xref: /openbmc/linux/sound/soc/soc-core.c (revision 9ac8d3fb)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *         with code, comments and ideas from :-
9  *         Richard Purdie <richard@openedhand.com>
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  TODO:
17  *   o Add hw rules to enforce rates, etc.
18  *   o More testing with other codecs/machines.
19  *   o Add more codecs and platforms to ensure good API coverage.
20  *   o Support TDM on PCM and I2S
21  */
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/platform_device.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 
37 /* debug */
38 #define SOC_DEBUG 0
39 #if SOC_DEBUG
40 #define dbg(format, arg...) printk(format, ## arg)
41 #else
42 #define dbg(format, arg...)
43 #endif
44 
45 static DEFINE_MUTEX(pcm_mutex);
46 static DEFINE_MUTEX(io_mutex);
47 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
48 
49 /*
50  * This is a timeout to do a DAPM powerdown after a stream is closed().
51  * It can be used to eliminate pops between different playback streams, e.g.
52  * between two audio tracks.
53  */
54 static int pmdown_time = 5000;
55 module_param(pmdown_time, int, 0);
56 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
57 
58 /*
59  * This function forces any delayed work to be queued and run.
60  */
61 static int run_delayed_work(struct delayed_work *dwork)
62 {
63 	int ret;
64 
65 	/* cancel any work waiting to be queued. */
66 	ret = cancel_delayed_work(dwork);
67 
68 	/* if there was any work waiting then we run it now and
69 	 * wait for it's completion */
70 	if (ret) {
71 		schedule_delayed_work(dwork, 0);
72 		flush_scheduled_work();
73 	}
74 	return ret;
75 }
76 
77 #ifdef CONFIG_SND_SOC_AC97_BUS
78 /* unregister ac97 codec */
79 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
80 {
81 	if (codec->ac97->dev.bus)
82 		device_unregister(&codec->ac97->dev);
83 	return 0;
84 }
85 
86 /* stop no dev release warning */
87 static void soc_ac97_device_release(struct device *dev){}
88 
89 /* register ac97 codec to bus */
90 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
91 {
92 	int err;
93 
94 	codec->ac97->dev.bus = &ac97_bus_type;
95 	codec->ac97->dev.parent = NULL;
96 	codec->ac97->dev.release = soc_ac97_device_release;
97 
98 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
99 		     codec->card->number, 0, codec->name);
100 	err = device_register(&codec->ac97->dev);
101 	if (err < 0) {
102 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
103 		codec->ac97->dev.bus = NULL;
104 		return err;
105 	}
106 	return 0;
107 }
108 #endif
109 
110 static inline const char *get_dai_name(int type)
111 {
112 	switch (type) {
113 	case SND_SOC_DAI_AC97_BUS:
114 	case SND_SOC_DAI_AC97:
115 		return "AC97";
116 	case SND_SOC_DAI_I2S:
117 		return "I2S";
118 	case SND_SOC_DAI_PCM:
119 		return "PCM";
120 	}
121 	return NULL;
122 }
123 
124 /*
125  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
126  * then initialized and any private data can be allocated. This also calls
127  * startup for the cpu DAI, platform, machine and codec DAI.
128  */
129 static int soc_pcm_open(struct snd_pcm_substream *substream)
130 {
131 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
132 	struct snd_soc_device *socdev = rtd->socdev;
133 	struct snd_pcm_runtime *runtime = substream->runtime;
134 	struct snd_soc_dai_link *machine = rtd->dai;
135 	struct snd_soc_platform *platform = socdev->platform;
136 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
137 	struct snd_soc_dai *codec_dai = machine->codec_dai;
138 	int ret = 0;
139 
140 	mutex_lock(&pcm_mutex);
141 
142 	/* startup the audio subsystem */
143 	if (cpu_dai->ops.startup) {
144 		ret = cpu_dai->ops.startup(substream);
145 		if (ret < 0) {
146 			printk(KERN_ERR "asoc: can't open interface %s\n",
147 				cpu_dai->name);
148 			goto out;
149 		}
150 	}
151 
152 	if (platform->pcm_ops->open) {
153 		ret = platform->pcm_ops->open(substream);
154 		if (ret < 0) {
155 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
156 			goto platform_err;
157 		}
158 	}
159 
160 	if (codec_dai->ops.startup) {
161 		ret = codec_dai->ops.startup(substream);
162 		if (ret < 0) {
163 			printk(KERN_ERR "asoc: can't open codec %s\n",
164 				codec_dai->name);
165 			goto codec_dai_err;
166 		}
167 	}
168 
169 	if (machine->ops && machine->ops->startup) {
170 		ret = machine->ops->startup(substream);
171 		if (ret < 0) {
172 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
173 			goto machine_err;
174 		}
175 	}
176 
177 	/* Check that the codec and cpu DAI's are compatible */
178 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
179 		runtime->hw.rate_min =
180 			max(codec_dai->playback.rate_min,
181 			    cpu_dai->playback.rate_min);
182 		runtime->hw.rate_max =
183 			min(codec_dai->playback.rate_max,
184 			    cpu_dai->playback.rate_max);
185 		runtime->hw.channels_min =
186 			max(codec_dai->playback.channels_min,
187 				cpu_dai->playback.channels_min);
188 		runtime->hw.channels_max =
189 			min(codec_dai->playback.channels_max,
190 				cpu_dai->playback.channels_max);
191 		runtime->hw.formats =
192 			codec_dai->playback.formats & cpu_dai->playback.formats;
193 		runtime->hw.rates =
194 			codec_dai->playback.rates & cpu_dai->playback.rates;
195 	} else {
196 		runtime->hw.rate_min =
197 			max(codec_dai->capture.rate_min,
198 			    cpu_dai->capture.rate_min);
199 		runtime->hw.rate_max =
200 			min(codec_dai->capture.rate_max,
201 			    cpu_dai->capture.rate_max);
202 		runtime->hw.channels_min =
203 			max(codec_dai->capture.channels_min,
204 				cpu_dai->capture.channels_min);
205 		runtime->hw.channels_max =
206 			min(codec_dai->capture.channels_max,
207 				cpu_dai->capture.channels_max);
208 		runtime->hw.formats =
209 			codec_dai->capture.formats & cpu_dai->capture.formats;
210 		runtime->hw.rates =
211 			codec_dai->capture.rates & cpu_dai->capture.rates;
212 	}
213 
214 	snd_pcm_limit_hw_rates(runtime);
215 	if (!runtime->hw.rates) {
216 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
217 			codec_dai->name, cpu_dai->name);
218 		goto machine_err;
219 	}
220 	if (!runtime->hw.formats) {
221 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
222 			codec_dai->name, cpu_dai->name);
223 		goto machine_err;
224 	}
225 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
226 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
227 			codec_dai->name, cpu_dai->name);
228 		goto machine_err;
229 	}
230 
231 	dbg("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
232 	dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
233 	dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
234 		runtime->hw.channels_max);
235 	dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
236 		runtime->hw.rate_max);
237 
238 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
239 		cpu_dai->playback.active = codec_dai->playback.active = 1;
240 	else
241 		cpu_dai->capture.active = codec_dai->capture.active = 1;
242 	cpu_dai->active = codec_dai->active = 1;
243 	cpu_dai->runtime = runtime;
244 	socdev->codec->active++;
245 	mutex_unlock(&pcm_mutex);
246 	return 0;
247 
248 machine_err:
249 	if (machine->ops && machine->ops->shutdown)
250 		machine->ops->shutdown(substream);
251 
252 codec_dai_err:
253 	if (platform->pcm_ops->close)
254 		platform->pcm_ops->close(substream);
255 
256 platform_err:
257 	if (cpu_dai->ops.shutdown)
258 		cpu_dai->ops.shutdown(substream);
259 out:
260 	mutex_unlock(&pcm_mutex);
261 	return ret;
262 }
263 
264 /*
265  * Power down the audio subsystem pmdown_time msecs after close is called.
266  * This is to ensure there are no pops or clicks in between any music tracks
267  * due to DAPM power cycling.
268  */
269 static void close_delayed_work(struct work_struct *work)
270 {
271 	struct snd_soc_device *socdev =
272 		container_of(work, struct snd_soc_device, delayed_work.work);
273 	struct snd_soc_codec *codec = socdev->codec;
274 	struct snd_soc_dai *codec_dai;
275 	int i;
276 
277 	mutex_lock(&pcm_mutex);
278 	for (i = 0; i < codec->num_dai; i++) {
279 		codec_dai = &codec->dai[i];
280 
281 		dbg("pop wq checking: %s status: %s waiting: %s\n",
282 			codec_dai->playback.stream_name,
283 			codec_dai->playback.active ? "active" : "inactive",
284 			codec_dai->pop_wait ? "yes" : "no");
285 
286 		/* are we waiting on this codec DAI stream */
287 		if (codec_dai->pop_wait == 1) {
288 
289 			/* Reduce power if no longer active */
290 			if (codec->active == 0) {
291 				dbg("pop wq D1 %s %s\n", codec->name,
292 					codec_dai->playback.stream_name);
293 				snd_soc_dapm_set_bias_level(socdev,
294 					SND_SOC_BIAS_PREPARE);
295 			}
296 
297 			codec_dai->pop_wait = 0;
298 			snd_soc_dapm_stream_event(codec,
299 				codec_dai->playback.stream_name,
300 				SND_SOC_DAPM_STREAM_STOP);
301 
302 			/* Fall into standby if no longer active */
303 			if (codec->active == 0) {
304 				dbg("pop wq D3 %s %s\n", codec->name,
305 					codec_dai->playback.stream_name);
306 				snd_soc_dapm_set_bias_level(socdev,
307 					SND_SOC_BIAS_STANDBY);
308 			}
309 		}
310 	}
311 	mutex_unlock(&pcm_mutex);
312 }
313 
314 /*
315  * Called by ALSA when a PCM substream is closed. Private data can be
316  * freed here. The cpu DAI, codec DAI, machine and platform are also
317  * shutdown.
318  */
319 static int soc_codec_close(struct snd_pcm_substream *substream)
320 {
321 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
322 	struct snd_soc_device *socdev = rtd->socdev;
323 	struct snd_soc_dai_link *machine = rtd->dai;
324 	struct snd_soc_platform *platform = socdev->platform;
325 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
326 	struct snd_soc_dai *codec_dai = machine->codec_dai;
327 	struct snd_soc_codec *codec = socdev->codec;
328 
329 	mutex_lock(&pcm_mutex);
330 
331 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
332 		cpu_dai->playback.active = codec_dai->playback.active = 0;
333 	else
334 		cpu_dai->capture.active = codec_dai->capture.active = 0;
335 
336 	if (codec_dai->playback.active == 0 &&
337 		codec_dai->capture.active == 0) {
338 		cpu_dai->active = codec_dai->active = 0;
339 	}
340 	codec->active--;
341 
342 	/* Muting the DAC suppresses artifacts caused during digital
343 	 * shutdown, for example from stopping clocks.
344 	 */
345 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
346 		snd_soc_dai_digital_mute(codec_dai, 1);
347 
348 	if (cpu_dai->ops.shutdown)
349 		cpu_dai->ops.shutdown(substream);
350 
351 	if (codec_dai->ops.shutdown)
352 		codec_dai->ops.shutdown(substream);
353 
354 	if (machine->ops && machine->ops->shutdown)
355 		machine->ops->shutdown(substream);
356 
357 	if (platform->pcm_ops->close)
358 		platform->pcm_ops->close(substream);
359 	cpu_dai->runtime = NULL;
360 
361 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
362 		/* start delayed pop wq here for playback streams */
363 		codec_dai->pop_wait = 1;
364 		schedule_delayed_work(&socdev->delayed_work,
365 			msecs_to_jiffies(pmdown_time));
366 	} else {
367 		/* capture streams can be powered down now */
368 		snd_soc_dapm_stream_event(codec,
369 			codec_dai->capture.stream_name,
370 			SND_SOC_DAPM_STREAM_STOP);
371 
372 		if (codec->active == 0 && codec_dai->pop_wait == 0)
373 			snd_soc_dapm_set_bias_level(socdev,
374 						SND_SOC_BIAS_STANDBY);
375 	}
376 
377 	mutex_unlock(&pcm_mutex);
378 	return 0;
379 }
380 
381 /*
382  * Called by ALSA when the PCM substream is prepared, can set format, sample
383  * rate, etc.  This function is non atomic and can be called multiple times,
384  * it can refer to the runtime info.
385  */
386 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
387 {
388 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
389 	struct snd_soc_device *socdev = rtd->socdev;
390 	struct snd_soc_dai_link *machine = rtd->dai;
391 	struct snd_soc_platform *platform = socdev->platform;
392 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
393 	struct snd_soc_dai *codec_dai = machine->codec_dai;
394 	struct snd_soc_codec *codec = socdev->codec;
395 	int ret = 0;
396 
397 	mutex_lock(&pcm_mutex);
398 
399 	if (machine->ops && machine->ops->prepare) {
400 		ret = machine->ops->prepare(substream);
401 		if (ret < 0) {
402 			printk(KERN_ERR "asoc: machine prepare error\n");
403 			goto out;
404 		}
405 	}
406 
407 	if (platform->pcm_ops->prepare) {
408 		ret = platform->pcm_ops->prepare(substream);
409 		if (ret < 0) {
410 			printk(KERN_ERR "asoc: platform prepare error\n");
411 			goto out;
412 		}
413 	}
414 
415 	if (codec_dai->ops.prepare) {
416 		ret = codec_dai->ops.prepare(substream);
417 		if (ret < 0) {
418 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
419 			goto out;
420 		}
421 	}
422 
423 	if (cpu_dai->ops.prepare) {
424 		ret = cpu_dai->ops.prepare(substream);
425 		if (ret < 0) {
426 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
427 			goto out;
428 		}
429 	}
430 
431 	/* we only want to start a DAPM playback stream if we are not waiting
432 	 * on an existing one stopping */
433 	if (codec_dai->pop_wait) {
434 		/* we are waiting for the delayed work to start */
435 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
436 				snd_soc_dapm_stream_event(socdev->codec,
437 					codec_dai->capture.stream_name,
438 					SND_SOC_DAPM_STREAM_START);
439 		else {
440 			codec_dai->pop_wait = 0;
441 			cancel_delayed_work(&socdev->delayed_work);
442 			snd_soc_dai_digital_mute(codec_dai, 0);
443 		}
444 	} else {
445 		/* no delayed work - do we need to power up codec */
446 		if (codec->bias_level != SND_SOC_BIAS_ON) {
447 
448 			snd_soc_dapm_set_bias_level(socdev,
449 						    SND_SOC_BIAS_PREPARE);
450 
451 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
452 				snd_soc_dapm_stream_event(codec,
453 					codec_dai->playback.stream_name,
454 					SND_SOC_DAPM_STREAM_START);
455 			else
456 				snd_soc_dapm_stream_event(codec,
457 					codec_dai->capture.stream_name,
458 					SND_SOC_DAPM_STREAM_START);
459 
460 			snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
461 			snd_soc_dai_digital_mute(codec_dai, 0);
462 
463 		} else {
464 			/* codec already powered - power on widgets */
465 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
466 				snd_soc_dapm_stream_event(codec,
467 					codec_dai->playback.stream_name,
468 					SND_SOC_DAPM_STREAM_START);
469 			else
470 				snd_soc_dapm_stream_event(codec,
471 					codec_dai->capture.stream_name,
472 					SND_SOC_DAPM_STREAM_START);
473 
474 			snd_soc_dai_digital_mute(codec_dai, 0);
475 		}
476 	}
477 
478 out:
479 	mutex_unlock(&pcm_mutex);
480 	return ret;
481 }
482 
483 /*
484  * Called by ALSA when the hardware params are set by application. This
485  * function can also be called multiple times and can allocate buffers
486  * (using snd_pcm_lib_* ). It's non-atomic.
487  */
488 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
489 				struct snd_pcm_hw_params *params)
490 {
491 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
492 	struct snd_soc_device *socdev = rtd->socdev;
493 	struct snd_soc_dai_link *machine = rtd->dai;
494 	struct snd_soc_platform *platform = socdev->platform;
495 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
496 	struct snd_soc_dai *codec_dai = machine->codec_dai;
497 	int ret = 0;
498 
499 	mutex_lock(&pcm_mutex);
500 
501 	if (machine->ops && machine->ops->hw_params) {
502 		ret = machine->ops->hw_params(substream, params);
503 		if (ret < 0) {
504 			printk(KERN_ERR "asoc: machine hw_params failed\n");
505 			goto out;
506 		}
507 	}
508 
509 	if (codec_dai->ops.hw_params) {
510 		ret = codec_dai->ops.hw_params(substream, params);
511 		if (ret < 0) {
512 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
513 				codec_dai->name);
514 			goto codec_err;
515 		}
516 	}
517 
518 	if (cpu_dai->ops.hw_params) {
519 		ret = cpu_dai->ops.hw_params(substream, params);
520 		if (ret < 0) {
521 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
522 				cpu_dai->name);
523 			goto interface_err;
524 		}
525 	}
526 
527 	if (platform->pcm_ops->hw_params) {
528 		ret = platform->pcm_ops->hw_params(substream, params);
529 		if (ret < 0) {
530 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
531 				platform->name);
532 			goto platform_err;
533 		}
534 	}
535 
536 out:
537 	mutex_unlock(&pcm_mutex);
538 	return ret;
539 
540 platform_err:
541 	if (cpu_dai->ops.hw_free)
542 		cpu_dai->ops.hw_free(substream);
543 
544 interface_err:
545 	if (codec_dai->ops.hw_free)
546 		codec_dai->ops.hw_free(substream);
547 
548 codec_err:
549 	if (machine->ops && machine->ops->hw_free)
550 		machine->ops->hw_free(substream);
551 
552 	mutex_unlock(&pcm_mutex);
553 	return ret;
554 }
555 
556 /*
557  * Free's resources allocated by hw_params, can be called multiple times
558  */
559 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
560 {
561 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
562 	struct snd_soc_device *socdev = rtd->socdev;
563 	struct snd_soc_dai_link *machine = rtd->dai;
564 	struct snd_soc_platform *platform = socdev->platform;
565 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
566 	struct snd_soc_dai *codec_dai = machine->codec_dai;
567 	struct snd_soc_codec *codec = socdev->codec;
568 
569 	mutex_lock(&pcm_mutex);
570 
571 	/* apply codec digital mute */
572 	if (!codec->active)
573 		snd_soc_dai_digital_mute(codec_dai, 1);
574 
575 	/* free any machine hw params */
576 	if (machine->ops && machine->ops->hw_free)
577 		machine->ops->hw_free(substream);
578 
579 	/* free any DMA resources */
580 	if (platform->pcm_ops->hw_free)
581 		platform->pcm_ops->hw_free(substream);
582 
583 	/* now free hw params for the DAI's  */
584 	if (codec_dai->ops.hw_free)
585 		codec_dai->ops.hw_free(substream);
586 
587 	if (cpu_dai->ops.hw_free)
588 		cpu_dai->ops.hw_free(substream);
589 
590 	mutex_unlock(&pcm_mutex);
591 	return 0;
592 }
593 
594 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
595 {
596 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
597 	struct snd_soc_device *socdev = rtd->socdev;
598 	struct snd_soc_dai_link *machine = rtd->dai;
599 	struct snd_soc_platform *platform = socdev->platform;
600 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
601 	struct snd_soc_dai *codec_dai = machine->codec_dai;
602 	int ret;
603 
604 	if (codec_dai->ops.trigger) {
605 		ret = codec_dai->ops.trigger(substream, cmd);
606 		if (ret < 0)
607 			return ret;
608 	}
609 
610 	if (platform->pcm_ops->trigger) {
611 		ret = platform->pcm_ops->trigger(substream, cmd);
612 		if (ret < 0)
613 			return ret;
614 	}
615 
616 	if (cpu_dai->ops.trigger) {
617 		ret = cpu_dai->ops.trigger(substream, cmd);
618 		if (ret < 0)
619 			return ret;
620 	}
621 	return 0;
622 }
623 
624 /* ASoC PCM operations */
625 static struct snd_pcm_ops soc_pcm_ops = {
626 	.open		= soc_pcm_open,
627 	.close		= soc_codec_close,
628 	.hw_params	= soc_pcm_hw_params,
629 	.hw_free	= soc_pcm_hw_free,
630 	.prepare	= soc_pcm_prepare,
631 	.trigger	= soc_pcm_trigger,
632 };
633 
634 #ifdef CONFIG_PM
635 /* powers down audio subsystem for suspend */
636 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
637 {
638 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
639 	struct snd_soc_machine *machine = socdev->machine;
640 	struct snd_soc_platform *platform = socdev->platform;
641 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
642 	struct snd_soc_codec *codec = socdev->codec;
643 	int i;
644 
645 	/* Due to the resume being scheduled into a workqueue we could
646 	* suspend before that's finished - wait for it to complete.
647 	 */
648 	snd_power_lock(codec->card);
649 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
650 	snd_power_unlock(codec->card);
651 
652 	/* we're going to block userspace touching us until resume completes */
653 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
654 
655 	/* mute any active DAC's */
656 	for (i = 0; i < machine->num_links; i++) {
657 		struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
658 		if (dai->dai_ops.digital_mute && dai->playback.active)
659 			dai->dai_ops.digital_mute(dai, 1);
660 	}
661 
662 	/* suspend all pcms */
663 	for (i = 0; i < machine->num_links; i++)
664 		snd_pcm_suspend_all(machine->dai_link[i].pcm);
665 
666 	if (machine->suspend_pre)
667 		machine->suspend_pre(pdev, state);
668 
669 	for (i = 0; i < machine->num_links; i++) {
670 		struct snd_soc_dai  *cpu_dai = machine->dai_link[i].cpu_dai;
671 		if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
672 			cpu_dai->suspend(pdev, cpu_dai);
673 		if (platform->suspend)
674 			platform->suspend(pdev, cpu_dai);
675 	}
676 
677 	/* close any waiting streams and save state */
678 	run_delayed_work(&socdev->delayed_work);
679 	codec->suspend_bias_level = codec->bias_level;
680 
681 	for (i = 0; i < codec->num_dai; i++) {
682 		char *stream = codec->dai[i].playback.stream_name;
683 		if (stream != NULL)
684 			snd_soc_dapm_stream_event(codec, stream,
685 				SND_SOC_DAPM_STREAM_SUSPEND);
686 		stream = codec->dai[i].capture.stream_name;
687 		if (stream != NULL)
688 			snd_soc_dapm_stream_event(codec, stream,
689 				SND_SOC_DAPM_STREAM_SUSPEND);
690 	}
691 
692 	if (codec_dev->suspend)
693 		codec_dev->suspend(pdev, state);
694 
695 	for (i = 0; i < machine->num_links; i++) {
696 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
697 		if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
698 			cpu_dai->suspend(pdev, cpu_dai);
699 	}
700 
701 	if (machine->suspend_post)
702 		machine->suspend_post(pdev, state);
703 
704 	return 0;
705 }
706 
707 /* deferred resume work, so resume can complete before we finished
708  * setting our codec back up, which can be very slow on I2C
709  */
710 static void soc_resume_deferred(struct work_struct *work)
711 {
712 	struct snd_soc_device *socdev = container_of(work,
713 						     struct snd_soc_device,
714 						     deferred_resume_work);
715 	struct snd_soc_machine *machine = socdev->machine;
716 	struct snd_soc_platform *platform = socdev->platform;
717 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
718 	struct snd_soc_codec *codec = socdev->codec;
719 	struct platform_device *pdev = to_platform_device(socdev->dev);
720 	int i;
721 
722 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
723 	 * so userspace apps are blocked from touching us
724 	 */
725 
726 	dev_info(socdev->dev, "starting resume work\n");
727 
728 	if (machine->resume_pre)
729 		machine->resume_pre(pdev);
730 
731 	for (i = 0; i < machine->num_links; i++) {
732 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
733 		if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
734 			cpu_dai->resume(pdev, cpu_dai);
735 	}
736 
737 	if (codec_dev->resume)
738 		codec_dev->resume(pdev);
739 
740 	for (i = 0; i < codec->num_dai; i++) {
741 		char *stream = codec->dai[i].playback.stream_name;
742 		if (stream != NULL)
743 			snd_soc_dapm_stream_event(codec, stream,
744 				SND_SOC_DAPM_STREAM_RESUME);
745 		stream = codec->dai[i].capture.stream_name;
746 		if (stream != NULL)
747 			snd_soc_dapm_stream_event(codec, stream,
748 				SND_SOC_DAPM_STREAM_RESUME);
749 	}
750 
751 	/* unmute any active DACs */
752 	for (i = 0; i < machine->num_links; i++) {
753 		struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
754 		if (dai->dai_ops.digital_mute && dai->playback.active)
755 			dai->dai_ops.digital_mute(dai, 0);
756 	}
757 
758 	for (i = 0; i < machine->num_links; i++) {
759 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
760 		if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
761 			cpu_dai->resume(pdev, cpu_dai);
762 		if (platform->resume)
763 			platform->resume(pdev, cpu_dai);
764 	}
765 
766 	if (machine->resume_post)
767 		machine->resume_post(pdev);
768 
769 	dev_info(socdev->dev, "resume work completed\n");
770 
771 	/* userspace can access us now we are back as we were before */
772 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
773 }
774 
775 /* powers up audio subsystem after a suspend */
776 static int soc_resume(struct platform_device *pdev)
777 {
778 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
779 
780 	dev_info(socdev->dev, "scheduling resume work\n");
781 
782 	if (!schedule_work(&socdev->deferred_resume_work))
783 		dev_err(socdev->dev, "work item may be lost\n");
784 
785 	return 0;
786 }
787 
788 #else
789 #define soc_suspend	NULL
790 #define soc_resume	NULL
791 #endif
792 
793 /* probes a new socdev */
794 static int soc_probe(struct platform_device *pdev)
795 {
796 	int ret = 0, i;
797 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
798 	struct snd_soc_machine *machine = socdev->machine;
799 	struct snd_soc_platform *platform = socdev->platform;
800 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
801 
802 	if (machine->probe) {
803 		ret = machine->probe(pdev);
804 		if (ret < 0)
805 			return ret;
806 	}
807 
808 	for (i = 0; i < machine->num_links; i++) {
809 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
810 		if (cpu_dai->probe) {
811 			ret = cpu_dai->probe(pdev, cpu_dai);
812 			if (ret < 0)
813 				goto cpu_dai_err;
814 		}
815 	}
816 
817 	if (codec_dev->probe) {
818 		ret = codec_dev->probe(pdev);
819 		if (ret < 0)
820 			goto cpu_dai_err;
821 	}
822 
823 	if (platform->probe) {
824 		ret = platform->probe(pdev);
825 		if (ret < 0)
826 			goto platform_err;
827 	}
828 
829 	/* DAPM stream work */
830 	INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
831 #ifdef CONFIG_PM
832 	/* deferred resume work */
833 	INIT_WORK(&socdev->deferred_resume_work, soc_resume_deferred);
834 #endif
835 
836 	return 0;
837 
838 platform_err:
839 	if (codec_dev->remove)
840 		codec_dev->remove(pdev);
841 
842 cpu_dai_err:
843 	for (i--; i >= 0; i--) {
844 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
845 		if (cpu_dai->remove)
846 			cpu_dai->remove(pdev, cpu_dai);
847 	}
848 
849 	if (machine->remove)
850 		machine->remove(pdev);
851 
852 	return ret;
853 }
854 
855 /* removes a socdev */
856 static int soc_remove(struct platform_device *pdev)
857 {
858 	int i;
859 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
860 	struct snd_soc_machine *machine = socdev->machine;
861 	struct snd_soc_platform *platform = socdev->platform;
862 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
863 
864 	run_delayed_work(&socdev->delayed_work);
865 
866 	if (platform->remove)
867 		platform->remove(pdev);
868 
869 	if (codec_dev->remove)
870 		codec_dev->remove(pdev);
871 
872 	for (i = 0; i < machine->num_links; i++) {
873 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
874 		if (cpu_dai->remove)
875 			cpu_dai->remove(pdev, cpu_dai);
876 	}
877 
878 	if (machine->remove)
879 		machine->remove(pdev);
880 
881 	return 0;
882 }
883 
884 /* ASoC platform driver */
885 static struct platform_driver soc_driver = {
886 	.driver		= {
887 		.name		= "soc-audio",
888 		.owner		= THIS_MODULE,
889 	},
890 	.probe		= soc_probe,
891 	.remove		= soc_remove,
892 	.suspend	= soc_suspend,
893 	.resume		= soc_resume,
894 };
895 
896 /* create a new pcm */
897 static int soc_new_pcm(struct snd_soc_device *socdev,
898 	struct snd_soc_dai_link *dai_link, int num)
899 {
900 	struct snd_soc_codec *codec = socdev->codec;
901 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
902 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
903 	struct snd_soc_pcm_runtime *rtd;
904 	struct snd_pcm *pcm;
905 	char new_name[64];
906 	int ret = 0, playback = 0, capture = 0;
907 
908 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
909 	if (rtd == NULL)
910 		return -ENOMEM;
911 
912 	rtd->dai = dai_link;
913 	rtd->socdev = socdev;
914 	codec_dai->codec = socdev->codec;
915 
916 	/* check client and interface hw capabilities */
917 	sprintf(new_name, "%s %s-%s-%d", dai_link->stream_name, codec_dai->name,
918 		get_dai_name(cpu_dai->type), num);
919 
920 	if (codec_dai->playback.channels_min)
921 		playback = 1;
922 	if (codec_dai->capture.channels_min)
923 		capture = 1;
924 
925 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
926 		capture, &pcm);
927 	if (ret < 0) {
928 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
929 			codec->name);
930 		kfree(rtd);
931 		return ret;
932 	}
933 
934 	dai_link->pcm = pcm;
935 	pcm->private_data = rtd;
936 	soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
937 	soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
938 	soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
939 	soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
940 	soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
941 	soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
942 	soc_pcm_ops.page = socdev->platform->pcm_ops->page;
943 
944 	if (playback)
945 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
946 
947 	if (capture)
948 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
949 
950 	ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
951 	if (ret < 0) {
952 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
953 		kfree(rtd);
954 		return ret;
955 	}
956 
957 	pcm->private_free = socdev->platform->pcm_free;
958 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
959 		cpu_dai->name);
960 	return ret;
961 }
962 
963 /* codec register dump */
964 static ssize_t codec_reg_show(struct device *dev,
965 	struct device_attribute *attr, char *buf)
966 {
967 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
968 	struct snd_soc_codec *codec = devdata->codec;
969 	int i, step = 1, count = 0;
970 
971 	if (!codec->reg_cache_size)
972 		return 0;
973 
974 	if (codec->reg_cache_step)
975 		step = codec->reg_cache_step;
976 
977 	count += sprintf(buf, "%s registers\n", codec->name);
978 	for (i = 0; i < codec->reg_cache_size; i += step) {
979 		count += sprintf(buf + count, "%2x: ", i);
980 		if (count >= PAGE_SIZE - 1)
981 			break;
982 
983 		if (codec->display_register)
984 			count += codec->display_register(codec, buf + count,
985 							 PAGE_SIZE - count, i);
986 		else
987 			count += snprintf(buf + count, PAGE_SIZE - count,
988 					  "%4x", codec->read(codec, i));
989 
990 		if (count >= PAGE_SIZE - 1)
991 			break;
992 
993 		count += snprintf(buf + count, PAGE_SIZE - count, "\n");
994 		if (count >= PAGE_SIZE - 1)
995 			break;
996 	}
997 
998 	/* Truncate count; min() would cause a warning */
999 	if (count >= PAGE_SIZE)
1000 		count = PAGE_SIZE - 1;
1001 
1002 	return count;
1003 }
1004 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1005 
1006 /**
1007  * snd_soc_new_ac97_codec - initailise AC97 device
1008  * @codec: audio codec
1009  * @ops: AC97 bus operations
1010  * @num: AC97 codec number
1011  *
1012  * Initialises AC97 codec resources for use by ad-hoc devices only.
1013  */
1014 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1015 	struct snd_ac97_bus_ops *ops, int num)
1016 {
1017 	mutex_lock(&codec->mutex);
1018 
1019 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1020 	if (codec->ac97 == NULL) {
1021 		mutex_unlock(&codec->mutex);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1026 	if (codec->ac97->bus == NULL) {
1027 		kfree(codec->ac97);
1028 		codec->ac97 = NULL;
1029 		mutex_unlock(&codec->mutex);
1030 		return -ENOMEM;
1031 	}
1032 
1033 	codec->ac97->bus->ops = ops;
1034 	codec->ac97->num = num;
1035 	mutex_unlock(&codec->mutex);
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1039 
1040 /**
1041  * snd_soc_free_ac97_codec - free AC97 codec device
1042  * @codec: audio codec
1043  *
1044  * Frees AC97 codec device resources.
1045  */
1046 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1047 {
1048 	mutex_lock(&codec->mutex);
1049 	kfree(codec->ac97->bus);
1050 	kfree(codec->ac97);
1051 	codec->ac97 = NULL;
1052 	mutex_unlock(&codec->mutex);
1053 }
1054 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1055 
1056 /**
1057  * snd_soc_update_bits - update codec register bits
1058  * @codec: audio codec
1059  * @reg: codec register
1060  * @mask: register mask
1061  * @value: new value
1062  *
1063  * Writes new register value.
1064  *
1065  * Returns 1 for change else 0.
1066  */
1067 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1068 				unsigned short mask, unsigned short value)
1069 {
1070 	int change;
1071 	unsigned short old, new;
1072 
1073 	mutex_lock(&io_mutex);
1074 	old = snd_soc_read(codec, reg);
1075 	new = (old & ~mask) | value;
1076 	change = old != new;
1077 	if (change)
1078 		snd_soc_write(codec, reg, new);
1079 
1080 	mutex_unlock(&io_mutex);
1081 	return change;
1082 }
1083 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1084 
1085 /**
1086  * snd_soc_test_bits - test register for change
1087  * @codec: audio codec
1088  * @reg: codec register
1089  * @mask: register mask
1090  * @value: new value
1091  *
1092  * Tests a register with a new value and checks if the new value is
1093  * different from the old value.
1094  *
1095  * Returns 1 for change else 0.
1096  */
1097 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1098 				unsigned short mask, unsigned short value)
1099 {
1100 	int change;
1101 	unsigned short old, new;
1102 
1103 	mutex_lock(&io_mutex);
1104 	old = snd_soc_read(codec, reg);
1105 	new = (old & ~mask) | value;
1106 	change = old != new;
1107 	mutex_unlock(&io_mutex);
1108 
1109 	return change;
1110 }
1111 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1112 
1113 /**
1114  * snd_soc_new_pcms - create new sound card and pcms
1115  * @socdev: the SoC audio device
1116  *
1117  * Create a new sound card based upon the codec and interface pcms.
1118  *
1119  * Returns 0 for success, else error.
1120  */
1121 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1122 {
1123 	struct snd_soc_codec *codec = socdev->codec;
1124 	struct snd_soc_machine *machine = socdev->machine;
1125 	int ret = 0, i;
1126 
1127 	mutex_lock(&codec->mutex);
1128 
1129 	/* register a sound card */
1130 	codec->card = snd_card_new(idx, xid, codec->owner, 0);
1131 	if (!codec->card) {
1132 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1133 			codec->name);
1134 		mutex_unlock(&codec->mutex);
1135 		return -ENODEV;
1136 	}
1137 
1138 	codec->card->dev = socdev->dev;
1139 	codec->card->private_data = codec;
1140 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1141 
1142 	/* create the pcms */
1143 	for (i = 0; i < machine->num_links; i++) {
1144 		ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1145 		if (ret < 0) {
1146 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1147 				machine->dai_link[i].stream_name);
1148 			mutex_unlock(&codec->mutex);
1149 			return ret;
1150 		}
1151 	}
1152 
1153 	mutex_unlock(&codec->mutex);
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1157 
1158 /**
1159  * snd_soc_register_card - register sound card
1160  * @socdev: the SoC audio device
1161  *
1162  * Register a SoC sound card. Also registers an AC97 device if the
1163  * codec is AC97 for ad hoc devices.
1164  *
1165  * Returns 0 for success, else error.
1166  */
1167 int snd_soc_register_card(struct snd_soc_device *socdev)
1168 {
1169 	struct snd_soc_codec *codec = socdev->codec;
1170 	struct snd_soc_machine *machine = socdev->machine;
1171 	int ret = 0, i, ac97 = 0, err = 0;
1172 
1173 	for (i = 0; i < machine->num_links; i++) {
1174 		if (socdev->machine->dai_link[i].init) {
1175 			err = socdev->machine->dai_link[i].init(codec);
1176 			if (err < 0) {
1177 				printk(KERN_ERR "asoc: failed to init %s\n",
1178 					socdev->machine->dai_link[i].stream_name);
1179 				continue;
1180 			}
1181 		}
1182 		if (socdev->machine->dai_link[i].codec_dai->type ==
1183 			SND_SOC_DAI_AC97_BUS)
1184 			ac97 = 1;
1185 	}
1186 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1187 		 "%s", machine->name);
1188 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1189 		 "%s (%s)", machine->name, codec->name);
1190 
1191 	ret = snd_card_register(codec->card);
1192 	if (ret < 0) {
1193 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1194 				codec->name);
1195 		goto out;
1196 	}
1197 
1198 	mutex_lock(&codec->mutex);
1199 #ifdef CONFIG_SND_SOC_AC97_BUS
1200 	if (ac97) {
1201 		ret = soc_ac97_dev_register(codec);
1202 		if (ret < 0) {
1203 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1204 			snd_card_free(codec->card);
1205 			mutex_unlock(&codec->mutex);
1206 			goto out;
1207 		}
1208 	}
1209 #endif
1210 
1211 	err = snd_soc_dapm_sys_add(socdev->dev);
1212 	if (err < 0)
1213 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1214 
1215 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1216 	if (err < 0)
1217 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1218 
1219 	mutex_unlock(&codec->mutex);
1220 
1221 out:
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL_GPL(snd_soc_register_card);
1225 
1226 /**
1227  * snd_soc_free_pcms - free sound card and pcms
1228  * @socdev: the SoC audio device
1229  *
1230  * Frees sound card and pcms associated with the socdev.
1231  * Also unregister the codec if it is an AC97 device.
1232  */
1233 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1234 {
1235 	struct snd_soc_codec *codec = socdev->codec;
1236 #ifdef CONFIG_SND_SOC_AC97_BUS
1237 	struct snd_soc_dai *codec_dai;
1238 	int i;
1239 #endif
1240 
1241 	mutex_lock(&codec->mutex);
1242 #ifdef CONFIG_SND_SOC_AC97_BUS
1243 	for (i = 0; i < codec->num_dai; i++) {
1244 		codec_dai = &codec->dai[i];
1245 		if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
1246 			soc_ac97_dev_unregister(codec);
1247 			goto free_card;
1248 		}
1249 	}
1250 free_card:
1251 #endif
1252 
1253 	if (codec->card)
1254 		snd_card_free(codec->card);
1255 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1256 	mutex_unlock(&codec->mutex);
1257 }
1258 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1259 
1260 /**
1261  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1262  * @substream: the pcm substream
1263  * @hw: the hardware parameters
1264  *
1265  * Sets the substream runtime hardware parameters.
1266  */
1267 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1268 	const struct snd_pcm_hardware *hw)
1269 {
1270 	struct snd_pcm_runtime *runtime = substream->runtime;
1271 	runtime->hw.info = hw->info;
1272 	runtime->hw.formats = hw->formats;
1273 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1274 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1275 	runtime->hw.periods_min = hw->periods_min;
1276 	runtime->hw.periods_max = hw->periods_max;
1277 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1278 	runtime->hw.fifo_size = hw->fifo_size;
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1282 
1283 /**
1284  * snd_soc_cnew - create new control
1285  * @_template: control template
1286  * @data: control private data
1287  * @lnng_name: control long name
1288  *
1289  * Create a new mixer control from a template control.
1290  *
1291  * Returns 0 for success, else error.
1292  */
1293 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1294 	void *data, char *long_name)
1295 {
1296 	struct snd_kcontrol_new template;
1297 
1298 	memcpy(&template, _template, sizeof(template));
1299 	if (long_name)
1300 		template.name = long_name;
1301 	template.index = 0;
1302 
1303 	return snd_ctl_new1(&template, data);
1304 }
1305 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1306 
1307 /**
1308  * snd_soc_info_enum_double - enumerated double mixer info callback
1309  * @kcontrol: mixer control
1310  * @uinfo: control element information
1311  *
1312  * Callback to provide information about a double enumerated
1313  * mixer control.
1314  *
1315  * Returns 0 for success.
1316  */
1317 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1318 	struct snd_ctl_elem_info *uinfo)
1319 {
1320 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1321 
1322 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1323 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1324 	uinfo->value.enumerated.items = e->max;
1325 
1326 	if (uinfo->value.enumerated.item > e->max - 1)
1327 		uinfo->value.enumerated.item = e->max - 1;
1328 	strcpy(uinfo->value.enumerated.name,
1329 		e->texts[uinfo->value.enumerated.item]);
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1333 
1334 /**
1335  * snd_soc_get_enum_double - enumerated double mixer get callback
1336  * @kcontrol: mixer control
1337  * @uinfo: control element information
1338  *
1339  * Callback to get the value of a double enumerated mixer.
1340  *
1341  * Returns 0 for success.
1342  */
1343 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1344 	struct snd_ctl_elem_value *ucontrol)
1345 {
1346 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1347 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1348 	unsigned short val, bitmask;
1349 
1350 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1351 		;
1352 	val = snd_soc_read(codec, e->reg);
1353 	ucontrol->value.enumerated.item[0]
1354 		= (val >> e->shift_l) & (bitmask - 1);
1355 	if (e->shift_l != e->shift_r)
1356 		ucontrol->value.enumerated.item[1] =
1357 			(val >> e->shift_r) & (bitmask - 1);
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1362 
1363 /**
1364  * snd_soc_put_enum_double - enumerated double mixer put callback
1365  * @kcontrol: mixer control
1366  * @uinfo: control element information
1367  *
1368  * Callback to set the value of a double enumerated mixer.
1369  *
1370  * Returns 0 for success.
1371  */
1372 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1373 	struct snd_ctl_elem_value *ucontrol)
1374 {
1375 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1376 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1377 	unsigned short val;
1378 	unsigned short mask, bitmask;
1379 
1380 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1381 		;
1382 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1383 		return -EINVAL;
1384 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1385 	mask = (bitmask - 1) << e->shift_l;
1386 	if (e->shift_l != e->shift_r) {
1387 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1388 			return -EINVAL;
1389 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1390 		mask |= (bitmask - 1) << e->shift_r;
1391 	}
1392 
1393 	return snd_soc_update_bits(codec, e->reg, mask, val);
1394 }
1395 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1396 
1397 /**
1398  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1399  * @kcontrol: mixer control
1400  * @uinfo: control element information
1401  *
1402  * Callback to provide information about an external enumerated
1403  * single mixer.
1404  *
1405  * Returns 0 for success.
1406  */
1407 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1408 	struct snd_ctl_elem_info *uinfo)
1409 {
1410 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1411 
1412 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1413 	uinfo->count = 1;
1414 	uinfo->value.enumerated.items = e->max;
1415 
1416 	if (uinfo->value.enumerated.item > e->max - 1)
1417 		uinfo->value.enumerated.item = e->max - 1;
1418 	strcpy(uinfo->value.enumerated.name,
1419 		e->texts[uinfo->value.enumerated.item]);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1423 
1424 /**
1425  * snd_soc_info_volsw_ext - external single mixer info callback
1426  * @kcontrol: mixer control
1427  * @uinfo: control element information
1428  *
1429  * Callback to provide information about a single external mixer control.
1430  *
1431  * Returns 0 for success.
1432  */
1433 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1434 	struct snd_ctl_elem_info *uinfo)
1435 {
1436 	int max = kcontrol->private_value;
1437 
1438 	if (max == 1)
1439 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1440 	else
1441 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1442 
1443 	uinfo->count = 1;
1444 	uinfo->value.integer.min = 0;
1445 	uinfo->value.integer.max = max;
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1449 
1450 /**
1451  * snd_soc_info_volsw - single mixer info callback
1452  * @kcontrol: mixer control
1453  * @uinfo: control element information
1454  *
1455  * Callback to provide information about a single mixer control.
1456  *
1457  * Returns 0 for success.
1458  */
1459 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1460 	struct snd_ctl_elem_info *uinfo)
1461 {
1462 	struct soc_mixer_control *mc =
1463 		(struct soc_mixer_control *)kcontrol->private_value;
1464 	int max = mc->max;
1465 	unsigned int shift = mc->shift;
1466 	unsigned int rshift = mc->rshift;
1467 
1468 	if (max == 1)
1469 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1470 	else
1471 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1472 
1473 	uinfo->count = shift == rshift ? 1 : 2;
1474 	uinfo->value.integer.min = 0;
1475 	uinfo->value.integer.max = max;
1476 	return 0;
1477 }
1478 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1479 
1480 /**
1481  * snd_soc_get_volsw - single mixer get callback
1482  * @kcontrol: mixer control
1483  * @uinfo: control element information
1484  *
1485  * Callback to get the value of a single mixer control.
1486  *
1487  * Returns 0 for success.
1488  */
1489 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1490 	struct snd_ctl_elem_value *ucontrol)
1491 {
1492 	struct soc_mixer_control *mc =
1493 		(struct soc_mixer_control *)kcontrol->private_value;
1494 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1495 	unsigned int reg = mc->reg;
1496 	unsigned int shift = mc->shift;
1497 	unsigned int rshift = mc->rshift;
1498 	int max = mc->max;
1499 	unsigned int mask = (1 << fls(max)) - 1;
1500 	unsigned int invert = mc->invert;
1501 
1502 	ucontrol->value.integer.value[0] =
1503 		(snd_soc_read(codec, reg) >> shift) & mask;
1504 	if (shift != rshift)
1505 		ucontrol->value.integer.value[1] =
1506 			(snd_soc_read(codec, reg) >> rshift) & mask;
1507 	if (invert) {
1508 		ucontrol->value.integer.value[0] =
1509 			max - ucontrol->value.integer.value[0];
1510 		if (shift != rshift)
1511 			ucontrol->value.integer.value[1] =
1512 				max - ucontrol->value.integer.value[1];
1513 	}
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1518 
1519 /**
1520  * snd_soc_put_volsw - single mixer put callback
1521  * @kcontrol: mixer control
1522  * @uinfo: control element information
1523  *
1524  * Callback to set the value of a single mixer control.
1525  *
1526  * Returns 0 for success.
1527  */
1528 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1529 	struct snd_ctl_elem_value *ucontrol)
1530 {
1531 	struct soc_mixer_control *mc =
1532 		(struct soc_mixer_control *)kcontrol->private_value;
1533 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1534 	unsigned int reg = mc->reg;
1535 	unsigned int shift = mc->shift;
1536 	unsigned int rshift = mc->rshift;
1537 	int max = mc->max;
1538 	unsigned int mask = (1 << fls(max)) - 1;
1539 	unsigned int invert = mc->invert;
1540 	unsigned short val, val2, val_mask;
1541 
1542 	val = (ucontrol->value.integer.value[0] & mask);
1543 	if (invert)
1544 		val = max - val;
1545 	val_mask = mask << shift;
1546 	val = val << shift;
1547 	if (shift != rshift) {
1548 		val2 = (ucontrol->value.integer.value[1] & mask);
1549 		if (invert)
1550 			val2 = max - val2;
1551 		val_mask |= mask << rshift;
1552 		val |= val2 << rshift;
1553 	}
1554 	return snd_soc_update_bits(codec, reg, val_mask, val);
1555 }
1556 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1557 
1558 /**
1559  * snd_soc_info_volsw_2r - double mixer info callback
1560  * @kcontrol: mixer control
1561  * @uinfo: control element information
1562  *
1563  * Callback to provide information about a double mixer control that
1564  * spans 2 codec registers.
1565  *
1566  * Returns 0 for success.
1567  */
1568 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1569 	struct snd_ctl_elem_info *uinfo)
1570 {
1571 	struct soc_mixer_control *mc =
1572 		(struct soc_mixer_control *)kcontrol->private_value;
1573 	int max = mc->max;
1574 
1575 	if (max == 1)
1576 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1577 	else
1578 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1579 
1580 	uinfo->count = 2;
1581 	uinfo->value.integer.min = 0;
1582 	uinfo->value.integer.max = max;
1583 	return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1586 
1587 /**
1588  * snd_soc_get_volsw_2r - double mixer get callback
1589  * @kcontrol: mixer control
1590  * @uinfo: control element information
1591  *
1592  * Callback to get the value of a double mixer control that spans 2 registers.
1593  *
1594  * Returns 0 for success.
1595  */
1596 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1597 	struct snd_ctl_elem_value *ucontrol)
1598 {
1599 	struct soc_mixer_control *mc =
1600 		(struct soc_mixer_control *)kcontrol->private_value;
1601 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1602 	unsigned int reg = mc->reg;
1603 	unsigned int reg2 = mc->rreg;
1604 	unsigned int shift = mc->shift;
1605 	int max = mc->max;
1606 	unsigned int mask = (1<<fls(max))-1;
1607 	unsigned int invert = mc->invert;
1608 
1609 	ucontrol->value.integer.value[0] =
1610 		(snd_soc_read(codec, reg) >> shift) & mask;
1611 	ucontrol->value.integer.value[1] =
1612 		(snd_soc_read(codec, reg2) >> shift) & mask;
1613 	if (invert) {
1614 		ucontrol->value.integer.value[0] =
1615 			max - ucontrol->value.integer.value[0];
1616 		ucontrol->value.integer.value[1] =
1617 			max - ucontrol->value.integer.value[1];
1618 	}
1619 
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1623 
1624 /**
1625  * snd_soc_put_volsw_2r - double mixer set callback
1626  * @kcontrol: mixer control
1627  * @uinfo: control element information
1628  *
1629  * Callback to set the value of a double mixer control that spans 2 registers.
1630  *
1631  * Returns 0 for success.
1632  */
1633 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1634 	struct snd_ctl_elem_value *ucontrol)
1635 {
1636 	struct soc_mixer_control *mc =
1637 		(struct soc_mixer_control *)kcontrol->private_value;
1638 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1639 	unsigned int reg = mc->reg;
1640 	unsigned int reg2 = mc->rreg;
1641 	unsigned int shift = mc->shift;
1642 	int max = mc->max;
1643 	unsigned int mask = (1 << fls(max)) - 1;
1644 	unsigned int invert = mc->invert;
1645 	int err;
1646 	unsigned short val, val2, val_mask;
1647 
1648 	val_mask = mask << shift;
1649 	val = (ucontrol->value.integer.value[0] & mask);
1650 	val2 = (ucontrol->value.integer.value[1] & mask);
1651 
1652 	if (invert) {
1653 		val = max - val;
1654 		val2 = max - val2;
1655 	}
1656 
1657 	val = val << shift;
1658 	val2 = val2 << shift;
1659 
1660 	err = snd_soc_update_bits(codec, reg, val_mask, val);
1661 	if (err < 0)
1662 		return err;
1663 
1664 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1665 	return err;
1666 }
1667 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1668 
1669 /**
1670  * snd_soc_info_volsw_s8 - signed mixer info callback
1671  * @kcontrol: mixer control
1672  * @uinfo: control element information
1673  *
1674  * Callback to provide information about a signed mixer control.
1675  *
1676  * Returns 0 for success.
1677  */
1678 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1679 	struct snd_ctl_elem_info *uinfo)
1680 {
1681 	struct soc_mixer_control *mc =
1682 		(struct soc_mixer_control *)kcontrol->private_value;
1683 	int max = mc->max;
1684 	int min = mc->min;
1685 
1686 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1687 	uinfo->count = 2;
1688 	uinfo->value.integer.min = 0;
1689 	uinfo->value.integer.max = max-min;
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1693 
1694 /**
1695  * snd_soc_get_volsw_s8 - signed mixer get callback
1696  * @kcontrol: mixer control
1697  * @uinfo: control element information
1698  *
1699  * Callback to get the value of a signed mixer control.
1700  *
1701  * Returns 0 for success.
1702  */
1703 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1704 	struct snd_ctl_elem_value *ucontrol)
1705 {
1706 	struct soc_mixer_control *mc =
1707 		(struct soc_mixer_control *)kcontrol->private_value;
1708 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1709 	unsigned int reg = mc->reg;
1710 	int min = mc->min;
1711 	int val = snd_soc_read(codec, reg);
1712 
1713 	ucontrol->value.integer.value[0] =
1714 		((signed char)(val & 0xff))-min;
1715 	ucontrol->value.integer.value[1] =
1716 		((signed char)((val >> 8) & 0xff))-min;
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1720 
1721 /**
1722  * snd_soc_put_volsw_sgn - signed mixer put callback
1723  * @kcontrol: mixer control
1724  * @uinfo: control element information
1725  *
1726  * Callback to set the value of a signed mixer control.
1727  *
1728  * Returns 0 for success.
1729  */
1730 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1731 	struct snd_ctl_elem_value *ucontrol)
1732 {
1733 	struct soc_mixer_control *mc =
1734 		(struct soc_mixer_control *)kcontrol->private_value;
1735 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1736 	unsigned int reg = mc->reg;
1737 	int min = mc->min;
1738 	unsigned short val;
1739 
1740 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
1741 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
1742 
1743 	return snd_soc_update_bits(codec, reg, 0xffff, val);
1744 }
1745 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
1746 
1747 /**
1748  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1749  * @dai: DAI
1750  * @clk_id: DAI specific clock ID
1751  * @freq: new clock frequency in Hz
1752  * @dir: new clock direction - input/output.
1753  *
1754  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1755  */
1756 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
1757 	unsigned int freq, int dir)
1758 {
1759 	if (dai->dai_ops.set_sysclk)
1760 		return dai->dai_ops.set_sysclk(dai, clk_id, freq, dir);
1761 	else
1762 		return -EINVAL;
1763 }
1764 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
1765 
1766 /**
1767  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1768  * @dai: DAI
1769  * @clk_id: DAI specific clock divider ID
1770  * @div: new clock divisor.
1771  *
1772  * Configures the clock dividers. This is used to derive the best DAI bit and
1773  * frame clocks from the system or master clock. It's best to set the DAI bit
1774  * and frame clocks as low as possible to save system power.
1775  */
1776 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
1777 	int div_id, int div)
1778 {
1779 	if (dai->dai_ops.set_clkdiv)
1780 		return dai->dai_ops.set_clkdiv(dai, div_id, div);
1781 	else
1782 		return -EINVAL;
1783 }
1784 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
1785 
1786 /**
1787  * snd_soc_dai_set_pll - configure DAI PLL.
1788  * @dai: DAI
1789  * @pll_id: DAI specific PLL ID
1790  * @freq_in: PLL input clock frequency in Hz
1791  * @freq_out: requested PLL output clock frequency in Hz
1792  *
1793  * Configures and enables PLL to generate output clock based on input clock.
1794  */
1795 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
1796 	int pll_id, unsigned int freq_in, unsigned int freq_out)
1797 {
1798 	if (dai->dai_ops.set_pll)
1799 		return dai->dai_ops.set_pll(dai, pll_id, freq_in, freq_out);
1800 	else
1801 		return -EINVAL;
1802 }
1803 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
1804 
1805 /**
1806  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1807  * @dai: DAI
1808  * @clk_id: DAI specific clock ID
1809  * @fmt: SND_SOC_DAIFMT_ format value.
1810  *
1811  * Configures the DAI hardware format and clocking.
1812  */
1813 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1814 {
1815 	if (dai->dai_ops.set_fmt)
1816 		return dai->dai_ops.set_fmt(dai, fmt);
1817 	else
1818 		return -EINVAL;
1819 }
1820 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
1821 
1822 /**
1823  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1824  * @dai: DAI
1825  * @mask: DAI specific mask representing used slots.
1826  * @slots: Number of slots in use.
1827  *
1828  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1829  * specific.
1830  */
1831 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
1832 	unsigned int mask, int slots)
1833 {
1834 	if (dai->dai_ops.set_sysclk)
1835 		return dai->dai_ops.set_tdm_slot(dai, mask, slots);
1836 	else
1837 		return -EINVAL;
1838 }
1839 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
1840 
1841 /**
1842  * snd_soc_dai_set_tristate - configure DAI system or master clock.
1843  * @dai: DAI
1844  * @tristate: tristate enable
1845  *
1846  * Tristates the DAI so that others can use it.
1847  */
1848 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
1849 {
1850 	if (dai->dai_ops.set_sysclk)
1851 		return dai->dai_ops.set_tristate(dai, tristate);
1852 	else
1853 		return -EINVAL;
1854 }
1855 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
1856 
1857 /**
1858  * snd_soc_dai_digital_mute - configure DAI system or master clock.
1859  * @dai: DAI
1860  * @mute: mute enable
1861  *
1862  * Mutes the DAI DAC.
1863  */
1864 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
1865 {
1866 	if (dai->dai_ops.digital_mute)
1867 		return dai->dai_ops.digital_mute(dai, mute);
1868 	else
1869 		return -EINVAL;
1870 }
1871 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
1872 
1873 static int __devinit snd_soc_init(void)
1874 {
1875 	printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1876 	return platform_driver_register(&soc_driver);
1877 }
1878 
1879 static void snd_soc_exit(void)
1880 {
1881 	platform_driver_unregister(&soc_driver);
1882 }
1883 
1884 module_init(snd_soc_init);
1885 module_exit(snd_soc_exit);
1886 
1887 /* Module information */
1888 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
1889 MODULE_DESCRIPTION("ALSA SoC Core");
1890 MODULE_LICENSE("GPL");
1891 MODULE_ALIAS("platform:soc-audio");
1892