { 1151 ret = driver->probe(codec); 1152 if (ret < 0) { 1153 dev_err(codec->dev, 1154 "ASoC: failed to probe CODEC %d\n", ret); 1155 goto err_probe; 1156 } 1157 WARN(codec->dapm.idle_bias_off && 1158 codec->dapm.bias_level != SND_SOC_BIAS_OFF, 1159 "codec %s can not start from non-off bias with idle_bias_off==1\n", 1160 codec->name); 1161 } 1162 1163 if (driver->controls) 1164 snd_soc_add_codec_controls(codec, driver->controls, 1165 driver->num_controls); 1166 if (driver->dapm_routes) 1167 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes, 1168 driver->num_dapm_routes); 1169 1170 /* mark codec as probed and add to card codec list */ 1171 codec->probed = 1; 1172 list_add(&codec->card_list, &card->codec_dev_list); 1173 list_add(&codec->dapm.list, &card->dapm_list); 1174 1175 return 0; 1176 1177 err_probe: 1178 soc_cleanup_codec_debugfs(codec); 1179 module_put(codec->dev->driver->owner); 1180 1181 return ret; 1182 } 1183 1184 static int soc_probe_platform(struct snd_soc_card *card, 1185 struct snd_soc_platform *platform) 1186 { 1187 int ret = 0; 1188 const struct snd_soc_platform_driver *driver = platform->driver; 1189 struct snd_soc_component *component; 1190 struct snd_soc_dai *dai; 1191 1192 platform->card = card; 1193 platform->dapm.card = card; 1194 1195 if (!try_module_get(platform->dev->driver->owner)) 1196 return -ENODEV; 1197 1198 soc_init_platform_debugfs(platform); 1199 1200 if (driver->dapm_widgets) 1201 snd_soc_dapm_new_controls(&platform->dapm, 1202 driver->dapm_widgets, driver->num_dapm_widgets); 1203 1204 /* Create DAPM widgets for each DAI stream */ 1205 list_for_each_entry(component, &component_list, list) { 1206 if (component->dev != platform->dev) 1207 continue; 1208 list_for_each_entry(dai, &component->dai_list, list) 1209 snd_soc_dapm_new_dai_widgets(&platform->dapm, dai); 1210 } 1211 1212 platform->dapm.idle_bias_off = 1; 1213 1214 if (driver->probe) { 1215 ret = driver->probe(platform); 1216 if (ret < 0) { 1217 dev_err(platform->dev, 1218 "ASoC: failed to probe platform %d\n", ret); 1219 goto err_probe; 1220 } 1221 } 1222 1223 if (driver->controls) 1224 snd_soc_add_platform_controls(platform, driver->controls, 1225 driver->num_controls); 1226 if (driver->dapm_routes) 1227 snd_soc_dapm_add_routes(&platform->dapm, driver->dapm_routes, 1228 driver->num_dapm_routes); 1229 1230 /* mark platform as probed and add to card platform list */ 1231 platform->probed = 1; 1232 list_add(&platform->card_list, &card->platform_dev_list); 1233 list_add(&platform->dapm.list, &card->dapm_list); 1234 1235 return 0; 1236 1237 err_probe: 1238 soc_cleanup_platform_debugfs(platform); 1239 module_put(platform->dev->driver->owner); 1240 1241 return ret; 1242 } 1243 1244 static void rtd_release(struct device *dev) 1245 { 1246 kfree(dev); 1247 } 1248 1249 static int soc_post_component_init(struct snd_soc_card *card, 1250 struct snd_soc_codec *codec, 1251 int num, int dailess) 1252 { 1253 struct snd_soc_dai_link *dai_link = NULL; 1254 struct snd_soc_aux_dev *aux_dev = NULL; 1255 struct snd_soc_pcm_runtime *rtd; 1256 const char *name; 1257 int ret = 0; 1258 1259 if (!dailess) { 1260 dai_link = &card->dai_link[num]; 1261 rtd = &card->rtd[num]; 1262 name = dai_link->name; 1263 } else { 1264 aux_dev = &card->aux_dev[num]; 1265 rtd = &card->rtd_aux[num]; 1266 name = aux_dev->name; 1267 } 1268 rtd->card = card; 1269 1270 /* do machine specific initialization */ 1271 if (!dailess && dai_link->init) 1272 ret = dai_link->init(rtd); 1273 else if (dailess && aux_dev->init) 1274 ret = aux_dev->init(&codec->dapm); 1275 if (ret < 0) { 1276 dev_err(card->dev, "ASoC: failed to init %s: %d\n", name, ret); 1277 return ret; 1278 } 1279 1280 /* register the rtd device */ 1281 rtd->codec = codec; 1282 1283 rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 1284 if (!rtd->dev) 1285 return -ENOMEM; 1286 device_initialize(rtd->dev); 1287 rtd->dev->parent = card->dev; 1288 rtd->dev->release = rtd_release; 1289 rtd->dev->init_name = name; 1290 dev_set_drvdata(rtd->dev, rtd); 1291 mutex_init(&rtd->pcm_mutex); 1292 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients); 1293 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients); 1294 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients); 1295 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients); 1296 ret = device_add(rtd->dev); 1297 if (ret < 0) { 1298 /* calling put_device() here to free the rtd->dev */ 1299 put_device(rtd->dev); 1300 dev_err(card->dev, 1301 "ASoC: failed to register runtime device: %d\n", ret); 1302 return ret; 1303 } 1304 rtd->dev_registered = 1; 1305 1306 /* add DAPM sysfs entries for this codec */ 1307 ret = snd_soc_dapm_sys_add(rtd->dev); 1308 if (ret < 0) 1309 dev_err(codec->dev, 1310 "ASoC: failed to add codec dapm sysfs entries: %d\n", ret); 1311 1312 /* add codec sysfs entries */ 1313 ret = device_create_file(rtd->dev, &dev_attr_codec_reg); 1314 if (ret < 0) 1315 dev_err(codec->dev, 1316 "ASoC: failed to add codec sysfs files: %d\n", ret); 1317 1318 #ifdef CONFIG_DEBUG_FS 1319 /* add DPCM sysfs entries */ 1320 if (!dailess && !dai_link->dynamic) 1321 goto out; 1322 1323 ret = soc_dpcm_debugfs_add(rtd); 1324 if (ret < 0) 1325 dev_err(rtd->dev, "ASoC: failed to add dpcm sysfs entries: %d\n", ret); 1326 1327 out: 1328 #endif 1329 return 0; 1330 } 1331 1332 static int soc_probe_link_components(struct snd_soc_card *card, int num, 1333 int order) 1334 { 1335 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1336 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1337 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1338 struct snd_soc_platform *platform = rtd->platform; 1339 int ret; 1340 1341 /* probe the CPU-side component, if it is a CODEC */ 1342 if (cpu_dai->codec && 1343 !cpu_dai->codec->probed && 1344 cpu_dai->codec->driver->probe_order == order) { 1345 ret = soc_probe_codec(card, cpu_dai->codec); 1346 if (ret < 0) 1347 return ret; 1348 } 1349 1350 /* probe the CODEC-side component */ 1351 if (!codec_dai->codec->probed && 1352 codec_dai->codec->driver->probe_order == order) { 1353 ret = soc_probe_codec(card, codec_dai->codec); 1354 if (ret < 0) 1355 return ret; 1356 } 1357 1358 /* probe the platform */ 1359 if (!platform->probed && 1360 platform->driver->probe_order == order) { 1361 ret = soc_probe_platform(card, platform); 1362 if (ret < 0) 1363 return ret; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order) 1370 { 1371 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1372 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1373 struct snd_soc_codec *codec = rtd->codec; 1374 struct snd_soc_platform *platform = rtd->platform; 1375 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1376 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1377 struct snd_soc_dapm_widget *play_w, *capture_w; 1378 int ret; 1379 1380 dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n", 1381 card->name, num, order); 1382 1383 /* config components */ 1384 cpu_dai->platform = platform; 1385 codec_dai->card = card; 1386 cpu_dai->card = card; 1387 1388 /* set default power off timeout */ 1389 rtd->pmdown_time = pmdown_time; 1390 1391 /* probe the cpu_dai */ 1392 if (!cpu_dai->probed && 1393 cpu_dai->driver->probe_order == order) { 1394 if (!cpu_dai->codec) { 1395 cpu_dai->dapm.card = card; 1396 if (!try_module_get(cpu_dai->dev->driver->owner)) 1397 return -ENODEV; 1398 1399 list_add(&cpu_dai->dapm.list, &card->dapm_list); 1400 } 1401 1402 if (cpu_dai->driver->probe) { 1403 ret = cpu_dai->driver->probe(cpu_dai); 1404 if (ret < 0) { 1405 dev_err(cpu_dai->dev, 1406 "ASoC: failed to probe CPU DAI %s: %d\n", 1407 cpu_dai->name, ret); 1408 module_put(cpu_dai->dev->driver->owner); 1409 return ret; 1410 } 1411 } 1412 cpu_dai->probed = 1; 1413 /* mark cpu_dai as probed and add to card dai list */ 1414 list_add(&cpu_dai->card_list, &card->dai_dev_list); 1415 } 1416 1417 /* probe the CODEC DAI */ 1418 if (!codec_dai->probed && codec_dai->driver->probe_order == order) { 1419 if (codec_dai->driver->probe) { 1420 ret = codec_dai->driver->probe(codec_dai); 1421 if (ret < 0) { 1422 dev_err(codec_dai->dev, 1423 "ASoC: failed to probe CODEC DAI %s: %d\n", 1424 codec_dai->name, ret); 1425 return ret; 1426 } 1427 } 1428 1429 /* mark codec_dai as probed and add to card dai list */ 1430 codec_dai->probed = 1; 1431 list_add(&codec_dai->card_list, &card->dai_dev_list); 1432 } 1433 1434 /* complete DAI probe during last probe */ 1435 if (order != SND_SOC_COMP_ORDER_LAST) 1436 return 0; 1437 1438 ret = soc_post_component_init(card, codec, num, 0); 1439 if (ret) 1440 return ret; 1441 1442 ret = device_create_file(rtd->dev, &dev_attr_pmdown_time); 1443 if (ret < 0) 1444 dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n", 1445 ret); 1446 1447 if (cpu_dai->driver->compress_dai) { 1448 /*create compress_device"*/ 1449 ret = soc_new_compress(rtd, num); 1450 if (ret < 0) { 1451 dev_err(card->dev, "ASoC: can't create compress %s\n", 1452 dai_link->stream_name); 1453 return ret; 1454 } 1455 } else { 1456 1457 if (!dai_link->params) { 1458 /* create the pcm */ 1459 ret = soc_new_pcm(rtd, num); 1460 if (ret < 0) { 1461 dev_err(card->dev, "ASoC: can't create pcm %s :%d\n", 1462 dai_link->stream_name, ret); 1463 return ret; 1464 } 1465 } else { 1466 INIT_DELAYED_WORK(&rtd->delayed_work, 1467 codec2codec_close_delayed_work); 1468 1469 /* link the DAI widgets */ 1470 play_w = codec_dai->playback_widget; 1471 capture_w = cpu_dai->capture_widget; 1472 if (play_w && capture_w) { 1473 ret = snd_soc_dapm_new_pcm(card, dai_link->params, 1474 capture_w, play_w); 1475 if (ret != 0) { 1476 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n", 1477 play_w->name, capture_w->name, ret); 1478 return ret; 1479 } 1480 } 1481 1482 play_w = cpu_dai->playback_widget; 1483 capture_w = codec_dai->capture_widget; 1484 if (play_w && capture_w) { 1485 ret = snd_soc_dapm_new_pcm(card, dai_link->params, 1486 capture_w, play_w); 1487 if (ret != 0) { 1488 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n", 1489 play_w->name, capture_w->name, ret); 1490 return ret; 1491 } 1492 } 1493 } 1494 } 1495 1496 /* add platform data for AC97 devices */ 1497 if (rtd->codec_dai->driver->ac97_control) 1498 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata); 1499 1500 return 0; 1501 } 1502 1503 #ifdef CONFIG_SND_SOC_AC97_BUS 1504 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) 1505 { 1506 int ret; 1507 1508 /* Only instantiate AC97 if not already done by the adaptor 1509 * for the generic AC97 subsystem. 1510 */ 1511 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) { 1512 /* 1513 * It is possible that the AC97 device is already registered to 1514 * the device subsystem. This happens when the device is created 1515 * via snd_ac97_mixer(). Currently only SoC codec that does so 1516 * is the generic AC97 glue but others migh emerge. 1517 * 1518 * In those cases we don't try to register the device again. 1519 */ 1520 if (!rtd->codec->ac97_created) 1521 return 0; 1522 1523 ret = soc_ac97_dev_register(rtd->codec); 1524 if (ret < 0) { 1525 dev_err(rtd->codec->dev, 1526 "ASoC: AC97 device register failed: %d\n", ret); 1527 return ret; 1528 } 1529 1530 rtd->codec->ac97_registered = 1; 1531 } 1532 return 0; 1533 } 1534 1535 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec) 1536 { 1537 if (codec->ac97_registered) { 1538 soc_ac97_dev_unregister(codec); 1539 codec->ac97_registered = 0; 1540 } 1541 } 1542 #endif 1543 1544 static int soc_check_aux_dev(struct snd_soc_card *card, int num) 1545 { 1546 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; 1547 struct snd_soc_codec *codec; 1548 1549 /* find CODEC from registered CODECs*/ 1550 list_for_each_entry(codec, &codec_list, list) { 1551 if (!strcmp(codec->name, aux_dev->codec_name)) 1552 return 0; 1553 } 1554 1555 dev_err(card->dev, "ASoC: %s not registered\n", aux_dev->codec_name); 1556 1557 return -EPROBE_DEFER; 1558 } 1559 1560 static int soc_probe_aux_dev(struct snd_soc_card *card, int num) 1561 { 1562 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; 1563 struct snd_soc_codec *codec; 1564 int ret = -ENODEV; 1565 1566 /* find CODEC from registered CODECs*/ 1567 list_for_each_entry(codec, &codec_list, list) { 1568 if (!strcmp(codec->name, aux_dev->codec_name)) { 1569 if (codec->probed) { 1570 dev_err(codec->dev, 1571 "ASoC: codec already probed"); 1572 ret = -EBUSY; 1573 goto out; 1574 } 1575 goto found; 1576 } 1577 } 1578 /* codec not found */ 1579 dev_err(card->dev, "ASoC: codec %s not found", aux_dev->codec_name); 1580 return -EPROBE_DEFER; 1581 1582 found: 1583 ret = soc_probe_codec(card, codec); 1584 if (ret < 0) 1585 return ret; 1586 1587 ret = soc_post_component_init(card, codec, num, 1); 1588 1589 out: 1590 return ret; 1591 } 1592 1593 static void soc_remove_aux_dev(struct snd_soc_card *card, int num) 1594 { 1595 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; 1596 struct snd_soc_codec *codec = rtd->codec; 1597 1598 /* unregister the rtd device */ 1599 if (rtd->dev_registered) { 1600 device_remove_file(rtd->dev, &dev_attr_codec_reg); 1601 device_unregister(rtd->dev); 1602 rtd->dev_registered = 0; 1603 } 1604 1605 if (codec && codec->probed) 1606 soc_remove_codec(codec); 1607 } 1608 1609 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec) 1610 { 1611 int ret; 1612 1613 if (codec->cache_init) 1614 return 0; 1615 1616 ret = snd_soc_cache_init(codec); 1617 if (ret < 0) { 1618 dev_err(codec->dev, 1619 "ASoC: Failed to set cache compression type: %d\n", 1620 ret); 1621 return ret; 1622 } 1623 codec->cache_init = 1; 1624 return 0; 1625 } 1626 1627 static int snd_soc_instantiate_card(struct snd_soc_card *card) 1628 { 1629 struct snd_soc_codec *codec; 1630 struct snd_soc_dai_link *dai_link; 1631 int ret, i, order, dai_fmt; 1632 1633 mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT); 1634 1635 /* bind DAIs */ 1636 for (i = 0; i < card->num_links; i++) { 1637 ret = soc_bind_dai_link(card, i); 1638 if (ret != 0) 1639 goto base_error; 1640 } 1641 1642 /* check aux_devs too */ 1643 for (i = 0; i < card->num_aux_devs; i++) { 1644 ret = soc_check_aux_dev(card, i); 1645 if (ret != 0) 1646 goto base_error; 1647 } 1648 1649 /* initialize the register cache for each available codec */ 1650 list_for_each_entry(codec, &codec_list, list) { 1651 if (codec->cache_init) 1652 continue; 1653 ret = snd_soc_init_codec_cache(codec); 1654 if (ret < 0) 1655 goto base_error; 1656 } 1657 1658 /* card bind complete so register a sound card */ 1659 ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, 1660 card->owner, 0, &card->snd_card); 1661 if (ret < 0) { 1662 dev_err(card->dev, 1663 "ASoC: can't create sound card for card %s: %d\n", 1664 card->name, ret); 1665 goto base_error; 1666 } 1667 1668 card->dapm.bias_level = SND_SOC_BIAS_OFF; 1669 card->dapm.dev = card->dev; 1670 card->dapm.card = card; 1671 list_add(&card->dapm.list, &card->dapm_list); 1672 1673 #ifdef CONFIG_DEBUG_FS 1674 snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root); 1675 #endif 1676 1677 #ifdef CONFIG_PM_SLEEP 1678 /* deferred resume work */ 1679 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 1680 #endif 1681 1682 if (card->dapm_widgets) 1683 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets, 1684 card->num_dapm_widgets); 1685 1686 /* initialise the sound card only once */ 1687 if (card->probe) { 1688 ret = card->probe(card); 1689 if (ret < 0) 1690 goto card_probe_error; 1691 } 1692 1693 /* probe all components used by DAI links on this card */ 1694 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; 1695 order++) { 1696 for (i = 0; i < card->num_links; i++) { 1697 ret = soc_probe_link_components(card, i, order); 1698 if (ret < 0) { 1699 dev_err(card->dev, 1700 "ASoC: failed to instantiate card %d\n", 1701 ret); 1702 goto probe_dai_err; 1703 } 1704 } 1705 } 1706 1707 /* probe all DAI links on this card */ 1708 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST; 1709 order++) { 1710 for (i = 0; i < card->num_links; i++) { 1711 ret = soc_probe_link_dais(card, i, order); 1712 if (ret < 0) { 1713 dev_err(card->dev, 1714 "ASoC: failed to instantiate card %d\n", 1715 ret); 1716 goto probe_dai_err; 1717 } 1718 } 1719 } 1720 1721 for (i = 0; i < card->num_aux_devs; i++) { 1722 ret = soc_probe_aux_dev(card, i); 1723 if (ret < 0) { 1724 dev_err(card->dev, 1725 "ASoC: failed to add auxiliary devices %d\n", 1726 ret); 1727 goto probe_aux_dev_err; 1728 } 1729 } 1730 1731 snd_soc_dapm_link_dai_widgets(card); 1732 snd_soc_dapm_connect_dai_link_widgets(card); 1733 1734 if (card->controls) 1735 snd_soc_add_card_controls(card, card->controls, card->num_controls); 1736 1737 if (card->dapm_routes) 1738 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes, 1739 card->num_dapm_routes); 1740 1741 for (i = 0; i < card->num_links; i++) { 1742 dai_link = &card->dai_link[i]; 1743 dai_fmt = dai_link->dai_fmt; 1744 1745 if (dai_fmt) { 1746 ret = snd_soc_dai_set_fmt(card->rtd[i].codec_dai, 1747 dai_fmt); 1748 if (ret != 0 && ret != -ENOTSUPP) 1749 dev_warn(card->rtd[i].codec_dai->dev, 1750 "ASoC: Failed to set DAI format: %d\n", 1751 ret); 1752 } 1753 1754 /* If this is a regular CPU link there will be a platform */ 1755 if (dai_fmt && 1756 (dai_link->platform_name || dai_link->platform_of_node)) { 1757 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai, 1758 dai_fmt); 1759 if (ret != 0 && ret != -ENOTSUPP) 1760 dev_warn(card->rtd[i].cpu_dai->dev, 1761 "ASoC: Failed to set DAI format: %d\n", 1762 ret); 1763 } else if (dai_fmt) { 1764 /* Flip the polarity for the "CPU" end */ 1765 dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK; 1766 switch (dai_link->dai_fmt & 1767 SND_SOC_DAIFMT_MASTER_MASK) { 1768 case SND_SOC_DAIFMT_CBM_CFM: 1769 dai_fmt |= SND_SOC_DAIFMT_CBS_CFS; 1770 break; 1771 case SND_SOC_DAIFMT_CBM_CFS: 1772 dai_fmt |= SND_SOC_DAIFMT_CBS_CFM; 1773 break; 1774 case SND_SOC_DAIFMT_CBS_CFM: 1775 dai_fmt |= SND_SOC_DAIFMT_CBM_CFS; 1776 break; 1777 case SND_SOC_DAIFMT_CBS_CFS: 1778 dai_fmt |= SND_SOC_DAIFMT_CBM_CFM; 1779 break; 1780 } 1781 1782 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai, 1783 dai_fmt); 1784 if (ret != 0 && ret != -ENOTSUPP) 1785 dev_warn(card->rtd[i].cpu_dai->dev, 1786 "ASoC: Failed to set DAI format: %d\n", 1787 ret); 1788 } 1789 } 1790 1791 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname), 1792 "%s", card->name); 1793 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname), 1794 "%s", card->long_name ? card->long_name : card->name); 1795 snprintf(card->snd_card->driver, sizeof(card->snd_card->driver), 1796 "%s", card->driver_name ? card->driver_name : card->name); 1797 for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) { 1798 switch (card->snd_card->driver[i]) { 1799 case '_': 1800 case '-': 1801 case '\0': 1802 break; 1803 default: 1804 if (!isalnum(card->snd_card->driver[i])) 1805 card->snd_card->driver[i] = '_'; 1806 break; 1807 } 1808 } 1809 1810 if (card->late_probe) { 1811 ret = card->late_probe(card); 1812 if (ret < 0) { 1813 dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n", 1814 card->name, ret); 1815 goto probe_aux_dev_err; 1816 } 1817 } 1818 1819 if (card->fully_routed) 1820 list_for_each_entry(codec, &card->codec_dev_list, card_list) 1821 snd_soc_dapm_auto_nc_codec_pins(codec); 1822 1823 snd_soc_dapm_new_widgets(card); 1824 1825 ret = snd_card_register(card->snd_card); 1826 if (ret < 0) { 1827 dev_err(card->dev, "ASoC: failed to register soundcard %d\n", 1828 ret); 1829 goto probe_aux_dev_err; 1830 } 1831 1832 #ifdef CONFIG_SND_SOC_AC97_BUS 1833 /* register any AC97 codecs */ 1834 for (i = 0; i < card->num_rtd; i++) { 1835 ret = soc_register_ac97_dai_link(&card->rtd[i]); 1836 if (ret < 0) { 1837 dev_err(card->dev, 1838 "ASoC: failed to register AC97: %d\n", ret); 1839 while (--i >= 0) 1840 soc_unregister_ac97_dai_link(card->rtd[i].codec); 1841 goto probe_aux_dev_err; 1842 } 1843 } 1844 #endif 1845 1846 card->instantiated = 1; 1847 snd_soc_dapm_sync(&card->dapm); 1848 mutex_unlock(&card->mutex); 1849 1850 return 0; 1851 1852 probe_aux_dev_err: 1853 for (i = 0; i < card->num_aux_devs; i++) 1854 soc_remove_aux_dev(card, i); 1855 1856 probe_dai_err: 1857 soc_remove_dai_links(card); 1858 1859 card_probe_error: 1860 if (card->remove) 1861 card->remove(card); 1862 1863 snd_card_free(card->snd_card); 1864 1865 base_error: 1866 mutex_unlock(&card->mutex); 1867 1868 return ret; 1869 } 1870 1871 /* probes a new socdev */ 1872 static int soc_probe(struct platform_device *pdev) 1873 { 1874 struct snd_soc_card *card = platform_get_drvdata(pdev); 1875 1876 /* 1877 * no card, so machine driver should be registering card 1878 * we should not be here in that case so ret error 1879 */ 1880 if (!card) 1881 return -EINVAL; 1882 1883 dev_warn(&pdev->dev, 1884 "ASoC: machine %s should use snd_soc_register_card()\n", 1885 card->name); 1886 1887 /* Bodge while we unpick instantiation */ 1888 card->dev = &pdev->dev; 1889 1890 return snd_soc_register_card(card); 1891 } 1892 1893 static int soc_cleanup_card_resources(struct snd_soc_card *card) 1894 { 1895 int i; 1896 1897 /* make sure any delayed work runs */ 1898 for (i = 0; i < card->num_rtd; i++) { 1899 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1900 flush_delayed_work(&rtd->delayed_work); 1901 } 1902 1903 /* remove auxiliary devices */ 1904 for (i = 0; i < card->num_aux_devs; i++) 1905 soc_remove_aux_dev(card, i); 1906 1907 /* remove and free each DAI */ 1908 soc_remove_dai_links(card); 1909 1910 soc_cleanup_card_debugfs(card); 1911 1912 /* remove the card */ 1913 if (card->remove) 1914 card->remove(card); 1915 1916 snd_soc_dapm_free(&card->dapm); 1917 1918 snd_card_free(card->snd_card); 1919 return 0; 1920 1921 } 1922 1923 /* removes a socdev */ 1924 static int soc_remove(struct platform_device *pdev) 1925 { 1926 struct snd_soc_card *card = platform_get_drvdata(pdev); 1927 1928 snd_soc_unregister_card(card); 1929 return 0; 1930 } 1931 1932 int snd_soc_poweroff(struct device *dev) 1933 { 1934 struct snd_soc_card *card = dev_get_drvdata(dev); 1935 int i; 1936 1937 if (!card->instantiated) 1938 return 0; 1939 1940 /* Flush out pmdown_time work - we actually do want to run it 1941 * now, we're shutting down so no imminent restart. */ 1942 for (i = 0; i < card->num_rtd; i++) { 1943 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 1944 flush_delayed_work(&rtd->delayed_work); 1945 } 1946 1947 snd_soc_dapm_shutdown(card); 1948 1949 /* deactivate pins to sleep state */ 1950 for (i = 0; i < card->num_rtd; i++) { 1951 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1952 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai; 1953 pinctrl_pm_select_sleep_state(codec_dai->dev); 1954 pinctrl_pm_select_sleep_state(cpu_dai->dev); 1955 } 1956 1957 return 0; 1958 } 1959 EXPORT_SYMBOL_GPL(snd_soc_poweroff); 1960 1961 const struct dev_pm_ops snd_soc_pm_ops = { 1962 .suspend = snd_soc_suspend, 1963 .resume = snd_soc_resume, 1964 .freeze = snd_soc_suspend, 1965 .thaw = snd_soc_resume, 1966 .poweroff = snd_soc_poweroff, 1967 .restore = snd_soc_resume, 1968 }; 1969 EXPORT_SYMBOL_GPL(snd_soc_pm_ops); 1970 1971 /* ASoC platform driver */ 1972 static struct platform_driver soc_driver = { 1973 .driver = { 1974 .name = "soc-audio", 1975 .owner = THIS_MODULE, 1976 .pm = &snd_soc_pm_ops, 1977 }, 1978 .probe = soc_probe, 1979 .remove = soc_remove, 1980 }; 1981 1982 /** 1983 * snd_soc_codec_volatile_register: Report if a register is volatile. 1984 * 1985 * @codec: CODEC to query. 1986 * @reg: Register to query. 1987 * 1988 * Boolean function indiciating if a CODEC register is volatile. 1989 */ 1990 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, 1991 unsigned int reg) 1992 { 1993 if (codec->volatile_register) 1994 return codec->volatile_register(codec, reg); 1995 else 1996 return 0; 1997 } 1998 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register); 1999 2000 /** 2001 * snd_soc_codec_readable_register: Report if a register is readable. 2002 * 2003 * @codec: CODEC to query. 2004 * @reg: Register to query. 2005 * 2006 * Boolean function indicating if a CODEC register is readable. 2007 */ 2008 int snd_soc_codec_readable_register(struct snd_soc_codec *codec, 2009 unsigned int reg) 2010 { 2011 if (codec->readable_register) 2012 return codec->readable_register(codec, reg); 2013 else 2014 return 1; 2015 } 2016 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register); 2017 2018 /** 2019 * snd_soc_codec_writable_register: Report if a register is writable. 2020 * 2021 * @codec: CODEC to query. 2022 * @reg: Register to query. 2023 * 2024 * Boolean function indicating if a CODEC register is writable. 2025 */ 2026 int snd_soc_codec_writable_register(struct snd_soc_codec *codec, 2027 unsigned int reg) 2028 { 2029 if (codec->writable_register) 2030 return codec->writable_register(codec, reg); 2031 else 2032 return 1; 2033 } 2034 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register); 2035 2036 int snd_soc_platform_read(struct snd_soc_platform *platform, 2037 unsigned int reg) 2038 { 2039 unsigned int ret; 2040 2041 if (!platform->driver->read) { 2042 dev_err(platform->dev, "ASoC: platform has no read back\n"); 2043 return -1; 2044 } 2045 2046 ret = platform->driver->read(platform, reg); 2047 dev_dbg(platform->dev, "read %x => %x\n", reg, ret); 2048 trace_snd_soc_preg_read(platform, reg, ret); 2049 2050 return ret; 2051 } 2052 EXPORT_SYMBOL_GPL(snd_soc_platform_read); 2053 2054 int snd_soc_platform_write(struct snd_soc_platform *platform, 2055 unsigned int reg, unsigned int val) 2056 { 2057 if (!platform->driver->write) { 2058 dev_err(platform->dev, "ASoC: platform has no write back\n"); 2059 return -1; 2060 } 2061 2062 dev_dbg(platform->dev, "write %x = %x\n", reg, val); 2063 trace_snd_soc_preg_write(platform, reg, val); 2064 return platform->driver->write(platform, reg, val); 2065 } 2066 EXPORT_SYMBOL_GPL(snd_soc_platform_write); 2067 2068 /** 2069 * snd_soc_new_ac97_codec - initailise AC97 device 2070 * @codec: audio codec 2071 * @ops: AC97 bus operations 2072 * @num: AC97 codec number 2073 * 2074 * Initialises AC97 codec resources for use by ad-hoc devices only. 2075 */ 2076 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 2077 struct snd_ac97_bus_ops *ops, int num) 2078 { 2079 mutex_lock(&codec->mutex); 2080 2081 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 2082 if (codec->ac97 == NULL) { 2083 mutex_unlock(&codec->mutex); 2084 return -ENOMEM; 2085 } 2086 2087 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 2088 if (codec->ac97->bus == NULL) { 2089 kfree(codec->ac97); 2090 codec->ac97 = NULL; 2091 mutex_unlock(&codec->mutex); 2092 return -ENOMEM; 2093 } 2094 2095 codec->ac97->bus->ops = ops; 2096 codec->ac97->num = num; 2097 2098 /* 2099 * Mark the AC97 device to be created by us. This way we ensure that the 2100 * device will be registered with the device subsystem later on. 2101 */ 2102 codec->ac97_created = 1; 2103 2104 mutex_unlock(&codec->mutex); 2105 return 0; 2106 } 2107 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 2108 2109 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg; 2110 2111 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97) 2112 { 2113 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl; 2114 2115 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset); 2116 2117 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1); 2118 2119 udelay(10); 2120 2121 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0); 2122 2123 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run); 2124 msleep(2); 2125 } 2126 2127 static void snd_soc_ac97_reset(struct snd_ac97 *ac97) 2128 { 2129 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl; 2130 2131 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset); 2132 2133 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0); 2134 gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0); 2135 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0); 2136 2137 udelay(10); 2138 2139 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1); 2140 2141 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run); 2142 msleep(2); 2143 } 2144 2145 static int snd_soc_ac97_parse_pinctl(struct device *dev, 2146 struct snd_ac97_reset_cfg *cfg) 2147 { 2148 struct pinctrl *p; 2149 struct pinctrl_state *state; 2150 int gpio; 2151 int ret; 2152 2153 p = devm_pinctrl_get(dev); 2154 if (IS_ERR(p)) { 2155 dev_err(dev, "Failed to get pinctrl\n"); 2156 return PTR_RET(p); 2157 } 2158 cfg->pctl = p; 2159 2160 state = pinctrl_lookup_state(p, "ac97-reset"); 2161 if (IS_ERR(state)) { 2162 dev_err(dev, "Can't find pinctrl state ac97-reset\n"); 2163 return PTR_RET(state); 2164 } 2165 cfg->pstate_reset = state; 2166 2167 state = pinctrl_lookup_state(p, "ac97-warm-reset"); 2168 if (IS_ERR(state)) { 2169 dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n"); 2170 return PTR_RET(state); 2171 } 2172 cfg->pstate_warm_reset = state; 2173 2174 state = pinctrl_lookup_state(p, "ac97-running"); 2175 if (IS_ERR(state)) { 2176 dev_err(dev, "Can't find pinctrl state ac97-running\n"); 2177 return PTR_RET(state); 2178 } 2179 cfg->pstate_run = state; 2180 2181 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0); 2182 if (gpio < 0) { 2183 dev_err(dev, "Can't find ac97-sync gpio\n"); 2184 return gpio; 2185 } 2186 ret = devm_gpio_request(dev, gpio, "AC97 link sync"); 2187 if (ret) { 2188 dev_err(dev, "Failed requesting ac97-sync gpio\n"); 2189 return ret; 2190 } 2191 cfg->gpio_sync = gpio; 2192 2193 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1); 2194 if (gpio < 0) { 2195 dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio); 2196 return gpio; 2197 } 2198 ret = devm_gpio_request(dev, gpio, "AC97 link sdata"); 2199 if (ret) { 2200 dev_err(dev, "Failed requesting ac97-sdata gpio\n"); 2201 return ret; 2202 } 2203 cfg->gpio_sdata = gpio; 2204 2205 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2); 2206 if (gpio < 0) { 2207 dev_err(dev, "Can't find ac97-reset gpio\n"); 2208 return gpio; 2209 } 2210 ret = devm_gpio_request(dev, gpio, "AC97 link reset"); 2211 if (ret) { 2212 dev_err(dev, "Failed requesting ac97-reset gpio\n"); 2213 return ret; 2214 } 2215 cfg->gpio_reset = gpio; 2216 2217 return 0; 2218 } 2219 2220 struct snd_ac97_bus_ops *soc_ac97_ops; 2221 EXPORT_SYMBOL_GPL(soc_ac97_ops); 2222 2223 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops) 2224 { 2225 if (ops == soc_ac97_ops) 2226 return 0; 2227 2228 if (soc_ac97_ops && ops) 2229 return -EBUSY; 2230 2231 soc_ac97_ops = ops; 2232 2233 return 0; 2234 } 2235 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops); 2236 2237 /** 2238 * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions 2239 * 2240 * This function sets the reset and warm_reset properties of ops and parses 2241 * the device node of pdev to get pinctrl states and gpio numbers to use. 2242 */ 2243 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, 2244 struct platform_device *pdev) 2245 { 2246 struct device *dev = &pdev->dev; 2247 struct snd_ac97_reset_cfg cfg; 2248 int ret; 2249 2250 ret = snd_soc_ac97_parse_pinctl(dev, &cfg); 2251 if (ret) 2252 return ret; 2253 2254 ret = snd_soc_set_ac97_ops(ops); 2255 if (ret) 2256 return ret; 2257 2258 ops->warm_reset = snd_soc_ac97_warm_reset; 2259 ops->reset = snd_soc_ac97_reset; 2260 2261 snd_ac97_rst_cfg = cfg; 2262 return 0; 2263 } 2264 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset); 2265 2266 /** 2267 * snd_soc_free_ac97_codec - free AC97 codec device 2268 * @codec: audio codec 2269 * 2270 * Frees AC97 codec device resources. 2271 */ 2272 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 2273 { 2274 mutex_lock(&codec->mutex); 2275 #ifdef CONFIG_SND_SOC_AC97_BUS 2276 soc_unregister_ac97_dai_link(codec); 2277 #endif 2278 kfree(codec->ac97->bus); 2279 kfree(codec->ac97); 2280 codec->ac97 = NULL; 2281 codec->ac97_created = 0; 2282 mutex_unlock(&codec->mutex); 2283 } 2284 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 2285 2286 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg) 2287 { 2288 unsigned int ret; 2289 2290 ret = codec->read(codec, reg); 2291 dev_dbg(codec->dev, "read %x => %x\n", reg, ret); 2292 trace_snd_soc_reg_read(codec, reg, ret); 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL_GPL(snd_soc_read); 2297 2298 unsigned int snd_soc_write(struct snd_soc_codec *codec, 2299 unsigned int reg, unsigned int val) 2300 { 2301 dev_dbg(codec->dev, "write %x = %x\n", reg, val); 2302 trace_snd_soc_reg_write(codec, reg, val); 2303 return codec->write(codec, reg, val); 2304 } 2305 EXPORT_SYMBOL_GPL(snd_soc_write); 2306 2307 /** 2308 * snd_soc_update_bits - update codec register bits 2309 * @codec: audio codec 2310 * @reg: codec register 2311 * @mask: register mask 2312 * @value: new value 2313 * 2314 * Writes new register value. 2315 * 2316 * Returns 1 for change, 0 for no change, or negative error code. 2317 */ 2318 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 2319 unsigned int mask, unsigned int value) 2320 { 2321 bool change; 2322 unsigned int old, new; 2323 int ret; 2324 2325 if (codec->using_regmap) { 2326 ret = regmap_update_bits_check(codec->control_data, reg, 2327 mask, value, &change); 2328 } else { 2329 ret = snd_soc_read(codec, reg); 2330 if (ret < 0) 2331 return ret; 2332 2333 old = ret; 2334 new = (old & ~mask) | (value & mask); 2335 change = old != new; 2336 if (change) 2337 ret = snd_soc_write(codec, reg, new); 2338 } 2339 2340 if (ret < 0) 2341 return ret; 2342 2343 return change; 2344 } 2345 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 2346 2347 /** 2348 * snd_soc_update_bits_locked - update codec register bits 2349 * @codec: audio codec 2350 * @reg: codec register 2351 * @mask: register mask 2352 * @value: new value 2353 * 2354 * Writes new register value, and takes the codec mutex. 2355 * 2356 * Returns 1 for change else 0. 2357 */ 2358 int snd_soc_update_bits_locked(struct snd_soc_codec *codec, 2359 unsigned short reg, unsigned int mask, 2360 unsigned int value) 2361 { 2362 int change; 2363 2364 mutex_lock(&codec->mutex); 2365 change = snd_soc_update_bits(codec, reg, mask, value); 2366 mutex_unlock(&codec->mutex); 2367 2368 return change; 2369 } 2370 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked); 2371 2372 /** 2373 * snd_soc_test_bits - test register for change 2374 * @codec: audio codec 2375 * @reg: codec register 2376 * @mask: register mask 2377 * @value: new value 2378 * 2379 * Tests a register with a new value and checks if the new value is 2380 * different from the old value. 2381 * 2382 * Returns 1 for change else 0. 2383 */ 2384 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 2385 unsigned int mask, unsigned int value) 2386 { 2387 int change; 2388 unsigned int old, new; 2389 2390 old = snd_soc_read(codec, reg); 2391 new = (old & ~mask) | value; 2392 change = old != new; 2393 2394 return change; 2395 } 2396 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 2397 2398 /** 2399 * snd_soc_cnew - create new control 2400 * @_template: control template 2401 * @data: control private data 2402 * @long_name: control long name 2403 * @prefix: control name prefix 2404 * 2405 * Create a new mixer control from a template control. 2406 * 2407 * Returns 0 for success, else error. 2408 */ 2409 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 2410 void *data, const char *long_name, 2411 const char *prefix) 2412 { 2413 struct snd_kcontrol_new template; 2414 struct snd_kcontrol *kcontrol; 2415 char *name = NULL; 2416 2417 memcpy(&template, _template, sizeof(template)); 2418 template.index = 0; 2419 2420 if (!long_name) 2421 long_name = template.name; 2422 2423 if (prefix) { 2424 name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name); 2425 if (!name) 2426 return NULL; 2427 2428 template.name = name; 2429 } else { 2430 template.name = long_name; 2431 } 2432 2433 kcontrol = snd_ctl_new1(&template, data); 2434 2435 kfree(name); 2436 2437 return kcontrol; 2438 } 2439 EXPORT_SYMBOL_GPL(snd_soc_cnew); 2440 2441 static int snd_soc_add_controls(struct snd_card *card, struct device *dev, 2442 const struct snd_kcontrol_new *controls, int num_controls, 2443 const char *prefix, void *data) 2444 { 2445 int err, i; 2446 2447 for (i = 0; i < num_controls; i++) { 2448 const struct snd_kcontrol_new *control = &controls[i]; 2449 err = snd_ctl_add(card, snd_soc_cnew(control, data, 2450 control->name, prefix)); 2451 if (err < 0) { 2452 dev_err(dev, "ASoC: Failed to add %s: %d\n", 2453 control->name, err); 2454 return err; 2455 } 2456 } 2457 2458 return 0; 2459 } 2460 2461 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card, 2462 const char *name) 2463 { 2464 struct snd_card *card = soc_card->snd_card; 2465 struct snd_kcontrol *kctl; 2466 2467 if (unlikely(!name)) 2468 return NULL; 2469 2470 list_for_each_entry(kctl, &card->controls, list) 2471 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) 2472 return kctl; 2473 return NULL; 2474 } 2475 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol); 2476 2477 /** 2478 * snd_soc_add_codec_controls - add an array of controls to a codec. 2479 * Convenience function to add a list of controls. Many codecs were 2480 * duplicating this code. 2481 * 2482 * @codec: codec to add controls to 2483 * @controls: array of controls to add 2484 * @num_controls: number of elements in the array 2485 * 2486 * Return 0 for success, else error. 2487 */ 2488 int snd_soc_add_codec_controls(struct snd_soc_codec *codec, 2489 const struct snd_kcontrol_new *controls, int num_controls) 2490 { 2491 struct snd_card *card = codec->card->snd_card; 2492 2493 return snd_soc_add_controls(card, codec->dev, controls, num_controls, 2494 codec->name_prefix, codec); 2495 } 2496 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls); 2497 2498 /** 2499 * snd_soc_add_platform_controls - add an array of controls to a platform. 2500 * Convenience function to add a list of controls. 2501 * 2502 * @platform: platform to add controls to 2503 * @controls: array of controls to add 2504 * @num_controls: number of elements in the array 2505 * 2506 * Return 0 for success, else error. 2507 */ 2508 int snd_soc_add_platform_controls(struct snd_soc_platform *platform, 2509 const struct snd_kcontrol_new *controls, int num_controls) 2510 { 2511 struct snd_card *card = platform->card->snd_card; 2512 2513 return snd_soc_add_controls(card, platform->dev, controls, num_controls, 2514 NULL, platform); 2515 } 2516 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls); 2517 2518 /** 2519 * snd_soc_add_card_controls - add an array of controls to a SoC card. 2520 * Convenience function to add a list of controls. 2521 * 2522 * @soc_card: SoC card to add controls to 2523 * @controls: array of controls to add 2524 * @num_controls: number of elements in the array 2525 * 2526 * Return 0 for success, else error. 2527 */ 2528 int snd_soc_add_card_controls(struct snd_soc_card *soc_card, 2529 const struct snd_kcontrol_new *controls, int num_controls) 2530 { 2531 struct snd_card *card = soc_card->snd_card; 2532 2533 return snd_soc_add_controls(card, soc_card->dev, controls, num_controls, 2534 NULL, soc_card); 2535 } 2536 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls); 2537 2538 /** 2539 * snd_soc_add_dai_controls - add an array of controls to a DAI. 2540 * Convienience function to add a list of controls. 2541 * 2542 * @dai: DAI to add controls to 2543 * @controls: array of controls to add 2544 * @num_controls: number of elements in the array 2545 * 2546 * Return 0 for success, else error. 2547 */ 2548 int snd_soc_add_dai_controls(struct snd_soc_dai *dai, 2549 const struct snd_kcontrol_new *controls, int num_controls) 2550 { 2551 struct snd_card *card = dai->card->snd_card; 2552 2553 return snd_soc_add_controls(card, dai->dev, controls, num_controls, 2554 NULL, dai); 2555 } 2556 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls); 2557 2558 /** 2559 * snd_soc_info_enum_double - enumerated double mixer info callback 2560 * @kcontrol: mixer control 2561 * @uinfo: control element information 2562 * 2563 * Callback to provide information about a double enumerated 2564 * mixer control. 2565 * 2566 * Returns 0 for success. 2567 */ 2568 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 2569 struct snd_ctl_elem_info *uinfo) 2570 { 2571 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2572 2573 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2574 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 2575 uinfo->value.enumerated.items = e->items; 2576 2577 if (uinfo->value.enumerated.item >= e->items) 2578 uinfo->value.enumerated.item = e->items - 1; 2579 strlcpy(uinfo->value.enumerated.name, 2580 e->texts[uinfo->value.enumerated.item], 2581 sizeof(uinfo->value.enumerated.name)); 2582 return 0; 2583 } 2584 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 2585 2586 /** 2587 * snd_soc_get_enum_double - enumerated double mixer get callback 2588 * @kcontrol: mixer control 2589 * @ucontrol: control element information 2590 * 2591 * Callback to get the value of a double enumerated mixer. 2592 * 2593 * Returns 0 for success. 2594 */ 2595 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 2596 struct snd_ctl_elem_value *ucontrol) 2597 { 2598 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2599 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2600 unsigned int val, item; 2601 unsigned int reg_val; 2602 2603 reg_val = snd_soc_read(codec, e->reg); 2604 val = (reg_val >> e->shift_l) & e->mask; 2605 item = snd_soc_enum_val_to_item(e, val); 2606 ucontrol->value.enumerated.item[0] = item; 2607 if (e->shift_l != e->shift_r) { 2608 val = (reg_val >> e->shift_l) & e->mask; 2609 item = snd_soc_enum_val_to_item(e, val); 2610 ucontrol->value.enumerated.item[1] = item; 2611 } 2612 2613 return 0; 2614 } 2615 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 2616 2617 /** 2618 * snd_soc_put_enum_double - enumerated double mixer put callback 2619 * @kcontrol: mixer control 2620 * @ucontrol: control element information 2621 * 2622 * Callback to set the value of a double enumerated mixer. 2623 * 2624 * Returns 0 for success. 2625 */ 2626 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 2627 struct snd_ctl_elem_value *ucontrol) 2628 { 2629 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2630 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2631 unsigned int *item = ucontrol->value.enumerated.item; 2632 unsigned int val; 2633 unsigned int mask; 2634 2635 if (item[0] >= e->items) 2636 return -EINVAL; 2637 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l; 2638 mask = e->mask << e->shift_l; 2639 if (e->shift_l != e->shift_r) { 2640 if (item[1] >= e->items) 2641 return -EINVAL; 2642 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r; 2643 mask |= e->mask << e->shift_r; 2644 } 2645 2646 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2647 } 2648 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 2649 2650 /** 2651 * snd_soc_read_signed - Read a codec register and interprete as signed value 2652 * @codec: codec 2653 * @reg: Register to read 2654 * @mask: Mask to use after shifting the register value 2655 * @shift: Right shift of register value 2656 * @sign_bit: Bit that describes if a number is negative or not. 2657 * 2658 * This functions reads a codec register. The register value is shifted right 2659 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates 2660 * the given registervalue into a signed integer if sign_bit is non-zero. 2661 * 2662 * Returns the register value as signed int. 2663 */ 2664 static int snd_soc_read_signed(struct snd_soc_codec *codec, unsigned int reg, 2665 unsigned int mask, unsigned int shift, unsigned int sign_bit) 2666 { 2667 int ret; 2668 unsigned int val; 2669 2670 val = (snd_soc_read(codec, reg) >> shift) & mask; 2671 2672 if (!sign_bit) 2673 return val; 2674 2675 /* non-negative number */ 2676 if (!(val & BIT(sign_bit))) 2677 return val; 2678 2679 ret = val; 2680 2681 /* 2682 * The register most probably does not contain a full-sized int. 2683 * Instead we have an arbitrary number of bits in a signed 2684 * representation which has to be translated into a full-sized int. 2685 * This is done by filling up all bits above the sign-bit. 2686 */ 2687 ret |= ~((int)(BIT(sign_bit) - 1)); 2688 2689 return ret; 2690 } 2691 2692 /** 2693 * snd_soc_info_volsw - single mixer info callback 2694 * @kcontrol: mixer control 2695 * @uinfo: control element information 2696 * 2697 * Callback to provide information about a single mixer control, or a double 2698 * mixer control that spans 2 registers. 2699 * 2700 * Returns 0 for success. 2701 */ 2702 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 2703 struct snd_ctl_elem_info *uinfo) 2704 { 2705 struct soc_mixer_control *mc = 2706 (struct soc_mixer_control *)kcontrol->private_value; 2707 int platform_max; 2708 2709 if (!mc->platform_max) 2710 mc->platform_max = mc->max; 2711 platform_max = mc->platform_max; 2712 2713 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2714 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2715 else 2716 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2717 2718 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 2719 uinfo->value.integer.min = 0; 2720 uinfo->value.integer.max = platform_max - mc->min; 2721 return 0; 2722 } 2723 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 2724 2725 /** 2726 * snd_soc_get_volsw - single mixer get callback 2727 * @kcontrol: mixer control 2728 * @ucontrol: control element information 2729 * 2730 * Callback to get the value of a single mixer control, or a double mixer 2731 * control that spans 2 registers. 2732 * 2733 * Returns 0 for success. 2734 */ 2735 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 2736 struct snd_ctl_elem_value *ucontrol) 2737 { 2738 struct soc_mixer_control *mc = 2739 (struct soc_mixer_control *)kcontrol->private_value; 2740 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2741 unsigned int reg = mc->reg; 2742 unsigned int reg2 = mc->rreg; 2743 unsigned int shift = mc->shift; 2744 unsigned int rshift = mc->rshift; 2745 int max = mc->max; 2746 int min = mc->min; 2747 int sign_bit = mc->sign_bit; 2748 unsigned int mask = (1 << fls(max)) - 1; 2749 unsigned int invert = mc->invert; 2750 2751 if (sign_bit) 2752 mask = BIT(sign_bit + 1) - 1; 2753 2754 ucontrol->value.integer.value[0] = snd_soc_read_signed(codec, reg, mask, 2755 shift, sign_bit) - min; 2756 if (invert) 2757 ucontrol->value.integer.value[0] = 2758 max - ucontrol->value.integer.value[0]; 2759 2760 if (snd_soc_volsw_is_stereo(mc)) { 2761 if (reg == reg2) 2762 ucontrol->value.integer.value[1] = 2763 snd_soc_read_signed(codec, reg, mask, rshift, 2764 sign_bit) - min; 2765 else 2766 ucontrol->value.integer.value[1] = 2767 snd_soc_read_signed(codec, reg2, mask, shift, 2768 sign_bit) - min; 2769 if (invert) 2770 ucontrol->value.integer.value[1] = 2771 max - ucontrol->value.integer.value[1]; 2772 } 2773 2774 return 0; 2775 } 2776 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 2777 2778 /** 2779 * snd_soc_put_volsw - single mixer put callback 2780 * @kcontrol: mixer control 2781 * @ucontrol: control element information 2782 * 2783 * Callback to set the value of a single mixer control, or a double mixer 2784 * control that spans 2 registers. 2785 * 2786 * Returns 0 for success. 2787 */ 2788 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 2789 struct snd_ctl_elem_value *ucontrol) 2790 { 2791 struct soc_mixer_control *mc = 2792 (struct soc_mixer_control *)kcontrol->private_value; 2793 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2794 unsigned int reg = mc->reg; 2795 unsigned int reg2 = mc->rreg; 2796 unsigned int shift = mc->shift; 2797 unsigned int rshift = mc->rshift; 2798 int max = mc->max; 2799 int min = mc->min; 2800 unsigned int sign_bit = mc->sign_bit; 2801 unsigned int mask = (1 << fls(max)) - 1; 2802 unsigned int invert = mc->invert; 2803 int err; 2804 bool type_2r = false; 2805 unsigned int val2 = 0; 2806 unsigned int val, val_mask; 2807 2808 if (sign_bit) 2809 mask = BIT(sign_bit + 1) - 1; 2810 2811 val = ((ucontrol->value.integer.value[0] + min) & mask); 2812 if (invert) 2813 val = max - val; 2814 val_mask = mask << shift; 2815 val = val << shift; 2816 if (snd_soc_volsw_is_stereo(mc)) { 2817 val2 = ((ucontrol->value.integer.value[1] + min) & mask); 2818 if (invert) 2819 val2 = max - val2; 2820 if (reg == reg2) { 2821 val_mask |= mask << rshift; 2822 val |= val2 << rshift; 2823 } else { 2824 val2 = val2 << shift; 2825 type_2r = true; 2826 } 2827 } 2828 err = snd_soc_update_bits_locked(codec, reg, val_mask, val); 2829 if (err < 0) 2830 return err; 2831 2832 if (type_2r) 2833 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2); 2834 2835 return err; 2836 } 2837 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 2838 2839 /** 2840 * snd_soc_get_volsw_sx - single mixer get callback 2841 * @kcontrol: mixer control 2842 * @ucontrol: control element information 2843 * 2844 * Callback to get the value of a single mixer control, or a double mixer 2845 * control that spans 2 registers. 2846 * 2847 * Returns 0 for success. 2848 */ 2849 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, 2850 struct snd_ctl_elem_value *ucontrol) 2851 { 2852 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2853 struct soc_mixer_control *mc = 2854 (struct soc_mixer_control *)kcontrol->private_value; 2855 2856 unsigned int reg = mc->reg; 2857 unsigned int reg2 = mc->rreg; 2858 unsigned int shift = mc->shift; 2859 unsigned int rshift = mc->rshift; 2860 int max = mc->max; 2861 int min = mc->min; 2862 int mask = (1 << (fls(min + max) - 1)) - 1; 2863 2864 ucontrol->value.integer.value[0] = 2865 ((snd_soc_read(codec, reg) >> shift) - min) & mask; 2866 2867 if (snd_soc_volsw_is_stereo(mc)) 2868 ucontrol->value.integer.value[1] = 2869 ((snd_soc_read(codec, reg2) >> rshift) - min) & mask; 2870 2871 return 0; 2872 } 2873 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx); 2874 2875 /** 2876 * snd_soc_put_volsw_sx - double mixer set callback 2877 * @kcontrol: mixer control 2878 * @uinfo: control element information 2879 * 2880 * Callback to set the value of a double mixer control that spans 2 registers. 2881 * 2882 * Returns 0 for success. 2883 */ 2884 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, 2885 struct snd_ctl_elem_value *ucontrol) 2886 { 2887 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2888 struct soc_mixer_control *mc = 2889 (struct soc_mixer_control *)kcontrol->private_value; 2890 2891 unsigned int reg = mc->reg; 2892 unsigned int reg2 = mc->rreg; 2893 unsigned int shift = mc->shift; 2894 unsigned int rshift = mc->rshift; 2895 int max = mc->max; 2896 int min = mc->min; 2897 int mask = (1 << (fls(min + max) - 1)) - 1; 2898 int err = 0; 2899 unsigned short val, val_mask, val2 = 0; 2900 2901 val_mask = mask << shift; 2902 val = (ucontrol->value.integer.value[0] + min) & mask; 2903 val = val << shift; 2904 2905 err = snd_soc_update_bits_locked(codec, reg, val_mask, val); 2906 if (err < 0) 2907 return err; 2908 2909 if (snd_soc_volsw_is_stereo(mc)) { 2910 val_mask = mask << rshift; 2911 val2 = (ucontrol->value.integer.value[1] + min) & mask; 2912 val2 = val2 << rshift; 2913 2914 if (snd_soc_update_bits_locked(codec, reg2, val_mask, val2)) 2915 return err; 2916 } 2917 return 0; 2918 } 2919 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx); 2920 2921 /** 2922 * snd_soc_info_volsw_s8 - signed mixer info callback 2923 * @kcontrol: mixer control 2924 * @uinfo: control element information 2925 * 2926 * Callback to provide information about a signed mixer control. 2927 * 2928 * Returns 0 for success. 2929 */ 2930 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 2931 struct snd_ctl_elem_info *uinfo) 2932 { 2933 struct soc_mixer_control *mc = 2934 (struct soc_mixer_control *)kcontrol->private_value; 2935 int platform_max; 2936 int min = mc->min; 2937 2938 if (!mc->platform_max) 2939 mc->platform_max = mc->max; 2940 platform_max = mc->platform_max; 2941 2942 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2943 uinfo->count = 2; 2944 uinfo->value.integer.min = 0; 2945 uinfo->value.integer.max = platform_max - min; 2946 return 0; 2947 } 2948 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2949 2950 /** 2951 * snd_soc_get_volsw_s8 - signed mixer get callback 2952 * @kcontrol: mixer control 2953 * @ucontrol: control element information 2954 * 2955 * Callback to get the value of a signed mixer control. 2956 * 2957 * Returns 0 for success. 2958 */ 2959 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2960 struct snd_ctl_elem_value *ucontrol) 2961 { 2962 struct soc_mixer_control *mc = 2963 (struct soc_mixer_control *)kcontrol->private_value; 2964 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2965 unsigned int reg = mc->reg; 2966 int min = mc->min; 2967 int val = snd_soc_read(codec, reg); 2968 2969 ucontrol->value.integer.value[0] = 2970 ((signed char)(val & 0xff))-min; 2971 ucontrol->value.integer.value[1] = 2972 ((signed char)((val >> 8) & 0xff))-min; 2973 return 0; 2974 } 2975 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2976 2977 /** 2978 * snd_soc_put_volsw_sgn - signed mixer put callback 2979 * @kcontrol: mixer control 2980 * @ucontrol: control element information 2981 * 2982 * Callback to set the value of a signed mixer control. 2983 * 2984 * Returns 0 for success. 2985 */ 2986 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2987 struct snd_ctl_elem_value *ucontrol) 2988 { 2989 struct soc_mixer_control *mc = 2990 (struct soc_mixer_control *)kcontrol->private_value; 2991 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2992 unsigned int reg = mc->reg; 2993 int min = mc->min; 2994 unsigned int val; 2995 2996 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2997 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2998 2999 return snd_soc_update_bits_locked(codec, reg, 0xffff, val); 3000 } 3001 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 3002 3003 /** 3004 * snd_soc_info_volsw_range - single mixer info callback with range. 3005 * @kcontrol: mixer control 3006 * @uinfo: control element information 3007 * 3008 * Callback to provide information, within a range, about a single 3009 * mixer control. 3010 * 3011 * returns 0 for success. 3012 */ 3013 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, 3014 struct snd_ctl_elem_info *uinfo) 3015 { 3016 struct soc_mixer_control *mc = 3017 (struct soc_mixer_control *)kcontrol->private_value; 3018 int platform_max; 3019 int min = mc->min; 3020 3021 if (!mc->platform_max) 3022 mc->platform_max = mc->max; 3023 platform_max = mc->platform_max; 3024 3025 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3026 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1; 3027 uinfo->value.integer.min = 0; 3028 uinfo->value.integer.max = platform_max - min; 3029 3030 return 0; 3031 } 3032 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range); 3033 3034 /** 3035 * snd_soc_put_volsw_range - single mixer put value callback with range. 3036 * @kcontrol: mixer control 3037 * @ucontrol: control element information 3038 * 3039 * Callback to set the value, within a range, for a single mixer control. 3040 * 3041 * Returns 0 for success. 3042 */ 3043 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, 3044 struct snd_ctl_elem_value *ucontrol) 3045 { 3046 struct soc_mixer_control *mc = 3047 (struct soc_mixer_control *)kcontrol->private_value; 3048 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3049 unsigned int reg = mc->reg; 3050 unsigned int rreg = mc->rreg; 3051 unsigned int shift = mc->shift; 3052 int min = mc->min; 3053 int max = mc->max; 3054 unsigned int mask = (1 << fls(max)) - 1; 3055 unsigned int invert = mc->invert; 3056 unsigned int val, val_mask; 3057 int ret; 3058 3059 val = ((ucontrol->value.integer.value[0] + min) & mask); 3060 if (invert) 3061 val = max - val; 3062 val_mask = mask << shift; 3063 val = val << shift; 3064 3065 ret = snd_soc_update_bits_locked(codec, reg, val_mask, val); 3066 if (ret < 0) 3067 return ret; 3068 3069 if (snd_soc_volsw_is_stereo(mc)) { 3070 val = ((ucontrol->value.integer.value[1] + min) & mask); 3071 if (invert) 3072 val = max - val; 3073 val_mask = mask << shift; 3074 val = val << shift; 3075 3076 ret = snd_soc_update_bits_locked(codec, rreg, val_mask, val); 3077 } 3078 3079 return ret; 3080 } 3081 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range); 3082 3083 /** 3084 * snd_soc_get_volsw_range - single mixer get callback with range 3085 * @kcontrol: mixer control 3086 * @ucontrol: control element information 3087 * 3088 * Callback to get the value, within a range, of a single mixer control. 3089 * 3090 * Returns 0 for success. 3091 */ 3092 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, 3093 struct snd_ctl_elem_value *ucontrol) 3094 { 3095 struct soc_mixer_control *mc = 3096 (struct soc_mixer_control *)kcontrol->private_value; 3097 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3098 unsigned int reg = mc->reg; 3099 unsigned int rreg = mc->rreg; 3100 unsigned int shift = mc->shift; 3101 int min = mc->min; 3102 int max = mc->max; 3103 unsigned int mask = (1 << fls(max)) - 1; 3104 unsigned int invert = mc->invert; 3105 3106 ucontrol->value.integer.value[0] = 3107 (snd_soc_read(codec, reg) >> shift) & mask; 3108 if (invert) 3109 ucontrol->value.integer.value[0] = 3110 max - ucontrol->value.integer.value[0]; 3111 ucontrol->value.integer.value[0] = 3112 ucontrol->value.integer.value[0] - min; 3113 3114 if (snd_soc_volsw_is_stereo(mc)) { 3115 ucontrol->value.integer.value[1] = 3116 (snd_soc_read(codec, rreg) >> shift) & mask; 3117 if (invert) 3118 ucontrol->value.integer.value[1] = 3119 max - ucontrol->value.integer.value[1]; 3120 ucontrol->value.integer.value[1] = 3121 ucontrol->value.integer.value[1] - min; 3122 } 3123 3124 return 0; 3125 } 3126 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range); 3127 3128 /** 3129 * snd_soc_limit_volume - Set new limit to an existing volume control. 3130 * 3131 * @codec: where to look for the control 3132 * @name: Name of the control 3133 * @max: new maximum limit 3134 * 3135 * Return 0 for success, else error. 3136 */ 3137 int snd_soc_limit_volume(struct snd_soc_codec *codec, 3138 const char *name, int max) 3139 { 3140 struct snd_card *card = codec->card->snd_card; 3141 struct snd_kcontrol *kctl; 3142 struct soc_mixer_control *mc; 3143 int found = 0; 3144 int ret = -EINVAL; 3145 3146 /* Sanity check for name and max */ 3147 if (unlikely(!name || max <= 0)) 3148 return -EINVAL; 3149 3150 list_for_each_entry(kctl, &card->controls, list) { 3151 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { 3152 found = 1; 3153 break; 3154 } 3155 } 3156 if (found) { 3157 mc = (struct soc_mixer_control *)kctl->private_value; 3158 if (max <= mc->max) { 3159 mc->platform_max = max; 3160 ret = 0; 3161 } 3162 } 3163 return ret; 3164 } 3165 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 3166 3167 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, 3168 struct snd_ctl_elem_info *uinfo) 3169 { 3170 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3171 struct soc_bytes *params = (void *)kcontrol->private_value; 3172 3173 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 3174 uinfo->count = params->num_regs * codec->val_bytes; 3175 3176 return 0; 3177 } 3178 EXPORT_SYMBOL_GPL(snd_soc_bytes_info); 3179 3180 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, 3181 struct snd_ctl_elem_value *ucontrol) 3182 { 3183 struct soc_bytes *params = (void *)kcontrol->private_value; 3184 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3185 int ret; 3186 3187 if (codec->using_regmap) 3188 ret = regmap_raw_read(codec->control_data, params->base, 3189 ucontrol->value.bytes.data, 3190 params->num_regs * codec->val_bytes); 3191 else 3192 ret = -EINVAL; 3193 3194 /* Hide any masked bytes to ensure consistent data reporting */ 3195 if (ret == 0 && params->mask) { 3196 switch (codec->val_bytes) { 3197 case 1: 3198 ucontrol->value.bytes.data[0] &= ~params->mask; 3199 break; 3200 case 2: 3201 ((u16 *)(&ucontrol->value.bytes.data))[0] 3202 &= cpu_to_be16(~params->mask); 3203 break; 3204 case 4: 3205 ((u32 *)(&ucontrol->value.bytes.data))[0] 3206 &= cpu_to_be32(~params->mask); 3207 break; 3208 default: 3209 return -EINVAL; 3210 } 3211 } 3212 3213 return ret; 3214 } 3215 EXPORT_SYMBOL_GPL(snd_soc_bytes_get); 3216 3217 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, 3218 struct snd_ctl_elem_value *ucontrol) 3219 { 3220 struct soc_bytes *params = (void *)kcontrol->private_value; 3221 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3222 int ret, len; 3223 unsigned int val, mask; 3224 void *data; 3225 3226 if (!codec->using_regmap) 3227 return -EINVAL; 3228 3229 len = params->num_regs * codec->val_bytes; 3230 3231 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA); 3232 if (!data) 3233 return -ENOMEM; 3234 3235 /* 3236 * If we've got a mask then we need to preserve the register 3237 * bits. We shouldn't modify the incoming data so take a 3238 * copy. 3239 */ 3240 if (params->mask) { 3241 ret = regmap_read(codec->control_data, params->base, &val); 3242 if (ret != 0) 3243 goto out; 3244 3245 val &= params->mask; 3246 3247 switch (codec->val_bytes) { 3248 case 1: 3249 ((u8 *)data)[0] &= ~params->mask; 3250 ((u8 *)data)[0] |= val; 3251 break; 3252 case 2: 3253 mask = ~params->mask; 3254 ret = regmap_parse_val(codec->control_data, 3255 &mask, &mask); 3256 if (ret != 0) 3257 goto out; 3258 3259 ((u16 *)data)[0] &= mask; 3260 3261 ret = regmap_parse_val(codec->control_data, 3262 &val, &val); 3263 if (ret != 0) 3264 goto out; 3265 3266 ((u16 *)data)[0] |= val; 3267 break; 3268 case 4: 3269 mask = ~params->mask; 3270 ret = regmap_parse_val(codec->control_data, 3271 &mask, &mask); 3272 if (ret != 0) 3273 goto out; 3274 3275 ((u32 *)data)[0] &= mask; 3276 3277 ret = regmap_parse_val(codec->control_data, 3278 &val, &val); 3279 if (ret != 0) 3280 goto out; 3281 3282 ((u32 *)data)[0] |= val; 3283 break; 3284 default: 3285 ret = -EINVAL; 3286 goto out; 3287 } 3288 } 3289 3290 ret = regmap_raw_write(codec->control_data, params->base, 3291 data, len); 3292 3293 out: 3294 kfree(data); 3295 3296 return ret; 3297 } 3298 EXPORT_SYMBOL_GPL(snd_soc_bytes_put); 3299 3300 /** 3301 * snd_soc_info_xr_sx - signed multi register info callback 3302 * @kcontrol: mreg control 3303 * @uinfo: control element information 3304 * 3305 * Callback to provide information of a control that can 3306 * span multiple codec registers which together 3307 * forms a single signed value in a MSB/LSB manner. 3308 * 3309 * Returns 0 for success. 3310 */ 3311 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, 3312 struct snd_ctl_elem_info *uinfo) 3313 { 3314 struct soc_mreg_control *mc = 3315 (struct soc_mreg_control *)kcontrol->private_value; 3316 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3317 uinfo->count = 1; 3318 uinfo->value.integer.min = mc->min; 3319 uinfo->value.integer.max = mc->max; 3320 3321 return 0; 3322 } 3323 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx); 3324 3325 /** 3326 * snd_soc_get_xr_sx - signed multi register get callback 3327 * @kcontrol: mreg control 3328 * @ucontrol: control element information 3329 * 3330 * Callback to get the value of a control that can span 3331 * multiple codec registers which together forms a single 3332 * signed value in a MSB/LSB manner. The control supports 3333 * specifying total no of bits used to allow for bitfields 3334 * across the multiple codec registers. 3335 * 3336 * Returns 0 for success. 3337 */ 3338 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, 3339 struct snd_ctl_elem_value *ucontrol) 3340 { 3341 struct soc_mreg_control *mc = 3342 (struct soc_mreg_control *)kcontrol->private_value; 3343 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3344 unsigned int regbase = mc->regbase; 3345 unsigned int regcount = mc->regcount; 3346 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE; 3347 unsigned int regwmask = (1<<regwshift)-1; 3348 unsigned int invert = mc->invert; 3349 unsigned long mask = (1UL<<mc->nbits)-1; 3350 long min = mc->min; 3351 long max = mc->max; 3352 long val = 0; 3353 unsigned long regval; 3354 unsigned int i; 3355 3356 for (i = 0; i < regcount; i++) { 3357 regval = snd_soc_read(codec, regbase+i) & regwmask; 3358 val |= regval << (regwshift*(regcount-i-1)); 3359 } 3360 val &= mask; 3361 if (min < 0 && val > max) 3362 val |= ~mask; 3363 if (invert) 3364 val = max - val; 3365 ucontrol->value.integer.value[0] = val; 3366 3367 return 0; 3368 } 3369 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx); 3370 3371 /** 3372 * snd_soc_put_xr_sx - signed multi register get callback 3373 * @kcontrol: mreg control 3374 * @ucontrol: control element information 3375 * 3376 * Callback to set the value of a control that can span 3377 * multiple codec registers which together forms a single 3378 * signed value in a MSB/LSB manner. The control supports 3379 * specifying total no of bits used to allow for bitfields 3380 * across the multiple codec registers. 3381 * 3382 * Returns 0 for success. 3383 */ 3384 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, 3385 struct snd_ctl_elem_value *ucontrol) 3386 { 3387 struct soc_mreg_control *mc = 3388 (struct soc_mreg_control *)kcontrol->private_value; 3389 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3390 unsigned int regbase = mc->regbase; 3391 unsigned int regcount = mc->regcount; 3392 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE; 3393 unsigned int regwmask = (1<<regwshift)-1; 3394 unsigned int invert = mc->invert; 3395 unsigned long mask = (1UL<<mc->nbits)-1; 3396 long max = mc->max; 3397 long val = ucontrol->value.integer.value[0]; 3398 unsigned int i, regval, regmask; 3399 int err; 3400 3401 if (invert) 3402 val = max - val; 3403 val &= mask; 3404 for (i = 0; i < regcount; i++) { 3405 regval = (val >> (regwshift*(regcount-i-1))) & regwmask; 3406 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask; 3407 err = snd_soc_update_bits_locked(codec, regbase+i, 3408 regmask, regval); 3409 if (err < 0) 3410 return err; 3411 } 3412 3413 return 0; 3414 } 3415 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx); 3416 3417 /** 3418 * snd_soc_get_strobe - strobe get callback 3419 * @kcontrol: mixer control 3420 * @ucontrol: control element information 3421 * 3422 * Callback get the value of a strobe mixer control. 3423 * 3424 * Returns 0 for success. 3425 */ 3426 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, 3427 struct snd_ctl_elem_value *ucontrol) 3428 { 3429 struct soc_mixer_control *mc = 3430 (struct soc_mixer_control *)kcontrol->private_value; 3431 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3432 unsigned int reg = mc->reg; 3433 unsigned int shift = mc->shift; 3434 unsigned int mask = 1 << shift; 3435 unsigned int invert = mc->invert != 0; 3436 unsigned int val = snd_soc_read(codec, reg) & mask; 3437 3438 if (shift != 0 && val != 0) 3439 val = val >> shift; 3440 ucontrol->value.enumerated.item[0] = val ^ invert; 3441 3442 return 0; 3443 } 3444 EXPORT_SYMBOL_GPL(snd_soc_get_strobe); 3445 3446 /** 3447 * snd_soc_put_strobe - strobe put callback 3448 * @kcontrol: mixer control 3449 * @ucontrol: control element information 3450 * 3451 * Callback strobe a register bit to high then low (or the inverse) 3452 * in one pass of a single mixer enum control. 3453 * 3454 * Returns 1 for success. 3455 */ 3456 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, 3457 struct snd_ctl_elem_value *ucontrol) 3458 { 3459 struct soc_mixer_control *mc = 3460 (struct soc_mixer_control *)kcontrol->private_value; 3461 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3462 unsigned int reg = mc->reg; 3463 unsigned int shift = mc->shift; 3464 unsigned int mask = 1 << shift; 3465 unsigned int invert = mc->invert != 0; 3466 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0; 3467 unsigned int val1 = (strobe ^ invert) ? mask : 0; 3468 unsigned int val2 = (strobe ^ invert) ? 0 : mask; 3469 int err; 3470 3471 err = snd_soc_update_bits_locked(codec, reg, mask, val1); 3472 if (err < 0) 3473 return err; 3474 3475 err = snd_soc_update_bits_locked(codec, reg, mask, val2); 3476 return err; 3477 } 3478 EXPORT_SYMBOL_GPL(snd_soc_put_strobe); 3479 3480 /** 3481 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 3482 * @dai: DAI 3483 * @clk_id: DAI specific clock ID 3484 * @freq: new clock frequency in Hz 3485 * @dir: new clock direction - input/output. 3486 * 3487 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 3488 */ 3489 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 3490 unsigned int freq, int dir) 3491 { 3492 if (dai->driver && dai->driver->ops->set_sysclk) 3493 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir); 3494 else if (dai->codec && dai->codec->driver->set_sysclk) 3495 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0, 3496 freq, dir); 3497 else 3498 return -ENOTSUPP; 3499 } 3500 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 3501 3502 /** 3503 * snd_soc_codec_set_sysclk - configure CODEC system or master clock. 3504 * @codec: CODEC 3505 * @clk_id: DAI specific clock ID 3506 * @source: Source for the clock 3507 * @freq: new clock frequency in Hz 3508 * @dir: new clock direction - input/output. 3509 * 3510 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking. 3511 */ 3512 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id, 3513 int source, unsigned int freq, int dir) 3514 { 3515 if (codec->driver->set_sysclk) 3516 return codec->driver->set_sysclk(codec, clk_id, source, 3517 freq, dir); 3518 else 3519 return -ENOTSUPP; 3520 } 3521 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk); 3522 3523 /** 3524 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 3525 * @dai: DAI 3526 * @div_id: DAI specific clock divider ID 3527 * @div: new clock divisor. 3528 * 3529 * Configures the clock dividers. This is used to derive the best DAI bit and 3530 * frame clocks from the system or master clock. It's best to set the DAI bit 3531 * and frame clocks as low as possible to save system power. 3532 */ 3533 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 3534 int div_id, int div) 3535 { 3536 if (dai->driver && dai->driver->ops->set_clkdiv) 3537 return dai->driver->ops->set_clkdiv(dai, div_id, div); 3538 else 3539 return -EINVAL; 3540 } 3541 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 3542 3543 /** 3544 * snd_soc_dai_set_pll - configure DAI PLL. 3545 * @dai: DAI 3546 * @pll_id: DAI specific PLL ID 3547 * @source: DAI specific source for the PLL 3548 * @freq_in: PLL input clock frequency in Hz 3549 * @freq_out: requested PLL output clock frequency in Hz 3550 * 3551 * Configures and enables PLL to generate output clock based on input clock. 3552 */ 3553 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, 3554 unsigned int freq_in, unsigned int freq_out) 3555 { 3556 if (dai->driver && dai->driver->ops->set_pll) 3557 return dai->driver->ops->set_pll(dai, pll_id, source, 3558 freq_in, freq_out); 3559 else if (dai->codec && dai->codec->driver->set_pll) 3560 return dai->codec->driver->set_pll(dai->codec, pll_id, source, 3561 freq_in, freq_out); 3562 else 3563 return -EINVAL; 3564 } 3565 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 3566 3567 /* 3568 * snd_soc_codec_set_pll - configure codec PLL. 3569 * @codec: CODEC 3570 * @pll_id: DAI specific PLL ID 3571 * @source: DAI specific source for the PLL 3572 * @freq_in: PLL input clock frequency in Hz 3573 * @freq_out: requested PLL output clock frequency in Hz 3574 * 3575 * Configures and enables PLL to generate output clock based on input clock. 3576 */ 3577 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source, 3578 unsigned int freq_in, unsigned int freq_out) 3579 { 3580 if (codec->driver->set_pll) 3581 return codec->driver->set_pll(codec, pll_id, source, 3582 freq_in, freq_out); 3583 else 3584 return -EINVAL; 3585 } 3586 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll); 3587 3588 /** 3589 * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio. 3590 * @dai: DAI 3591 * @ratio Ratio of BCLK to Sample rate. 3592 * 3593 * Configures the DAI for a preset BCLK to sample rate ratio. 3594 */ 3595 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) 3596 { 3597 if (dai->driver && dai->driver->ops->set_bclk_ratio) 3598 return dai->driver->ops->set_bclk_ratio(dai, ratio); 3599 else 3600 return -EINVAL; 3601 } 3602 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio); 3603 3604 /** 3605 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 3606 * @dai: DAI 3607 * @fmt: SND_SOC_DAIFMT_ format value. 3608 * 3609 * Configures the DAI hardware format and clocking. 3610 */ 3611 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 3612 { 3613 if (dai->driver == NULL) 3614 return -EINVAL; 3615 if (dai->driver->ops->set_fmt == NULL) 3616 return -ENOTSUPP; 3617 return dai->driver->ops->set_fmt(dai, fmt); 3618 } 3619 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 3620 3621 /** 3622 * snd_soc_xlate_tdm_slot - generate tx/rx slot mask. 3623 * @slots: Number of slots in use. 3624 * @tx_mask: bitmask representing active TX slots. 3625 * @rx_mask: bitmask representing active RX slots. 3626 * 3627 * Generates the TDM tx and rx slot default masks for DAI. 3628 */ 3629 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots, 3630 unsigned int *tx_mask, 3631 unsigned int *rx_mask) 3632 { 3633 if (*tx_mask || *rx_mask) 3634 return 0; 3635 3636 if (!slots) 3637 return -EINVAL; 3638 3639 *tx_mask = (1 << slots) - 1; 3640 *rx_mask = (1 << slots) - 1; 3641 3642 return 0; 3643 } 3644 3645 /** 3646 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 3647 * @dai: DAI 3648 * @tx_mask: bitmask representing active TX slots. 3649 * @rx_mask: bitmask representing active RX slots. 3650 * @slots: Number of slots in use. 3651 * @slot_width: Width in bits for each slot. 3652 * 3653 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 3654 * specific. 3655 */ 3656 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 3657 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 3658 { 3659 if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask) 3660 dai->driver->ops->xlate_tdm_slot_mask(slots, 3661 &tx_mask, &rx_mask); 3662 else 3663 snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask); 3664 3665 if (dai->driver && dai->driver->ops->set_tdm_slot) 3666 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask, 3667 slots, slot_width); 3668 else 3669 return -ENOTSUPP; 3670 } 3671 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 3672 3673 /** 3674 * snd_soc_dai_set_channel_map - configure DAI audio channel map 3675 * @dai: DAI 3676 * @tx_num: how many TX channels 3677 * @tx_slot: pointer to an array which imply the TX slot number channel 3678 * 0~num-1 uses 3679 * @rx_num: how many RX channels 3680 * @rx_slot: pointer to an array which imply the RX slot number channel 3681 * 0~num-1 uses 3682 * 3683 * configure the relationship between channel number and TDM slot number. 3684 */ 3685 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai, 3686 unsigned int tx_num, unsigned int *tx_slot, 3687 unsigned int rx_num, unsigned int *rx_slot) 3688 { 3689 if (dai->driver && dai->driver->ops->set_channel_map) 3690 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot, 3691 rx_num, rx_slot); 3692 else 3693 return -EINVAL; 3694 } 3695 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map); 3696 3697 /** 3698 * snd_soc_dai_set_tristate - configure DAI system or master clock. 3699 * @dai: DAI 3700 * @tristate: tristate enable 3701 * 3702 * Tristates the DAI so that others can use it. 3703 */ 3704 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 3705 { 3706 if (dai->driver && dai->driver->ops->set_tristate) 3707 return dai->driver->ops->set_tristate(dai, tristate); 3708 else 3709 return -EINVAL; 3710 } 3711 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 3712 3713 /** 3714 * snd_soc_dai_digital_mute - configure DAI system or master clock. 3715 * @dai: DAI 3716 * @mute: mute enable 3717 * @direction: stream to mute 3718 * 3719 * Mutes the DAI DAC. 3720 */ 3721 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute, 3722 int direction) 3723 { 3724 if (!dai->driver) 3725 return -ENOTSUPP; 3726 3727 if (dai->driver->ops->mute_stream) 3728 return dai->driver->ops->mute_stream(dai, mute, direction); 3729 else if (direction == SNDRV_PCM_STREAM_PLAYBACK && 3730 dai->driver->ops->digital_mute) 3731 return dai->driver->ops->digital_mute(dai, mute); 3732 else 3733 return -ENOTSUPP; 3734 } 3735 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 3736 3737 /** 3738 * snd_soc_register_card - Register a card with the ASoC core 3739 * 3740 * @card: Card to register 3741 * 3742 */ 3743 int snd_soc_register_card(struct snd_soc_card *card) 3744 { 3745 int i, ret; 3746 3747 if (!card->name || !card->dev) 3748 return -EINVAL; 3749 3750 for (i = 0; i < card->num_links; i++) { 3751 struct snd_soc_dai_link *link = &card->dai_link[i]; 3752 3753 /* 3754 * Codec must be specified by 1 of name or OF node, 3755 * not both or neither. 3756 */ 3757 if (!!link->codec_name == !!link->codec_of_node) { 3758 dev_err(card->dev, 3759 "ASoC: Neither/both codec name/of_node are set for %s\n", 3760 link->name); 3761 return -EINVAL; 3762 } 3763 /* Codec DAI name must be specified */ 3764 if (!link->codec_dai_name) { 3765 dev_err(card->dev, 3766 "ASoC: codec_dai_name not set for %s\n", 3767 link->name); 3768 return -EINVAL; 3769 } 3770 3771 /* 3772 * Platform may be specified by either name or OF node, but 3773 * can be left unspecified, and a dummy platform will be used. 3774 */ 3775 if (link->platform_name && link->platform_of_node) { 3776 dev_err(card->dev, 3777 "ASoC: Both platform name/of_node are set for %s\n", 3778 link->name); 3779 return -EINVAL; 3780 } 3781 3782 /* 3783 * CPU device may be specified by either name or OF node, but 3784 * can be left unspecified, and will be matched based on DAI 3785 * name alone.. 3786 */ 3787 if (link->cpu_name && link->cpu_of_node) { 3788 dev_err(card->dev, 3789 "ASoC: Neither/both cpu name/of_node are set for %s\n", 3790 link->name); 3791 return -EINVAL; 3792 } 3793 /* 3794 * At least one of CPU DAI name or CPU device name/node must be 3795 * specified 3796 */ 3797 if (!link->cpu_dai_name && 3798 !(link->cpu_name || link->cpu_of_node)) { 3799 dev_err(card->dev, 3800 "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n", 3801 link->name); 3802 return -EINVAL; 3803 } 3804 } 3805 3806 dev_set_drvdata(card->dev, card); 3807 3808 snd_soc_initialize_card_lists(card); 3809 3810 soc_init_card_debugfs(card); 3811 3812 card->rtd = devm_kzalloc(card->dev, 3813 sizeof(struct snd_soc_pcm_runtime) * 3814 (card->num_links + card->num_aux_devs), 3815 GFP_KERNEL); 3816 if (card->rtd == NULL) 3817 return -ENOMEM; 3818 card->num_rtd = 0; 3819 card->rtd_aux = &card->rtd[card->num_links]; 3820 3821 for (i = 0; i < card->num_links; i++) 3822 card->rtd[i].dai_link = &card->dai_link[i]; 3823 3824 INIT_LIST_HEAD(&card->list); 3825 INIT_LIST_HEAD(&card->dapm_dirty); 3826 card->instantiated = 0; 3827 mutex_init(&card->mutex); 3828 mutex_init(&card->dapm_mutex); 3829 3830 ret = snd_soc_instantiate_card(card); 3831 if (ret != 0) 3832 soc_cleanup_card_debugfs(card); 3833 3834 /* deactivate pins to sleep state */ 3835 for (i = 0; i < card->num_rtd; i++) { 3836 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 3837 struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai; 3838 if (!codec_dai->active) 3839 pinctrl_pm_select_sleep_state(codec_dai->dev); 3840 if (!cpu_dai->active) 3841 pinctrl_pm_select_sleep_state(cpu_dai->dev); 3842 } 3843 3844 return ret; 3845 } 3846 EXPORT_SYMBOL_GPL(snd_soc_register_card); 3847 3848 /** 3849 * snd_soc_unregister_card - Unregister a card with the ASoC core 3850 * 3851 * @card: Card to unregister 3852 * 3853 */ 3854 int snd_soc_unregister_card(struct snd_soc_card *card) 3855 { 3856 if (card->instantiated) 3857 soc_cleanup_card_resources(card); 3858 dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name); 3859 3860 return 0; 3861 } 3862 EXPORT_SYMBOL_GPL(snd_soc_unregister_card); 3863 3864 /* 3865 * Simplify DAI link configuration by removing ".-1" from device names 3866 * and sanitizing names. 3867 */ 3868 static char *fmt_single_name(struct device *dev, int *id) 3869 { 3870 char *found, name[NAME_SIZE]; 3871 int id1, id2; 3872 3873 if (dev_name(dev) == NULL) 3874 return NULL; 3875 3876 strlcpy(name, dev_name(dev), NAME_SIZE); 3877 3878 /* are we a "%s.%d" name (platform and SPI components) */ 3879 found = strstr(name, dev->driver->name); 3880 if (found) { 3881 /* get ID */ 3882 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) { 3883 3884 /* discard ID from name if ID == -1 */ 3885 if (*id == -1) 3886 found[strlen(dev->driver->name)] = '\0'; 3887 } 3888 3889 } else { 3890 /* I2C component devices are named "bus-addr" */ 3891 if (sscanf(name, "%x-%x", &id1, &id2) == 2) { 3892 char tmp[NAME_SIZE]; 3893 3894 /* create unique ID number from I2C addr and bus */ 3895 *id = ((id1 & 0xffff) << 16) + id2; 3896 3897 /* sanitize component name for DAI link creation */ 3898 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name); 3899 strlcpy(name, tmp, NAME_SIZE); 3900 } else 3901 *id = 0; 3902 } 3903 3904 return kstrdup(name, GFP_KERNEL); 3905 } 3906 3907 /* 3908 * Simplify DAI link naming for single devices with multiple DAIs by removing 3909 * any ".-1" and using the DAI name (instead of device name). 3910 */ 3911 static inline char *fmt_multiple_name(struct device *dev, 3912 struct snd_soc_dai_driver *dai_drv) 3913 { 3914 if (dai_drv->name == NULL) { 3915 dev_err(dev, 3916 "ASoC: error - multiple DAI %s registered with no name\n", 3917 dev_name(dev)); 3918 return NULL; 3919 } 3920 3921 return kstrdup(dai_drv->name, GFP_KERNEL); 3922 } 3923 3924 /** 3925 * snd_soc_unregister_dai - Unregister DAIs from the ASoC core 3926 * 3927 * @component: The component for which the DAIs should be unregistered 3928 */ 3929 static void snd_soc_unregister_dais(struct snd_soc_component *component) 3930 { 3931 struct snd_soc_dai *dai, *_dai; 3932 3933 list_for_each_entry_safe(dai, _dai, &component->dai_list, list) { 3934 dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n", 3935 dai->name); 3936 list_del(&dai->list); 3937 kfree(dai->name); 3938 kfree(dai); 3939 } 3940 } 3941 3942 /** 3943 * snd_soc_register_dais - Register a DAI with the ASoC core 3944 * 3945 * @component: The component the DAIs are registered for 3946 * @codec: The CODEC that the DAIs are registered for, NULL if the component is 3947 * not a CODEC. 3948 * @dai_drv: DAI driver to use for the DAIs 3949 * @count: Number of DAIs 3950 * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the 3951 * parent's name. 3952 */ 3953 static int snd_soc_register_dais(struct snd_soc_component *component, 3954 struct snd_soc_codec *codec, struct snd_soc_dai_driver *dai_drv, 3955 size_t count, bool legacy_dai_naming) 3956 { 3957 struct device *dev = component->dev; 3958 struct snd_soc_dai *dai; 3959 unsigned int i; 3960 int ret; 3961 3962 dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count); 3963 3964 for (i = 0; i < count; i++) { 3965 3966 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3967 if (dai == NULL) { 3968 ret = -ENOMEM; 3969 goto err; 3970 } 3971 3972 /* 3973 * Back in the old days when we still had component-less DAIs, 3974 * instead of having a static name, component-less DAIs would 3975 * inherit the name of the parent device so it is possible to 3976 * register multiple instances of the DAI. We still need to keep 3977 * the same naming style even though those DAIs are not 3978 * component-less anymore. 3979 */ 3980 if (count == 1 && legacy_dai_naming) { 3981 dai->name = fmt_single_name(dev, &dai->id); 3982 } else { 3983 dai->name = fmt_multiple_name(dev, &dai_drv[i]); 3984 if (dai_drv[i].id) 3985 dai->id = dai_drv[i].id; 3986 else 3987 dai->id = i; 3988 } 3989 if (dai->name == NULL) { 3990 kfree(dai); 3991 ret = -ENOMEM; 3992 goto err; 3993 } 3994 3995 dai->component = component; 3996 dai->codec = codec; 3997 dai->dev = dev; 3998 dai->driver = &dai_drv[i]; 3999 dai->dapm.dev = dev; 4000 if (!dai->driver->ops) 4001 dai->driver->ops = &null_dai_ops; 4002 4003 if (!dai->codec) 4004 dai->dapm.idle_bias_off = 1; 4005 4006 list_add(&dai->list, &component->dai_list); 4007 4008 dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name); 4009 } 4010 4011 return 0; 4012 4013 err: 4014 snd_soc_unregister_dais(component); 4015 4016 return ret; 4017 } 4018 4019 /** 4020 * snd_soc_register_component - Register a component with the ASoC core 4021 * 4022 */ 4023 static int 4024 __snd_soc_register_component(struct device *dev, 4025 struct snd_soc_component *cmpnt, 4026 const struct snd_soc_component_driver *cmpnt_drv, 4027 struct snd_soc_codec *codec, 4028 struct snd_soc_dai_driver *dai_drv, 4029 int num_dai, bool allow_single_dai) 4030 { 4031 int ret; 4032 4033 dev_dbg(dev, "component register %s\n", dev_name(dev)); 4034 4035 if (!cmpnt) { 4036 dev_err(dev, "ASoC: Failed to connecting component\n"); 4037 return -ENOMEM; 4038 } 4039 4040 cmpnt->name = fmt_single_name(dev, &cmpnt->id); 4041 if (!cmpnt->name) { 4042 dev_err(dev, "ASoC: Failed to simplifying name\n"); 4043 return -ENOMEM; 4044 } 4045 4046 cmpnt->dev = dev; 4047 cmpnt->driver = cmpnt_drv; 4048 cmpnt->dai_drv = dai_drv; 4049 cmpnt->num_dai = num_dai; 4050 INIT_LIST_HEAD(&cmpnt->dai_list); 4051 4052 ret = snd_soc_register_dais(cmpnt, codec, dai_drv, num_dai, 4053 allow_single_dai); 4054 if (ret < 0) { 4055 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret); 4056 goto error_component_name; 4057 } 4058 4059 mutex_lock(&client_mutex); 4060 list_add(&cmpnt->list, &component_list); 4061 mutex_unlock(&client_mutex); 4062 4063 dev_dbg(cmpnt->dev, "ASoC: Registered component '%s'\n", cmpnt->name); 4064 4065 return ret; 4066 4067 error_component_name: 4068 kfree(cmpnt->name); 4069 4070 return ret; 4071 } 4072 4073 int snd_soc_register_component(struct device *dev, 4074 const struct snd_soc_component_driver *cmpnt_drv, 4075 struct snd_soc_dai_driver *dai_drv, 4076 int num_dai) 4077 { 4078 struct snd_soc_component *cmpnt; 4079 4080 cmpnt = devm_kzalloc(dev, sizeof(*cmpnt), GFP_KERNEL); 4081 if (!cmpnt) { 4082 dev_err(dev, "ASoC: Failed to allocate memory\n"); 4083 return -ENOMEM; 4084 } 4085 4086 cmpnt->ignore_pmdown_time = true; 4087 4088 return __snd_soc_register_component(dev, cmpnt, cmpnt_drv, NULL, 4089 dai_drv, num_dai, true); 4090 } 4091 EXPORT_SYMBOL_GPL(snd_soc_register_component); 4092 4093 /** 4094 * snd_soc_unregister_component - Unregister a component from the ASoC core 4095 * 4096 */ 4097 void snd_soc_unregister_component(struct device *dev) 4098 { 4099 struct snd_soc_component *cmpnt; 4100 4101 list_for_each_entry(cmpnt, &component_list, list) { 4102 if (dev == cmpnt->dev) 4103 goto found; 4104 } 4105 return; 4106 4107 found: 4108 snd_soc_unregister_dais(cmpnt); 4109 4110 mutex_lock(&client_mutex); 4111 list_del(&cmpnt->list); 4112 mutex_unlock(&client_mutex); 4113 4114 dev_dbg(dev, "ASoC: Unregistered component '%s'\n", cmpnt->name); 4115 kfree(cmpnt->name); 4116 } 4117 EXPORT_SYMBOL_GPL(snd_soc_unregister_component); 4118 4119 /** 4120 * snd_soc_add_platform - Add a platform to the ASoC core 4121 * @dev: The parent device for the platform 4122 * @platform: The platform to add 4123 * @platform_driver: The driver for the platform 4124 */ 4125 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform, 4126 const struct snd_soc_platform_driver *platform_drv) 4127 { 4128 /* create platform component name */ 4129 platform->name = fmt_single_name(dev, &platform->id); 4130 if (platform->name == NULL) 4131 return -ENOMEM; 4132 4133 platform->dev = dev; 4134 platform->driver = platform_drv; 4135 platform->dapm.dev = dev; 4136 platform->dapm.platform = platform; 4137 platform->dapm.stream_event = platform_drv->stream_event; 4138 mutex_init(&platform->mutex); 4139 4140 mutex_lock(&client_mutex); 4141 list_add(&platform->list, &platform_list); 4142 mutex_unlock(&client_mutex); 4143 4144 dev_dbg(dev, "ASoC: Registered platform '%s'\n", platform->name); 4145 4146 return 0; 4147 } 4148 EXPORT_SYMBOL_GPL(snd_soc_add_platform); 4149 4150 /** 4151 * snd_soc_register_platform - Register a platform with the ASoC core 4152 * 4153 * @platform: platform to register 4154 */ 4155 int snd_soc_register_platform(struct device *dev, 4156 const struct snd_soc_platform_driver *platform_drv) 4157 { 4158 struct snd_soc_platform *platform; 4159 int ret; 4160 4161 dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev)); 4162 4163 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL); 4164 if (platform == NULL) 4165 return -ENOMEM; 4166 4167 ret = snd_soc_add_platform(dev, platform, platform_drv); 4168 if (ret) 4169 kfree(platform); 4170 4171 return ret; 4172 } 4173 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 4174 4175 /** 4176 * snd_soc_remove_platform - Remove a platform from the ASoC core 4177 * @platform: the platform to remove 4178 */ 4179 void snd_soc_remove_platform(struct snd_soc_platform *platform) 4180 { 4181 mutex_lock(&client_mutex); 4182 list_del(&platform->list); 4183 mutex_unlock(&client_mutex); 4184 4185 dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n", 4186 platform->name); 4187 kfree(platform->name); 4188 } 4189 EXPORT_SYMBOL_GPL(snd_soc_remove_platform); 4190 4191 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev) 4192 { 4193 struct snd_soc_platform *platform; 4194 4195 list_for_each_entry(platform, &platform_list, list) { 4196 if (dev == platform->dev) 4197 return platform; 4198 } 4199 4200 return NULL; 4201 } 4202 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform); 4203 4204 /** 4205 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 4206 * 4207 * @platform: platform to unregister 4208 */ 4209 void snd_soc_unregister_platform(struct device *dev) 4210 { 4211 struct snd_soc_platform *platform; 4212 4213 platform = snd_soc_lookup_platform(dev); 4214 if (!platform) 4215 return; 4216 4217 snd_soc_remove_platform(platform); 4218 kfree(platform); 4219 } 4220 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 4221 4222 static u64 codec_format_map[] = { 4223 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 4224 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 4225 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 4226 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 4227 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 4228 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 4229 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 4230 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 4231 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 4232 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 4233 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 4234 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 4235 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 4236 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 4237 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 4238 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 4239 }; 4240 4241 /* Fix up the DAI formats for endianness: codecs don't actually see 4242 * the endianness of the data but we're using the CPU format 4243 * definitions which do need to include endianness so we ensure that 4244 * codec DAIs always have both big and little endian variants set. 4245 */ 4246 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 4247 { 4248 int i; 4249 4250 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 4251 if (stream->formats & codec_format_map[i]) 4252 stream->formats |= codec_format_map[i]; 4253 } 4254 4255 /** 4256 * snd_soc_register_codec - Register a codec with the ASoC core 4257 * 4258 * @codec: codec to register 4259 */ 4260 int snd_soc_register_codec(struct device *dev, 4261 const struct snd_soc_codec_driver *codec_drv, 4262 struct snd_soc_dai_driver *dai_drv, 4263 int num_dai) 4264 { 4265 struct snd_soc_codec *codec; 4266 int ret, i; 4267 4268 dev_dbg(dev, "codec register %s\n", dev_name(dev)); 4269 4270 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); 4271 if (codec == NULL) 4272 return -ENOMEM; 4273 4274 /* create CODEC component name */ 4275 codec->name = fmt_single_name(dev, &codec->id); 4276 if (codec->name == NULL) { 4277 ret = -ENOMEM; 4278 goto fail_codec; 4279 } 4280 4281 codec->write = codec_drv->write; 4282 codec->read = codec_drv->read; 4283 codec->volatile_register = codec_drv->volatile_register; 4284 codec->readable_register = codec_drv->readable_register; 4285 codec->writable_register = codec_drv->writable_register; 4286 codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time; 4287 codec->dapm.bias_level = SND_SOC_BIAS_OFF; 4288 codec->dapm.dev = dev; 4289 codec->dapm.codec = codec; 4290 codec->dapm.seq_notifier = codec_drv->seq_notifier; 4291 codec->dapm.stream_event = codec_drv->stream_event; 4292 codec->dev = dev; 4293 codec->driver = codec_drv; 4294 codec->num_dai = num_dai; 4295 mutex_init(&codec->mutex); 4296 4297 for (i = 0; i < num_dai; i++) { 4298 fixup_codec_formats(&dai_drv[i].playback); 4299 fixup_codec_formats(&dai_drv[i].capture); 4300 } 4301 4302 mutex_lock(&client_mutex); 4303 list_add(&codec->list, &codec_list); 4304 mutex_unlock(&client_mutex); 4305 4306 /* register component */ 4307 ret = __snd_soc_register_component(dev, &codec->component, 4308 &codec_drv->component_driver, 4309 codec, dai_drv, num_dai, false); 4310 if (ret < 0) { 4311 dev_err(codec->dev, "ASoC: Failed to regster component: %d\n", ret); 4312 goto fail_codec_name; 4313 } 4314 4315 dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n", codec->name); 4316 return 0; 4317 4318 fail_codec_name: 4319 mutex_lock(&client_mutex); 4320 list_del(&codec->list); 4321 mutex_unlock(&client_mutex); 4322 4323 kfree(codec->name); 4324 fail_codec: 4325 kfree(codec); 4326 return ret; 4327 } 4328 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 4329 4330 /** 4331 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 4332 * 4333 * @codec: codec to unregister 4334 */ 4335 void snd_soc_unregister_codec(struct device *dev) 4336 { 4337 struct snd_soc_codec *codec; 4338 4339 list_for_each_entry(codec, &codec_list, list) { 4340 if (dev == codec->dev) 4341 goto found; 4342 } 4343 return; 4344 4345 found: 4346 snd_soc_unregister_component(dev); 4347 4348 mutex_lock(&client_mutex); 4349 list_del(&codec->list); 4350 mutex_unlock(&client_mutex); 4351 4352 dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n", codec->name); 4353 4354 snd_soc_cache_exit(codec); 4355 kfree(codec->name); 4356 kfree(codec); 4357 } 4358 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 4359 4360 /* Retrieve a card's name from device tree */ 4361 int snd_soc_of_parse_card_name(struct snd_soc_card *card, 4362 const char *propname) 4363 { 4364 struct device_node *np = card->dev->of_node; 4365 int ret; 4366 4367 ret = of_property_read_string_index(np, propname, 0, &card->name); 4368 /* 4369 * EINVAL means the property does not exist. This is fine providing 4370 * card->name was previously set, which is checked later in 4371 * snd_soc_register_card. 4372 */ 4373 if (ret < 0 && ret != -EINVAL) { 4374 dev_err(card->dev, 4375 "ASoC: Property '%s' could not be read: %d\n", 4376 propname, ret); 4377 return ret; 4378 } 4379 4380 return 0; 4381 } 4382 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name); 4383 4384 static const struct snd_soc_dapm_widget simple_widgets[] = { 4385 SND_SOC_DAPM_MIC("Microphone", NULL), 4386 SND_SOC_DAPM_LINE("Line", NULL), 4387 SND_SOC_DAPM_HP("Headphone", NULL), 4388 SND_SOC_DAPM_SPK("Speaker", NULL), 4389 }; 4390 4391 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card, 4392 const char *propname) 4393 { 4394 struct device_node *np = card->dev->of_node; 4395 struct snd_soc_dapm_widget *widgets; 4396 const char *template, *wname; 4397 int i, j, num_widgets, ret; 4398 4399 num_widgets = of_property_count_strings(np, propname); 4400 if (num_widgets < 0) { 4401 dev_err(card->dev, 4402 "ASoC: Property '%s' does not exist\n", propname); 4403 return -EINVAL; 4404 } 4405 if (num_widgets & 1) { 4406 dev_err(card->dev, 4407 "ASoC: Property '%s' length is not even\n", propname); 4408 return -EINVAL; 4409 } 4410 4411 num_widgets /= 2; 4412 if (!num_widgets) { 4413 dev_err(card->dev, "ASoC: Property '%s's length is zero\n", 4414 propname); 4415 return -EINVAL; 4416 } 4417 4418 widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets), 4419 GFP_KERNEL); 4420 if (!widgets) { 4421 dev_err(card->dev, 4422 "ASoC: Could not allocate memory for widgets\n"); 4423 return -ENOMEM; 4424 } 4425 4426 for (i = 0; i < num_widgets; i++) { 4427 ret = of_property_read_string_index(np, propname, 4428 2 * i, &template); 4429 if (ret) { 4430 dev_err(card->dev, 4431 "ASoC: Property '%s' index %d read error:%d\n", 4432 propname, 2 * i, ret); 4433 return -EINVAL; 4434 } 4435 4436 for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) { 4437 if (!strncmp(template, simple_widgets[j].name, 4438 strlen(simple_widgets[j].name))) { 4439 widgets[i] = simple_widgets[j]; 4440 break; 4441 } 4442 } 4443 4444 if (j >= ARRAY_SIZE(simple_widgets)) { 4445 dev_err(card->dev, 4446 "ASoC: DAPM widget '%s' is not supported\n", 4447 template); 4448 return -EINVAL; 4449 } 4450 4451 ret = of_property_read_string_index(np, propname, 4452 (2 * i) + 1, 4453 &wname); 4454 if (ret) { 4455 dev_err(card->dev, 4456 "ASoC: Property '%s' index %d read error:%d\n", 4457 propname, (2 * i) + 1, ret); 4458 return -EINVAL; 4459 } 4460 4461 widgets[i].name = wname; 4462 } 4463 4464 card->dapm_widgets = widgets; 4465 card->num_dapm_widgets = num_widgets; 4466 4467 return 0; 4468 } 4469 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets); 4470 4471 int snd_soc_of_parse_tdm_slot(struct device_node *np, 4472 unsigned int *slots, 4473 unsigned int *slot_width) 4474 { 4475 u32 val; 4476 int ret; 4477 4478 if (of_property_read_bool(np, "dai-tdm-slot-num")) { 4479 ret = of_property_read_u32(np, "dai-tdm-slot-num", &val); 4480 if (ret) 4481 return ret; 4482 4483 if (slots) 4484 *slots = val; 4485 } 4486 4487 if (of_property_read_bool(np, "dai-tdm-slot-width")) { 4488 ret = of_property_read_u32(np, "dai-tdm-slot-width", &val); 4489 if (ret) 4490 return ret; 4491 4492 if (slot_width) 4493 *slot_width = val; 4494 } 4495 4496 return 0; 4497 } 4498 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot); 4499 4500 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, 4501 const char *propname) 4502 { 4503 struct device_node *np = card->dev->of_node; 4504 int num_routes; 4505 struct snd_soc_dapm_route *routes; 4506 int i, ret; 4507 4508 num_routes = of_property_count_strings(np, propname); 4509 if (num_routes < 0 || num_routes & 1) { 4510 dev_err(card->dev, 4511 "ASoC: Property '%s' does not exist or its length is not even\n", 4512 propname); 4513 return -EINVAL; 4514 } 4515 num_routes /= 2; 4516 if (!num_routes) { 4517 dev_err(card->dev, "ASoC: Property '%s's length is zero\n", 4518 propname); 4519 return -EINVAL; 4520 } 4521 4522 routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes), 4523 GFP_KERNEL); 4524 if (!routes) { 4525 dev_err(card->dev, 4526 "ASoC: Could not allocate DAPM route table\n"); 4527 return -EINVAL; 4528 } 4529 4530 for (i = 0; i < num_routes; i++) { 4531 ret = of_property_read_string_index(np, propname, 4532 2 * i, &routes[i].sink); 4533 if (ret) { 4534 dev_err(card->dev, 4535 "ASoC: Property '%s' index %d could not be read: %d\n", 4536 propname, 2 * i, ret); 4537 return -EINVAL; 4538 } 4539 ret = of_property_read_string_index(np, propname, 4540 (2 * i) + 1, &routes[i].source); 4541 if (ret) { 4542 dev_err(card->dev, 4543 "ASoC: Property '%s' index %d could not be read: %d\n", 4544 propname, (2 * i) + 1, ret); 4545 return -EINVAL; 4546 } 4547 } 4548 4549 card->num_dapm_routes = num_routes; 4550 card->dapm_routes = routes; 4551 4552 return 0; 4553 } 4554 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing); 4555 4556 unsigned int snd_soc_of_parse_daifmt(struct device_node *np, 4557 const char *prefix) 4558 { 4559 int ret, i; 4560 char prop[128]; 4561 unsigned int format = 0; 4562 int bit, frame; 4563 const char *str; 4564 struct { 4565 char *name; 4566 unsigned int val; 4567 } of_fmt_table[] = { 4568 { "i2s", SND_SOC_DAIFMT_I2S }, 4569 { "right_j", SND_SOC_DAIFMT_RIGHT_J }, 4570 { "left_j", SND_SOC_DAIFMT_LEFT_J }, 4571 { "dsp_a", SND_SOC_DAIFMT_DSP_A }, 4572 { "dsp_b", SND_SOC_DAIFMT_DSP_B }, 4573 { "ac97", SND_SOC_DAIFMT_AC97 }, 4574 { "pdm", SND_SOC_DAIFMT_PDM}, 4575 { "msb", SND_SOC_DAIFMT_MSB }, 4576 { "lsb", SND_SOC_DAIFMT_LSB }, 4577 }; 4578 4579 if (!prefix) 4580 prefix = ""; 4581 4582 /* 4583 * check "[prefix]format = xxx" 4584 * SND_SOC_DAIFMT_FORMAT_MASK area 4585 */ 4586 snprintf(prop, sizeof(prop), "%sformat", prefix); 4587 ret = of_property_read_string(np, prop, &str); 4588 if (ret == 0) { 4589 for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) { 4590 if (strcmp(str, of_fmt_table[i].name) == 0) { 4591 format |= of_fmt_table[i].val; 4592 break; 4593 } 4594 } 4595 } 4596 4597 /* 4598 * check "[prefix]continuous-clock" 4599 * SND_SOC_DAIFMT_CLOCK_MASK area 4600 */ 4601 snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix); 4602 if (of_get_property(np, prop, NULL)) 4603 format |= SND_SOC_DAIFMT_CONT; 4604 else 4605 format |= SND_SOC_DAIFMT_GATED; 4606 4607 /* 4608 * check "[prefix]bitclock-inversion" 4609 * check "[prefix]frame-inversion" 4610 * SND_SOC_DAIFMT_INV_MASK area 4611 */ 4612 snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix); 4613 bit = !!of_get_property(np, prop, NULL); 4614 4615 snprintf(prop, sizeof(prop), "%sframe-inversion", prefix); 4616 frame = !!of_get_property(np, prop, NULL); 4617 4618 switch ((bit << 4) + frame) { 4619 case 0x11: 4620 format |= SND_SOC_DAIFMT_IB_IF; 4621 break; 4622 case 0x10: 4623 format |= SND_SOC_DAIFMT_IB_NF; 4624 break; 4625 case 0x01: 4626 format |= SND_SOC_DAIFMT_NB_IF; 4627 break; 4628 default: 4629 /* SND_SOC_DAIFMT_NB_NF is default */ 4630 break; 4631 } 4632 4633 /* 4634 * check "[prefix]bitclock-master" 4635 * check "[prefix]frame-master" 4636 * SND_SOC_DAIFMT_MASTER_MASK area 4637 */ 4638 snprintf(prop, sizeof(prop), "%sbitclock-master", prefix); 4639 bit = !!of_get_property(np, prop, NULL); 4640 4641 snprintf(prop, sizeof(prop), "%sframe-master", prefix); 4642 frame = !!of_get_property(np, prop, NULL); 4643 4644 switch ((bit << 4) + frame) { 4645 case 0x11: 4646 format |= SND_SOC_DAIFMT_CBM_CFM; 4647 break; 4648 case 0x10: 4649 format |= SND_SOC_DAIFMT_CBM_CFS; 4650 break; 4651 case 0x01: 4652 format |= SND_SOC_DAIFMT_CBS_CFM; 4653 break; 4654 default: 4655 format |= SND_SOC_DAIFMT_CBS_CFS; 4656 break; 4657 } 4658 4659 return format; 4660 } 4661 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt); 4662 4663 int snd_soc_of_get_dai_name(struct device_node *of_node, 4664 const char **dai_name) 4665 { 4666 struct snd_soc_component *pos; 4667 struct of_phandle_args args; 4668 int ret; 4669 4670 ret = of_parse_phandle_with_args(of_node, "sound-dai", 4671 "#sound-dai-cells", 0, &args); 4672 if (ret) 4673 return ret; 4674 4675 ret = -EPROBE_DEFER; 4676 4677 mutex_lock(&client_mutex); 4678 list_for_each_entry(pos, &component_list, list) { 4679 if (pos->dev->of_node != args.np) 4680 continue; 4681 4682 if (pos->driver->of_xlate_dai_name) { 4683 ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name); 4684 } else { 4685 int id = -1; 4686 4687 switch (args.args_count) { 4688 case 0: 4689 id = 0; /* same as dai_drv[0] */ 4690 break; 4691 case 1: 4692 id = args.args[0]; 4693 break; 4694 default: 4695 /* not supported */ 4696 break; 4697 } 4698 4699 if (id < 0 || id >= pos->num_dai) { 4700 ret = -EINVAL; 4701 break; 4702 } 4703 4704 ret = 0; 4705 4706 *dai_name = pos->dai_drv[id].name; 4707 if (!*dai_name) 4708 *dai_name = pos->name; 4709 } 4710 4711 break; 4712 } 4713 mutex_unlock(&client_mutex); 4714 4715 of_node_put(args.np); 4716 4717 return ret; 4718 } 4719 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name); 4720 4721 static int __init snd_soc_init(void) 4722 { 4723 #ifdef CONFIG_DEBUG_FS 4724 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL); 4725 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) { 4726 pr_warn("ASoC: Failed to create debugfs directory\n"); 4727 snd_soc_debugfs_root = NULL; 4728 } 4729 4730 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL, 4731 &codec_list_fops)) 4732 pr_warn("ASoC: Failed to create CODEC list debugfs file\n"); 4733 4734 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL, 4735 &dai_list_fops)) 4736 pr_warn("ASoC: Failed to create DAI list debugfs file\n"); 4737 4738 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL, 4739 &platform_list_fops)) 4740 pr_warn("ASoC: Failed to create platform list debugfs file\n"); 4741 #endif 4742 4743 snd_soc_util_init(); 4744 4745 return platform_driver_register(&soc_driver); 4746 } 4747 module_init(snd_soc_init); 4748 4749 static void __exit snd_soc_exit(void) 4750 { 4751 snd_soc_util_exit(); 4752 4753 #ifdef CONFIG_DEBUG_FS 4754 debugfs_remove_recursive(snd_soc_debugfs_root); 4755 #endif 4756 platform_driver_unregister(&soc_driver); 4757 } 4758 module_exit(snd_soc_exit); 4759 4760 /* Module information */ 4761 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 4762 MODULE_DESCRIPTION("ALSA SoC Core"); 4763 MODULE_LICENSE("GPL"); 4764 MODULE_ALIAS("platform:soc-audio"); 4765