xref: /openbmc/linux/sound/soc/soc-core.c (revision 82ced6fd)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *         with code, comments and ideas from :-
9  *         Richard Purdie <richard@openedhand.com>
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  TODO:
17  *   o Add hw rules to enforce rates, etc.
18  *   o More testing with other codecs/machines.
19  *   o Add more codecs and platforms to ensure good API coverage.
20  *   o Support TDM on PCM and I2S
21  */
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41 
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45 
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51 
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54 
55 /*
56  * This is a timeout to do a DAPM powerdown after a stream is closed().
57  * It can be used to eliminate pops between different playback streams, e.g.
58  * between two audio tracks.
59  */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63 
64 /*
65  * This function forces any delayed work to be queued and run.
66  */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 	int ret;
70 
71 	/* cancel any work waiting to be queued. */
72 	ret = cancel_delayed_work(dwork);
73 
74 	/* if there was any work waiting then we run it now and
75 	 * wait for it's completion */
76 	if (ret) {
77 		schedule_delayed_work(dwork, 0);
78 		flush_scheduled_work();
79 	}
80 	return ret;
81 }
82 
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
86 {
87 	if (codec->ac97->dev.bus)
88 		device_unregister(&codec->ac97->dev);
89 	return 0;
90 }
91 
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
94 
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
97 {
98 	int err;
99 
100 	codec->ac97->dev.bus = &ac97_bus_type;
101 	codec->ac97->dev.parent = codec->card->dev;
102 	codec->ac97->dev.release = soc_ac97_device_release;
103 
104 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 		     codec->card->number, 0, codec->name);
106 	err = device_register(&codec->ac97->dev);
107 	if (err < 0) {
108 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 		codec->ac97->dev.bus = NULL;
110 		return err;
111 	}
112 	return 0;
113 }
114 #endif
115 
116 /*
117  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118  * then initialized and any private data can be allocated. This also calls
119  * startup for the cpu DAI, platform, machine and codec DAI.
120  */
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
122 {
123 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 	struct snd_soc_device *socdev = rtd->socdev;
125 	struct snd_soc_card *card = socdev->card;
126 	struct snd_pcm_runtime *runtime = substream->runtime;
127 	struct snd_soc_dai_link *machine = rtd->dai;
128 	struct snd_soc_platform *platform = card->platform;
129 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 	struct snd_soc_dai *codec_dai = machine->codec_dai;
131 	int ret = 0;
132 
133 	mutex_lock(&pcm_mutex);
134 
135 	/* startup the audio subsystem */
136 	if (cpu_dai->ops->startup) {
137 		ret = cpu_dai->ops->startup(substream, cpu_dai);
138 		if (ret < 0) {
139 			printk(KERN_ERR "asoc: can't open interface %s\n",
140 				cpu_dai->name);
141 			goto out;
142 		}
143 	}
144 
145 	if (platform->pcm_ops->open) {
146 		ret = platform->pcm_ops->open(substream);
147 		if (ret < 0) {
148 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
149 			goto platform_err;
150 		}
151 	}
152 
153 	if (codec_dai->ops->startup) {
154 		ret = codec_dai->ops->startup(substream, codec_dai);
155 		if (ret < 0) {
156 			printk(KERN_ERR "asoc: can't open codec %s\n",
157 				codec_dai->name);
158 			goto codec_dai_err;
159 		}
160 	}
161 
162 	if (machine->ops && machine->ops->startup) {
163 		ret = machine->ops->startup(substream);
164 		if (ret < 0) {
165 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
166 			goto machine_err;
167 		}
168 	}
169 
170 	/* Check that the codec and cpu DAI's are compatible */
171 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 		runtime->hw.rate_min =
173 			max(codec_dai->playback.rate_min,
174 			    cpu_dai->playback.rate_min);
175 		runtime->hw.rate_max =
176 			min(codec_dai->playback.rate_max,
177 			    cpu_dai->playback.rate_max);
178 		runtime->hw.channels_min =
179 			max(codec_dai->playback.channels_min,
180 				cpu_dai->playback.channels_min);
181 		runtime->hw.channels_max =
182 			min(codec_dai->playback.channels_max,
183 				cpu_dai->playback.channels_max);
184 		runtime->hw.formats =
185 			codec_dai->playback.formats & cpu_dai->playback.formats;
186 		runtime->hw.rates =
187 			codec_dai->playback.rates & cpu_dai->playback.rates;
188 	} else {
189 		runtime->hw.rate_min =
190 			max(codec_dai->capture.rate_min,
191 			    cpu_dai->capture.rate_min);
192 		runtime->hw.rate_max =
193 			min(codec_dai->capture.rate_max,
194 			    cpu_dai->capture.rate_max);
195 		runtime->hw.channels_min =
196 			max(codec_dai->capture.channels_min,
197 				cpu_dai->capture.channels_min);
198 		runtime->hw.channels_max =
199 			min(codec_dai->capture.channels_max,
200 				cpu_dai->capture.channels_max);
201 		runtime->hw.formats =
202 			codec_dai->capture.formats & cpu_dai->capture.formats;
203 		runtime->hw.rates =
204 			codec_dai->capture.rates & cpu_dai->capture.rates;
205 	}
206 
207 	snd_pcm_limit_hw_rates(runtime);
208 	if (!runtime->hw.rates) {
209 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 			codec_dai->name, cpu_dai->name);
211 		goto machine_err;
212 	}
213 	if (!runtime->hw.formats) {
214 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 			codec_dai->name, cpu_dai->name);
216 		goto machine_err;
217 	}
218 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 			codec_dai->name, cpu_dai->name);
221 		goto machine_err;
222 	}
223 
224 	pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 		 runtime->hw.channels_max);
228 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 		 runtime->hw.rate_max);
230 
231 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 		cpu_dai->playback.active = codec_dai->playback.active = 1;
233 	else
234 		cpu_dai->capture.active = codec_dai->capture.active = 1;
235 	cpu_dai->active = codec_dai->active = 1;
236 	cpu_dai->runtime = runtime;
237 	card->codec->active++;
238 	mutex_unlock(&pcm_mutex);
239 	return 0;
240 
241 machine_err:
242 	if (machine->ops && machine->ops->shutdown)
243 		machine->ops->shutdown(substream);
244 
245 codec_dai_err:
246 	if (platform->pcm_ops->close)
247 		platform->pcm_ops->close(substream);
248 
249 platform_err:
250 	if (cpu_dai->ops->shutdown)
251 		cpu_dai->ops->shutdown(substream, cpu_dai);
252 out:
253 	mutex_unlock(&pcm_mutex);
254 	return ret;
255 }
256 
257 /*
258  * Power down the audio subsystem pmdown_time msecs after close is called.
259  * This is to ensure there are no pops or clicks in between any music tracks
260  * due to DAPM power cycling.
261  */
262 static void close_delayed_work(struct work_struct *work)
263 {
264 	struct snd_soc_card *card = container_of(work, struct snd_soc_card,
265 						 delayed_work.work);
266 	struct snd_soc_device *socdev = card->socdev;
267 	struct snd_soc_codec *codec = card->codec;
268 	struct snd_soc_dai *codec_dai;
269 	int i;
270 
271 	mutex_lock(&pcm_mutex);
272 	for (i = 0; i < codec->num_dai; i++) {
273 		codec_dai = &codec->dai[i];
274 
275 		pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 			 codec_dai->playback.stream_name,
277 			 codec_dai->playback.active ? "active" : "inactive",
278 			 codec_dai->pop_wait ? "yes" : "no");
279 
280 		/* are we waiting on this codec DAI stream */
281 		if (codec_dai->pop_wait == 1) {
282 
283 			/* Reduce power if no longer active */
284 			if (codec->active == 0) {
285 				pr_debug("pop wq D1 %s %s\n", codec->name,
286 					 codec_dai->playback.stream_name);
287 				snd_soc_dapm_set_bias_level(socdev,
288 					SND_SOC_BIAS_PREPARE);
289 			}
290 
291 			codec_dai->pop_wait = 0;
292 			snd_soc_dapm_stream_event(codec,
293 				codec_dai->playback.stream_name,
294 				SND_SOC_DAPM_STREAM_STOP);
295 
296 			/* Fall into standby if no longer active */
297 			if (codec->active == 0) {
298 				pr_debug("pop wq D3 %s %s\n", codec->name,
299 					 codec_dai->playback.stream_name);
300 				snd_soc_dapm_set_bias_level(socdev,
301 					SND_SOC_BIAS_STANDBY);
302 			}
303 		}
304 	}
305 	mutex_unlock(&pcm_mutex);
306 }
307 
308 /*
309  * Called by ALSA when a PCM substream is closed. Private data can be
310  * freed here. The cpu DAI, codec DAI, machine and platform are also
311  * shutdown.
312  */
313 static int soc_codec_close(struct snd_pcm_substream *substream)
314 {
315 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 	struct snd_soc_device *socdev = rtd->socdev;
317 	struct snd_soc_card *card = socdev->card;
318 	struct snd_soc_dai_link *machine = rtd->dai;
319 	struct snd_soc_platform *platform = card->platform;
320 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 	struct snd_soc_dai *codec_dai = machine->codec_dai;
322 	struct snd_soc_codec *codec = card->codec;
323 
324 	mutex_lock(&pcm_mutex);
325 
326 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 		cpu_dai->playback.active = codec_dai->playback.active = 0;
328 	else
329 		cpu_dai->capture.active = codec_dai->capture.active = 0;
330 
331 	if (codec_dai->playback.active == 0 &&
332 		codec_dai->capture.active == 0) {
333 		cpu_dai->active = codec_dai->active = 0;
334 	}
335 	codec->active--;
336 
337 	/* Muting the DAC suppresses artifacts caused during digital
338 	 * shutdown, for example from stopping clocks.
339 	 */
340 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 		snd_soc_dai_digital_mute(codec_dai, 1);
342 
343 	if (cpu_dai->ops->shutdown)
344 		cpu_dai->ops->shutdown(substream, cpu_dai);
345 
346 	if (codec_dai->ops->shutdown)
347 		codec_dai->ops->shutdown(substream, codec_dai);
348 
349 	if (machine->ops && machine->ops->shutdown)
350 		machine->ops->shutdown(substream);
351 
352 	if (platform->pcm_ops->close)
353 		platform->pcm_ops->close(substream);
354 	cpu_dai->runtime = NULL;
355 
356 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 		/* start delayed pop wq here for playback streams */
358 		codec_dai->pop_wait = 1;
359 		schedule_delayed_work(&card->delayed_work,
360 			msecs_to_jiffies(pmdown_time));
361 	} else {
362 		/* capture streams can be powered down now */
363 		snd_soc_dapm_stream_event(codec,
364 			codec_dai->capture.stream_name,
365 			SND_SOC_DAPM_STREAM_STOP);
366 
367 		if (codec->active == 0 && codec_dai->pop_wait == 0)
368 			snd_soc_dapm_set_bias_level(socdev,
369 						SND_SOC_BIAS_STANDBY);
370 	}
371 
372 	mutex_unlock(&pcm_mutex);
373 	return 0;
374 }
375 
376 /*
377  * Called by ALSA when the PCM substream is prepared, can set format, sample
378  * rate, etc.  This function is non atomic and can be called multiple times,
379  * it can refer to the runtime info.
380  */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 	struct snd_soc_device *socdev = rtd->socdev;
385 	struct snd_soc_card *card = socdev->card;
386 	struct snd_soc_dai_link *machine = rtd->dai;
387 	struct snd_soc_platform *platform = card->platform;
388 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 	struct snd_soc_dai *codec_dai = machine->codec_dai;
390 	struct snd_soc_codec *codec = card->codec;
391 	int ret = 0;
392 
393 	mutex_lock(&pcm_mutex);
394 
395 	if (machine->ops && machine->ops->prepare) {
396 		ret = machine->ops->prepare(substream);
397 		if (ret < 0) {
398 			printk(KERN_ERR "asoc: machine prepare error\n");
399 			goto out;
400 		}
401 	}
402 
403 	if (platform->pcm_ops->prepare) {
404 		ret = platform->pcm_ops->prepare(substream);
405 		if (ret < 0) {
406 			printk(KERN_ERR "asoc: platform prepare error\n");
407 			goto out;
408 		}
409 	}
410 
411 	if (codec_dai->ops->prepare) {
412 		ret = codec_dai->ops->prepare(substream, codec_dai);
413 		if (ret < 0) {
414 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
415 			goto out;
416 		}
417 	}
418 
419 	if (cpu_dai->ops->prepare) {
420 		ret = cpu_dai->ops->prepare(substream, cpu_dai);
421 		if (ret < 0) {
422 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
423 			goto out;
424 		}
425 	}
426 
427 	/* cancel any delayed stream shutdown that is pending */
428 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 	    codec_dai->pop_wait) {
430 		codec_dai->pop_wait = 0;
431 		cancel_delayed_work(&card->delayed_work);
432 	}
433 
434 	/* do we need to power up codec */
435 	if (codec->bias_level != SND_SOC_BIAS_ON) {
436 		snd_soc_dapm_set_bias_level(socdev,
437 					    SND_SOC_BIAS_PREPARE);
438 
439 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 			snd_soc_dapm_stream_event(codec,
441 					codec_dai->playback.stream_name,
442 					SND_SOC_DAPM_STREAM_START);
443 		else
444 			snd_soc_dapm_stream_event(codec,
445 					codec_dai->capture.stream_name,
446 					SND_SOC_DAPM_STREAM_START);
447 
448 		snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 		snd_soc_dai_digital_mute(codec_dai, 0);
450 
451 	} else {
452 		/* codec already powered - power on widgets */
453 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 			snd_soc_dapm_stream_event(codec,
455 					codec_dai->playback.stream_name,
456 					SND_SOC_DAPM_STREAM_START);
457 		else
458 			snd_soc_dapm_stream_event(codec,
459 					codec_dai->capture.stream_name,
460 					SND_SOC_DAPM_STREAM_START);
461 
462 		snd_soc_dai_digital_mute(codec_dai, 0);
463 	}
464 
465 out:
466 	mutex_unlock(&pcm_mutex);
467 	return ret;
468 }
469 
470 /*
471  * Called by ALSA when the hardware params are set by application. This
472  * function can also be called multiple times and can allocate buffers
473  * (using snd_pcm_lib_* ). It's non-atomic.
474  */
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 				struct snd_pcm_hw_params *params)
477 {
478 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 	struct snd_soc_device *socdev = rtd->socdev;
480 	struct snd_soc_dai_link *machine = rtd->dai;
481 	struct snd_soc_card *card = socdev->card;
482 	struct snd_soc_platform *platform = card->platform;
483 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 	struct snd_soc_dai *codec_dai = machine->codec_dai;
485 	int ret = 0;
486 
487 	mutex_lock(&pcm_mutex);
488 
489 	if (machine->ops && machine->ops->hw_params) {
490 		ret = machine->ops->hw_params(substream, params);
491 		if (ret < 0) {
492 			printk(KERN_ERR "asoc: machine hw_params failed\n");
493 			goto out;
494 		}
495 	}
496 
497 	if (codec_dai->ops->hw_params) {
498 		ret = codec_dai->ops->hw_params(substream, params, codec_dai);
499 		if (ret < 0) {
500 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
501 				codec_dai->name);
502 			goto codec_err;
503 		}
504 	}
505 
506 	if (cpu_dai->ops->hw_params) {
507 		ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
508 		if (ret < 0) {
509 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
510 				cpu_dai->name);
511 			goto interface_err;
512 		}
513 	}
514 
515 	if (platform->pcm_ops->hw_params) {
516 		ret = platform->pcm_ops->hw_params(substream, params);
517 		if (ret < 0) {
518 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
519 				platform->name);
520 			goto platform_err;
521 		}
522 	}
523 
524 out:
525 	mutex_unlock(&pcm_mutex);
526 	return ret;
527 
528 platform_err:
529 	if (cpu_dai->ops->hw_free)
530 		cpu_dai->ops->hw_free(substream, cpu_dai);
531 
532 interface_err:
533 	if (codec_dai->ops->hw_free)
534 		codec_dai->ops->hw_free(substream, codec_dai);
535 
536 codec_err:
537 	if (machine->ops && machine->ops->hw_free)
538 		machine->ops->hw_free(substream);
539 
540 	mutex_unlock(&pcm_mutex);
541 	return ret;
542 }
543 
544 /*
545  * Free's resources allocated by hw_params, can be called multiple times
546  */
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
548 {
549 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 	struct snd_soc_device *socdev = rtd->socdev;
551 	struct snd_soc_dai_link *machine = rtd->dai;
552 	struct snd_soc_card *card = socdev->card;
553 	struct snd_soc_platform *platform = card->platform;
554 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 	struct snd_soc_dai *codec_dai = machine->codec_dai;
556 	struct snd_soc_codec *codec = card->codec;
557 
558 	mutex_lock(&pcm_mutex);
559 
560 	/* apply codec digital mute */
561 	if (!codec->active)
562 		snd_soc_dai_digital_mute(codec_dai, 1);
563 
564 	/* free any machine hw params */
565 	if (machine->ops && machine->ops->hw_free)
566 		machine->ops->hw_free(substream);
567 
568 	/* free any DMA resources */
569 	if (platform->pcm_ops->hw_free)
570 		platform->pcm_ops->hw_free(substream);
571 
572 	/* now free hw params for the DAI's  */
573 	if (codec_dai->ops->hw_free)
574 		codec_dai->ops->hw_free(substream, codec_dai);
575 
576 	if (cpu_dai->ops->hw_free)
577 		cpu_dai->ops->hw_free(substream, cpu_dai);
578 
579 	mutex_unlock(&pcm_mutex);
580 	return 0;
581 }
582 
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 	struct snd_soc_device *socdev = rtd->socdev;
587 	struct snd_soc_card *card= socdev->card;
588 	struct snd_soc_dai_link *machine = rtd->dai;
589 	struct snd_soc_platform *platform = card->platform;
590 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 	struct snd_soc_dai *codec_dai = machine->codec_dai;
592 	int ret;
593 
594 	if (codec_dai->ops->trigger) {
595 		ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
596 		if (ret < 0)
597 			return ret;
598 	}
599 
600 	if (platform->pcm_ops->trigger) {
601 		ret = platform->pcm_ops->trigger(substream, cmd);
602 		if (ret < 0)
603 			return ret;
604 	}
605 
606 	if (cpu_dai->ops->trigger) {
607 		ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
608 		if (ret < 0)
609 			return ret;
610 	}
611 	return 0;
612 }
613 
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 	.open		= soc_pcm_open,
617 	.close		= soc_codec_close,
618 	.hw_params	= soc_pcm_hw_params,
619 	.hw_free	= soc_pcm_hw_free,
620 	.prepare	= soc_pcm_prepare,
621 	.trigger	= soc_pcm_trigger,
622 };
623 
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
627 {
628 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 	struct snd_soc_card *card = socdev->card;
630 	struct snd_soc_platform *platform = card->platform;
631 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 	struct snd_soc_codec *codec = card->codec;
633 	int i;
634 
635 	/* Due to the resume being scheduled into a workqueue we could
636 	* suspend before that's finished - wait for it to complete.
637 	 */
638 	snd_power_lock(codec->card);
639 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 	snd_power_unlock(codec->card);
641 
642 	/* we're going to block userspace touching us until resume completes */
643 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
644 
645 	/* mute any active DAC's */
646 	for (i = 0; i < card->num_links; i++) {
647 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 		if (dai->ops->digital_mute && dai->playback.active)
649 			dai->ops->digital_mute(dai, 1);
650 	}
651 
652 	/* suspend all pcms */
653 	for (i = 0; i < card->num_links; i++)
654 		snd_pcm_suspend_all(card->dai_link[i].pcm);
655 
656 	if (card->suspend_pre)
657 		card->suspend_pre(pdev, state);
658 
659 	for (i = 0; i < card->num_links; i++) {
660 		struct snd_soc_dai  *cpu_dai = card->dai_link[i].cpu_dai;
661 		if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 			cpu_dai->suspend(cpu_dai);
663 		if (platform->suspend)
664 			platform->suspend(cpu_dai);
665 	}
666 
667 	/* close any waiting streams and save state */
668 	run_delayed_work(&card->delayed_work);
669 	codec->suspend_bias_level = codec->bias_level;
670 
671 	for (i = 0; i < codec->num_dai; i++) {
672 		char *stream = codec->dai[i].playback.stream_name;
673 		if (stream != NULL)
674 			snd_soc_dapm_stream_event(codec, stream,
675 				SND_SOC_DAPM_STREAM_SUSPEND);
676 		stream = codec->dai[i].capture.stream_name;
677 		if (stream != NULL)
678 			snd_soc_dapm_stream_event(codec, stream,
679 				SND_SOC_DAPM_STREAM_SUSPEND);
680 	}
681 
682 	if (codec_dev->suspend)
683 		codec_dev->suspend(pdev, state);
684 
685 	for (i = 0; i < card->num_links; i++) {
686 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 		if (cpu_dai->suspend && cpu_dai->ac97_control)
688 			cpu_dai->suspend(cpu_dai);
689 	}
690 
691 	if (card->suspend_post)
692 		card->suspend_post(pdev, state);
693 
694 	return 0;
695 }
696 
697 /* deferred resume work, so resume can complete before we finished
698  * setting our codec back up, which can be very slow on I2C
699  */
700 static void soc_resume_deferred(struct work_struct *work)
701 {
702 	struct snd_soc_card *card = container_of(work,
703 						 struct snd_soc_card,
704 						 deferred_resume_work);
705 	struct snd_soc_device *socdev = card->socdev;
706 	struct snd_soc_platform *platform = card->platform;
707 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 	struct snd_soc_codec *codec = card->codec;
709 	struct platform_device *pdev = to_platform_device(socdev->dev);
710 	int i;
711 
712 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 	 * so userspace apps are blocked from touching us
714 	 */
715 
716 	dev_dbg(socdev->dev, "starting resume work\n");
717 
718 	if (card->resume_pre)
719 		card->resume_pre(pdev);
720 
721 	for (i = 0; i < card->num_links; i++) {
722 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 		if (cpu_dai->resume && cpu_dai->ac97_control)
724 			cpu_dai->resume(cpu_dai);
725 	}
726 
727 	if (codec_dev->resume)
728 		codec_dev->resume(pdev);
729 
730 	for (i = 0; i < codec->num_dai; i++) {
731 		char *stream = codec->dai[i].playback.stream_name;
732 		if (stream != NULL)
733 			snd_soc_dapm_stream_event(codec, stream,
734 				SND_SOC_DAPM_STREAM_RESUME);
735 		stream = codec->dai[i].capture.stream_name;
736 		if (stream != NULL)
737 			snd_soc_dapm_stream_event(codec, stream,
738 				SND_SOC_DAPM_STREAM_RESUME);
739 	}
740 
741 	/* unmute any active DACs */
742 	for (i = 0; i < card->num_links; i++) {
743 		struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 		if (dai->ops->digital_mute && dai->playback.active)
745 			dai->ops->digital_mute(dai, 0);
746 	}
747 
748 	for (i = 0; i < card->num_links; i++) {
749 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 		if (cpu_dai->resume && !cpu_dai->ac97_control)
751 			cpu_dai->resume(cpu_dai);
752 		if (platform->resume)
753 			platform->resume(cpu_dai);
754 	}
755 
756 	if (card->resume_post)
757 		card->resume_post(pdev);
758 
759 	dev_dbg(socdev->dev, "resume work completed\n");
760 
761 	/* userspace can access us now we are back as we were before */
762 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
763 }
764 
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
767 {
768 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 	struct snd_soc_card *card = socdev->card;
770 	struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
771 
772 	/* AC97 devices might have other drivers hanging off them so
773 	 * need to resume immediately.  Other drivers don't have that
774 	 * problem and may take a substantial amount of time to resume
775 	 * due to I/O costs and anti-pop so handle them out of line.
776 	 */
777 	if (cpu_dai->ac97_control) {
778 		dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
779 		soc_resume_deferred(&card->deferred_resume_work);
780 	} else {
781 		dev_dbg(socdev->dev, "Scheduling resume work\n");
782 		if (!schedule_work(&card->deferred_resume_work))
783 			dev_err(socdev->dev, "resume work item may be lost\n");
784 	}
785 
786 	return 0;
787 }
788 
789 #else
790 #define soc_suspend	NULL
791 #define soc_resume	NULL
792 #endif
793 
794 static void snd_soc_instantiate_card(struct snd_soc_card *card)
795 {
796 	struct platform_device *pdev = container_of(card->dev,
797 						    struct platform_device,
798 						    dev);
799 	struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
800 	struct snd_soc_platform *platform;
801 	struct snd_soc_dai *dai;
802 	int i, found, ret, ac97;
803 
804 	if (card->instantiated)
805 		return;
806 
807 	found = 0;
808 	list_for_each_entry(platform, &platform_list, list)
809 		if (card->platform == platform) {
810 			found = 1;
811 			break;
812 		}
813 	if (!found) {
814 		dev_dbg(card->dev, "Platform %s not registered\n",
815 			card->platform->name);
816 		return;
817 	}
818 
819 	ac97 = 0;
820 	for (i = 0; i < card->num_links; i++) {
821 		found = 0;
822 		list_for_each_entry(dai, &dai_list, list)
823 			if (card->dai_link[i].cpu_dai == dai) {
824 				found = 1;
825 				break;
826 			}
827 		if (!found) {
828 			dev_dbg(card->dev, "DAI %s not registered\n",
829 				card->dai_link[i].cpu_dai->name);
830 			return;
831 		}
832 
833 		if (card->dai_link[i].cpu_dai->ac97_control)
834 			ac97 = 1;
835 	}
836 
837 	/* If we have AC97 in the system then don't wait for the
838 	 * codec.  This will need revisiting if we have to handle
839 	 * systems with mixed AC97 and non-AC97 parts.  Only check for
840 	 * DAIs currently; we can't do this per link since some AC97
841 	 * codecs have non-AC97 DAIs.
842 	 */
843 	if (!ac97)
844 		for (i = 0; i < card->num_links; i++) {
845 			found = 0;
846 			list_for_each_entry(dai, &dai_list, list)
847 				if (card->dai_link[i].codec_dai == dai) {
848 					found = 1;
849 					break;
850 				}
851 			if (!found) {
852 				dev_dbg(card->dev, "DAI %s not registered\n",
853 					card->dai_link[i].codec_dai->name);
854 				return;
855 			}
856 		}
857 
858 	/* Note that we do not current check for codec components */
859 
860 	dev_dbg(card->dev, "All components present, instantiating\n");
861 
862 	/* Found everything, bring it up */
863 	if (card->probe) {
864 		ret = card->probe(pdev);
865 		if (ret < 0)
866 			return;
867 	}
868 
869 	for (i = 0; i < card->num_links; i++) {
870 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
871 		if (cpu_dai->probe) {
872 			ret = cpu_dai->probe(pdev, cpu_dai);
873 			if (ret < 0)
874 				goto cpu_dai_err;
875 		}
876 	}
877 
878 	if (codec_dev->probe) {
879 		ret = codec_dev->probe(pdev);
880 		if (ret < 0)
881 			goto cpu_dai_err;
882 	}
883 
884 	if (platform->probe) {
885 		ret = platform->probe(pdev);
886 		if (ret < 0)
887 			goto platform_err;
888 	}
889 
890 	/* DAPM stream work */
891 	INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
892 #ifdef CONFIG_PM
893 	/* deferred resume work */
894 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
895 #endif
896 
897 	card->instantiated = 1;
898 
899 	return;
900 
901 platform_err:
902 	if (codec_dev->remove)
903 		codec_dev->remove(pdev);
904 
905 cpu_dai_err:
906 	for (i--; i >= 0; i--) {
907 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
908 		if (cpu_dai->remove)
909 			cpu_dai->remove(pdev, cpu_dai);
910 	}
911 
912 	if (card->remove)
913 		card->remove(pdev);
914 }
915 
916 /*
917  * Attempt to initialise any uninitalised cards.  Must be called with
918  * client_mutex.
919  */
920 static void snd_soc_instantiate_cards(void)
921 {
922 	struct snd_soc_card *card;
923 	list_for_each_entry(card, &card_list, list)
924 		snd_soc_instantiate_card(card);
925 }
926 
927 /* probes a new socdev */
928 static int soc_probe(struct platform_device *pdev)
929 {
930 	int ret = 0;
931 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
932 	struct snd_soc_card *card = socdev->card;
933 
934 	/* Bodge while we push things out of socdev */
935 	card->socdev = socdev;
936 
937 	/* Bodge while we unpick instantiation */
938 	card->dev = &pdev->dev;
939 	ret = snd_soc_register_card(card);
940 	if (ret != 0) {
941 		dev_err(&pdev->dev, "Failed to register card\n");
942 		return ret;
943 	}
944 
945 	return 0;
946 }
947 
948 /* removes a socdev */
949 static int soc_remove(struct platform_device *pdev)
950 {
951 	int i;
952 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
953 	struct snd_soc_card *card = socdev->card;
954 	struct snd_soc_platform *platform = card->platform;
955 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
956 
957 	if (!card->instantiated)
958 		return 0;
959 
960 	run_delayed_work(&card->delayed_work);
961 
962 	if (platform->remove)
963 		platform->remove(pdev);
964 
965 	if (codec_dev->remove)
966 		codec_dev->remove(pdev);
967 
968 	for (i = 0; i < card->num_links; i++) {
969 		struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
970 		if (cpu_dai->remove)
971 			cpu_dai->remove(pdev, cpu_dai);
972 	}
973 
974 	if (card->remove)
975 		card->remove(pdev);
976 
977 	snd_soc_unregister_card(card);
978 
979 	return 0;
980 }
981 
982 /* ASoC platform driver */
983 static struct platform_driver soc_driver = {
984 	.driver		= {
985 		.name		= "soc-audio",
986 		.owner		= THIS_MODULE,
987 	},
988 	.probe		= soc_probe,
989 	.remove		= soc_remove,
990 	.suspend	= soc_suspend,
991 	.resume		= soc_resume,
992 };
993 
994 /* create a new pcm */
995 static int soc_new_pcm(struct snd_soc_device *socdev,
996 	struct snd_soc_dai_link *dai_link, int num)
997 {
998 	struct snd_soc_card *card = socdev->card;
999 	struct snd_soc_codec *codec = card->codec;
1000 	struct snd_soc_platform *platform = card->platform;
1001 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1002 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1003 	struct snd_soc_pcm_runtime *rtd;
1004 	struct snd_pcm *pcm;
1005 	char new_name[64];
1006 	int ret = 0, playback = 0, capture = 0;
1007 
1008 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1009 	if (rtd == NULL)
1010 		return -ENOMEM;
1011 
1012 	rtd->dai = dai_link;
1013 	rtd->socdev = socdev;
1014 	codec_dai->codec = card->codec;
1015 
1016 	/* check client and interface hw capabilities */
1017 	sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1018 		num);
1019 
1020 	if (codec_dai->playback.channels_min)
1021 		playback = 1;
1022 	if (codec_dai->capture.channels_min)
1023 		capture = 1;
1024 
1025 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1026 		capture, &pcm);
1027 	if (ret < 0) {
1028 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1029 			codec->name);
1030 		kfree(rtd);
1031 		return ret;
1032 	}
1033 
1034 	dai_link->pcm = pcm;
1035 	pcm->private_data = rtd;
1036 	soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1037 	soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1038 	soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1039 	soc_pcm_ops.copy = platform->pcm_ops->copy;
1040 	soc_pcm_ops.silence = platform->pcm_ops->silence;
1041 	soc_pcm_ops.ack = platform->pcm_ops->ack;
1042 	soc_pcm_ops.page = platform->pcm_ops->page;
1043 
1044 	if (playback)
1045 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1046 
1047 	if (capture)
1048 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1049 
1050 	ret = platform->pcm_new(codec->card, codec_dai, pcm);
1051 	if (ret < 0) {
1052 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1053 		kfree(rtd);
1054 		return ret;
1055 	}
1056 
1057 	pcm->private_free = platform->pcm_free;
1058 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1059 		cpu_dai->name);
1060 	return ret;
1061 }
1062 
1063 /* codec register dump */
1064 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
1065 {
1066 	int i, step = 1, count = 0;
1067 
1068 	if (!codec->reg_cache_size)
1069 		return 0;
1070 
1071 	if (codec->reg_cache_step)
1072 		step = codec->reg_cache_step;
1073 
1074 	count += sprintf(buf, "%s registers\n", codec->name);
1075 	for (i = 0; i < codec->reg_cache_size; i += step) {
1076 		count += sprintf(buf + count, "%2x: ", i);
1077 		if (count >= PAGE_SIZE - 1)
1078 			break;
1079 
1080 		if (codec->display_register)
1081 			count += codec->display_register(codec, buf + count,
1082 							 PAGE_SIZE - count, i);
1083 		else
1084 			count += snprintf(buf + count, PAGE_SIZE - count,
1085 					  "%4x", codec->read(codec, i));
1086 
1087 		if (count >= PAGE_SIZE - 1)
1088 			break;
1089 
1090 		count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1091 		if (count >= PAGE_SIZE - 1)
1092 			break;
1093 	}
1094 
1095 	/* Truncate count; min() would cause a warning */
1096 	if (count >= PAGE_SIZE)
1097 		count = PAGE_SIZE - 1;
1098 
1099 	return count;
1100 }
1101 static ssize_t codec_reg_show(struct device *dev,
1102 	struct device_attribute *attr, char *buf)
1103 {
1104 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
1105 	return soc_codec_reg_show(devdata->card->codec, buf);
1106 }
1107 
1108 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1109 
1110 #ifdef CONFIG_DEBUG_FS
1111 static int codec_reg_open_file(struct inode *inode, struct file *file)
1112 {
1113 	file->private_data = inode->i_private;
1114 	return 0;
1115 }
1116 
1117 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1118 			       size_t count, loff_t *ppos)
1119 {
1120 	ssize_t ret;
1121 	struct snd_soc_codec *codec = file->private_data;
1122 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1123 	if (!buf)
1124 		return -ENOMEM;
1125 	ret = soc_codec_reg_show(codec, buf);
1126 	if (ret >= 0)
1127 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1128 	kfree(buf);
1129 	return ret;
1130 }
1131 
1132 static ssize_t codec_reg_write_file(struct file *file,
1133 		const char __user *user_buf, size_t count, loff_t *ppos)
1134 {
1135 	char buf[32];
1136 	int buf_size;
1137 	char *start = buf;
1138 	unsigned long reg, value;
1139 	int step = 1;
1140 	struct snd_soc_codec *codec = file->private_data;
1141 
1142 	buf_size = min(count, (sizeof(buf)-1));
1143 	if (copy_from_user(buf, user_buf, buf_size))
1144 		return -EFAULT;
1145 	buf[buf_size] = 0;
1146 
1147 	if (codec->reg_cache_step)
1148 		step = codec->reg_cache_step;
1149 
1150 	while (*start == ' ')
1151 		start++;
1152 	reg = simple_strtoul(start, &start, 16);
1153 	if ((reg >= codec->reg_cache_size) || (reg % step))
1154 		return -EINVAL;
1155 	while (*start == ' ')
1156 		start++;
1157 	if (strict_strtoul(start, 16, &value))
1158 		return -EINVAL;
1159 	codec->write(codec, reg, value);
1160 	return buf_size;
1161 }
1162 
1163 static const struct file_operations codec_reg_fops = {
1164 	.open = codec_reg_open_file,
1165 	.read = codec_reg_read_file,
1166 	.write = codec_reg_write_file,
1167 };
1168 
1169 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1170 {
1171 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1172 						 debugfs_root, codec,
1173 						 &codec_reg_fops);
1174 	if (!codec->debugfs_reg)
1175 		printk(KERN_WARNING
1176 		       "ASoC: Failed to create codec register debugfs file\n");
1177 
1178 	codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1179 						     debugfs_root,
1180 						     &codec->pop_time);
1181 	if (!codec->debugfs_pop_time)
1182 		printk(KERN_WARNING
1183 		       "Failed to create pop time debugfs file\n");
1184 }
1185 
1186 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1187 {
1188 	debugfs_remove(codec->debugfs_pop_time);
1189 	debugfs_remove(codec->debugfs_reg);
1190 }
1191 
1192 #else
1193 
1194 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1195 {
1196 }
1197 
1198 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1199 {
1200 }
1201 #endif
1202 
1203 /**
1204  * snd_soc_new_ac97_codec - initailise AC97 device
1205  * @codec: audio codec
1206  * @ops: AC97 bus operations
1207  * @num: AC97 codec number
1208  *
1209  * Initialises AC97 codec resources for use by ad-hoc devices only.
1210  */
1211 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1212 	struct snd_ac97_bus_ops *ops, int num)
1213 {
1214 	mutex_lock(&codec->mutex);
1215 
1216 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1217 	if (codec->ac97 == NULL) {
1218 		mutex_unlock(&codec->mutex);
1219 		return -ENOMEM;
1220 	}
1221 
1222 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1223 	if (codec->ac97->bus == NULL) {
1224 		kfree(codec->ac97);
1225 		codec->ac97 = NULL;
1226 		mutex_unlock(&codec->mutex);
1227 		return -ENOMEM;
1228 	}
1229 
1230 	codec->ac97->bus->ops = ops;
1231 	codec->ac97->num = num;
1232 	mutex_unlock(&codec->mutex);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1236 
1237 /**
1238  * snd_soc_free_ac97_codec - free AC97 codec device
1239  * @codec: audio codec
1240  *
1241  * Frees AC97 codec device resources.
1242  */
1243 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1244 {
1245 	mutex_lock(&codec->mutex);
1246 	kfree(codec->ac97->bus);
1247 	kfree(codec->ac97);
1248 	codec->ac97 = NULL;
1249 	mutex_unlock(&codec->mutex);
1250 }
1251 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1252 
1253 /**
1254  * snd_soc_update_bits - update codec register bits
1255  * @codec: audio codec
1256  * @reg: codec register
1257  * @mask: register mask
1258  * @value: new value
1259  *
1260  * Writes new register value.
1261  *
1262  * Returns 1 for change else 0.
1263  */
1264 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1265 				unsigned short mask, unsigned short value)
1266 {
1267 	int change;
1268 	unsigned short old, new;
1269 
1270 	mutex_lock(&io_mutex);
1271 	old = snd_soc_read(codec, reg);
1272 	new = (old & ~mask) | value;
1273 	change = old != new;
1274 	if (change)
1275 		snd_soc_write(codec, reg, new);
1276 
1277 	mutex_unlock(&io_mutex);
1278 	return change;
1279 }
1280 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1281 
1282 /**
1283  * snd_soc_test_bits - test register for change
1284  * @codec: audio codec
1285  * @reg: codec register
1286  * @mask: register mask
1287  * @value: new value
1288  *
1289  * Tests a register with a new value and checks if the new value is
1290  * different from the old value.
1291  *
1292  * Returns 1 for change else 0.
1293  */
1294 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1295 				unsigned short mask, unsigned short value)
1296 {
1297 	int change;
1298 	unsigned short old, new;
1299 
1300 	mutex_lock(&io_mutex);
1301 	old = snd_soc_read(codec, reg);
1302 	new = (old & ~mask) | value;
1303 	change = old != new;
1304 	mutex_unlock(&io_mutex);
1305 
1306 	return change;
1307 }
1308 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1309 
1310 /**
1311  * snd_soc_new_pcms - create new sound card and pcms
1312  * @socdev: the SoC audio device
1313  * @idx: ALSA card index
1314  * @xid: card identification
1315  *
1316  * Create a new sound card based upon the codec and interface pcms.
1317  *
1318  * Returns 0 for success, else error.
1319  */
1320 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1321 {
1322 	struct snd_soc_card *card = socdev->card;
1323 	struct snd_soc_codec *codec = card->codec;
1324 	int ret, i;
1325 
1326 	mutex_lock(&codec->mutex);
1327 
1328 	/* register a sound card */
1329 	ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1330 	if (ret < 0) {
1331 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1332 			codec->name);
1333 		mutex_unlock(&codec->mutex);
1334 		return ret;
1335 	}
1336 
1337 	codec->card->dev = socdev->dev;
1338 	codec->card->private_data = codec;
1339 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1340 
1341 	/* create the pcms */
1342 	for (i = 0; i < card->num_links; i++) {
1343 		ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1344 		if (ret < 0) {
1345 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1346 				card->dai_link[i].stream_name);
1347 			mutex_unlock(&codec->mutex);
1348 			return ret;
1349 		}
1350 	}
1351 
1352 	mutex_unlock(&codec->mutex);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1356 
1357 /**
1358  * snd_soc_init_card - register sound card
1359  * @socdev: the SoC audio device
1360  *
1361  * Register a SoC sound card. Also registers an AC97 device if the
1362  * codec is AC97 for ad hoc devices.
1363  *
1364  * Returns 0 for success, else error.
1365  */
1366 int snd_soc_init_card(struct snd_soc_device *socdev)
1367 {
1368 	struct snd_soc_card *card = socdev->card;
1369 	struct snd_soc_codec *codec = card->codec;
1370 	int ret = 0, i, ac97 = 0, err = 0;
1371 
1372 	for (i = 0; i < card->num_links; i++) {
1373 		if (card->dai_link[i].init) {
1374 			err = card->dai_link[i].init(codec);
1375 			if (err < 0) {
1376 				printk(KERN_ERR "asoc: failed to init %s\n",
1377 					card->dai_link[i].stream_name);
1378 				continue;
1379 			}
1380 		}
1381 		if (card->dai_link[i].codec_dai->ac97_control)
1382 			ac97 = 1;
1383 	}
1384 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1385 		 "%s",  card->name);
1386 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1387 		 "%s (%s)", card->name, codec->name);
1388 
1389 	ret = snd_card_register(codec->card);
1390 	if (ret < 0) {
1391 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1392 				codec->name);
1393 		goto out;
1394 	}
1395 
1396 	mutex_lock(&codec->mutex);
1397 #ifdef CONFIG_SND_SOC_AC97_BUS
1398 	/* Only instantiate AC97 if not already done by the adaptor
1399 	 * for the generic AC97 subsystem.
1400 	 */
1401 	if (ac97 && strcmp(codec->name, "AC97") != 0) {
1402 		ret = soc_ac97_dev_register(codec);
1403 		if (ret < 0) {
1404 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1405 			snd_card_free(codec->card);
1406 			mutex_unlock(&codec->mutex);
1407 			goto out;
1408 		}
1409 	}
1410 #endif
1411 
1412 	err = snd_soc_dapm_sys_add(socdev->dev);
1413 	if (err < 0)
1414 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1415 
1416 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1417 	if (err < 0)
1418 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1419 
1420 	soc_init_codec_debugfs(codec);
1421 	mutex_unlock(&codec->mutex);
1422 
1423 out:
1424 	return ret;
1425 }
1426 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1427 
1428 /**
1429  * snd_soc_free_pcms - free sound card and pcms
1430  * @socdev: the SoC audio device
1431  *
1432  * Frees sound card and pcms associated with the socdev.
1433  * Also unregister the codec if it is an AC97 device.
1434  */
1435 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1436 {
1437 	struct snd_soc_codec *codec = socdev->card->codec;
1438 #ifdef CONFIG_SND_SOC_AC97_BUS
1439 	struct snd_soc_dai *codec_dai;
1440 	int i;
1441 #endif
1442 
1443 	mutex_lock(&codec->mutex);
1444 	soc_cleanup_codec_debugfs(codec);
1445 #ifdef CONFIG_SND_SOC_AC97_BUS
1446 	for (i = 0; i < codec->num_dai; i++) {
1447 		codec_dai = &codec->dai[i];
1448 		if (codec_dai->ac97_control && codec->ac97 &&
1449 		    strcmp(codec->name, "AC97") != 0) {
1450 			soc_ac97_dev_unregister(codec);
1451 			goto free_card;
1452 		}
1453 	}
1454 free_card:
1455 #endif
1456 
1457 	if (codec->card)
1458 		snd_card_free(codec->card);
1459 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1460 	mutex_unlock(&codec->mutex);
1461 }
1462 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1463 
1464 /**
1465  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1466  * @substream: the pcm substream
1467  * @hw: the hardware parameters
1468  *
1469  * Sets the substream runtime hardware parameters.
1470  */
1471 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1472 	const struct snd_pcm_hardware *hw)
1473 {
1474 	struct snd_pcm_runtime *runtime = substream->runtime;
1475 	runtime->hw.info = hw->info;
1476 	runtime->hw.formats = hw->formats;
1477 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1478 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1479 	runtime->hw.periods_min = hw->periods_min;
1480 	runtime->hw.periods_max = hw->periods_max;
1481 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1482 	runtime->hw.fifo_size = hw->fifo_size;
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1486 
1487 /**
1488  * snd_soc_cnew - create new control
1489  * @_template: control template
1490  * @data: control private data
1491  * @long_name: control long name
1492  *
1493  * Create a new mixer control from a template control.
1494  *
1495  * Returns 0 for success, else error.
1496  */
1497 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1498 	void *data, char *long_name)
1499 {
1500 	struct snd_kcontrol_new template;
1501 
1502 	memcpy(&template, _template, sizeof(template));
1503 	if (long_name)
1504 		template.name = long_name;
1505 	template.index = 0;
1506 
1507 	return snd_ctl_new1(&template, data);
1508 }
1509 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1510 
1511 /**
1512  * snd_soc_add_controls - add an array of controls to a codec.
1513  * Convienience function to add a list of controls. Many codecs were
1514  * duplicating this code.
1515  *
1516  * @codec: codec to add controls to
1517  * @controls: array of controls to add
1518  * @num_controls: number of elements in the array
1519  *
1520  * Return 0 for success, else error.
1521  */
1522 int snd_soc_add_controls(struct snd_soc_codec *codec,
1523 	const struct snd_kcontrol_new *controls, int num_controls)
1524 {
1525 	struct snd_card *card = codec->card;
1526 	int err, i;
1527 
1528 	for (i = 0; i < num_controls; i++) {
1529 		const struct snd_kcontrol_new *control = &controls[i];
1530 		err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1531 		if (err < 0) {
1532 			dev_err(codec->dev, "%s: Failed to add %s\n",
1533 				codec->name, control->name);
1534 			return err;
1535 		}
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1541 
1542 /**
1543  * snd_soc_info_enum_double - enumerated double mixer info callback
1544  * @kcontrol: mixer control
1545  * @uinfo: control element information
1546  *
1547  * Callback to provide information about a double enumerated
1548  * mixer control.
1549  *
1550  * Returns 0 for success.
1551  */
1552 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1553 	struct snd_ctl_elem_info *uinfo)
1554 {
1555 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1556 
1557 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1558 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1559 	uinfo->value.enumerated.items = e->max;
1560 
1561 	if (uinfo->value.enumerated.item > e->max - 1)
1562 		uinfo->value.enumerated.item = e->max - 1;
1563 	strcpy(uinfo->value.enumerated.name,
1564 		e->texts[uinfo->value.enumerated.item]);
1565 	return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1568 
1569 /**
1570  * snd_soc_get_enum_double - enumerated double mixer get callback
1571  * @kcontrol: mixer control
1572  * @ucontrol: control element information
1573  *
1574  * Callback to get the value of a double enumerated mixer.
1575  *
1576  * Returns 0 for success.
1577  */
1578 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1579 	struct snd_ctl_elem_value *ucontrol)
1580 {
1581 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1582 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1583 	unsigned short val, bitmask;
1584 
1585 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1586 		;
1587 	val = snd_soc_read(codec, e->reg);
1588 	ucontrol->value.enumerated.item[0]
1589 		= (val >> e->shift_l) & (bitmask - 1);
1590 	if (e->shift_l != e->shift_r)
1591 		ucontrol->value.enumerated.item[1] =
1592 			(val >> e->shift_r) & (bitmask - 1);
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1597 
1598 /**
1599  * snd_soc_put_enum_double - enumerated double mixer put callback
1600  * @kcontrol: mixer control
1601  * @ucontrol: control element information
1602  *
1603  * Callback to set the value of a double enumerated mixer.
1604  *
1605  * Returns 0 for success.
1606  */
1607 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1608 	struct snd_ctl_elem_value *ucontrol)
1609 {
1610 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1611 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1612 	unsigned short val;
1613 	unsigned short mask, bitmask;
1614 
1615 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1616 		;
1617 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1618 		return -EINVAL;
1619 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1620 	mask = (bitmask - 1) << e->shift_l;
1621 	if (e->shift_l != e->shift_r) {
1622 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1623 			return -EINVAL;
1624 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1625 		mask |= (bitmask - 1) << e->shift_r;
1626 	}
1627 
1628 	return snd_soc_update_bits(codec, e->reg, mask, val);
1629 }
1630 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1631 
1632 /**
1633  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1634  * @kcontrol: mixer control
1635  * @ucontrol: control element information
1636  *
1637  * Callback to get the value of a double semi enumerated mixer.
1638  *
1639  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1640  * used for handling bitfield coded enumeration for example.
1641  *
1642  * Returns 0 for success.
1643  */
1644 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1645 	struct snd_ctl_elem_value *ucontrol)
1646 {
1647 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1648 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1649 	unsigned short reg_val, val, mux;
1650 
1651 	reg_val = snd_soc_read(codec, e->reg);
1652 	val = (reg_val >> e->shift_l) & e->mask;
1653 	for (mux = 0; mux < e->max; mux++) {
1654 		if (val == e->values[mux])
1655 			break;
1656 	}
1657 	ucontrol->value.enumerated.item[0] = mux;
1658 	if (e->shift_l != e->shift_r) {
1659 		val = (reg_val >> e->shift_r) & e->mask;
1660 		for (mux = 0; mux < e->max; mux++) {
1661 			if (val == e->values[mux])
1662 				break;
1663 		}
1664 		ucontrol->value.enumerated.item[1] = mux;
1665 	}
1666 
1667 	return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1670 
1671 /**
1672  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1673  * @kcontrol: mixer control
1674  * @ucontrol: control element information
1675  *
1676  * Callback to set the value of a double semi enumerated mixer.
1677  *
1678  * Semi enumerated mixer: the enumerated items are referred as values. Can be
1679  * used for handling bitfield coded enumeration for example.
1680  *
1681  * Returns 0 for success.
1682  */
1683 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1684 	struct snd_ctl_elem_value *ucontrol)
1685 {
1686 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1687 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1688 	unsigned short val;
1689 	unsigned short mask;
1690 
1691 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
1692 		return -EINVAL;
1693 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1694 	mask = e->mask << e->shift_l;
1695 	if (e->shift_l != e->shift_r) {
1696 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
1697 			return -EINVAL;
1698 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1699 		mask |= e->mask << e->shift_r;
1700 	}
1701 
1702 	return snd_soc_update_bits(codec, e->reg, mask, val);
1703 }
1704 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1705 
1706 /**
1707  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1708  * @kcontrol: mixer control
1709  * @uinfo: control element information
1710  *
1711  * Callback to provide information about an external enumerated
1712  * single mixer.
1713  *
1714  * Returns 0 for success.
1715  */
1716 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1717 	struct snd_ctl_elem_info *uinfo)
1718 {
1719 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1720 
1721 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1722 	uinfo->count = 1;
1723 	uinfo->value.enumerated.items = e->max;
1724 
1725 	if (uinfo->value.enumerated.item > e->max - 1)
1726 		uinfo->value.enumerated.item = e->max - 1;
1727 	strcpy(uinfo->value.enumerated.name,
1728 		e->texts[uinfo->value.enumerated.item]);
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1732 
1733 /**
1734  * snd_soc_info_volsw_ext - external single mixer info callback
1735  * @kcontrol: mixer control
1736  * @uinfo: control element information
1737  *
1738  * Callback to provide information about a single external mixer control.
1739  *
1740  * Returns 0 for success.
1741  */
1742 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1743 	struct snd_ctl_elem_info *uinfo)
1744 {
1745 	int max = kcontrol->private_value;
1746 
1747 	if (max == 1)
1748 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1749 	else
1750 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1751 
1752 	uinfo->count = 1;
1753 	uinfo->value.integer.min = 0;
1754 	uinfo->value.integer.max = max;
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1758 
1759 /**
1760  * snd_soc_info_volsw - single mixer info callback
1761  * @kcontrol: mixer control
1762  * @uinfo: control element information
1763  *
1764  * Callback to provide information about a single mixer control.
1765  *
1766  * Returns 0 for success.
1767  */
1768 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1769 	struct snd_ctl_elem_info *uinfo)
1770 {
1771 	struct soc_mixer_control *mc =
1772 		(struct soc_mixer_control *)kcontrol->private_value;
1773 	int max = mc->max;
1774 	unsigned int shift = mc->shift;
1775 	unsigned int rshift = mc->rshift;
1776 
1777 	if (max == 1)
1778 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1779 	else
1780 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1781 
1782 	uinfo->count = shift == rshift ? 1 : 2;
1783 	uinfo->value.integer.min = 0;
1784 	uinfo->value.integer.max = max;
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1788 
1789 /**
1790  * snd_soc_get_volsw - single mixer get callback
1791  * @kcontrol: mixer control
1792  * @ucontrol: control element information
1793  *
1794  * Callback to get the value of a single mixer control.
1795  *
1796  * Returns 0 for success.
1797  */
1798 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1799 	struct snd_ctl_elem_value *ucontrol)
1800 {
1801 	struct soc_mixer_control *mc =
1802 		(struct soc_mixer_control *)kcontrol->private_value;
1803 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1804 	unsigned int reg = mc->reg;
1805 	unsigned int shift = mc->shift;
1806 	unsigned int rshift = mc->rshift;
1807 	int max = mc->max;
1808 	unsigned int mask = (1 << fls(max)) - 1;
1809 	unsigned int invert = mc->invert;
1810 
1811 	ucontrol->value.integer.value[0] =
1812 		(snd_soc_read(codec, reg) >> shift) & mask;
1813 	if (shift != rshift)
1814 		ucontrol->value.integer.value[1] =
1815 			(snd_soc_read(codec, reg) >> rshift) & mask;
1816 	if (invert) {
1817 		ucontrol->value.integer.value[0] =
1818 			max - ucontrol->value.integer.value[0];
1819 		if (shift != rshift)
1820 			ucontrol->value.integer.value[1] =
1821 				max - ucontrol->value.integer.value[1];
1822 	}
1823 
1824 	return 0;
1825 }
1826 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1827 
1828 /**
1829  * snd_soc_put_volsw - single mixer put callback
1830  * @kcontrol: mixer control
1831  * @ucontrol: control element information
1832  *
1833  * Callback to set the value of a single mixer control.
1834  *
1835  * Returns 0 for success.
1836  */
1837 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1838 	struct snd_ctl_elem_value *ucontrol)
1839 {
1840 	struct soc_mixer_control *mc =
1841 		(struct soc_mixer_control *)kcontrol->private_value;
1842 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1843 	unsigned int reg = mc->reg;
1844 	unsigned int shift = mc->shift;
1845 	unsigned int rshift = mc->rshift;
1846 	int max = mc->max;
1847 	unsigned int mask = (1 << fls(max)) - 1;
1848 	unsigned int invert = mc->invert;
1849 	unsigned short val, val2, val_mask;
1850 
1851 	val = (ucontrol->value.integer.value[0] & mask);
1852 	if (invert)
1853 		val = max - val;
1854 	val_mask = mask << shift;
1855 	val = val << shift;
1856 	if (shift != rshift) {
1857 		val2 = (ucontrol->value.integer.value[1] & mask);
1858 		if (invert)
1859 			val2 = max - val2;
1860 		val_mask |= mask << rshift;
1861 		val |= val2 << rshift;
1862 	}
1863 	return snd_soc_update_bits(codec, reg, val_mask, val);
1864 }
1865 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1866 
1867 /**
1868  * snd_soc_info_volsw_2r - double mixer info callback
1869  * @kcontrol: mixer control
1870  * @uinfo: control element information
1871  *
1872  * Callback to provide information about a double mixer control that
1873  * spans 2 codec registers.
1874  *
1875  * Returns 0 for success.
1876  */
1877 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1878 	struct snd_ctl_elem_info *uinfo)
1879 {
1880 	struct soc_mixer_control *mc =
1881 		(struct soc_mixer_control *)kcontrol->private_value;
1882 	int max = mc->max;
1883 
1884 	if (max == 1)
1885 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1886 	else
1887 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1888 
1889 	uinfo->count = 2;
1890 	uinfo->value.integer.min = 0;
1891 	uinfo->value.integer.max = max;
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1895 
1896 /**
1897  * snd_soc_get_volsw_2r - double mixer get callback
1898  * @kcontrol: mixer control
1899  * @ucontrol: control element information
1900  *
1901  * Callback to get the value of a double mixer control that spans 2 registers.
1902  *
1903  * Returns 0 for success.
1904  */
1905 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1906 	struct snd_ctl_elem_value *ucontrol)
1907 {
1908 	struct soc_mixer_control *mc =
1909 		(struct soc_mixer_control *)kcontrol->private_value;
1910 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1911 	unsigned int reg = mc->reg;
1912 	unsigned int reg2 = mc->rreg;
1913 	unsigned int shift = mc->shift;
1914 	int max = mc->max;
1915 	unsigned int mask = (1<<fls(max))-1;
1916 	unsigned int invert = mc->invert;
1917 
1918 	ucontrol->value.integer.value[0] =
1919 		(snd_soc_read(codec, reg) >> shift) & mask;
1920 	ucontrol->value.integer.value[1] =
1921 		(snd_soc_read(codec, reg2) >> shift) & mask;
1922 	if (invert) {
1923 		ucontrol->value.integer.value[0] =
1924 			max - ucontrol->value.integer.value[0];
1925 		ucontrol->value.integer.value[1] =
1926 			max - ucontrol->value.integer.value[1];
1927 	}
1928 
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1932 
1933 /**
1934  * snd_soc_put_volsw_2r - double mixer set callback
1935  * @kcontrol: mixer control
1936  * @ucontrol: control element information
1937  *
1938  * Callback to set the value of a double mixer control that spans 2 registers.
1939  *
1940  * Returns 0 for success.
1941  */
1942 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1943 	struct snd_ctl_elem_value *ucontrol)
1944 {
1945 	struct soc_mixer_control *mc =
1946 		(struct soc_mixer_control *)kcontrol->private_value;
1947 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1948 	unsigned int reg = mc->reg;
1949 	unsigned int reg2 = mc->rreg;
1950 	unsigned int shift = mc->shift;
1951 	int max = mc->max;
1952 	unsigned int mask = (1 << fls(max)) - 1;
1953 	unsigned int invert = mc->invert;
1954 	int err;
1955 	unsigned short val, val2, val_mask;
1956 
1957 	val_mask = mask << shift;
1958 	val = (ucontrol->value.integer.value[0] & mask);
1959 	val2 = (ucontrol->value.integer.value[1] & mask);
1960 
1961 	if (invert) {
1962 		val = max - val;
1963 		val2 = max - val2;
1964 	}
1965 
1966 	val = val << shift;
1967 	val2 = val2 << shift;
1968 
1969 	err = snd_soc_update_bits(codec, reg, val_mask, val);
1970 	if (err < 0)
1971 		return err;
1972 
1973 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1974 	return err;
1975 }
1976 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1977 
1978 /**
1979  * snd_soc_info_volsw_s8 - signed mixer info callback
1980  * @kcontrol: mixer control
1981  * @uinfo: control element information
1982  *
1983  * Callback to provide information about a signed mixer control.
1984  *
1985  * Returns 0 for success.
1986  */
1987 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1988 	struct snd_ctl_elem_info *uinfo)
1989 {
1990 	struct soc_mixer_control *mc =
1991 		(struct soc_mixer_control *)kcontrol->private_value;
1992 	int max = mc->max;
1993 	int min = mc->min;
1994 
1995 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1996 	uinfo->count = 2;
1997 	uinfo->value.integer.min = 0;
1998 	uinfo->value.integer.max = max-min;
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2002 
2003 /**
2004  * snd_soc_get_volsw_s8 - signed mixer get callback
2005  * @kcontrol: mixer control
2006  * @ucontrol: control element information
2007  *
2008  * Callback to get the value of a signed mixer control.
2009  *
2010  * Returns 0 for success.
2011  */
2012 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2013 	struct snd_ctl_elem_value *ucontrol)
2014 {
2015 	struct soc_mixer_control *mc =
2016 		(struct soc_mixer_control *)kcontrol->private_value;
2017 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2018 	unsigned int reg = mc->reg;
2019 	int min = mc->min;
2020 	int val = snd_soc_read(codec, reg);
2021 
2022 	ucontrol->value.integer.value[0] =
2023 		((signed char)(val & 0xff))-min;
2024 	ucontrol->value.integer.value[1] =
2025 		((signed char)((val >> 8) & 0xff))-min;
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2029 
2030 /**
2031  * snd_soc_put_volsw_sgn - signed mixer put callback
2032  * @kcontrol: mixer control
2033  * @ucontrol: control element information
2034  *
2035  * Callback to set the value of a signed mixer control.
2036  *
2037  * Returns 0 for success.
2038  */
2039 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2040 	struct snd_ctl_elem_value *ucontrol)
2041 {
2042 	struct soc_mixer_control *mc =
2043 		(struct soc_mixer_control *)kcontrol->private_value;
2044 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2045 	unsigned int reg = mc->reg;
2046 	int min = mc->min;
2047 	unsigned short val;
2048 
2049 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2050 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2051 
2052 	return snd_soc_update_bits(codec, reg, 0xffff, val);
2053 }
2054 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2055 
2056 /**
2057  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2058  * @dai: DAI
2059  * @clk_id: DAI specific clock ID
2060  * @freq: new clock frequency in Hz
2061  * @dir: new clock direction - input/output.
2062  *
2063  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2064  */
2065 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2066 	unsigned int freq, int dir)
2067 {
2068 	if (dai->ops->set_sysclk)
2069 		return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2070 	else
2071 		return -EINVAL;
2072 }
2073 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2074 
2075 /**
2076  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2077  * @dai: DAI
2078  * @div_id: DAI specific clock divider ID
2079  * @div: new clock divisor.
2080  *
2081  * Configures the clock dividers. This is used to derive the best DAI bit and
2082  * frame clocks from the system or master clock. It's best to set the DAI bit
2083  * and frame clocks as low as possible to save system power.
2084  */
2085 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2086 	int div_id, int div)
2087 {
2088 	if (dai->ops->set_clkdiv)
2089 		return dai->ops->set_clkdiv(dai, div_id, div);
2090 	else
2091 		return -EINVAL;
2092 }
2093 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2094 
2095 /**
2096  * snd_soc_dai_set_pll - configure DAI PLL.
2097  * @dai: DAI
2098  * @pll_id: DAI specific PLL ID
2099  * @freq_in: PLL input clock frequency in Hz
2100  * @freq_out: requested PLL output clock frequency in Hz
2101  *
2102  * Configures and enables PLL to generate output clock based on input clock.
2103  */
2104 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2105 	int pll_id, unsigned int freq_in, unsigned int freq_out)
2106 {
2107 	if (dai->ops->set_pll)
2108 		return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
2109 	else
2110 		return -EINVAL;
2111 }
2112 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2113 
2114 /**
2115  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2116  * @dai: DAI
2117  * @fmt: SND_SOC_DAIFMT_ format value.
2118  *
2119  * Configures the DAI hardware format and clocking.
2120  */
2121 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2122 {
2123 	if (dai->ops->set_fmt)
2124 		return dai->ops->set_fmt(dai, fmt);
2125 	else
2126 		return -EINVAL;
2127 }
2128 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2129 
2130 /**
2131  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2132  * @dai: DAI
2133  * @mask: DAI specific mask representing used slots.
2134  * @slots: Number of slots in use.
2135  *
2136  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2137  * specific.
2138  */
2139 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2140 	unsigned int mask, int slots)
2141 {
2142 	if (dai->ops->set_sysclk)
2143 		return dai->ops->set_tdm_slot(dai, mask, slots);
2144 	else
2145 		return -EINVAL;
2146 }
2147 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2148 
2149 /**
2150  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2151  * @dai: DAI
2152  * @tristate: tristate enable
2153  *
2154  * Tristates the DAI so that others can use it.
2155  */
2156 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2157 {
2158 	if (dai->ops->set_sysclk)
2159 		return dai->ops->set_tristate(dai, tristate);
2160 	else
2161 		return -EINVAL;
2162 }
2163 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2164 
2165 /**
2166  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2167  * @dai: DAI
2168  * @mute: mute enable
2169  *
2170  * Mutes the DAI DAC.
2171  */
2172 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2173 {
2174 	if (dai->ops->digital_mute)
2175 		return dai->ops->digital_mute(dai, mute);
2176 	else
2177 		return -EINVAL;
2178 }
2179 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2180 
2181 /**
2182  * snd_soc_register_card - Register a card with the ASoC core
2183  *
2184  * @card: Card to register
2185  *
2186  * Note that currently this is an internal only function: it will be
2187  * exposed to machine drivers after further backporting of ASoC v2
2188  * registration APIs.
2189  */
2190 static int snd_soc_register_card(struct snd_soc_card *card)
2191 {
2192 	if (!card->name || !card->dev)
2193 		return -EINVAL;
2194 
2195 	INIT_LIST_HEAD(&card->list);
2196 	card->instantiated = 0;
2197 
2198 	mutex_lock(&client_mutex);
2199 	list_add(&card->list, &card_list);
2200 	snd_soc_instantiate_cards();
2201 	mutex_unlock(&client_mutex);
2202 
2203 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * snd_soc_unregister_card - Unregister a card with the ASoC core
2210  *
2211  * @card: Card to unregister
2212  *
2213  * Note that currently this is an internal only function: it will be
2214  * exposed to machine drivers after further backporting of ASoC v2
2215  * registration APIs.
2216  */
2217 static int snd_soc_unregister_card(struct snd_soc_card *card)
2218 {
2219 	mutex_lock(&client_mutex);
2220 	list_del(&card->list);
2221 	mutex_unlock(&client_mutex);
2222 
2223 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2224 
2225 	return 0;
2226 }
2227 
2228 static struct snd_soc_dai_ops null_dai_ops = {
2229 };
2230 
2231 /**
2232  * snd_soc_register_dai - Register a DAI with the ASoC core
2233  *
2234  * @dai: DAI to register
2235  */
2236 int snd_soc_register_dai(struct snd_soc_dai *dai)
2237 {
2238 	if (!dai->name)
2239 		return -EINVAL;
2240 
2241 	/* The device should become mandatory over time */
2242 	if (!dai->dev)
2243 		printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2244 
2245 	if (!dai->ops)
2246 		dai->ops = &null_dai_ops;
2247 
2248 	INIT_LIST_HEAD(&dai->list);
2249 
2250 	mutex_lock(&client_mutex);
2251 	list_add(&dai->list, &dai_list);
2252 	snd_soc_instantiate_cards();
2253 	mutex_unlock(&client_mutex);
2254 
2255 	pr_debug("Registered DAI '%s'\n", dai->name);
2256 
2257 	return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2260 
2261 /**
2262  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2263  *
2264  * @dai: DAI to unregister
2265  */
2266 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2267 {
2268 	mutex_lock(&client_mutex);
2269 	list_del(&dai->list);
2270 	mutex_unlock(&client_mutex);
2271 
2272 	pr_debug("Unregistered DAI '%s'\n", dai->name);
2273 }
2274 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2275 
2276 /**
2277  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2278  *
2279  * @dai: Array of DAIs to register
2280  * @count: Number of DAIs
2281  */
2282 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2283 {
2284 	int i, ret;
2285 
2286 	for (i = 0; i < count; i++) {
2287 		ret = snd_soc_register_dai(&dai[i]);
2288 		if (ret != 0)
2289 			goto err;
2290 	}
2291 
2292 	return 0;
2293 
2294 err:
2295 	for (i--; i >= 0; i--)
2296 		snd_soc_unregister_dai(&dai[i]);
2297 
2298 	return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2301 
2302 /**
2303  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2304  *
2305  * @dai: Array of DAIs to unregister
2306  * @count: Number of DAIs
2307  */
2308 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2309 {
2310 	int i;
2311 
2312 	for (i = 0; i < count; i++)
2313 		snd_soc_unregister_dai(&dai[i]);
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2316 
2317 /**
2318  * snd_soc_register_platform - Register a platform with the ASoC core
2319  *
2320  * @platform: platform to register
2321  */
2322 int snd_soc_register_platform(struct snd_soc_platform *platform)
2323 {
2324 	if (!platform->name)
2325 		return -EINVAL;
2326 
2327 	INIT_LIST_HEAD(&platform->list);
2328 
2329 	mutex_lock(&client_mutex);
2330 	list_add(&platform->list, &platform_list);
2331 	snd_soc_instantiate_cards();
2332 	mutex_unlock(&client_mutex);
2333 
2334 	pr_debug("Registered platform '%s'\n", platform->name);
2335 
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2339 
2340 /**
2341  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2342  *
2343  * @platform: platform to unregister
2344  */
2345 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2346 {
2347 	mutex_lock(&client_mutex);
2348 	list_del(&platform->list);
2349 	mutex_unlock(&client_mutex);
2350 
2351 	pr_debug("Unregistered platform '%s'\n", platform->name);
2352 }
2353 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2354 
2355 /**
2356  * snd_soc_register_codec - Register a codec with the ASoC core
2357  *
2358  * @codec: codec to register
2359  */
2360 int snd_soc_register_codec(struct snd_soc_codec *codec)
2361 {
2362 	if (!codec->name)
2363 		return -EINVAL;
2364 
2365 	/* The device should become mandatory over time */
2366 	if (!codec->dev)
2367 		printk(KERN_WARNING "No device for codec %s\n", codec->name);
2368 
2369 	INIT_LIST_HEAD(&codec->list);
2370 
2371 	mutex_lock(&client_mutex);
2372 	list_add(&codec->list, &codec_list);
2373 	snd_soc_instantiate_cards();
2374 	mutex_unlock(&client_mutex);
2375 
2376 	pr_debug("Registered codec '%s'\n", codec->name);
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2381 
2382 /**
2383  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2384  *
2385  * @codec: codec to unregister
2386  */
2387 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2388 {
2389 	mutex_lock(&client_mutex);
2390 	list_del(&codec->list);
2391 	mutex_unlock(&client_mutex);
2392 
2393 	pr_debug("Unregistered codec '%s'\n", codec->name);
2394 }
2395 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2396 
2397 static int __init snd_soc_init(void)
2398 {
2399 #ifdef CONFIG_DEBUG_FS
2400 	debugfs_root = debugfs_create_dir("asoc", NULL);
2401 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2402 		printk(KERN_WARNING
2403 		       "ASoC: Failed to create debugfs directory\n");
2404 		debugfs_root = NULL;
2405 	}
2406 #endif
2407 
2408 	return platform_driver_register(&soc_driver);
2409 }
2410 
2411 static void __exit snd_soc_exit(void)
2412 {
2413 #ifdef CONFIG_DEBUG_FS
2414 	debugfs_remove_recursive(debugfs_root);
2415 #endif
2416 	platform_driver_unregister(&soc_driver);
2417 }
2418 
2419 module_init(snd_soc_init);
2420 module_exit(snd_soc_exit);
2421 
2422 /* Module information */
2423 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2424 MODULE_DESCRIPTION("ALSA SoC Core");
2425 MODULE_LICENSE("GPL");
2426 MODULE_ALIAS("platform:soc-audio");
2427