xref: /openbmc/linux/sound/soc/soc-core.c (revision 7fe2f639)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24 
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44 
45 #define NAME_SIZE	32
46 
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49 
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54 
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60 
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62 
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71 
72 /* returns the minimum number of bytes needed to represent
73  * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 	int c = 0;
77 	int i;
78 
79 	for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 		if (val & (1UL << i))
81 			break;
82 	c = (sizeof val * 8) - c;
83 	if (!c || (c % 8))
84 		c = (c + 8) / 8;
85 	else
86 		c /= 8;
87 	return c;
88 }
89 
90 /* fill buf which is 'len' bytes with a formatted
91  * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 			       unsigned int reg, char *buf, size_t len)
94 {
95 	int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
96 	int regsize = codec->driver->reg_word_size * 2;
97 	int ret;
98 	char tmpbuf[len + 1];
99 	char regbuf[regsize + 1];
100 
101 	/* since tmpbuf is allocated on the stack, warn the callers if they
102 	 * try to abuse this function */
103 	WARN_ON(len > 63);
104 
105 	/* +2 for ': ' and + 1 for '\n' */
106 	if (wordsize + regsize + 2 + 1 != len)
107 		return -EINVAL;
108 
109 	ret = snd_soc_read(codec , reg);
110 	if (ret < 0) {
111 		memset(regbuf, 'X', regsize);
112 		regbuf[regsize] = '\0';
113 	} else {
114 		snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 	}
116 
117 	/* prepare the buffer */
118 	snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 	/* copy it back to the caller without the '\0' */
120 	memcpy(buf, tmpbuf, len);
121 
122 	return 0;
123 }
124 
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 				  size_t count, loff_t pos)
128 {
129 	int i, step = 1;
130 	int wordsize, regsize;
131 	int len;
132 	size_t total = 0;
133 	loff_t p = 0;
134 
135 	wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
136 	regsize = codec->driver->reg_word_size * 2;
137 
138 	len = wordsize + regsize + 2 + 1;
139 
140 	if (!codec->driver->reg_cache_size)
141 		return 0;
142 
143 	if (codec->driver->reg_cache_step)
144 		step = codec->driver->reg_cache_step;
145 
146 	for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 		if (codec->readable_register && !codec->readable_register(codec, i))
148 			continue;
149 		if (codec->driver->display_register) {
150 			count += codec->driver->display_register(codec, buf + count,
151 							 PAGE_SIZE - count, i);
152 		} else {
153 			/* only support larger than PAGE_SIZE bytes debugfs
154 			 * entries for the default case */
155 			if (p >= pos) {
156 				if (total + len >= count - 1)
157 					break;
158 				format_register_str(codec, i, buf + total, len);
159 				total += len;
160 			}
161 			p += len;
162 		}
163 	}
164 
165 	total = min(total, count - 1);
166 
167 	return total;
168 }
169 
170 static ssize_t codec_reg_show(struct device *dev,
171 	struct device_attribute *attr, char *buf)
172 {
173 	struct snd_soc_pcm_runtime *rtd =
174 			container_of(dev, struct snd_soc_pcm_runtime, dev);
175 
176 	return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178 
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180 
181 static ssize_t pmdown_time_show(struct device *dev,
182 				struct device_attribute *attr, char *buf)
183 {
184 	struct snd_soc_pcm_runtime *rtd =
185 			container_of(dev, struct snd_soc_pcm_runtime, dev);
186 
187 	return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189 
190 static ssize_t pmdown_time_set(struct device *dev,
191 			       struct device_attribute *attr,
192 			       const char *buf, size_t count)
193 {
194 	struct snd_soc_pcm_runtime *rtd =
195 			container_of(dev, struct snd_soc_pcm_runtime, dev);
196 	int ret;
197 
198 	ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 	if (ret)
200 		return ret;
201 
202 	return count;
203 }
204 
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206 
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 	file->private_data = inode->i_private;
211 	return 0;
212 }
213 
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 				   size_t count, loff_t *ppos)
216 {
217 	ssize_t ret;
218 	struct snd_soc_codec *codec = file->private_data;
219 	char *buf;
220 
221 	if (*ppos < 0 || !count)
222 		return -EINVAL;
223 
224 	buf = kmalloc(count, GFP_KERNEL);
225 	if (!buf)
226 		return -ENOMEM;
227 
228 	ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 	if (ret >= 0) {
230 		if (copy_to_user(user_buf, buf, ret)) {
231 			kfree(buf);
232 			return -EFAULT;
233 		}
234 		*ppos += ret;
235 	}
236 
237 	kfree(buf);
238 	return ret;
239 }
240 
241 static ssize_t codec_reg_write_file(struct file *file,
242 		const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 	char buf[32];
245 	size_t buf_size;
246 	char *start = buf;
247 	unsigned long reg, value;
248 	int step = 1;
249 	struct snd_soc_codec *codec = file->private_data;
250 
251 	buf_size = min(count, (sizeof(buf)-1));
252 	if (copy_from_user(buf, user_buf, buf_size))
253 		return -EFAULT;
254 	buf[buf_size] = 0;
255 
256 	if (codec->driver->reg_cache_step)
257 		step = codec->driver->reg_cache_step;
258 
259 	while (*start == ' ')
260 		start++;
261 	reg = simple_strtoul(start, &start, 16);
262 	while (*start == ' ')
263 		start++;
264 	if (strict_strtoul(start, 16, &value))
265 		return -EINVAL;
266 
267 	/* Userspace has been fiddling around behind the kernel's back */
268 	add_taint(TAINT_USER);
269 
270 	snd_soc_write(codec, reg, value);
271 	return buf_size;
272 }
273 
274 static const struct file_operations codec_reg_fops = {
275 	.open = codec_reg_open_file,
276 	.read = codec_reg_read_file,
277 	.write = codec_reg_write_file,
278 	.llseek = default_llseek,
279 };
280 
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 	struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284 
285 	codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 						       debugfs_card_root);
287 	if (!codec->debugfs_codec_root) {
288 		printk(KERN_WARNING
289 		       "ASoC: Failed to create codec debugfs directory\n");
290 		return;
291 	}
292 
293 	debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 			    &codec->cache_sync);
295 	debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 			    &codec->cache_only);
297 
298 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 						 codec->debugfs_codec_root,
300 						 codec, &codec_reg_fops);
301 	if (!codec->debugfs_reg)
302 		printk(KERN_WARNING
303 		       "ASoC: Failed to create codec register debugfs file\n");
304 
305 	snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
306 }
307 
308 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
309 {
310 	debugfs_remove_recursive(codec->debugfs_codec_root);
311 }
312 
313 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
314 				    size_t count, loff_t *ppos)
315 {
316 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
317 	ssize_t len, ret = 0;
318 	struct snd_soc_codec *codec;
319 
320 	if (!buf)
321 		return -ENOMEM;
322 
323 	list_for_each_entry(codec, &codec_list, list) {
324 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
325 			       codec->name);
326 		if (len >= 0)
327 			ret += len;
328 		if (ret > PAGE_SIZE) {
329 			ret = PAGE_SIZE;
330 			break;
331 		}
332 	}
333 
334 	if (ret >= 0)
335 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
336 
337 	kfree(buf);
338 
339 	return ret;
340 }
341 
342 static const struct file_operations codec_list_fops = {
343 	.read = codec_list_read_file,
344 	.llseek = default_llseek,/* read accesses f_pos */
345 };
346 
347 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
348 				  size_t count, loff_t *ppos)
349 {
350 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
351 	ssize_t len, ret = 0;
352 	struct snd_soc_dai *dai;
353 
354 	if (!buf)
355 		return -ENOMEM;
356 
357 	list_for_each_entry(dai, &dai_list, list) {
358 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
359 		if (len >= 0)
360 			ret += len;
361 		if (ret > PAGE_SIZE) {
362 			ret = PAGE_SIZE;
363 			break;
364 		}
365 	}
366 
367 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
368 
369 	kfree(buf);
370 
371 	return ret;
372 }
373 
374 static const struct file_operations dai_list_fops = {
375 	.read = dai_list_read_file,
376 	.llseek = default_llseek,/* read accesses f_pos */
377 };
378 
379 static ssize_t platform_list_read_file(struct file *file,
380 				       char __user *user_buf,
381 				       size_t count, loff_t *ppos)
382 {
383 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
384 	ssize_t len, ret = 0;
385 	struct snd_soc_platform *platform;
386 
387 	if (!buf)
388 		return -ENOMEM;
389 
390 	list_for_each_entry(platform, &platform_list, list) {
391 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
392 			       platform->name);
393 		if (len >= 0)
394 			ret += len;
395 		if (ret > PAGE_SIZE) {
396 			ret = PAGE_SIZE;
397 			break;
398 		}
399 	}
400 
401 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
402 
403 	kfree(buf);
404 
405 	return ret;
406 }
407 
408 static const struct file_operations platform_list_fops = {
409 	.read = platform_list_read_file,
410 	.llseek = default_llseek,/* read accesses f_pos */
411 };
412 
413 static void soc_init_card_debugfs(struct snd_soc_card *card)
414 {
415 	card->debugfs_card_root = debugfs_create_dir(card->name,
416 						     snd_soc_debugfs_root);
417 	if (!card->debugfs_card_root) {
418 		dev_warn(card->dev,
419 			 "ASoC: Failed to create codec debugfs directory\n");
420 		return;
421 	}
422 
423 	card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
424 						    card->debugfs_card_root,
425 						    &card->pop_time);
426 	if (!card->debugfs_pop_time)
427 		dev_warn(card->dev,
428 		       "Failed to create pop time debugfs file\n");
429 }
430 
431 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
432 {
433 	debugfs_remove_recursive(card->debugfs_card_root);
434 }
435 
436 #else
437 
438 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
439 {
440 }
441 
442 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
443 {
444 }
445 
446 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
447 {
448 }
449 
450 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
451 {
452 }
453 #endif
454 
455 #ifdef CONFIG_SND_SOC_AC97_BUS
456 /* unregister ac97 codec */
457 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
458 {
459 	if (codec->ac97->dev.bus)
460 		device_unregister(&codec->ac97->dev);
461 	return 0;
462 }
463 
464 /* stop no dev release warning */
465 static void soc_ac97_device_release(struct device *dev){}
466 
467 /* register ac97 codec to bus */
468 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
469 {
470 	int err;
471 
472 	codec->ac97->dev.bus = &ac97_bus_type;
473 	codec->ac97->dev.parent = codec->card->dev;
474 	codec->ac97->dev.release = soc_ac97_device_release;
475 
476 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
477 		     codec->card->snd_card->number, 0, codec->name);
478 	err = device_register(&codec->ac97->dev);
479 	if (err < 0) {
480 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
481 		codec->ac97->dev.bus = NULL;
482 		return err;
483 	}
484 	return 0;
485 }
486 #endif
487 
488 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
489 {
490 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
491 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
492 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
493 	int ret;
494 
495 	if (!codec_dai->driver->symmetric_rates &&
496 	    !cpu_dai->driver->symmetric_rates &&
497 	    !rtd->dai_link->symmetric_rates)
498 		return 0;
499 
500 	/* This can happen if multiple streams are starting simultaneously -
501 	 * the second can need to get its constraints before the first has
502 	 * picked a rate.  Complain and allow the application to carry on.
503 	 */
504 	if (!rtd->rate) {
505 		dev_warn(&rtd->dev,
506 			 "Not enforcing symmetric_rates due to race\n");
507 		return 0;
508 	}
509 
510 	dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
511 
512 	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
513 					   SNDRV_PCM_HW_PARAM_RATE,
514 					   rtd->rate, rtd->rate);
515 	if (ret < 0) {
516 		dev_err(&rtd->dev,
517 			"Unable to apply rate symmetry constraint: %d\n", ret);
518 		return ret;
519 	}
520 
521 	return 0;
522 }
523 
524 /*
525  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
526  * then initialized and any private data can be allocated. This also calls
527  * startup for the cpu DAI, platform, machine and codec DAI.
528  */
529 static int soc_pcm_open(struct snd_pcm_substream *substream)
530 {
531 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
532 	struct snd_pcm_runtime *runtime = substream->runtime;
533 	struct snd_soc_platform *platform = rtd->platform;
534 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
535 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
536 	struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
537 	struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
538 	int ret = 0;
539 
540 	mutex_lock(&pcm_mutex);
541 
542 	/* startup the audio subsystem */
543 	if (cpu_dai->driver->ops->startup) {
544 		ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
545 		if (ret < 0) {
546 			printk(KERN_ERR "asoc: can't open interface %s\n",
547 				cpu_dai->name);
548 			goto out;
549 		}
550 	}
551 
552 	if (platform->driver->ops && platform->driver->ops->open) {
553 		ret = platform->driver->ops->open(substream);
554 		if (ret < 0) {
555 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
556 			goto platform_err;
557 		}
558 	}
559 
560 	if (codec_dai->driver->ops->startup) {
561 		ret = codec_dai->driver->ops->startup(substream, codec_dai);
562 		if (ret < 0) {
563 			printk(KERN_ERR "asoc: can't open codec %s\n",
564 				codec_dai->name);
565 			goto codec_dai_err;
566 		}
567 	}
568 
569 	if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
570 		ret = rtd->dai_link->ops->startup(substream);
571 		if (ret < 0) {
572 			printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
573 			goto machine_err;
574 		}
575 	}
576 
577 	/* Check that the codec and cpu DAIs are compatible */
578 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
579 		runtime->hw.rate_min =
580 			max(codec_dai_drv->playback.rate_min,
581 			    cpu_dai_drv->playback.rate_min);
582 		runtime->hw.rate_max =
583 			min(codec_dai_drv->playback.rate_max,
584 			    cpu_dai_drv->playback.rate_max);
585 		runtime->hw.channels_min =
586 			max(codec_dai_drv->playback.channels_min,
587 				cpu_dai_drv->playback.channels_min);
588 		runtime->hw.channels_max =
589 			min(codec_dai_drv->playback.channels_max,
590 				cpu_dai_drv->playback.channels_max);
591 		runtime->hw.formats =
592 			codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
593 		runtime->hw.rates =
594 			codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
595 		if (codec_dai_drv->playback.rates
596 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
597 			runtime->hw.rates |= cpu_dai_drv->playback.rates;
598 		if (cpu_dai_drv->playback.rates
599 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
600 			runtime->hw.rates |= codec_dai_drv->playback.rates;
601 	} else {
602 		runtime->hw.rate_min =
603 			max(codec_dai_drv->capture.rate_min,
604 			    cpu_dai_drv->capture.rate_min);
605 		runtime->hw.rate_max =
606 			min(codec_dai_drv->capture.rate_max,
607 			    cpu_dai_drv->capture.rate_max);
608 		runtime->hw.channels_min =
609 			max(codec_dai_drv->capture.channels_min,
610 				cpu_dai_drv->capture.channels_min);
611 		runtime->hw.channels_max =
612 			min(codec_dai_drv->capture.channels_max,
613 				cpu_dai_drv->capture.channels_max);
614 		runtime->hw.formats =
615 			codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
616 		runtime->hw.rates =
617 			codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
618 		if (codec_dai_drv->capture.rates
619 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
620 			runtime->hw.rates |= cpu_dai_drv->capture.rates;
621 		if (cpu_dai_drv->capture.rates
622 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
623 			runtime->hw.rates |= codec_dai_drv->capture.rates;
624 	}
625 
626 	ret = -EINVAL;
627 	snd_pcm_limit_hw_rates(runtime);
628 	if (!runtime->hw.rates) {
629 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
630 			codec_dai->name, cpu_dai->name);
631 		goto config_err;
632 	}
633 	if (!runtime->hw.formats) {
634 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
635 			codec_dai->name, cpu_dai->name);
636 		goto config_err;
637 	}
638 	if (!runtime->hw.channels_min || !runtime->hw.channels_max ||
639 	    runtime->hw.channels_min > runtime->hw.channels_max) {
640 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
641 				codec_dai->name, cpu_dai->name);
642 		goto config_err;
643 	}
644 
645 	/* Symmetry only applies if we've already got an active stream. */
646 	if (cpu_dai->active || codec_dai->active) {
647 		ret = soc_pcm_apply_symmetry(substream);
648 		if (ret != 0)
649 			goto config_err;
650 	}
651 
652 	pr_debug("asoc: %s <-> %s info:\n",
653 			codec_dai->name, cpu_dai->name);
654 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
655 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
656 		 runtime->hw.channels_max);
657 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
658 		 runtime->hw.rate_max);
659 
660 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
661 		cpu_dai->playback_active++;
662 		codec_dai->playback_active++;
663 	} else {
664 		cpu_dai->capture_active++;
665 		codec_dai->capture_active++;
666 	}
667 	cpu_dai->active++;
668 	codec_dai->active++;
669 	rtd->codec->active++;
670 	mutex_unlock(&pcm_mutex);
671 	return 0;
672 
673 config_err:
674 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
675 		rtd->dai_link->ops->shutdown(substream);
676 
677 machine_err:
678 	if (codec_dai->driver->ops->shutdown)
679 		codec_dai->driver->ops->shutdown(substream, codec_dai);
680 
681 codec_dai_err:
682 	if (platform->driver->ops && platform->driver->ops->close)
683 		platform->driver->ops->close(substream);
684 
685 platform_err:
686 	if (cpu_dai->driver->ops->shutdown)
687 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
688 out:
689 	mutex_unlock(&pcm_mutex);
690 	return ret;
691 }
692 
693 /*
694  * Power down the audio subsystem pmdown_time msecs after close is called.
695  * This is to ensure there are no pops or clicks in between any music tracks
696  * due to DAPM power cycling.
697  */
698 static void close_delayed_work(struct work_struct *work)
699 {
700 	struct snd_soc_pcm_runtime *rtd =
701 			container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
702 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
703 
704 	mutex_lock(&pcm_mutex);
705 
706 	pr_debug("pop wq checking: %s status: %s waiting: %s\n",
707 		 codec_dai->driver->playback.stream_name,
708 		 codec_dai->playback_active ? "active" : "inactive",
709 		 codec_dai->pop_wait ? "yes" : "no");
710 
711 	/* are we waiting on this codec DAI stream */
712 	if (codec_dai->pop_wait == 1) {
713 		codec_dai->pop_wait = 0;
714 		snd_soc_dapm_stream_event(rtd,
715 			codec_dai->driver->playback.stream_name,
716 			SND_SOC_DAPM_STREAM_STOP);
717 	}
718 
719 	mutex_unlock(&pcm_mutex);
720 }
721 
722 /*
723  * Called by ALSA when a PCM substream is closed. Private data can be
724  * freed here. The cpu DAI, codec DAI, machine and platform are also
725  * shutdown.
726  */
727 static int soc_codec_close(struct snd_pcm_substream *substream)
728 {
729 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
730 	struct snd_soc_platform *platform = rtd->platform;
731 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
732 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
733 	struct snd_soc_codec *codec = rtd->codec;
734 
735 	mutex_lock(&pcm_mutex);
736 
737 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
738 		cpu_dai->playback_active--;
739 		codec_dai->playback_active--;
740 	} else {
741 		cpu_dai->capture_active--;
742 		codec_dai->capture_active--;
743 	}
744 
745 	cpu_dai->active--;
746 	codec_dai->active--;
747 	codec->active--;
748 
749 	/* Muting the DAC suppresses artifacts caused during digital
750 	 * shutdown, for example from stopping clocks.
751 	 */
752 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
753 		snd_soc_dai_digital_mute(codec_dai, 1);
754 
755 	if (cpu_dai->driver->ops->shutdown)
756 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
757 
758 	if (codec_dai->driver->ops->shutdown)
759 		codec_dai->driver->ops->shutdown(substream, codec_dai);
760 
761 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
762 		rtd->dai_link->ops->shutdown(substream);
763 
764 	if (platform->driver->ops && platform->driver->ops->close)
765 		platform->driver->ops->close(substream);
766 	cpu_dai->runtime = NULL;
767 
768 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
769 		/* start delayed pop wq here for playback streams */
770 		codec_dai->pop_wait = 1;
771 		schedule_delayed_work(&rtd->delayed_work,
772 			msecs_to_jiffies(rtd->pmdown_time));
773 	} else {
774 		/* capture streams can be powered down now */
775 		snd_soc_dapm_stream_event(rtd,
776 			codec_dai->driver->capture.stream_name,
777 			SND_SOC_DAPM_STREAM_STOP);
778 	}
779 
780 	mutex_unlock(&pcm_mutex);
781 	return 0;
782 }
783 
784 /*
785  * Called by ALSA when the PCM substream is prepared, can set format, sample
786  * rate, etc.  This function is non atomic and can be called multiple times,
787  * it can refer to the runtime info.
788  */
789 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
790 {
791 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
792 	struct snd_soc_platform *platform = rtd->platform;
793 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
794 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
795 	int ret = 0;
796 
797 	mutex_lock(&pcm_mutex);
798 
799 	if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
800 		ret = rtd->dai_link->ops->prepare(substream);
801 		if (ret < 0) {
802 			printk(KERN_ERR "asoc: machine prepare error\n");
803 			goto out;
804 		}
805 	}
806 
807 	if (platform->driver->ops && platform->driver->ops->prepare) {
808 		ret = platform->driver->ops->prepare(substream);
809 		if (ret < 0) {
810 			printk(KERN_ERR "asoc: platform prepare error\n");
811 			goto out;
812 		}
813 	}
814 
815 	if (codec_dai->driver->ops->prepare) {
816 		ret = codec_dai->driver->ops->prepare(substream, codec_dai);
817 		if (ret < 0) {
818 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
819 			goto out;
820 		}
821 	}
822 
823 	if (cpu_dai->driver->ops->prepare) {
824 		ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
825 		if (ret < 0) {
826 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
827 			goto out;
828 		}
829 	}
830 
831 	/* cancel any delayed stream shutdown that is pending */
832 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
833 	    codec_dai->pop_wait) {
834 		codec_dai->pop_wait = 0;
835 		cancel_delayed_work(&rtd->delayed_work);
836 	}
837 
838 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
839 		snd_soc_dapm_stream_event(rtd,
840 					  codec_dai->driver->playback.stream_name,
841 					  SND_SOC_DAPM_STREAM_START);
842 	else
843 		snd_soc_dapm_stream_event(rtd,
844 					  codec_dai->driver->capture.stream_name,
845 					  SND_SOC_DAPM_STREAM_START);
846 
847 	snd_soc_dai_digital_mute(codec_dai, 0);
848 
849 out:
850 	mutex_unlock(&pcm_mutex);
851 	return ret;
852 }
853 
854 /*
855  * Called by ALSA when the hardware params are set by application. This
856  * function can also be called multiple times and can allocate buffers
857  * (using snd_pcm_lib_* ). It's non-atomic.
858  */
859 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
860 				struct snd_pcm_hw_params *params)
861 {
862 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
863 	struct snd_soc_platform *platform = rtd->platform;
864 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
865 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
866 	int ret = 0;
867 
868 	mutex_lock(&pcm_mutex);
869 
870 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
871 		ret = rtd->dai_link->ops->hw_params(substream, params);
872 		if (ret < 0) {
873 			printk(KERN_ERR "asoc: machine hw_params failed\n");
874 			goto out;
875 		}
876 	}
877 
878 	if (codec_dai->driver->ops->hw_params) {
879 		ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
880 		if (ret < 0) {
881 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
882 				codec_dai->name);
883 			goto codec_err;
884 		}
885 	}
886 
887 	if (cpu_dai->driver->ops->hw_params) {
888 		ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
889 		if (ret < 0) {
890 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
891 				cpu_dai->name);
892 			goto interface_err;
893 		}
894 	}
895 
896 	if (platform->driver->ops && platform->driver->ops->hw_params) {
897 		ret = platform->driver->ops->hw_params(substream, params);
898 		if (ret < 0) {
899 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
900 				platform->name);
901 			goto platform_err;
902 		}
903 	}
904 
905 	rtd->rate = params_rate(params);
906 
907 out:
908 	mutex_unlock(&pcm_mutex);
909 	return ret;
910 
911 platform_err:
912 	if (cpu_dai->driver->ops->hw_free)
913 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
914 
915 interface_err:
916 	if (codec_dai->driver->ops->hw_free)
917 		codec_dai->driver->ops->hw_free(substream, codec_dai);
918 
919 codec_err:
920 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
921 		rtd->dai_link->ops->hw_free(substream);
922 
923 	mutex_unlock(&pcm_mutex);
924 	return ret;
925 }
926 
927 /*
928  * Frees resources allocated by hw_params, can be called multiple times
929  */
930 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
931 {
932 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
933 	struct snd_soc_platform *platform = rtd->platform;
934 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
935 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
936 	struct snd_soc_codec *codec = rtd->codec;
937 
938 	mutex_lock(&pcm_mutex);
939 
940 	/* apply codec digital mute */
941 	if (!codec->active)
942 		snd_soc_dai_digital_mute(codec_dai, 1);
943 
944 	/* free any machine hw params */
945 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
946 		rtd->dai_link->ops->hw_free(substream);
947 
948 	/* free any DMA resources */
949 	if (platform->driver->ops && platform->driver->ops->hw_free)
950 		platform->driver->ops->hw_free(substream);
951 
952 	/* now free hw params for the DAIs  */
953 	if (codec_dai->driver->ops->hw_free)
954 		codec_dai->driver->ops->hw_free(substream, codec_dai);
955 
956 	if (cpu_dai->driver->ops->hw_free)
957 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
958 
959 	mutex_unlock(&pcm_mutex);
960 	return 0;
961 }
962 
963 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
964 {
965 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
966 	struct snd_soc_platform *platform = rtd->platform;
967 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
968 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
969 	int ret;
970 
971 	if (codec_dai->driver->ops->trigger) {
972 		ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
973 		if (ret < 0)
974 			return ret;
975 	}
976 
977 	if (platform->driver->ops && platform->driver->ops->trigger) {
978 		ret = platform->driver->ops->trigger(substream, cmd);
979 		if (ret < 0)
980 			return ret;
981 	}
982 
983 	if (cpu_dai->driver->ops->trigger) {
984 		ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
985 		if (ret < 0)
986 			return ret;
987 	}
988 	return 0;
989 }
990 
991 /*
992  * soc level wrapper for pointer callback
993  * If cpu_dai, codec_dai, platform driver has the delay callback, than
994  * the runtime->delay will be updated accordingly.
995  */
996 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
997 {
998 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
999 	struct snd_soc_platform *platform = rtd->platform;
1000 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1001 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
1002 	struct snd_pcm_runtime *runtime = substream->runtime;
1003 	snd_pcm_uframes_t offset = 0;
1004 	snd_pcm_sframes_t delay = 0;
1005 
1006 	if (platform->driver->ops && platform->driver->ops->pointer)
1007 		offset = platform->driver->ops->pointer(substream);
1008 
1009 	if (cpu_dai->driver->ops->delay)
1010 		delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1011 
1012 	if (codec_dai->driver->ops->delay)
1013 		delay += codec_dai->driver->ops->delay(substream, codec_dai);
1014 
1015 	if (platform->driver->delay)
1016 		delay += platform->driver->delay(substream, codec_dai);
1017 
1018 	runtime->delay = delay;
1019 
1020 	return offset;
1021 }
1022 
1023 /* ASoC PCM operations */
1024 static struct snd_pcm_ops soc_pcm_ops = {
1025 	.open		= soc_pcm_open,
1026 	.close		= soc_codec_close,
1027 	.hw_params	= soc_pcm_hw_params,
1028 	.hw_free	= soc_pcm_hw_free,
1029 	.prepare	= soc_pcm_prepare,
1030 	.trigger	= soc_pcm_trigger,
1031 	.pointer	= soc_pcm_pointer,
1032 };
1033 
1034 #ifdef CONFIG_PM_SLEEP
1035 /* powers down audio subsystem for suspend */
1036 int snd_soc_suspend(struct device *dev)
1037 {
1038 	struct snd_soc_card *card = dev_get_drvdata(dev);
1039 	struct snd_soc_codec *codec;
1040 	int i;
1041 
1042 	/* If the initialization of this soc device failed, there is no codec
1043 	 * associated with it. Just bail out in this case.
1044 	 */
1045 	if (list_empty(&card->codec_dev_list))
1046 		return 0;
1047 
1048 	/* Due to the resume being scheduled into a workqueue we could
1049 	* suspend before that's finished - wait for it to complete.
1050 	 */
1051 	snd_power_lock(card->snd_card);
1052 	snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1053 	snd_power_unlock(card->snd_card);
1054 
1055 	/* we're going to block userspace touching us until resume completes */
1056 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1057 
1058 	/* mute any active DACs */
1059 	for (i = 0; i < card->num_rtd; i++) {
1060 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1061 		struct snd_soc_dai_driver *drv = dai->driver;
1062 
1063 		if (card->rtd[i].dai_link->ignore_suspend)
1064 			continue;
1065 
1066 		if (drv->ops->digital_mute && dai->playback_active)
1067 			drv->ops->digital_mute(dai, 1);
1068 	}
1069 
1070 	/* suspend all pcms */
1071 	for (i = 0; i < card->num_rtd; i++) {
1072 		if (card->rtd[i].dai_link->ignore_suspend)
1073 			continue;
1074 
1075 		snd_pcm_suspend_all(card->rtd[i].pcm);
1076 	}
1077 
1078 	if (card->suspend_pre)
1079 		card->suspend_pre(card);
1080 
1081 	for (i = 0; i < card->num_rtd; i++) {
1082 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1083 		struct snd_soc_platform *platform = card->rtd[i].platform;
1084 
1085 		if (card->rtd[i].dai_link->ignore_suspend)
1086 			continue;
1087 
1088 		if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1089 			cpu_dai->driver->suspend(cpu_dai);
1090 		if (platform->driver->suspend && !platform->suspended) {
1091 			platform->driver->suspend(cpu_dai);
1092 			platform->suspended = 1;
1093 		}
1094 	}
1095 
1096 	/* close any waiting streams and save state */
1097 	for (i = 0; i < card->num_rtd; i++) {
1098 		flush_delayed_work_sync(&card->rtd[i].delayed_work);
1099 		card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1100 	}
1101 
1102 	for (i = 0; i < card->num_rtd; i++) {
1103 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1104 
1105 		if (card->rtd[i].dai_link->ignore_suspend)
1106 			continue;
1107 
1108 		if (driver->playback.stream_name != NULL)
1109 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1110 				SND_SOC_DAPM_STREAM_SUSPEND);
1111 
1112 		if (driver->capture.stream_name != NULL)
1113 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1114 				SND_SOC_DAPM_STREAM_SUSPEND);
1115 	}
1116 
1117 	/* suspend all CODECs */
1118 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1119 		/* If there are paths active then the CODEC will be held with
1120 		 * bias _ON and should not be suspended. */
1121 		if (!codec->suspended && codec->driver->suspend) {
1122 			switch (codec->dapm.bias_level) {
1123 			case SND_SOC_BIAS_STANDBY:
1124 			case SND_SOC_BIAS_OFF:
1125 				codec->driver->suspend(codec, PMSG_SUSPEND);
1126 				codec->suspended = 1;
1127 				break;
1128 			default:
1129 				dev_dbg(codec->dev, "CODEC is on over suspend\n");
1130 				break;
1131 			}
1132 		}
1133 	}
1134 
1135 	for (i = 0; i < card->num_rtd; i++) {
1136 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1137 
1138 		if (card->rtd[i].dai_link->ignore_suspend)
1139 			continue;
1140 
1141 		if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1142 			cpu_dai->driver->suspend(cpu_dai);
1143 	}
1144 
1145 	if (card->suspend_post)
1146 		card->suspend_post(card);
1147 
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1151 
1152 /* deferred resume work, so resume can complete before we finished
1153  * setting our codec back up, which can be very slow on I2C
1154  */
1155 static void soc_resume_deferred(struct work_struct *work)
1156 {
1157 	struct snd_soc_card *card =
1158 			container_of(work, struct snd_soc_card, deferred_resume_work);
1159 	struct snd_soc_codec *codec;
1160 	int i;
1161 
1162 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1163 	 * so userspace apps are blocked from touching us
1164 	 */
1165 
1166 	dev_dbg(card->dev, "starting resume work\n");
1167 
1168 	/* Bring us up into D2 so that DAPM starts enabling things */
1169 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1170 
1171 	if (card->resume_pre)
1172 		card->resume_pre(card);
1173 
1174 	/* resume AC97 DAIs */
1175 	for (i = 0; i < card->num_rtd; i++) {
1176 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1177 
1178 		if (card->rtd[i].dai_link->ignore_suspend)
1179 			continue;
1180 
1181 		if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1182 			cpu_dai->driver->resume(cpu_dai);
1183 	}
1184 
1185 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1186 		/* If the CODEC was idle over suspend then it will have been
1187 		 * left with bias OFF or STANDBY and suspended so we must now
1188 		 * resume.  Otherwise the suspend was suppressed.
1189 		 */
1190 		if (codec->driver->resume && codec->suspended) {
1191 			switch (codec->dapm.bias_level) {
1192 			case SND_SOC_BIAS_STANDBY:
1193 			case SND_SOC_BIAS_OFF:
1194 				codec->driver->resume(codec);
1195 				codec->suspended = 0;
1196 				break;
1197 			default:
1198 				dev_dbg(codec->dev, "CODEC was on over suspend\n");
1199 				break;
1200 			}
1201 		}
1202 	}
1203 
1204 	for (i = 0; i < card->num_rtd; i++) {
1205 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1206 
1207 		if (card->rtd[i].dai_link->ignore_suspend)
1208 			continue;
1209 
1210 		if (driver->playback.stream_name != NULL)
1211 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1212 				SND_SOC_DAPM_STREAM_RESUME);
1213 
1214 		if (driver->capture.stream_name != NULL)
1215 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1216 				SND_SOC_DAPM_STREAM_RESUME);
1217 	}
1218 
1219 	/* unmute any active DACs */
1220 	for (i = 0; i < card->num_rtd; i++) {
1221 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1222 		struct snd_soc_dai_driver *drv = dai->driver;
1223 
1224 		if (card->rtd[i].dai_link->ignore_suspend)
1225 			continue;
1226 
1227 		if (drv->ops->digital_mute && dai->playback_active)
1228 			drv->ops->digital_mute(dai, 0);
1229 	}
1230 
1231 	for (i = 0; i < card->num_rtd; i++) {
1232 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1233 		struct snd_soc_platform *platform = card->rtd[i].platform;
1234 
1235 		if (card->rtd[i].dai_link->ignore_suspend)
1236 			continue;
1237 
1238 		if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1239 			cpu_dai->driver->resume(cpu_dai);
1240 		if (platform->driver->resume && platform->suspended) {
1241 			platform->driver->resume(cpu_dai);
1242 			platform->suspended = 0;
1243 		}
1244 	}
1245 
1246 	if (card->resume_post)
1247 		card->resume_post(card);
1248 
1249 	dev_dbg(card->dev, "resume work completed\n");
1250 
1251 	/* userspace can access us now we are back as we were before */
1252 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1253 }
1254 
1255 /* powers up audio subsystem after a suspend */
1256 int snd_soc_resume(struct device *dev)
1257 {
1258 	struct snd_soc_card *card = dev_get_drvdata(dev);
1259 	int i;
1260 
1261 	/* AC97 devices might have other drivers hanging off them so
1262 	 * need to resume immediately.  Other drivers don't have that
1263 	 * problem and may take a substantial amount of time to resume
1264 	 * due to I/O costs and anti-pop so handle them out of line.
1265 	 */
1266 	for (i = 0; i < card->num_rtd; i++) {
1267 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1268 		if (cpu_dai->driver->ac97_control) {
1269 			dev_dbg(dev, "Resuming AC97 immediately\n");
1270 			soc_resume_deferred(&card->deferred_resume_work);
1271 		} else {
1272 			dev_dbg(dev, "Scheduling resume work\n");
1273 			if (!schedule_work(&card->deferred_resume_work))
1274 				dev_err(dev, "resume work item may be lost\n");
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(snd_soc_resume);
1281 #else
1282 #define snd_soc_suspend NULL
1283 #define snd_soc_resume NULL
1284 #endif
1285 
1286 static struct snd_soc_dai_ops null_dai_ops = {
1287 };
1288 
1289 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1290 {
1291 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1292 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1293 	struct snd_soc_codec *codec;
1294 	struct snd_soc_platform *platform;
1295 	struct snd_soc_dai *codec_dai, *cpu_dai;
1296 	const char *platform_name;
1297 
1298 	if (rtd->complete)
1299 		return 1;
1300 	dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1301 
1302 	/* do we already have the CPU DAI for this link ? */
1303 	if (rtd->cpu_dai) {
1304 		goto find_codec;
1305 	}
1306 	/* no, then find CPU DAI from registered DAIs*/
1307 	list_for_each_entry(cpu_dai, &dai_list, list) {
1308 		if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1309 			rtd->cpu_dai = cpu_dai;
1310 			goto find_codec;
1311 		}
1312 	}
1313 	dev_dbg(card->dev, "CPU DAI %s not registered\n",
1314 			dai_link->cpu_dai_name);
1315 
1316 find_codec:
1317 	/* do we already have the CODEC for this link ? */
1318 	if (rtd->codec) {
1319 		goto find_platform;
1320 	}
1321 
1322 	/* no, then find CODEC from registered CODECs*/
1323 	list_for_each_entry(codec, &codec_list, list) {
1324 		if (!strcmp(codec->name, dai_link->codec_name)) {
1325 			rtd->codec = codec;
1326 
1327 			/* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1328 			list_for_each_entry(codec_dai, &dai_list, list) {
1329 				if (codec->dev == codec_dai->dev &&
1330 						!strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1331 					rtd->codec_dai = codec_dai;
1332 					goto find_platform;
1333 				}
1334 			}
1335 			dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1336 					dai_link->codec_dai_name);
1337 
1338 			goto find_platform;
1339 		}
1340 	}
1341 	dev_dbg(card->dev, "CODEC %s not registered\n",
1342 			dai_link->codec_name);
1343 
1344 find_platform:
1345 	/* do we need a platform? */
1346 	if (rtd->platform)
1347 		goto out;
1348 
1349 	/* if there's no platform we match on the empty platform */
1350 	platform_name = dai_link->platform_name;
1351 	if (!platform_name)
1352 		platform_name = "snd-soc-dummy";
1353 
1354 	/* no, then find one from the set of registered platforms */
1355 	list_for_each_entry(platform, &platform_list, list) {
1356 		if (!strcmp(platform->name, platform_name)) {
1357 			rtd->platform = platform;
1358 			goto out;
1359 		}
1360 	}
1361 
1362 	dev_dbg(card->dev, "platform %s not registered\n",
1363 			dai_link->platform_name);
1364 	return 0;
1365 
1366 out:
1367 	/* mark rtd as complete if we found all 4 of our client devices */
1368 	if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1369 		rtd->complete = 1;
1370 		card->num_rtd++;
1371 	}
1372 	return 1;
1373 }
1374 
1375 static void soc_remove_codec(struct snd_soc_codec *codec)
1376 {
1377 	int err;
1378 
1379 	if (codec->driver->remove) {
1380 		err = codec->driver->remove(codec);
1381 		if (err < 0)
1382 			dev_err(codec->dev,
1383 				"asoc: failed to remove %s: %d\n",
1384 				codec->name, err);
1385 	}
1386 
1387 	/* Make sure all DAPM widgets are freed */
1388 	snd_soc_dapm_free(&codec->dapm);
1389 
1390 	soc_cleanup_codec_debugfs(codec);
1391 	codec->probed = 0;
1392 	list_del(&codec->card_list);
1393 	module_put(codec->dev->driver->owner);
1394 }
1395 
1396 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1397 {
1398 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1399 	struct snd_soc_codec *codec = rtd->codec;
1400 	struct snd_soc_platform *platform = rtd->platform;
1401 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1402 	int err;
1403 
1404 	/* unregister the rtd device */
1405 	if (rtd->dev_registered) {
1406 		device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1407 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1408 		device_unregister(&rtd->dev);
1409 		rtd->dev_registered = 0;
1410 	}
1411 
1412 	/* remove the CODEC DAI */
1413 	if (codec_dai && codec_dai->probed) {
1414 		if (codec_dai->driver->remove) {
1415 			err = codec_dai->driver->remove(codec_dai);
1416 			if (err < 0)
1417 				printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1418 		}
1419 		codec_dai->probed = 0;
1420 		list_del(&codec_dai->card_list);
1421 	}
1422 
1423 	/* remove the platform */
1424 	if (platform && platform->probed) {
1425 		if (platform->driver->remove) {
1426 			err = platform->driver->remove(platform);
1427 			if (err < 0)
1428 				printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1429 		}
1430 		platform->probed = 0;
1431 		list_del(&platform->card_list);
1432 		module_put(platform->dev->driver->owner);
1433 	}
1434 
1435 	/* remove the CODEC */
1436 	if (codec && codec->probed)
1437 		soc_remove_codec(codec);
1438 
1439 	/* remove the cpu_dai */
1440 	if (cpu_dai && cpu_dai->probed) {
1441 		if (cpu_dai->driver->remove) {
1442 			err = cpu_dai->driver->remove(cpu_dai);
1443 			if (err < 0)
1444 				printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1445 		}
1446 		cpu_dai->probed = 0;
1447 		list_del(&cpu_dai->card_list);
1448 		module_put(cpu_dai->dev->driver->owner);
1449 	}
1450 }
1451 
1452 static void soc_remove_dai_links(struct snd_soc_card *card)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < card->num_rtd; i++)
1457 		soc_remove_dai_link(card, i);
1458 
1459 	card->num_rtd = 0;
1460 }
1461 
1462 static void soc_set_name_prefix(struct snd_soc_card *card,
1463 				struct snd_soc_codec *codec)
1464 {
1465 	int i;
1466 
1467 	if (card->codec_conf == NULL)
1468 		return;
1469 
1470 	for (i = 0; i < card->num_configs; i++) {
1471 		struct snd_soc_codec_conf *map = &card->codec_conf[i];
1472 		if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1473 			codec->name_prefix = map->name_prefix;
1474 			break;
1475 		}
1476 	}
1477 }
1478 
1479 static int soc_probe_codec(struct snd_soc_card *card,
1480 			   struct snd_soc_codec *codec)
1481 {
1482 	int ret = 0;
1483 	const struct snd_soc_codec_driver *driver = codec->driver;
1484 
1485 	codec->card = card;
1486 	codec->dapm.card = card;
1487 	soc_set_name_prefix(card, codec);
1488 
1489 	if (!try_module_get(codec->dev->driver->owner))
1490 		return -ENODEV;
1491 
1492 	soc_init_codec_debugfs(codec);
1493 
1494 	if (driver->dapm_widgets)
1495 		snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1496 					  driver->num_dapm_widgets);
1497 
1498 	if (driver->probe) {
1499 		ret = driver->probe(codec);
1500 		if (ret < 0) {
1501 			dev_err(codec->dev,
1502 				"asoc: failed to probe CODEC %s: %d\n",
1503 				codec->name, ret);
1504 			goto err_probe;
1505 		}
1506 	}
1507 
1508 	if (driver->controls)
1509 		snd_soc_add_controls(codec, driver->controls,
1510 				     driver->num_controls);
1511 	if (driver->dapm_routes)
1512 		snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1513 					driver->num_dapm_routes);
1514 
1515 	/* mark codec as probed and add to card codec list */
1516 	codec->probed = 1;
1517 	list_add(&codec->card_list, &card->codec_dev_list);
1518 	list_add(&codec->dapm.list, &card->dapm_list);
1519 
1520 	return 0;
1521 
1522 err_probe:
1523 	soc_cleanup_codec_debugfs(codec);
1524 	module_put(codec->dev->driver->owner);
1525 
1526 	return ret;
1527 }
1528 
1529 static void rtd_release(struct device *dev) {}
1530 
1531 static int soc_post_component_init(struct snd_soc_card *card,
1532 				   struct snd_soc_codec *codec,
1533 				   int num, int dailess)
1534 {
1535 	struct snd_soc_dai_link *dai_link = NULL;
1536 	struct snd_soc_aux_dev *aux_dev = NULL;
1537 	struct snd_soc_pcm_runtime *rtd;
1538 	const char *temp, *name;
1539 	int ret = 0;
1540 
1541 	if (!dailess) {
1542 		dai_link = &card->dai_link[num];
1543 		rtd = &card->rtd[num];
1544 		name = dai_link->name;
1545 	} else {
1546 		aux_dev = &card->aux_dev[num];
1547 		rtd = &card->rtd_aux[num];
1548 		name = aux_dev->name;
1549 	}
1550 	rtd->card = card;
1551 
1552 	/* machine controls, routes and widgets are not prefixed */
1553 	temp = codec->name_prefix;
1554 	codec->name_prefix = NULL;
1555 
1556 	/* do machine specific initialization */
1557 	if (!dailess && dai_link->init)
1558 		ret = dai_link->init(rtd);
1559 	else if (dailess && aux_dev->init)
1560 		ret = aux_dev->init(&codec->dapm);
1561 	if (ret < 0) {
1562 		dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1563 		return ret;
1564 	}
1565 	codec->name_prefix = temp;
1566 
1567 	/* Make sure all DAPM widgets are instantiated */
1568 	snd_soc_dapm_new_widgets(&codec->dapm);
1569 
1570 	/* register the rtd device */
1571 	rtd->codec = codec;
1572 	rtd->dev.parent = card->dev;
1573 	rtd->dev.release = rtd_release;
1574 	rtd->dev.init_name = name;
1575 	ret = device_register(&rtd->dev);
1576 	if (ret < 0) {
1577 		dev_err(card->dev,
1578 			"asoc: failed to register runtime device: %d\n", ret);
1579 		return ret;
1580 	}
1581 	rtd->dev_registered = 1;
1582 
1583 	/* add DAPM sysfs entries for this codec */
1584 	ret = snd_soc_dapm_sys_add(&rtd->dev);
1585 	if (ret < 0)
1586 		dev_err(codec->dev,
1587 			"asoc: failed to add codec dapm sysfs entries: %d\n",
1588 			ret);
1589 
1590 	/* add codec sysfs entries */
1591 	ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1592 	if (ret < 0)
1593 		dev_err(codec->dev,
1594 			"asoc: failed to add codec sysfs files: %d\n", ret);
1595 
1596 	return 0;
1597 }
1598 
1599 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1600 {
1601 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1602 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1603 	struct snd_soc_codec *codec = rtd->codec;
1604 	struct snd_soc_platform *platform = rtd->platform;
1605 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1606 	int ret;
1607 
1608 	dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1609 
1610 	/* config components */
1611 	codec_dai->codec = codec;
1612 	cpu_dai->platform = platform;
1613 	codec_dai->card = card;
1614 	cpu_dai->card = card;
1615 
1616 	/* set default power off timeout */
1617 	rtd->pmdown_time = pmdown_time;
1618 
1619 	/* probe the cpu_dai */
1620 	if (!cpu_dai->probed) {
1621 		if (!try_module_get(cpu_dai->dev->driver->owner))
1622 			return -ENODEV;
1623 
1624 		if (cpu_dai->driver->probe) {
1625 			ret = cpu_dai->driver->probe(cpu_dai);
1626 			if (ret < 0) {
1627 				printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1628 						cpu_dai->name);
1629 				module_put(cpu_dai->dev->driver->owner);
1630 				return ret;
1631 			}
1632 		}
1633 		cpu_dai->probed = 1;
1634 		/* mark cpu_dai as probed and add to card cpu_dai list */
1635 		list_add(&cpu_dai->card_list, &card->dai_dev_list);
1636 	}
1637 
1638 	/* probe the CODEC */
1639 	if (!codec->probed) {
1640 		ret = soc_probe_codec(card, codec);
1641 		if (ret < 0)
1642 			return ret;
1643 	}
1644 
1645 	/* probe the platform */
1646 	if (!platform->probed) {
1647 		if (!try_module_get(platform->dev->driver->owner))
1648 			return -ENODEV;
1649 
1650 		if (platform->driver->probe) {
1651 			ret = platform->driver->probe(platform);
1652 			if (ret < 0) {
1653 				printk(KERN_ERR "asoc: failed to probe platform %s\n",
1654 						platform->name);
1655 				module_put(platform->dev->driver->owner);
1656 				return ret;
1657 			}
1658 		}
1659 		/* mark platform as probed and add to card platform list */
1660 		platform->probed = 1;
1661 		list_add(&platform->card_list, &card->platform_dev_list);
1662 	}
1663 
1664 	/* probe the CODEC DAI */
1665 	if (!codec_dai->probed) {
1666 		if (codec_dai->driver->probe) {
1667 			ret = codec_dai->driver->probe(codec_dai);
1668 			if (ret < 0) {
1669 				printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1670 						codec_dai->name);
1671 				return ret;
1672 			}
1673 		}
1674 
1675 		/* mark cpu_dai as probed and add to card cpu_dai list */
1676 		codec_dai->probed = 1;
1677 		list_add(&codec_dai->card_list, &card->dai_dev_list);
1678 	}
1679 
1680 	/* DAPM dai link stream work */
1681 	INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1682 
1683 	ret = soc_post_component_init(card, codec, num, 0);
1684 	if (ret)
1685 		return ret;
1686 
1687 	ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1688 	if (ret < 0)
1689 		printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1690 
1691 	/* create the pcm */
1692 	ret = soc_new_pcm(rtd, num);
1693 	if (ret < 0) {
1694 		printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1695 		return ret;
1696 	}
1697 
1698 	/* add platform data for AC97 devices */
1699 	if (rtd->codec_dai->driver->ac97_control)
1700 		snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1701 
1702 	return 0;
1703 }
1704 
1705 #ifdef CONFIG_SND_SOC_AC97_BUS
1706 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1707 {
1708 	int ret;
1709 
1710 	/* Only instantiate AC97 if not already done by the adaptor
1711 	 * for the generic AC97 subsystem.
1712 	 */
1713 	if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1714 		/*
1715 		 * It is possible that the AC97 device is already registered to
1716 		 * the device subsystem. This happens when the device is created
1717 		 * via snd_ac97_mixer(). Currently only SoC codec that does so
1718 		 * is the generic AC97 glue but others migh emerge.
1719 		 *
1720 		 * In those cases we don't try to register the device again.
1721 		 */
1722 		if (!rtd->codec->ac97_created)
1723 			return 0;
1724 
1725 		ret = soc_ac97_dev_register(rtd->codec);
1726 		if (ret < 0) {
1727 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1728 			return ret;
1729 		}
1730 
1731 		rtd->codec->ac97_registered = 1;
1732 	}
1733 	return 0;
1734 }
1735 
1736 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1737 {
1738 	if (codec->ac97_registered) {
1739 		soc_ac97_dev_unregister(codec);
1740 		codec->ac97_registered = 0;
1741 	}
1742 }
1743 #endif
1744 
1745 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1746 {
1747 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1748 	struct snd_soc_codec *codec;
1749 	int ret = -ENODEV;
1750 
1751 	/* find CODEC from registered CODECs*/
1752 	list_for_each_entry(codec, &codec_list, list) {
1753 		if (!strcmp(codec->name, aux_dev->codec_name)) {
1754 			if (codec->probed) {
1755 				dev_err(codec->dev,
1756 					"asoc: codec already probed");
1757 				ret = -EBUSY;
1758 				goto out;
1759 			}
1760 			goto found;
1761 		}
1762 	}
1763 	/* codec not found */
1764 	dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1765 	goto out;
1766 
1767 found:
1768 	ret = soc_probe_codec(card, codec);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	ret = soc_post_component_init(card, codec, num, 1);
1773 
1774 out:
1775 	return ret;
1776 }
1777 
1778 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1779 {
1780 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1781 	struct snd_soc_codec *codec = rtd->codec;
1782 
1783 	/* unregister the rtd device */
1784 	if (rtd->dev_registered) {
1785 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1786 		device_unregister(&rtd->dev);
1787 		rtd->dev_registered = 0;
1788 	}
1789 
1790 	if (codec && codec->probed)
1791 		soc_remove_codec(codec);
1792 }
1793 
1794 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1795 				    enum snd_soc_compress_type compress_type)
1796 {
1797 	int ret;
1798 
1799 	if (codec->cache_init)
1800 		return 0;
1801 
1802 	/* override the compress_type if necessary */
1803 	if (compress_type && codec->compress_type != compress_type)
1804 		codec->compress_type = compress_type;
1805 	ret = snd_soc_cache_init(codec);
1806 	if (ret < 0) {
1807 		dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1808 			ret);
1809 		return ret;
1810 	}
1811 	codec->cache_init = 1;
1812 	return 0;
1813 }
1814 
1815 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1816 {
1817 	struct snd_soc_codec *codec;
1818 	struct snd_soc_codec_conf *codec_conf;
1819 	enum snd_soc_compress_type compress_type;
1820 	int ret, i;
1821 
1822 	mutex_lock(&card->mutex);
1823 
1824 	if (card->instantiated) {
1825 		mutex_unlock(&card->mutex);
1826 		return;
1827 	}
1828 
1829 	/* bind DAIs */
1830 	for (i = 0; i < card->num_links; i++)
1831 		soc_bind_dai_link(card, i);
1832 
1833 	/* bind completed ? */
1834 	if (card->num_rtd != card->num_links) {
1835 		mutex_unlock(&card->mutex);
1836 		return;
1837 	}
1838 
1839 	/* initialize the register cache for each available codec */
1840 	list_for_each_entry(codec, &codec_list, list) {
1841 		if (codec->cache_init)
1842 			continue;
1843 		/* by default we don't override the compress_type */
1844 		compress_type = 0;
1845 		/* check to see if we need to override the compress_type */
1846 		for (i = 0; i < card->num_configs; ++i) {
1847 			codec_conf = &card->codec_conf[i];
1848 			if (!strcmp(codec->name, codec_conf->dev_name)) {
1849 				compress_type = codec_conf->compress_type;
1850 				if (compress_type && compress_type
1851 				    != codec->compress_type)
1852 					break;
1853 			}
1854 		}
1855 		ret = snd_soc_init_codec_cache(codec, compress_type);
1856 		if (ret < 0) {
1857 			mutex_unlock(&card->mutex);
1858 			return;
1859 		}
1860 	}
1861 
1862 	/* card bind complete so register a sound card */
1863 	ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1864 			card->owner, 0, &card->snd_card);
1865 	if (ret < 0) {
1866 		printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1867 			card->name);
1868 		mutex_unlock(&card->mutex);
1869 		return;
1870 	}
1871 	card->snd_card->dev = card->dev;
1872 
1873 	card->dapm.bias_level = SND_SOC_BIAS_OFF;
1874 	card->dapm.dev = card->dev;
1875 	card->dapm.card = card;
1876 	list_add(&card->dapm.list, &card->dapm_list);
1877 
1878 #ifdef CONFIG_DEBUG_FS
1879 	snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1880 #endif
1881 
1882 #ifdef CONFIG_PM_SLEEP
1883 	/* deferred resume work */
1884 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1885 #endif
1886 
1887 	if (card->dapm_widgets)
1888 		snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1889 					  card->num_dapm_widgets);
1890 
1891 	/* initialise the sound card only once */
1892 	if (card->probe) {
1893 		ret = card->probe(card);
1894 		if (ret < 0)
1895 			goto card_probe_error;
1896 	}
1897 
1898 	for (i = 0; i < card->num_links; i++) {
1899 		ret = soc_probe_dai_link(card, i);
1900 		if (ret < 0) {
1901 			pr_err("asoc: failed to instantiate card %s: %d\n",
1902 			       card->name, ret);
1903 			goto probe_dai_err;
1904 		}
1905 	}
1906 
1907 	for (i = 0; i < card->num_aux_devs; i++) {
1908 		ret = soc_probe_aux_dev(card, i);
1909 		if (ret < 0) {
1910 			pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1911 			       card->name, ret);
1912 			goto probe_aux_dev_err;
1913 		}
1914 	}
1915 
1916 	/* We should have a non-codec control add function but we don't */
1917 	if (card->controls)
1918 		snd_soc_add_controls(list_first_entry(&card->codec_dev_list,
1919 						      struct snd_soc_codec,
1920 						      card_list),
1921 				     card->controls,
1922 				     card->num_controls);
1923 
1924 	if (card->dapm_routes)
1925 		snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1926 					card->num_dapm_routes);
1927 
1928 	snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1929 		 "%s", card->name);
1930 	snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1931 		 "%s", card->long_name ? card->long_name : card->name);
1932 	if (card->driver_name)
1933 		strlcpy(card->snd_card->driver, card->driver_name,
1934 			sizeof(card->snd_card->driver));
1935 
1936 	if (card->late_probe) {
1937 		ret = card->late_probe(card);
1938 		if (ret < 0) {
1939 			dev_err(card->dev, "%s late_probe() failed: %d\n",
1940 				card->name, ret);
1941 			goto probe_aux_dev_err;
1942 		}
1943 	}
1944 
1945 	ret = snd_card_register(card->snd_card);
1946 	if (ret < 0) {
1947 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1948 		goto probe_aux_dev_err;
1949 	}
1950 
1951 #ifdef CONFIG_SND_SOC_AC97_BUS
1952 	/* register any AC97 codecs */
1953 	for (i = 0; i < card->num_rtd; i++) {
1954 		ret = soc_register_ac97_dai_link(&card->rtd[i]);
1955 		if (ret < 0) {
1956 			printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1957 			while (--i >= 0)
1958 				soc_unregister_ac97_dai_link(card->rtd[i].codec);
1959 			goto probe_aux_dev_err;
1960 		}
1961 	}
1962 #endif
1963 
1964 	card->instantiated = 1;
1965 	mutex_unlock(&card->mutex);
1966 	return;
1967 
1968 probe_aux_dev_err:
1969 	for (i = 0; i < card->num_aux_devs; i++)
1970 		soc_remove_aux_dev(card, i);
1971 
1972 probe_dai_err:
1973 	soc_remove_dai_links(card);
1974 
1975 card_probe_error:
1976 	if (card->remove)
1977 		card->remove(card);
1978 
1979 	snd_card_free(card->snd_card);
1980 
1981 	mutex_unlock(&card->mutex);
1982 }
1983 
1984 /*
1985  * Attempt to initialise any uninitialised cards.  Must be called with
1986  * client_mutex.
1987  */
1988 static void snd_soc_instantiate_cards(void)
1989 {
1990 	struct snd_soc_card *card;
1991 	list_for_each_entry(card, &card_list, list)
1992 		snd_soc_instantiate_card(card);
1993 }
1994 
1995 /* probes a new socdev */
1996 static int soc_probe(struct platform_device *pdev)
1997 {
1998 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1999 	int ret = 0;
2000 
2001 	/*
2002 	 * no card, so machine driver should be registering card
2003 	 * we should not be here in that case so ret error
2004 	 */
2005 	if (!card)
2006 		return -EINVAL;
2007 
2008 	/* Bodge while we unpick instantiation */
2009 	card->dev = &pdev->dev;
2010 
2011 	ret = snd_soc_register_card(card);
2012 	if (ret != 0) {
2013 		dev_err(&pdev->dev, "Failed to register card\n");
2014 		return ret;
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2021 {
2022 	int i;
2023 
2024 	/* make sure any delayed work runs */
2025 	for (i = 0; i < card->num_rtd; i++) {
2026 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2027 		flush_delayed_work_sync(&rtd->delayed_work);
2028 	}
2029 
2030 	/* remove auxiliary devices */
2031 	for (i = 0; i < card->num_aux_devs; i++)
2032 		soc_remove_aux_dev(card, i);
2033 
2034 	/* remove and free each DAI */
2035 	soc_remove_dai_links(card);
2036 
2037 	soc_cleanup_card_debugfs(card);
2038 
2039 	/* remove the card */
2040 	if (card->remove)
2041 		card->remove(card);
2042 
2043 	snd_soc_dapm_free(&card->dapm);
2044 
2045 	kfree(card->rtd);
2046 	snd_card_free(card->snd_card);
2047 	return 0;
2048 
2049 }
2050 
2051 /* removes a socdev */
2052 static int soc_remove(struct platform_device *pdev)
2053 {
2054 	struct snd_soc_card *card = platform_get_drvdata(pdev);
2055 
2056 	snd_soc_unregister_card(card);
2057 	return 0;
2058 }
2059 
2060 int snd_soc_poweroff(struct device *dev)
2061 {
2062 	struct snd_soc_card *card = dev_get_drvdata(dev);
2063 	int i;
2064 
2065 	if (!card->instantiated)
2066 		return 0;
2067 
2068 	/* Flush out pmdown_time work - we actually do want to run it
2069 	 * now, we're shutting down so no imminent restart. */
2070 	for (i = 0; i < card->num_rtd; i++) {
2071 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2072 		flush_delayed_work_sync(&rtd->delayed_work);
2073 	}
2074 
2075 	snd_soc_dapm_shutdown(card);
2076 
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2080 
2081 const struct dev_pm_ops snd_soc_pm_ops = {
2082 	.suspend = snd_soc_suspend,
2083 	.resume = snd_soc_resume,
2084 	.poweroff = snd_soc_poweroff,
2085 };
2086 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2087 
2088 /* ASoC platform driver */
2089 static struct platform_driver soc_driver = {
2090 	.driver		= {
2091 		.name		= "soc-audio",
2092 		.owner		= THIS_MODULE,
2093 		.pm		= &snd_soc_pm_ops,
2094 	},
2095 	.probe		= soc_probe,
2096 	.remove		= soc_remove,
2097 };
2098 
2099 /* create a new pcm */
2100 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2101 {
2102 	struct snd_soc_codec *codec = rtd->codec;
2103 	struct snd_soc_platform *platform = rtd->platform;
2104 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
2105 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2106 	struct snd_pcm *pcm;
2107 	char new_name[64];
2108 	int ret = 0, playback = 0, capture = 0;
2109 
2110 	/* check client and interface hw capabilities */
2111 	snprintf(new_name, sizeof(new_name), "%s %s-%d",
2112 			rtd->dai_link->stream_name, codec_dai->name, num);
2113 
2114 	if (codec_dai->driver->playback.channels_min)
2115 		playback = 1;
2116 	if (codec_dai->driver->capture.channels_min)
2117 		capture = 1;
2118 
2119 	dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2120 	ret = snd_pcm_new(rtd->card->snd_card, new_name,
2121 			num, playback, capture, &pcm);
2122 	if (ret < 0) {
2123 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2124 		return ret;
2125 	}
2126 
2127 	rtd->pcm = pcm;
2128 	pcm->private_data = rtd;
2129 	if (platform->driver->ops) {
2130 		soc_pcm_ops.mmap = platform->driver->ops->mmap;
2131 		soc_pcm_ops.pointer = platform->driver->ops->pointer;
2132 		soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2133 		soc_pcm_ops.copy = platform->driver->ops->copy;
2134 		soc_pcm_ops.silence = platform->driver->ops->silence;
2135 		soc_pcm_ops.ack = platform->driver->ops->ack;
2136 		soc_pcm_ops.page = platform->driver->ops->page;
2137 	}
2138 
2139 	if (playback)
2140 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2141 
2142 	if (capture)
2143 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2144 
2145 	if (platform->driver->pcm_new) {
2146 		ret = platform->driver->pcm_new(rtd->card->snd_card,
2147 						codec_dai, pcm);
2148 		if (ret < 0) {
2149 			pr_err("asoc: platform pcm constructor failed\n");
2150 			return ret;
2151 		}
2152 	}
2153 
2154 	pcm->private_free = platform->driver->pcm_free;
2155 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2156 		cpu_dai->name);
2157 	return ret;
2158 }
2159 
2160 /**
2161  * snd_soc_codec_volatile_register: Report if a register is volatile.
2162  *
2163  * @codec: CODEC to query.
2164  * @reg: Register to query.
2165  *
2166  * Boolean function indiciating if a CODEC register is volatile.
2167  */
2168 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2169 				    unsigned int reg)
2170 {
2171 	if (codec->volatile_register)
2172 		return codec->volatile_register(codec, reg);
2173 	else
2174 		return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2177 
2178 /**
2179  * snd_soc_codec_readable_register: Report if a register is readable.
2180  *
2181  * @codec: CODEC to query.
2182  * @reg: Register to query.
2183  *
2184  * Boolean function indicating if a CODEC register is readable.
2185  */
2186 int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
2187 				    unsigned int reg)
2188 {
2189 	if (codec->readable_register)
2190 		return codec->readable_register(codec, reg);
2191 	else
2192 		return 0;
2193 }
2194 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
2195 
2196 /**
2197  * snd_soc_codec_writable_register: Report if a register is writable.
2198  *
2199  * @codec: CODEC to query.
2200  * @reg: Register to query.
2201  *
2202  * Boolean function indicating if a CODEC register is writable.
2203  */
2204 int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
2205 				    unsigned int reg)
2206 {
2207 	if (codec->writable_register)
2208 		return codec->writable_register(codec, reg);
2209 	else
2210 		return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
2213 
2214 /**
2215  * snd_soc_new_ac97_codec - initailise AC97 device
2216  * @codec: audio codec
2217  * @ops: AC97 bus operations
2218  * @num: AC97 codec number
2219  *
2220  * Initialises AC97 codec resources for use by ad-hoc devices only.
2221  */
2222 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2223 	struct snd_ac97_bus_ops *ops, int num)
2224 {
2225 	mutex_lock(&codec->mutex);
2226 
2227 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2228 	if (codec->ac97 == NULL) {
2229 		mutex_unlock(&codec->mutex);
2230 		return -ENOMEM;
2231 	}
2232 
2233 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2234 	if (codec->ac97->bus == NULL) {
2235 		kfree(codec->ac97);
2236 		codec->ac97 = NULL;
2237 		mutex_unlock(&codec->mutex);
2238 		return -ENOMEM;
2239 	}
2240 
2241 	codec->ac97->bus->ops = ops;
2242 	codec->ac97->num = num;
2243 
2244 	/*
2245 	 * Mark the AC97 device to be created by us. This way we ensure that the
2246 	 * device will be registered with the device subsystem later on.
2247 	 */
2248 	codec->ac97_created = 1;
2249 
2250 	mutex_unlock(&codec->mutex);
2251 	return 0;
2252 }
2253 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2254 
2255 /**
2256  * snd_soc_free_ac97_codec - free AC97 codec device
2257  * @codec: audio codec
2258  *
2259  * Frees AC97 codec device resources.
2260  */
2261 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2262 {
2263 	mutex_lock(&codec->mutex);
2264 #ifdef CONFIG_SND_SOC_AC97_BUS
2265 	soc_unregister_ac97_dai_link(codec);
2266 #endif
2267 	kfree(codec->ac97->bus);
2268 	kfree(codec->ac97);
2269 	codec->ac97 = NULL;
2270 	codec->ac97_created = 0;
2271 	mutex_unlock(&codec->mutex);
2272 }
2273 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2274 
2275 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2276 {
2277 	unsigned int ret;
2278 
2279 	ret = codec->read(codec, reg);
2280 	dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2281 	trace_snd_soc_reg_read(codec, reg, ret);
2282 
2283 	return ret;
2284 }
2285 EXPORT_SYMBOL_GPL(snd_soc_read);
2286 
2287 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2288 			   unsigned int reg, unsigned int val)
2289 {
2290 	dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2291 	trace_snd_soc_reg_write(codec, reg, val);
2292 	return codec->write(codec, reg, val);
2293 }
2294 EXPORT_SYMBOL_GPL(snd_soc_write);
2295 
2296 unsigned int snd_soc_bulk_write_raw(struct snd_soc_codec *codec,
2297 				    unsigned int reg, const void *data, size_t len)
2298 {
2299 	return codec->bulk_write_raw(codec, reg, data, len);
2300 }
2301 EXPORT_SYMBOL_GPL(snd_soc_bulk_write_raw);
2302 
2303 /**
2304  * snd_soc_update_bits - update codec register bits
2305  * @codec: audio codec
2306  * @reg: codec register
2307  * @mask: register mask
2308  * @value: new value
2309  *
2310  * Writes new register value.
2311  *
2312  * Returns 1 for change, 0 for no change, or negative error code.
2313  */
2314 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2315 				unsigned int mask, unsigned int value)
2316 {
2317 	int change;
2318 	unsigned int old, new;
2319 	int ret;
2320 
2321 	ret = snd_soc_read(codec, reg);
2322 	if (ret < 0)
2323 		return ret;
2324 
2325 	old = ret;
2326 	new = (old & ~mask) | value;
2327 	change = old != new;
2328 	if (change) {
2329 		ret = snd_soc_write(codec, reg, new);
2330 		if (ret < 0)
2331 			return ret;
2332 	}
2333 
2334 	return change;
2335 }
2336 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2337 
2338 /**
2339  * snd_soc_update_bits_locked - update codec register bits
2340  * @codec: audio codec
2341  * @reg: codec register
2342  * @mask: register mask
2343  * @value: new value
2344  *
2345  * Writes new register value, and takes the codec mutex.
2346  *
2347  * Returns 1 for change else 0.
2348  */
2349 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2350 			       unsigned short reg, unsigned int mask,
2351 			       unsigned int value)
2352 {
2353 	int change;
2354 
2355 	mutex_lock(&codec->mutex);
2356 	change = snd_soc_update_bits(codec, reg, mask, value);
2357 	mutex_unlock(&codec->mutex);
2358 
2359 	return change;
2360 }
2361 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2362 
2363 /**
2364  * snd_soc_test_bits - test register for change
2365  * @codec: audio codec
2366  * @reg: codec register
2367  * @mask: register mask
2368  * @value: new value
2369  *
2370  * Tests a register with a new value and checks if the new value is
2371  * different from the old value.
2372  *
2373  * Returns 1 for change else 0.
2374  */
2375 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2376 				unsigned int mask, unsigned int value)
2377 {
2378 	int change;
2379 	unsigned int old, new;
2380 
2381 	old = snd_soc_read(codec, reg);
2382 	new = (old & ~mask) | value;
2383 	change = old != new;
2384 
2385 	return change;
2386 }
2387 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2388 
2389 /**
2390  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2391  * @substream: the pcm substream
2392  * @hw: the hardware parameters
2393  *
2394  * Sets the substream runtime hardware parameters.
2395  */
2396 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2397 	const struct snd_pcm_hardware *hw)
2398 {
2399 	struct snd_pcm_runtime *runtime = substream->runtime;
2400 	runtime->hw.info = hw->info;
2401 	runtime->hw.formats = hw->formats;
2402 	runtime->hw.period_bytes_min = hw->period_bytes_min;
2403 	runtime->hw.period_bytes_max = hw->period_bytes_max;
2404 	runtime->hw.periods_min = hw->periods_min;
2405 	runtime->hw.periods_max = hw->periods_max;
2406 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2407 	runtime->hw.fifo_size = hw->fifo_size;
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2411 
2412 /**
2413  * snd_soc_cnew - create new control
2414  * @_template: control template
2415  * @data: control private data
2416  * @long_name: control long name
2417  * @prefix: control name prefix
2418  *
2419  * Create a new mixer control from a template control.
2420  *
2421  * Returns 0 for success, else error.
2422  */
2423 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2424 				  void *data, char *long_name,
2425 				  const char *prefix)
2426 {
2427 	struct snd_kcontrol_new template;
2428 	struct snd_kcontrol *kcontrol;
2429 	char *name = NULL;
2430 	int name_len;
2431 
2432 	memcpy(&template, _template, sizeof(template));
2433 	template.index = 0;
2434 
2435 	if (!long_name)
2436 		long_name = template.name;
2437 
2438 	if (prefix) {
2439 		name_len = strlen(long_name) + strlen(prefix) + 2;
2440 		name = kmalloc(name_len, GFP_ATOMIC);
2441 		if (!name)
2442 			return NULL;
2443 
2444 		snprintf(name, name_len, "%s %s", prefix, long_name);
2445 
2446 		template.name = name;
2447 	} else {
2448 		template.name = long_name;
2449 	}
2450 
2451 	kcontrol = snd_ctl_new1(&template, data);
2452 
2453 	kfree(name);
2454 
2455 	return kcontrol;
2456 }
2457 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2458 
2459 /**
2460  * snd_soc_add_controls - add an array of controls to a codec.
2461  * Convienience function to add a list of controls. Many codecs were
2462  * duplicating this code.
2463  *
2464  * @codec: codec to add controls to
2465  * @controls: array of controls to add
2466  * @num_controls: number of elements in the array
2467  *
2468  * Return 0 for success, else error.
2469  */
2470 int snd_soc_add_controls(struct snd_soc_codec *codec,
2471 	const struct snd_kcontrol_new *controls, int num_controls)
2472 {
2473 	struct snd_card *card = codec->card->snd_card;
2474 	int err, i;
2475 
2476 	for (i = 0; i < num_controls; i++) {
2477 		const struct snd_kcontrol_new *control = &controls[i];
2478 		err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2479 						     control->name,
2480 						     codec->name_prefix));
2481 		if (err < 0) {
2482 			dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2483 				codec->name, control->name, err);
2484 			return err;
2485 		}
2486 	}
2487 
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2491 
2492 /**
2493  * snd_soc_info_enum_double - enumerated double mixer info callback
2494  * @kcontrol: mixer control
2495  * @uinfo: control element information
2496  *
2497  * Callback to provide information about a double enumerated
2498  * mixer control.
2499  *
2500  * Returns 0 for success.
2501  */
2502 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2503 	struct snd_ctl_elem_info *uinfo)
2504 {
2505 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2506 
2507 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2508 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2509 	uinfo->value.enumerated.items = e->max;
2510 
2511 	if (uinfo->value.enumerated.item > e->max - 1)
2512 		uinfo->value.enumerated.item = e->max - 1;
2513 	strcpy(uinfo->value.enumerated.name,
2514 		e->texts[uinfo->value.enumerated.item]);
2515 	return 0;
2516 }
2517 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2518 
2519 /**
2520  * snd_soc_get_enum_double - enumerated double mixer get callback
2521  * @kcontrol: mixer control
2522  * @ucontrol: control element information
2523  *
2524  * Callback to get the value of a double enumerated mixer.
2525  *
2526  * Returns 0 for success.
2527  */
2528 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2529 	struct snd_ctl_elem_value *ucontrol)
2530 {
2531 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2532 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2533 	unsigned int val, bitmask;
2534 
2535 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2536 		;
2537 	val = snd_soc_read(codec, e->reg);
2538 	ucontrol->value.enumerated.item[0]
2539 		= (val >> e->shift_l) & (bitmask - 1);
2540 	if (e->shift_l != e->shift_r)
2541 		ucontrol->value.enumerated.item[1] =
2542 			(val >> e->shift_r) & (bitmask - 1);
2543 
2544 	return 0;
2545 }
2546 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2547 
2548 /**
2549  * snd_soc_put_enum_double - enumerated double mixer put callback
2550  * @kcontrol: mixer control
2551  * @ucontrol: control element information
2552  *
2553  * Callback to set the value of a double enumerated mixer.
2554  *
2555  * Returns 0 for success.
2556  */
2557 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2558 	struct snd_ctl_elem_value *ucontrol)
2559 {
2560 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2561 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2562 	unsigned int val;
2563 	unsigned int mask, bitmask;
2564 
2565 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2566 		;
2567 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2568 		return -EINVAL;
2569 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
2570 	mask = (bitmask - 1) << e->shift_l;
2571 	if (e->shift_l != e->shift_r) {
2572 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2573 			return -EINVAL;
2574 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2575 		mask |= (bitmask - 1) << e->shift_r;
2576 	}
2577 
2578 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2579 }
2580 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2581 
2582 /**
2583  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2584  * @kcontrol: mixer control
2585  * @ucontrol: control element information
2586  *
2587  * Callback to get the value of a double semi enumerated mixer.
2588  *
2589  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2590  * used for handling bitfield coded enumeration for example.
2591  *
2592  * Returns 0 for success.
2593  */
2594 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2595 	struct snd_ctl_elem_value *ucontrol)
2596 {
2597 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2598 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2599 	unsigned int reg_val, val, mux;
2600 
2601 	reg_val = snd_soc_read(codec, e->reg);
2602 	val = (reg_val >> e->shift_l) & e->mask;
2603 	for (mux = 0; mux < e->max; mux++) {
2604 		if (val == e->values[mux])
2605 			break;
2606 	}
2607 	ucontrol->value.enumerated.item[0] = mux;
2608 	if (e->shift_l != e->shift_r) {
2609 		val = (reg_val >> e->shift_r) & e->mask;
2610 		for (mux = 0; mux < e->max; mux++) {
2611 			if (val == e->values[mux])
2612 				break;
2613 		}
2614 		ucontrol->value.enumerated.item[1] = mux;
2615 	}
2616 
2617 	return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2620 
2621 /**
2622  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2623  * @kcontrol: mixer control
2624  * @ucontrol: control element information
2625  *
2626  * Callback to set the value of a double semi enumerated mixer.
2627  *
2628  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2629  * used for handling bitfield coded enumeration for example.
2630  *
2631  * Returns 0 for success.
2632  */
2633 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2634 	struct snd_ctl_elem_value *ucontrol)
2635 {
2636 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2637 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2638 	unsigned int val;
2639 	unsigned int mask;
2640 
2641 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2642 		return -EINVAL;
2643 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2644 	mask = e->mask << e->shift_l;
2645 	if (e->shift_l != e->shift_r) {
2646 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2647 			return -EINVAL;
2648 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2649 		mask |= e->mask << e->shift_r;
2650 	}
2651 
2652 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2653 }
2654 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2655 
2656 /**
2657  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2658  * @kcontrol: mixer control
2659  * @uinfo: control element information
2660  *
2661  * Callback to provide information about an external enumerated
2662  * single mixer.
2663  *
2664  * Returns 0 for success.
2665  */
2666 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2667 	struct snd_ctl_elem_info *uinfo)
2668 {
2669 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2670 
2671 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2672 	uinfo->count = 1;
2673 	uinfo->value.enumerated.items = e->max;
2674 
2675 	if (uinfo->value.enumerated.item > e->max - 1)
2676 		uinfo->value.enumerated.item = e->max - 1;
2677 	strcpy(uinfo->value.enumerated.name,
2678 		e->texts[uinfo->value.enumerated.item]);
2679 	return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2682 
2683 /**
2684  * snd_soc_info_volsw_ext - external single mixer info callback
2685  * @kcontrol: mixer control
2686  * @uinfo: control element information
2687  *
2688  * Callback to provide information about a single external mixer control.
2689  *
2690  * Returns 0 for success.
2691  */
2692 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2693 	struct snd_ctl_elem_info *uinfo)
2694 {
2695 	int max = kcontrol->private_value;
2696 
2697 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2698 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2699 	else
2700 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2701 
2702 	uinfo->count = 1;
2703 	uinfo->value.integer.min = 0;
2704 	uinfo->value.integer.max = max;
2705 	return 0;
2706 }
2707 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2708 
2709 /**
2710  * snd_soc_info_volsw - single mixer info callback
2711  * @kcontrol: mixer control
2712  * @uinfo: control element information
2713  *
2714  * Callback to provide information about a single mixer control.
2715  *
2716  * Returns 0 for success.
2717  */
2718 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2719 	struct snd_ctl_elem_info *uinfo)
2720 {
2721 	struct soc_mixer_control *mc =
2722 		(struct soc_mixer_control *)kcontrol->private_value;
2723 	int platform_max;
2724 	unsigned int shift = mc->shift;
2725 	unsigned int rshift = mc->rshift;
2726 
2727 	if (!mc->platform_max)
2728 		mc->platform_max = mc->max;
2729 	platform_max = mc->platform_max;
2730 
2731 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2732 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2733 	else
2734 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2735 
2736 	uinfo->count = shift == rshift ? 1 : 2;
2737 	uinfo->value.integer.min = 0;
2738 	uinfo->value.integer.max = platform_max;
2739 	return 0;
2740 }
2741 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2742 
2743 /**
2744  * snd_soc_get_volsw - single mixer get callback
2745  * @kcontrol: mixer control
2746  * @ucontrol: control element information
2747  *
2748  * Callback to get the value of a single mixer control.
2749  *
2750  * Returns 0 for success.
2751  */
2752 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2753 	struct snd_ctl_elem_value *ucontrol)
2754 {
2755 	struct soc_mixer_control *mc =
2756 		(struct soc_mixer_control *)kcontrol->private_value;
2757 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2758 	unsigned int reg = mc->reg;
2759 	unsigned int shift = mc->shift;
2760 	unsigned int rshift = mc->rshift;
2761 	int max = mc->max;
2762 	unsigned int mask = (1 << fls(max)) - 1;
2763 	unsigned int invert = mc->invert;
2764 
2765 	ucontrol->value.integer.value[0] =
2766 		(snd_soc_read(codec, reg) >> shift) & mask;
2767 	if (shift != rshift)
2768 		ucontrol->value.integer.value[1] =
2769 			(snd_soc_read(codec, reg) >> rshift) & mask;
2770 	if (invert) {
2771 		ucontrol->value.integer.value[0] =
2772 			max - ucontrol->value.integer.value[0];
2773 		if (shift != rshift)
2774 			ucontrol->value.integer.value[1] =
2775 				max - ucontrol->value.integer.value[1];
2776 	}
2777 
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2781 
2782 /**
2783  * snd_soc_put_volsw - single mixer put callback
2784  * @kcontrol: mixer control
2785  * @ucontrol: control element information
2786  *
2787  * Callback to set the value of a single mixer control.
2788  *
2789  * Returns 0 for success.
2790  */
2791 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2792 	struct snd_ctl_elem_value *ucontrol)
2793 {
2794 	struct soc_mixer_control *mc =
2795 		(struct soc_mixer_control *)kcontrol->private_value;
2796 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2797 	unsigned int reg = mc->reg;
2798 	unsigned int shift = mc->shift;
2799 	unsigned int rshift = mc->rshift;
2800 	int max = mc->max;
2801 	unsigned int mask = (1 << fls(max)) - 1;
2802 	unsigned int invert = mc->invert;
2803 	unsigned int val, val2, val_mask;
2804 
2805 	val = (ucontrol->value.integer.value[0] & mask);
2806 	if (invert)
2807 		val = max - val;
2808 	val_mask = mask << shift;
2809 	val = val << shift;
2810 	if (shift != rshift) {
2811 		val2 = (ucontrol->value.integer.value[1] & mask);
2812 		if (invert)
2813 			val2 = max - val2;
2814 		val_mask |= mask << rshift;
2815 		val |= val2 << rshift;
2816 	}
2817 	return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2818 }
2819 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2820 
2821 /**
2822  * snd_soc_info_volsw_2r - double mixer info callback
2823  * @kcontrol: mixer control
2824  * @uinfo: control element information
2825  *
2826  * Callback to provide information about a double mixer control that
2827  * spans 2 codec registers.
2828  *
2829  * Returns 0 for success.
2830  */
2831 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2832 	struct snd_ctl_elem_info *uinfo)
2833 {
2834 	struct soc_mixer_control *mc =
2835 		(struct soc_mixer_control *)kcontrol->private_value;
2836 	int platform_max;
2837 
2838 	if (!mc->platform_max)
2839 		mc->platform_max = mc->max;
2840 	platform_max = mc->platform_max;
2841 
2842 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2843 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2844 	else
2845 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2846 
2847 	uinfo->count = 2;
2848 	uinfo->value.integer.min = 0;
2849 	uinfo->value.integer.max = platform_max;
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2853 
2854 /**
2855  * snd_soc_get_volsw_2r - double mixer get callback
2856  * @kcontrol: mixer control
2857  * @ucontrol: control element information
2858  *
2859  * Callback to get the value of a double mixer control that spans 2 registers.
2860  *
2861  * Returns 0 for success.
2862  */
2863 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2864 	struct snd_ctl_elem_value *ucontrol)
2865 {
2866 	struct soc_mixer_control *mc =
2867 		(struct soc_mixer_control *)kcontrol->private_value;
2868 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2869 	unsigned int reg = mc->reg;
2870 	unsigned int reg2 = mc->rreg;
2871 	unsigned int shift = mc->shift;
2872 	int max = mc->max;
2873 	unsigned int mask = (1 << fls(max)) - 1;
2874 	unsigned int invert = mc->invert;
2875 
2876 	ucontrol->value.integer.value[0] =
2877 		(snd_soc_read(codec, reg) >> shift) & mask;
2878 	ucontrol->value.integer.value[1] =
2879 		(snd_soc_read(codec, reg2) >> shift) & mask;
2880 	if (invert) {
2881 		ucontrol->value.integer.value[0] =
2882 			max - ucontrol->value.integer.value[0];
2883 		ucontrol->value.integer.value[1] =
2884 			max - ucontrol->value.integer.value[1];
2885 	}
2886 
2887 	return 0;
2888 }
2889 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2890 
2891 /**
2892  * snd_soc_put_volsw_2r - double mixer set callback
2893  * @kcontrol: mixer control
2894  * @ucontrol: control element information
2895  *
2896  * Callback to set the value of a double mixer control that spans 2 registers.
2897  *
2898  * Returns 0 for success.
2899  */
2900 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2901 	struct snd_ctl_elem_value *ucontrol)
2902 {
2903 	struct soc_mixer_control *mc =
2904 		(struct soc_mixer_control *)kcontrol->private_value;
2905 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2906 	unsigned int reg = mc->reg;
2907 	unsigned int reg2 = mc->rreg;
2908 	unsigned int shift = mc->shift;
2909 	int max = mc->max;
2910 	unsigned int mask = (1 << fls(max)) - 1;
2911 	unsigned int invert = mc->invert;
2912 	int err;
2913 	unsigned int val, val2, val_mask;
2914 
2915 	val_mask = mask << shift;
2916 	val = (ucontrol->value.integer.value[0] & mask);
2917 	val2 = (ucontrol->value.integer.value[1] & mask);
2918 
2919 	if (invert) {
2920 		val = max - val;
2921 		val2 = max - val2;
2922 	}
2923 
2924 	val = val << shift;
2925 	val2 = val2 << shift;
2926 
2927 	err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2928 	if (err < 0)
2929 		return err;
2930 
2931 	err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2932 	return err;
2933 }
2934 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2935 
2936 /**
2937  * snd_soc_info_volsw_s8 - signed mixer info callback
2938  * @kcontrol: mixer control
2939  * @uinfo: control element information
2940  *
2941  * Callback to provide information about a signed mixer control.
2942  *
2943  * Returns 0 for success.
2944  */
2945 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2946 	struct snd_ctl_elem_info *uinfo)
2947 {
2948 	struct soc_mixer_control *mc =
2949 		(struct soc_mixer_control *)kcontrol->private_value;
2950 	int platform_max;
2951 	int min = mc->min;
2952 
2953 	if (!mc->platform_max)
2954 		mc->platform_max = mc->max;
2955 	platform_max = mc->platform_max;
2956 
2957 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2958 	uinfo->count = 2;
2959 	uinfo->value.integer.min = 0;
2960 	uinfo->value.integer.max = platform_max - min;
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2964 
2965 /**
2966  * snd_soc_get_volsw_s8 - signed mixer get callback
2967  * @kcontrol: mixer control
2968  * @ucontrol: control element information
2969  *
2970  * Callback to get the value of a signed mixer control.
2971  *
2972  * Returns 0 for success.
2973  */
2974 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2975 	struct snd_ctl_elem_value *ucontrol)
2976 {
2977 	struct soc_mixer_control *mc =
2978 		(struct soc_mixer_control *)kcontrol->private_value;
2979 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2980 	unsigned int reg = mc->reg;
2981 	int min = mc->min;
2982 	int val = snd_soc_read(codec, reg);
2983 
2984 	ucontrol->value.integer.value[0] =
2985 		((signed char)(val & 0xff))-min;
2986 	ucontrol->value.integer.value[1] =
2987 		((signed char)((val >> 8) & 0xff))-min;
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2991 
2992 /**
2993  * snd_soc_put_volsw_sgn - signed mixer put callback
2994  * @kcontrol: mixer control
2995  * @ucontrol: control element information
2996  *
2997  * Callback to set the value of a signed mixer control.
2998  *
2999  * Returns 0 for success.
3000  */
3001 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
3002 	struct snd_ctl_elem_value *ucontrol)
3003 {
3004 	struct soc_mixer_control *mc =
3005 		(struct soc_mixer_control *)kcontrol->private_value;
3006 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3007 	unsigned int reg = mc->reg;
3008 	int min = mc->min;
3009 	unsigned int val;
3010 
3011 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
3012 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
3013 
3014 	return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
3015 }
3016 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
3017 
3018 /**
3019  * snd_soc_limit_volume - Set new limit to an existing volume control.
3020  *
3021  * @codec: where to look for the control
3022  * @name: Name of the control
3023  * @max: new maximum limit
3024  *
3025  * Return 0 for success, else error.
3026  */
3027 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3028 	const char *name, int max)
3029 {
3030 	struct snd_card *card = codec->card->snd_card;
3031 	struct snd_kcontrol *kctl;
3032 	struct soc_mixer_control *mc;
3033 	int found = 0;
3034 	int ret = -EINVAL;
3035 
3036 	/* Sanity check for name and max */
3037 	if (unlikely(!name || max <= 0))
3038 		return -EINVAL;
3039 
3040 	list_for_each_entry(kctl, &card->controls, list) {
3041 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3042 			found = 1;
3043 			break;
3044 		}
3045 	}
3046 	if (found) {
3047 		mc = (struct soc_mixer_control *)kctl->private_value;
3048 		if (max <= mc->max) {
3049 			mc->platform_max = max;
3050 			ret = 0;
3051 		}
3052 	}
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3056 
3057 /**
3058  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
3059  *  mixer info callback
3060  * @kcontrol: mixer control
3061  * @uinfo: control element information
3062  *
3063  * Returns 0 for success.
3064  */
3065 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3066 			struct snd_ctl_elem_info *uinfo)
3067 {
3068 	struct soc_mixer_control *mc =
3069 		(struct soc_mixer_control *)kcontrol->private_value;
3070 	int max = mc->max;
3071 	int min = mc->min;
3072 
3073 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3074 	uinfo->count = 2;
3075 	uinfo->value.integer.min = 0;
3076 	uinfo->value.integer.max = max-min;
3077 
3078 	return 0;
3079 }
3080 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3081 
3082 /**
3083  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3084  *  mixer get callback
3085  * @kcontrol: mixer control
3086  * @uinfo: control element information
3087  *
3088  * Returns 0 for success.
3089  */
3090 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3091 			struct snd_ctl_elem_value *ucontrol)
3092 {
3093 	struct soc_mixer_control *mc =
3094 		(struct soc_mixer_control *)kcontrol->private_value;
3095 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3096 	unsigned int mask = (1<<mc->shift)-1;
3097 	int min = mc->min;
3098 	int val = snd_soc_read(codec, mc->reg) & mask;
3099 	int valr = snd_soc_read(codec, mc->rreg) & mask;
3100 
3101 	ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3102 	ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3103 	return 0;
3104 }
3105 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3106 
3107 /**
3108  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3109  *  mixer put callback
3110  * @kcontrol: mixer control
3111  * @uinfo: control element information
3112  *
3113  * Returns 0 for success.
3114  */
3115 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3116 			struct snd_ctl_elem_value *ucontrol)
3117 {
3118 	struct soc_mixer_control *mc =
3119 		(struct soc_mixer_control *)kcontrol->private_value;
3120 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3121 	unsigned int mask = (1<<mc->shift)-1;
3122 	int min = mc->min;
3123 	int ret;
3124 	unsigned int val, valr, oval, ovalr;
3125 
3126 	val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3127 	val &= mask;
3128 	valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3129 	valr &= mask;
3130 
3131 	oval = snd_soc_read(codec, mc->reg) & mask;
3132 	ovalr = snd_soc_read(codec, mc->rreg) & mask;
3133 
3134 	ret = 0;
3135 	if (oval != val) {
3136 		ret = snd_soc_write(codec, mc->reg, val);
3137 		if (ret < 0)
3138 			return ret;
3139 	}
3140 	if (ovalr != valr) {
3141 		ret = snd_soc_write(codec, mc->rreg, valr);
3142 		if (ret < 0)
3143 			return ret;
3144 	}
3145 
3146 	return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3149 
3150 /**
3151  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3152  * @dai: DAI
3153  * @clk_id: DAI specific clock ID
3154  * @freq: new clock frequency in Hz
3155  * @dir: new clock direction - input/output.
3156  *
3157  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3158  */
3159 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3160 	unsigned int freq, int dir)
3161 {
3162 	if (dai->driver && dai->driver->ops->set_sysclk)
3163 		return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3164 	else if (dai->codec && dai->codec->driver->set_sysclk)
3165 		return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3166 						      freq, dir);
3167 	else
3168 		return -EINVAL;
3169 }
3170 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3171 
3172 /**
3173  * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3174  * @codec: CODEC
3175  * @clk_id: DAI specific clock ID
3176  * @freq: new clock frequency in Hz
3177  * @dir: new clock direction - input/output.
3178  *
3179  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3180  */
3181 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3182 	unsigned int freq, int dir)
3183 {
3184 	if (codec->driver->set_sysclk)
3185 		return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3186 	else
3187 		return -EINVAL;
3188 }
3189 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3190 
3191 /**
3192  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3193  * @dai: DAI
3194  * @div_id: DAI specific clock divider ID
3195  * @div: new clock divisor.
3196  *
3197  * Configures the clock dividers. This is used to derive the best DAI bit and
3198  * frame clocks from the system or master clock. It's best to set the DAI bit
3199  * and frame clocks as low as possible to save system power.
3200  */
3201 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3202 	int div_id, int div)
3203 {
3204 	if (dai->driver && dai->driver->ops->set_clkdiv)
3205 		return dai->driver->ops->set_clkdiv(dai, div_id, div);
3206 	else
3207 		return -EINVAL;
3208 }
3209 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3210 
3211 /**
3212  * snd_soc_dai_set_pll - configure DAI PLL.
3213  * @dai: DAI
3214  * @pll_id: DAI specific PLL ID
3215  * @source: DAI specific source for the PLL
3216  * @freq_in: PLL input clock frequency in Hz
3217  * @freq_out: requested PLL output clock frequency in Hz
3218  *
3219  * Configures and enables PLL to generate output clock based on input clock.
3220  */
3221 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3222 	unsigned int freq_in, unsigned int freq_out)
3223 {
3224 	if (dai->driver && dai->driver->ops->set_pll)
3225 		return dai->driver->ops->set_pll(dai, pll_id, source,
3226 					 freq_in, freq_out);
3227 	else if (dai->codec && dai->codec->driver->set_pll)
3228 		return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3229 						   freq_in, freq_out);
3230 	else
3231 		return -EINVAL;
3232 }
3233 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3234 
3235 /*
3236  * snd_soc_codec_set_pll - configure codec PLL.
3237  * @codec: CODEC
3238  * @pll_id: DAI specific PLL ID
3239  * @source: DAI specific source for the PLL
3240  * @freq_in: PLL input clock frequency in Hz
3241  * @freq_out: requested PLL output clock frequency in Hz
3242  *
3243  * Configures and enables PLL to generate output clock based on input clock.
3244  */
3245 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3246 			  unsigned int freq_in, unsigned int freq_out)
3247 {
3248 	if (codec->driver->set_pll)
3249 		return codec->driver->set_pll(codec, pll_id, source,
3250 					      freq_in, freq_out);
3251 	else
3252 		return -EINVAL;
3253 }
3254 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3255 
3256 /**
3257  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3258  * @dai: DAI
3259  * @fmt: SND_SOC_DAIFMT_ format value.
3260  *
3261  * Configures the DAI hardware format and clocking.
3262  */
3263 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3264 {
3265 	if (dai->driver && dai->driver->ops->set_fmt)
3266 		return dai->driver->ops->set_fmt(dai, fmt);
3267 	else
3268 		return -EINVAL;
3269 }
3270 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3271 
3272 /**
3273  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3274  * @dai: DAI
3275  * @tx_mask: bitmask representing active TX slots.
3276  * @rx_mask: bitmask representing active RX slots.
3277  * @slots: Number of slots in use.
3278  * @slot_width: Width in bits for each slot.
3279  *
3280  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3281  * specific.
3282  */
3283 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3284 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3285 {
3286 	if (dai->driver && dai->driver->ops->set_tdm_slot)
3287 		return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3288 				slots, slot_width);
3289 	else
3290 		return -EINVAL;
3291 }
3292 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3293 
3294 /**
3295  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3296  * @dai: DAI
3297  * @tx_num: how many TX channels
3298  * @tx_slot: pointer to an array which imply the TX slot number channel
3299  *           0~num-1 uses
3300  * @rx_num: how many RX channels
3301  * @rx_slot: pointer to an array which imply the RX slot number channel
3302  *           0~num-1 uses
3303  *
3304  * configure the relationship between channel number and TDM slot number.
3305  */
3306 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3307 	unsigned int tx_num, unsigned int *tx_slot,
3308 	unsigned int rx_num, unsigned int *rx_slot)
3309 {
3310 	if (dai->driver && dai->driver->ops->set_channel_map)
3311 		return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3312 			rx_num, rx_slot);
3313 	else
3314 		return -EINVAL;
3315 }
3316 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3317 
3318 /**
3319  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3320  * @dai: DAI
3321  * @tristate: tristate enable
3322  *
3323  * Tristates the DAI so that others can use it.
3324  */
3325 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3326 {
3327 	if (dai->driver && dai->driver->ops->set_tristate)
3328 		return dai->driver->ops->set_tristate(dai, tristate);
3329 	else
3330 		return -EINVAL;
3331 }
3332 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3333 
3334 /**
3335  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3336  * @dai: DAI
3337  * @mute: mute enable
3338  *
3339  * Mutes the DAI DAC.
3340  */
3341 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3342 {
3343 	if (dai->driver && dai->driver->ops->digital_mute)
3344 		return dai->driver->ops->digital_mute(dai, mute);
3345 	else
3346 		return -EINVAL;
3347 }
3348 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3349 
3350 /**
3351  * snd_soc_register_card - Register a card with the ASoC core
3352  *
3353  * @card: Card to register
3354  *
3355  */
3356 int snd_soc_register_card(struct snd_soc_card *card)
3357 {
3358 	int i;
3359 
3360 	if (!card->name || !card->dev)
3361 		return -EINVAL;
3362 
3363 	dev_set_drvdata(card->dev, card);
3364 
3365 	snd_soc_initialize_card_lists(card);
3366 
3367 	soc_init_card_debugfs(card);
3368 
3369 	card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3370 			    (card->num_links + card->num_aux_devs),
3371 			    GFP_KERNEL);
3372 	if (card->rtd == NULL)
3373 		return -ENOMEM;
3374 	card->rtd_aux = &card->rtd[card->num_links];
3375 
3376 	for (i = 0; i < card->num_links; i++)
3377 		card->rtd[i].dai_link = &card->dai_link[i];
3378 
3379 	INIT_LIST_HEAD(&card->list);
3380 	card->instantiated = 0;
3381 	mutex_init(&card->mutex);
3382 
3383 	mutex_lock(&client_mutex);
3384 	list_add(&card->list, &card_list);
3385 	snd_soc_instantiate_cards();
3386 	mutex_unlock(&client_mutex);
3387 
3388 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3389 
3390 	return 0;
3391 }
3392 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3393 
3394 /**
3395  * snd_soc_unregister_card - Unregister a card with the ASoC core
3396  *
3397  * @card: Card to unregister
3398  *
3399  */
3400 int snd_soc_unregister_card(struct snd_soc_card *card)
3401 {
3402 	if (card->instantiated)
3403 		soc_cleanup_card_resources(card);
3404 	mutex_lock(&client_mutex);
3405 	list_del(&card->list);
3406 	mutex_unlock(&client_mutex);
3407 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3408 
3409 	return 0;
3410 }
3411 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3412 
3413 /*
3414  * Simplify DAI link configuration by removing ".-1" from device names
3415  * and sanitizing names.
3416  */
3417 static char *fmt_single_name(struct device *dev, int *id)
3418 {
3419 	char *found, name[NAME_SIZE];
3420 	int id1, id2;
3421 
3422 	if (dev_name(dev) == NULL)
3423 		return NULL;
3424 
3425 	strlcpy(name, dev_name(dev), NAME_SIZE);
3426 
3427 	/* are we a "%s.%d" name (platform and SPI components) */
3428 	found = strstr(name, dev->driver->name);
3429 	if (found) {
3430 		/* get ID */
3431 		if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3432 
3433 			/* discard ID from name if ID == -1 */
3434 			if (*id == -1)
3435 				found[strlen(dev->driver->name)] = '\0';
3436 		}
3437 
3438 	} else {
3439 		/* I2C component devices are named "bus-addr"  */
3440 		if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3441 			char tmp[NAME_SIZE];
3442 
3443 			/* create unique ID number from I2C addr and bus */
3444 			*id = ((id1 & 0xffff) << 16) + id2;
3445 
3446 			/* sanitize component name for DAI link creation */
3447 			snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3448 			strlcpy(name, tmp, NAME_SIZE);
3449 		} else
3450 			*id = 0;
3451 	}
3452 
3453 	return kstrdup(name, GFP_KERNEL);
3454 }
3455 
3456 /*
3457  * Simplify DAI link naming for single devices with multiple DAIs by removing
3458  * any ".-1" and using the DAI name (instead of device name).
3459  */
3460 static inline char *fmt_multiple_name(struct device *dev,
3461 		struct snd_soc_dai_driver *dai_drv)
3462 {
3463 	if (dai_drv->name == NULL) {
3464 		printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3465 				dev_name(dev));
3466 		return NULL;
3467 	}
3468 
3469 	return kstrdup(dai_drv->name, GFP_KERNEL);
3470 }
3471 
3472 /**
3473  * snd_soc_register_dai - Register a DAI with the ASoC core
3474  *
3475  * @dai: DAI to register
3476  */
3477 int snd_soc_register_dai(struct device *dev,
3478 		struct snd_soc_dai_driver *dai_drv)
3479 {
3480 	struct snd_soc_dai *dai;
3481 
3482 	dev_dbg(dev, "dai register %s\n", dev_name(dev));
3483 
3484 	dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3485 	if (dai == NULL)
3486 		return -ENOMEM;
3487 
3488 	/* create DAI component name */
3489 	dai->name = fmt_single_name(dev, &dai->id);
3490 	if (dai->name == NULL) {
3491 		kfree(dai);
3492 		return -ENOMEM;
3493 	}
3494 
3495 	dai->dev = dev;
3496 	dai->driver = dai_drv;
3497 	if (!dai->driver->ops)
3498 		dai->driver->ops = &null_dai_ops;
3499 
3500 	mutex_lock(&client_mutex);
3501 	list_add(&dai->list, &dai_list);
3502 	snd_soc_instantiate_cards();
3503 	mutex_unlock(&client_mutex);
3504 
3505 	pr_debug("Registered DAI '%s'\n", dai->name);
3506 
3507 	return 0;
3508 }
3509 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3510 
3511 /**
3512  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3513  *
3514  * @dai: DAI to unregister
3515  */
3516 void snd_soc_unregister_dai(struct device *dev)
3517 {
3518 	struct snd_soc_dai *dai;
3519 
3520 	list_for_each_entry(dai, &dai_list, list) {
3521 		if (dev == dai->dev)
3522 			goto found;
3523 	}
3524 	return;
3525 
3526 found:
3527 	mutex_lock(&client_mutex);
3528 	list_del(&dai->list);
3529 	mutex_unlock(&client_mutex);
3530 
3531 	pr_debug("Unregistered DAI '%s'\n", dai->name);
3532 	kfree(dai->name);
3533 	kfree(dai);
3534 }
3535 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3536 
3537 /**
3538  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3539  *
3540  * @dai: Array of DAIs to register
3541  * @count: Number of DAIs
3542  */
3543 int snd_soc_register_dais(struct device *dev,
3544 		struct snd_soc_dai_driver *dai_drv, size_t count)
3545 {
3546 	struct snd_soc_dai *dai;
3547 	int i, ret = 0;
3548 
3549 	dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3550 
3551 	for (i = 0; i < count; i++) {
3552 
3553 		dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3554 		if (dai == NULL) {
3555 			ret = -ENOMEM;
3556 			goto err;
3557 		}
3558 
3559 		/* create DAI component name */
3560 		dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3561 		if (dai->name == NULL) {
3562 			kfree(dai);
3563 			ret = -EINVAL;
3564 			goto err;
3565 		}
3566 
3567 		dai->dev = dev;
3568 		dai->driver = &dai_drv[i];
3569 		if (dai->driver->id)
3570 			dai->id = dai->driver->id;
3571 		else
3572 			dai->id = i;
3573 		if (!dai->driver->ops)
3574 			dai->driver->ops = &null_dai_ops;
3575 
3576 		mutex_lock(&client_mutex);
3577 		list_add(&dai->list, &dai_list);
3578 		mutex_unlock(&client_mutex);
3579 
3580 		pr_debug("Registered DAI '%s'\n", dai->name);
3581 	}
3582 
3583 	mutex_lock(&client_mutex);
3584 	snd_soc_instantiate_cards();
3585 	mutex_unlock(&client_mutex);
3586 	return 0;
3587 
3588 err:
3589 	for (i--; i >= 0; i--)
3590 		snd_soc_unregister_dai(dev);
3591 
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3595 
3596 /**
3597  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3598  *
3599  * @dai: Array of DAIs to unregister
3600  * @count: Number of DAIs
3601  */
3602 void snd_soc_unregister_dais(struct device *dev, size_t count)
3603 {
3604 	int i;
3605 
3606 	for (i = 0; i < count; i++)
3607 		snd_soc_unregister_dai(dev);
3608 }
3609 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3610 
3611 /**
3612  * snd_soc_register_platform - Register a platform with the ASoC core
3613  *
3614  * @platform: platform to register
3615  */
3616 int snd_soc_register_platform(struct device *dev,
3617 		struct snd_soc_platform_driver *platform_drv)
3618 {
3619 	struct snd_soc_platform *platform;
3620 
3621 	dev_dbg(dev, "platform register %s\n", dev_name(dev));
3622 
3623 	platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3624 	if (platform == NULL)
3625 		return -ENOMEM;
3626 
3627 	/* create platform component name */
3628 	platform->name = fmt_single_name(dev, &platform->id);
3629 	if (platform->name == NULL) {
3630 		kfree(platform);
3631 		return -ENOMEM;
3632 	}
3633 
3634 	platform->dev = dev;
3635 	platform->driver = platform_drv;
3636 
3637 	mutex_lock(&client_mutex);
3638 	list_add(&platform->list, &platform_list);
3639 	snd_soc_instantiate_cards();
3640 	mutex_unlock(&client_mutex);
3641 
3642 	pr_debug("Registered platform '%s'\n", platform->name);
3643 
3644 	return 0;
3645 }
3646 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3647 
3648 /**
3649  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3650  *
3651  * @platform: platform to unregister
3652  */
3653 void snd_soc_unregister_platform(struct device *dev)
3654 {
3655 	struct snd_soc_platform *platform;
3656 
3657 	list_for_each_entry(platform, &platform_list, list) {
3658 		if (dev == platform->dev)
3659 			goto found;
3660 	}
3661 	return;
3662 
3663 found:
3664 	mutex_lock(&client_mutex);
3665 	list_del(&platform->list);
3666 	mutex_unlock(&client_mutex);
3667 
3668 	pr_debug("Unregistered platform '%s'\n", platform->name);
3669 	kfree(platform->name);
3670 	kfree(platform);
3671 }
3672 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3673 
3674 static u64 codec_format_map[] = {
3675 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3676 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3677 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3678 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3679 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3680 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3681 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3682 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3683 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3684 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3685 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3686 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3687 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3688 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3689 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3690 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3691 };
3692 
3693 /* Fix up the DAI formats for endianness: codecs don't actually see
3694  * the endianness of the data but we're using the CPU format
3695  * definitions which do need to include endianness so we ensure that
3696  * codec DAIs always have both big and little endian variants set.
3697  */
3698 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3699 {
3700 	int i;
3701 
3702 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3703 		if (stream->formats & codec_format_map[i])
3704 			stream->formats |= codec_format_map[i];
3705 }
3706 
3707 /**
3708  * snd_soc_register_codec - Register a codec with the ASoC core
3709  *
3710  * @codec: codec to register
3711  */
3712 int snd_soc_register_codec(struct device *dev,
3713 			   const struct snd_soc_codec_driver *codec_drv,
3714 			   struct snd_soc_dai_driver *dai_drv,
3715 			   int num_dai)
3716 {
3717 	size_t reg_size;
3718 	struct snd_soc_codec *codec;
3719 	int ret, i;
3720 
3721 	dev_dbg(dev, "codec register %s\n", dev_name(dev));
3722 
3723 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3724 	if (codec == NULL)
3725 		return -ENOMEM;
3726 
3727 	/* create CODEC component name */
3728 	codec->name = fmt_single_name(dev, &codec->id);
3729 	if (codec->name == NULL) {
3730 		kfree(codec);
3731 		return -ENOMEM;
3732 	}
3733 
3734 	if (codec_drv->compress_type)
3735 		codec->compress_type = codec_drv->compress_type;
3736 	else
3737 		codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3738 
3739 	codec->write = codec_drv->write;
3740 	codec->read = codec_drv->read;
3741 	codec->volatile_register = codec_drv->volatile_register;
3742 	codec->readable_register = codec_drv->readable_register;
3743 	codec->writable_register = codec_drv->writable_register;
3744 	codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3745 	codec->dapm.dev = dev;
3746 	codec->dapm.codec = codec;
3747 	codec->dapm.seq_notifier = codec_drv->seq_notifier;
3748 	codec->dev = dev;
3749 	codec->driver = codec_drv;
3750 	codec->num_dai = num_dai;
3751 	mutex_init(&codec->mutex);
3752 
3753 	/* allocate CODEC register cache */
3754 	if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3755 		reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3756 		codec->reg_size = reg_size;
3757 		/* it is necessary to make a copy of the default register cache
3758 		 * because in the case of using a compression type that requires
3759 		 * the default register cache to be marked as __devinitconst the
3760 		 * kernel might have freed the array by the time we initialize
3761 		 * the cache.
3762 		 */
3763 		if (codec_drv->reg_cache_default) {
3764 			codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3765 						      reg_size, GFP_KERNEL);
3766 			if (!codec->reg_def_copy) {
3767 				ret = -ENOMEM;
3768 				goto fail;
3769 			}
3770 		}
3771 	}
3772 
3773 	if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3774 		if (!codec->volatile_register)
3775 			codec->volatile_register = snd_soc_default_volatile_register;
3776 		if (!codec->readable_register)
3777 			codec->readable_register = snd_soc_default_readable_register;
3778 		if (!codec->writable_register)
3779 			codec->writable_register = snd_soc_default_writable_register;
3780 	}
3781 
3782 	for (i = 0; i < num_dai; i++) {
3783 		fixup_codec_formats(&dai_drv[i].playback);
3784 		fixup_codec_formats(&dai_drv[i].capture);
3785 	}
3786 
3787 	/* register any DAIs */
3788 	if (num_dai) {
3789 		ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3790 		if (ret < 0)
3791 			goto fail;
3792 	}
3793 
3794 	mutex_lock(&client_mutex);
3795 	list_add(&codec->list, &codec_list);
3796 	snd_soc_instantiate_cards();
3797 	mutex_unlock(&client_mutex);
3798 
3799 	pr_debug("Registered codec '%s'\n", codec->name);
3800 	return 0;
3801 
3802 fail:
3803 	kfree(codec->reg_def_copy);
3804 	codec->reg_def_copy = NULL;
3805 	kfree(codec->name);
3806 	kfree(codec);
3807 	return ret;
3808 }
3809 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3810 
3811 /**
3812  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3813  *
3814  * @codec: codec to unregister
3815  */
3816 void snd_soc_unregister_codec(struct device *dev)
3817 {
3818 	struct snd_soc_codec *codec;
3819 	int i;
3820 
3821 	list_for_each_entry(codec, &codec_list, list) {
3822 		if (dev == codec->dev)
3823 			goto found;
3824 	}
3825 	return;
3826 
3827 found:
3828 	if (codec->num_dai)
3829 		for (i = 0; i < codec->num_dai; i++)
3830 			snd_soc_unregister_dai(dev);
3831 
3832 	mutex_lock(&client_mutex);
3833 	list_del(&codec->list);
3834 	mutex_unlock(&client_mutex);
3835 
3836 	pr_debug("Unregistered codec '%s'\n", codec->name);
3837 
3838 	snd_soc_cache_exit(codec);
3839 	kfree(codec->reg_def_copy);
3840 	kfree(codec->name);
3841 	kfree(codec);
3842 }
3843 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3844 
3845 static int __init snd_soc_init(void)
3846 {
3847 #ifdef CONFIG_DEBUG_FS
3848 	snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3849 	if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3850 		printk(KERN_WARNING
3851 		       "ASoC: Failed to create debugfs directory\n");
3852 		snd_soc_debugfs_root = NULL;
3853 	}
3854 
3855 	if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3856 				 &codec_list_fops))
3857 		pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3858 
3859 	if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3860 				 &dai_list_fops))
3861 		pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3862 
3863 	if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3864 				 &platform_list_fops))
3865 		pr_warn("ASoC: Failed to create platform list debugfs file\n");
3866 #endif
3867 
3868 	snd_soc_util_init();
3869 
3870 	return platform_driver_register(&soc_driver);
3871 }
3872 module_init(snd_soc_init);
3873 
3874 static void __exit snd_soc_exit(void)
3875 {
3876 	snd_soc_util_exit();
3877 
3878 #ifdef CONFIG_DEBUG_FS
3879 	debugfs_remove_recursive(snd_soc_debugfs_root);
3880 #endif
3881 	platform_driver_unregister(&soc_driver);
3882 }
3883 module_exit(snd_soc_exit);
3884 
3885 /* Module information */
3886 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3887 MODULE_DESCRIPTION("ALSA SoC Core");
3888 MODULE_LICENSE("GPL");
3889 MODULE_ALIAS("platform:soc-audio");
3890