xref: /openbmc/linux/sound/soc/soc-core.c (revision 588b48ca)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24 
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50 
51 #define NAME_SIZE	32
52 
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57 
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(platform_list);
60 static LIST_HEAD(codec_list);
61 static LIST_HEAD(component_list);
62 
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71 
72 struct snd_ac97_reset_cfg {
73 	struct pinctrl *pctl;
74 	struct pinctrl_state *pstate_reset;
75 	struct pinctrl_state *pstate_warm_reset;
76 	struct pinctrl_state *pstate_run;
77 	int gpio_sdata;
78 	int gpio_sync;
79 	int gpio_reset;
80 };
81 
82 /* returns the minimum number of bytes needed to represent
83  * a particular given value */
84 static int min_bytes_needed(unsigned long val)
85 {
86 	int c = 0;
87 	int i;
88 
89 	for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
90 		if (val & (1UL << i))
91 			break;
92 	c = (sizeof val * 8) - c;
93 	if (!c || (c % 8))
94 		c = (c + 8) / 8;
95 	else
96 		c /= 8;
97 	return c;
98 }
99 
100 /* fill buf which is 'len' bytes with a formatted
101  * string of the form 'reg: value\n' */
102 static int format_register_str(struct snd_soc_codec *codec,
103 			       unsigned int reg, char *buf, size_t len)
104 {
105 	int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
106 	int regsize = codec->driver->reg_word_size * 2;
107 	int ret;
108 	char tmpbuf[len + 1];
109 	char regbuf[regsize + 1];
110 
111 	/* since tmpbuf is allocated on the stack, warn the callers if they
112 	 * try to abuse this function */
113 	WARN_ON(len > 63);
114 
115 	/* +2 for ': ' and + 1 for '\n' */
116 	if (wordsize + regsize + 2 + 1 != len)
117 		return -EINVAL;
118 
119 	ret = snd_soc_read(codec, reg);
120 	if (ret < 0) {
121 		memset(regbuf, 'X', regsize);
122 		regbuf[regsize] = '\0';
123 	} else {
124 		snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
125 	}
126 
127 	/* prepare the buffer */
128 	snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
129 	/* copy it back to the caller without the '\0' */
130 	memcpy(buf, tmpbuf, len);
131 
132 	return 0;
133 }
134 
135 /* codec register dump */
136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
137 				  size_t count, loff_t pos)
138 {
139 	int i, step = 1;
140 	int wordsize, regsize;
141 	int len;
142 	size_t total = 0;
143 	loff_t p = 0;
144 
145 	wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
146 	regsize = codec->driver->reg_word_size * 2;
147 
148 	len = wordsize + regsize + 2 + 1;
149 
150 	if (!codec->driver->reg_cache_size)
151 		return 0;
152 
153 	if (codec->driver->reg_cache_step)
154 		step = codec->driver->reg_cache_step;
155 
156 	for (i = 0; i < codec->driver->reg_cache_size; i += step) {
157 		/* only support larger than PAGE_SIZE bytes debugfs
158 		 * entries for the default case */
159 		if (p >= pos) {
160 			if (total + len >= count - 1)
161 				break;
162 			format_register_str(codec, i, buf + total, len);
163 			total += len;
164 		}
165 		p += len;
166 	}
167 
168 	total = min(total, count - 1);
169 
170 	return total;
171 }
172 
173 static ssize_t codec_reg_show(struct device *dev,
174 	struct device_attribute *attr, char *buf)
175 {
176 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
177 
178 	return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
179 }
180 
181 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
182 
183 static ssize_t pmdown_time_show(struct device *dev,
184 				struct device_attribute *attr, char *buf)
185 {
186 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
187 
188 	return sprintf(buf, "%ld\n", rtd->pmdown_time);
189 }
190 
191 static ssize_t pmdown_time_set(struct device *dev,
192 			       struct device_attribute *attr,
193 			       const char *buf, size_t count)
194 {
195 	struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
196 	int ret;
197 
198 	ret = kstrtol(buf, 10, &rtd->pmdown_time);
199 	if (ret)
200 		return ret;
201 
202 	return count;
203 }
204 
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206 
207 #ifdef CONFIG_DEBUG_FS
208 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
209 				   size_t count, loff_t *ppos)
210 {
211 	ssize_t ret;
212 	struct snd_soc_codec *codec = file->private_data;
213 	char *buf;
214 
215 	if (*ppos < 0 || !count)
216 		return -EINVAL;
217 
218 	buf = kmalloc(count, GFP_KERNEL);
219 	if (!buf)
220 		return -ENOMEM;
221 
222 	ret = soc_codec_reg_show(codec, buf, count, *ppos);
223 	if (ret >= 0) {
224 		if (copy_to_user(user_buf, buf, ret)) {
225 			kfree(buf);
226 			return -EFAULT;
227 		}
228 		*ppos += ret;
229 	}
230 
231 	kfree(buf);
232 	return ret;
233 }
234 
235 static ssize_t codec_reg_write_file(struct file *file,
236 		const char __user *user_buf, size_t count, loff_t *ppos)
237 {
238 	char buf[32];
239 	size_t buf_size;
240 	char *start = buf;
241 	unsigned long reg, value;
242 	struct snd_soc_codec *codec = file->private_data;
243 	int ret;
244 
245 	buf_size = min(count, (sizeof(buf)-1));
246 	if (copy_from_user(buf, user_buf, buf_size))
247 		return -EFAULT;
248 	buf[buf_size] = 0;
249 
250 	while (*start == ' ')
251 		start++;
252 	reg = simple_strtoul(start, &start, 16);
253 	while (*start == ' ')
254 		start++;
255 	ret = kstrtoul(start, 16, &value);
256 	if (ret)
257 		return ret;
258 
259 	/* Userspace has been fiddling around behind the kernel's back */
260 	add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
261 
262 	snd_soc_write(codec, reg, value);
263 	return buf_size;
264 }
265 
266 static const struct file_operations codec_reg_fops = {
267 	.open = simple_open,
268 	.read = codec_reg_read_file,
269 	.write = codec_reg_write_file,
270 	.llseek = default_llseek,
271 };
272 
273 static struct dentry *soc_debugfs_create_dir(struct dentry *parent,
274 	const char *fmt, ...)
275 {
276 	struct dentry *de;
277 	va_list ap;
278 	char *s;
279 
280 	va_start(ap, fmt);
281 	s = kvasprintf(GFP_KERNEL, fmt, ap);
282 	va_end(ap);
283 
284 	if (!s)
285 		return NULL;
286 
287 	de = debugfs_create_dir(s, parent);
288 	kfree(s);
289 
290 	return de;
291 }
292 
293 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
294 {
295 	struct dentry *debugfs_card_root = codec->component.card->debugfs_card_root;
296 
297 	codec->debugfs_codec_root = soc_debugfs_create_dir(debugfs_card_root,
298 						"codec:%s",
299 						codec->component.name);
300 	if (!codec->debugfs_codec_root) {
301 		dev_warn(codec->dev,
302 			"ASoC: Failed to create codec debugfs directory\n");
303 		return;
304 	}
305 
306 	debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
307 			    &codec->cache_sync);
308 	debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
309 			    &codec->cache_only);
310 
311 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
312 						 codec->debugfs_codec_root,
313 						 codec, &codec_reg_fops);
314 	if (!codec->debugfs_reg)
315 		dev_warn(codec->dev,
316 			"ASoC: Failed to create codec register debugfs file\n");
317 
318 	snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
319 }
320 
321 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
322 {
323 	debugfs_remove_recursive(codec->debugfs_codec_root);
324 }
325 
326 static void soc_init_platform_debugfs(struct snd_soc_platform *platform)
327 {
328 	struct dentry *debugfs_card_root = platform->component.card->debugfs_card_root;
329 
330 	platform->debugfs_platform_root = soc_debugfs_create_dir(debugfs_card_root,
331 						"platform:%s",
332 						platform->component.name);
333 	if (!platform->debugfs_platform_root) {
334 		dev_warn(platform->dev,
335 			"ASoC: Failed to create platform debugfs directory\n");
336 		return;
337 	}
338 
339 	snd_soc_dapm_debugfs_init(&platform->component.dapm,
340 		platform->debugfs_platform_root);
341 }
342 
343 static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
344 {
345 	debugfs_remove_recursive(platform->debugfs_platform_root);
346 }
347 
348 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
349 				    size_t count, loff_t *ppos)
350 {
351 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
352 	ssize_t len, ret = 0;
353 	struct snd_soc_codec *codec;
354 
355 	if (!buf)
356 		return -ENOMEM;
357 
358 	list_for_each_entry(codec, &codec_list, list) {
359 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
360 			       codec->component.name);
361 		if (len >= 0)
362 			ret += len;
363 		if (ret > PAGE_SIZE) {
364 			ret = PAGE_SIZE;
365 			break;
366 		}
367 	}
368 
369 	if (ret >= 0)
370 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
371 
372 	kfree(buf);
373 
374 	return ret;
375 }
376 
377 static const struct file_operations codec_list_fops = {
378 	.read = codec_list_read_file,
379 	.llseek = default_llseek,/* read accesses f_pos */
380 };
381 
382 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
383 				  size_t count, loff_t *ppos)
384 {
385 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
386 	ssize_t len, ret = 0;
387 	struct snd_soc_component *component;
388 	struct snd_soc_dai *dai;
389 
390 	if (!buf)
391 		return -ENOMEM;
392 
393 	list_for_each_entry(component, &component_list, list) {
394 		list_for_each_entry(dai, &component->dai_list, list) {
395 			len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
396 				dai->name);
397 			if (len >= 0)
398 				ret += len;
399 			if (ret > PAGE_SIZE) {
400 				ret = PAGE_SIZE;
401 				break;
402 			}
403 		}
404 	}
405 
406 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
407 
408 	kfree(buf);
409 
410 	return ret;
411 }
412 
413 static const struct file_operations dai_list_fops = {
414 	.read = dai_list_read_file,
415 	.llseek = default_llseek,/* read accesses f_pos */
416 };
417 
418 static ssize_t platform_list_read_file(struct file *file,
419 				       char __user *user_buf,
420 				       size_t count, loff_t *ppos)
421 {
422 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
423 	ssize_t len, ret = 0;
424 	struct snd_soc_platform *platform;
425 
426 	if (!buf)
427 		return -ENOMEM;
428 
429 	list_for_each_entry(platform, &platform_list, list) {
430 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
431 			       platform->component.name);
432 		if (len >= 0)
433 			ret += len;
434 		if (ret > PAGE_SIZE) {
435 			ret = PAGE_SIZE;
436 			break;
437 		}
438 	}
439 
440 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
441 
442 	kfree(buf);
443 
444 	return ret;
445 }
446 
447 static const struct file_operations platform_list_fops = {
448 	.read = platform_list_read_file,
449 	.llseek = default_llseek,/* read accesses f_pos */
450 };
451 
452 static void soc_init_card_debugfs(struct snd_soc_card *card)
453 {
454 	card->debugfs_card_root = debugfs_create_dir(card->name,
455 						     snd_soc_debugfs_root);
456 	if (!card->debugfs_card_root) {
457 		dev_warn(card->dev,
458 			 "ASoC: Failed to create card debugfs directory\n");
459 		return;
460 	}
461 
462 	card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
463 						    card->debugfs_card_root,
464 						    &card->pop_time);
465 	if (!card->debugfs_pop_time)
466 		dev_warn(card->dev,
467 		       "ASoC: Failed to create pop time debugfs file\n");
468 }
469 
470 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
471 {
472 	debugfs_remove_recursive(card->debugfs_card_root);
473 }
474 
475 #else
476 
477 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
478 {
479 }
480 
481 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
482 {
483 }
484 
485 static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform)
486 {
487 }
488 
489 static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
490 {
491 }
492 
493 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
494 {
495 }
496 
497 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
498 {
499 }
500 #endif
501 
502 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
503 		const char *dai_link, int stream)
504 {
505 	int i;
506 
507 	for (i = 0; i < card->num_links; i++) {
508 		if (card->rtd[i].dai_link->no_pcm &&
509 			!strcmp(card->rtd[i].dai_link->name, dai_link))
510 			return card->rtd[i].pcm->streams[stream].substream;
511 	}
512 	dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
513 	return NULL;
514 }
515 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
516 
517 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
518 		const char *dai_link)
519 {
520 	int i;
521 
522 	for (i = 0; i < card->num_links; i++) {
523 		if (!strcmp(card->rtd[i].dai_link->name, dai_link))
524 			return &card->rtd[i];
525 	}
526 	dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
527 	return NULL;
528 }
529 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
530 
531 #ifdef CONFIG_SND_SOC_AC97_BUS
532 /* unregister ac97 codec */
533 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
534 {
535 	if (codec->ac97->dev.bus)
536 		device_unregister(&codec->ac97->dev);
537 	return 0;
538 }
539 
540 /* stop no dev release warning */
541 static void soc_ac97_device_release(struct device *dev){}
542 
543 /* register ac97 codec to bus */
544 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
545 {
546 	int err;
547 
548 	codec->ac97->dev.bus = &ac97_bus_type;
549 	codec->ac97->dev.parent = codec->component.card->dev;
550 	codec->ac97->dev.release = soc_ac97_device_release;
551 
552 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
553 		     codec->component.card->snd_card->number, 0,
554 		     codec->component.name);
555 	err = device_register(&codec->ac97->dev);
556 	if (err < 0) {
557 		dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
558 		codec->ac97->dev.bus = NULL;
559 		return err;
560 	}
561 	return 0;
562 }
563 #endif
564 
565 static void codec2codec_close_delayed_work(struct work_struct *work)
566 {
567 	/* Currently nothing to do for c2c links
568 	 * Since c2c links are internal nodes in the DAPM graph and
569 	 * don't interface with the outside world or application layer
570 	 * we don't have to do any special handling on close.
571 	 */
572 }
573 
574 #ifdef CONFIG_PM_SLEEP
575 /* powers down audio subsystem for suspend */
576 int snd_soc_suspend(struct device *dev)
577 {
578 	struct snd_soc_card *card = dev_get_drvdata(dev);
579 	struct snd_soc_codec *codec;
580 	int i, j;
581 
582 	/* If the initialization of this soc device failed, there is no codec
583 	 * associated with it. Just bail out in this case.
584 	 */
585 	if (list_empty(&card->codec_dev_list))
586 		return 0;
587 
588 	/* Due to the resume being scheduled into a workqueue we could
589 	* suspend before that's finished - wait for it to complete.
590 	 */
591 	snd_power_lock(card->snd_card);
592 	snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
593 	snd_power_unlock(card->snd_card);
594 
595 	/* we're going to block userspace touching us until resume completes */
596 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
597 
598 	/* mute any active DACs */
599 	for (i = 0; i < card->num_rtd; i++) {
600 
601 		if (card->rtd[i].dai_link->ignore_suspend)
602 			continue;
603 
604 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
605 			struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
606 			struct snd_soc_dai_driver *drv = dai->driver;
607 
608 			if (drv->ops->digital_mute && dai->playback_active)
609 				drv->ops->digital_mute(dai, 1);
610 		}
611 	}
612 
613 	/* suspend all pcms */
614 	for (i = 0; i < card->num_rtd; i++) {
615 		if (card->rtd[i].dai_link->ignore_suspend)
616 			continue;
617 
618 		snd_pcm_suspend_all(card->rtd[i].pcm);
619 	}
620 
621 	if (card->suspend_pre)
622 		card->suspend_pre(card);
623 
624 	for (i = 0; i < card->num_rtd; i++) {
625 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
626 		struct snd_soc_platform *platform = card->rtd[i].platform;
627 
628 		if (card->rtd[i].dai_link->ignore_suspend)
629 			continue;
630 
631 		if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
632 			cpu_dai->driver->suspend(cpu_dai);
633 		if (platform->driver->suspend && !platform->suspended) {
634 			platform->driver->suspend(cpu_dai);
635 			platform->suspended = 1;
636 		}
637 	}
638 
639 	/* close any waiting streams and save state */
640 	for (i = 0; i < card->num_rtd; i++) {
641 		struct snd_soc_dai **codec_dais = card->rtd[i].codec_dais;
642 		flush_delayed_work(&card->rtd[i].delayed_work);
643 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
644 			codec_dais[j]->codec->dapm.suspend_bias_level =
645 					codec_dais[j]->codec->dapm.bias_level;
646 		}
647 	}
648 
649 	for (i = 0; i < card->num_rtd; i++) {
650 
651 		if (card->rtd[i].dai_link->ignore_suspend)
652 			continue;
653 
654 		snd_soc_dapm_stream_event(&card->rtd[i],
655 					  SNDRV_PCM_STREAM_PLAYBACK,
656 					  SND_SOC_DAPM_STREAM_SUSPEND);
657 
658 		snd_soc_dapm_stream_event(&card->rtd[i],
659 					  SNDRV_PCM_STREAM_CAPTURE,
660 					  SND_SOC_DAPM_STREAM_SUSPEND);
661 	}
662 
663 	/* Recheck all analogue paths too */
664 	dapm_mark_io_dirty(&card->dapm);
665 	snd_soc_dapm_sync(&card->dapm);
666 
667 	/* suspend all CODECs */
668 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
669 		/* If there are paths active then the CODEC will be held with
670 		 * bias _ON and should not be suspended. */
671 		if (!codec->suspended && codec->driver->suspend) {
672 			switch (codec->dapm.bias_level) {
673 			case SND_SOC_BIAS_STANDBY:
674 				/*
675 				 * If the CODEC is capable of idle
676 				 * bias off then being in STANDBY
677 				 * means it's doing something,
678 				 * otherwise fall through.
679 				 */
680 				if (codec->dapm.idle_bias_off) {
681 					dev_dbg(codec->dev,
682 						"ASoC: idle_bias_off CODEC on over suspend\n");
683 					break;
684 				}
685 			case SND_SOC_BIAS_OFF:
686 				codec->driver->suspend(codec);
687 				codec->suspended = 1;
688 				codec->cache_sync = 1;
689 				if (codec->component.regmap)
690 					regcache_mark_dirty(codec->component.regmap);
691 				/* deactivate pins to sleep state */
692 				pinctrl_pm_select_sleep_state(codec->dev);
693 				break;
694 			default:
695 				dev_dbg(codec->dev,
696 					"ASoC: CODEC is on over suspend\n");
697 				break;
698 			}
699 		}
700 	}
701 
702 	for (i = 0; i < card->num_rtd; i++) {
703 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
704 
705 		if (card->rtd[i].dai_link->ignore_suspend)
706 			continue;
707 
708 		if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
709 			cpu_dai->driver->suspend(cpu_dai);
710 
711 		/* deactivate pins to sleep state */
712 		pinctrl_pm_select_sleep_state(cpu_dai->dev);
713 	}
714 
715 	if (card->suspend_post)
716 		card->suspend_post(card);
717 
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(snd_soc_suspend);
721 
722 /* deferred resume work, so resume can complete before we finished
723  * setting our codec back up, which can be very slow on I2C
724  */
725 static void soc_resume_deferred(struct work_struct *work)
726 {
727 	struct snd_soc_card *card =
728 			container_of(work, struct snd_soc_card, deferred_resume_work);
729 	struct snd_soc_codec *codec;
730 	int i, j;
731 
732 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
733 	 * so userspace apps are blocked from touching us
734 	 */
735 
736 	dev_dbg(card->dev, "ASoC: starting resume work\n");
737 
738 	/* Bring us up into D2 so that DAPM starts enabling things */
739 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
740 
741 	if (card->resume_pre)
742 		card->resume_pre(card);
743 
744 	/* resume AC97 DAIs */
745 	for (i = 0; i < card->num_rtd; i++) {
746 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
747 
748 		if (card->rtd[i].dai_link->ignore_suspend)
749 			continue;
750 
751 		if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
752 			cpu_dai->driver->resume(cpu_dai);
753 	}
754 
755 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
756 		/* If the CODEC was idle over suspend then it will have been
757 		 * left with bias OFF or STANDBY and suspended so we must now
758 		 * resume.  Otherwise the suspend was suppressed.
759 		 */
760 		if (codec->driver->resume && codec->suspended) {
761 			switch (codec->dapm.bias_level) {
762 			case SND_SOC_BIAS_STANDBY:
763 			case SND_SOC_BIAS_OFF:
764 				codec->driver->resume(codec);
765 				codec->suspended = 0;
766 				break;
767 			default:
768 				dev_dbg(codec->dev,
769 					"ASoC: CODEC was on over suspend\n");
770 				break;
771 			}
772 		}
773 	}
774 
775 	for (i = 0; i < card->num_rtd; i++) {
776 
777 		if (card->rtd[i].dai_link->ignore_suspend)
778 			continue;
779 
780 		snd_soc_dapm_stream_event(&card->rtd[i],
781 					  SNDRV_PCM_STREAM_PLAYBACK,
782 					  SND_SOC_DAPM_STREAM_RESUME);
783 
784 		snd_soc_dapm_stream_event(&card->rtd[i],
785 					  SNDRV_PCM_STREAM_CAPTURE,
786 					  SND_SOC_DAPM_STREAM_RESUME);
787 	}
788 
789 	/* unmute any active DACs */
790 	for (i = 0; i < card->num_rtd; i++) {
791 
792 		if (card->rtd[i].dai_link->ignore_suspend)
793 			continue;
794 
795 		for (j = 0; j < card->rtd[i].num_codecs; j++) {
796 			struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
797 			struct snd_soc_dai_driver *drv = dai->driver;
798 
799 			if (drv->ops->digital_mute && dai->playback_active)
800 				drv->ops->digital_mute(dai, 0);
801 		}
802 	}
803 
804 	for (i = 0; i < card->num_rtd; i++) {
805 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
806 		struct snd_soc_platform *platform = card->rtd[i].platform;
807 
808 		if (card->rtd[i].dai_link->ignore_suspend)
809 			continue;
810 
811 		if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
812 			cpu_dai->driver->resume(cpu_dai);
813 		if (platform->driver->resume && platform->suspended) {
814 			platform->driver->resume(cpu_dai);
815 			platform->suspended = 0;
816 		}
817 	}
818 
819 	if (card->resume_post)
820 		card->resume_post(card);
821 
822 	dev_dbg(card->dev, "ASoC: resume work completed\n");
823 
824 	/* userspace can access us now we are back as we were before */
825 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
826 
827 	/* Recheck all analogue paths too */
828 	dapm_mark_io_dirty(&card->dapm);
829 	snd_soc_dapm_sync(&card->dapm);
830 }
831 
832 /* powers up audio subsystem after a suspend */
833 int snd_soc_resume(struct device *dev)
834 {
835 	struct snd_soc_card *card = dev_get_drvdata(dev);
836 	int i, ac97_control = 0;
837 
838 	/* If the initialization of this soc device failed, there is no codec
839 	 * associated with it. Just bail out in this case.
840 	 */
841 	if (list_empty(&card->codec_dev_list))
842 		return 0;
843 
844 	/* activate pins from sleep state */
845 	for (i = 0; i < card->num_rtd; i++) {
846 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
847 		struct snd_soc_dai **codec_dais = rtd->codec_dais;
848 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
849 		int j;
850 
851 		if (cpu_dai->active)
852 			pinctrl_pm_select_default_state(cpu_dai->dev);
853 
854 		for (j = 0; j < rtd->num_codecs; j++) {
855 			struct snd_soc_dai *codec_dai = codec_dais[j];
856 			if (codec_dai->active)
857 				pinctrl_pm_select_default_state(codec_dai->dev);
858 		}
859 	}
860 
861 	/* AC97 devices might have other drivers hanging off them so
862 	 * need to resume immediately.  Other drivers don't have that
863 	 * problem and may take a substantial amount of time to resume
864 	 * due to I/O costs and anti-pop so handle them out of line.
865 	 */
866 	for (i = 0; i < card->num_rtd; i++) {
867 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
868 		ac97_control |= cpu_dai->driver->ac97_control;
869 	}
870 	if (ac97_control) {
871 		dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
872 		soc_resume_deferred(&card->deferred_resume_work);
873 	} else {
874 		dev_dbg(dev, "ASoC: Scheduling resume work\n");
875 		if (!schedule_work(&card->deferred_resume_work))
876 			dev_err(dev, "ASoC: resume work item may be lost\n");
877 	}
878 
879 	return 0;
880 }
881 EXPORT_SYMBOL_GPL(snd_soc_resume);
882 #else
883 #define snd_soc_suspend NULL
884 #define snd_soc_resume NULL
885 #endif
886 
887 static const struct snd_soc_dai_ops null_dai_ops = {
888 };
889 
890 static struct snd_soc_codec *soc_find_codec(
891 					const struct device_node *codec_of_node,
892 					const char *codec_name)
893 {
894 	struct snd_soc_codec *codec;
895 
896 	list_for_each_entry(codec, &codec_list, list) {
897 		if (codec_of_node) {
898 			if (codec->dev->of_node != codec_of_node)
899 				continue;
900 		} else {
901 			if (strcmp(codec->component.name, codec_name))
902 				continue;
903 		}
904 
905 		return codec;
906 	}
907 
908 	return NULL;
909 }
910 
911 static struct snd_soc_dai *soc_find_codec_dai(struct snd_soc_codec *codec,
912 					      const char *codec_dai_name)
913 {
914 	struct snd_soc_dai *codec_dai;
915 
916 	list_for_each_entry(codec_dai, &codec->component.dai_list, list) {
917 		if (!strcmp(codec_dai->name, codec_dai_name)) {
918 			return codec_dai;
919 		}
920 	}
921 
922 	return NULL;
923 }
924 
925 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
926 {
927 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
928 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
929 	struct snd_soc_component *component;
930 	struct snd_soc_dai_link_component *codecs = dai_link->codecs;
931 	struct snd_soc_dai **codec_dais = rtd->codec_dais;
932 	struct snd_soc_platform *platform;
933 	struct snd_soc_dai *cpu_dai;
934 	const char *platform_name;
935 	int i;
936 
937 	dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
938 
939 	/* Find CPU DAI from registered DAIs*/
940 	list_for_each_entry(component, &component_list, list) {
941 		if (dai_link->cpu_of_node &&
942 			component->dev->of_node != dai_link->cpu_of_node)
943 			continue;
944 		if (dai_link->cpu_name &&
945 			strcmp(dev_name(component->dev), dai_link->cpu_name))
946 			continue;
947 		list_for_each_entry(cpu_dai, &component->dai_list, list) {
948 			if (dai_link->cpu_dai_name &&
949 				strcmp(cpu_dai->name, dai_link->cpu_dai_name))
950 				continue;
951 
952 			rtd->cpu_dai = cpu_dai;
953 		}
954 	}
955 
956 	if (!rtd->cpu_dai) {
957 		dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
958 			dai_link->cpu_dai_name);
959 		return -EPROBE_DEFER;
960 	}
961 
962 	rtd->num_codecs = dai_link->num_codecs;
963 
964 	/* Find CODEC from registered CODECs */
965 	for (i = 0; i < rtd->num_codecs; i++) {
966 		struct snd_soc_codec *codec;
967 		codec = soc_find_codec(codecs[i].of_node, codecs[i].name);
968 		if (!codec) {
969 			dev_err(card->dev, "ASoC: CODEC %s not registered\n",
970 				codecs[i].name);
971 			return -EPROBE_DEFER;
972 		}
973 
974 		codec_dais[i] = soc_find_codec_dai(codec, codecs[i].dai_name);
975 		if (!codec_dais[i]) {
976 			dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
977 				codecs[i].dai_name);
978 			return -EPROBE_DEFER;
979 		}
980 	}
981 
982 	/* Single codec links expect codec and codec_dai in runtime data */
983 	rtd->codec_dai = codec_dais[0];
984 	rtd->codec = rtd->codec_dai->codec;
985 
986 	/* if there's no platform we match on the empty platform */
987 	platform_name = dai_link->platform_name;
988 	if (!platform_name && !dai_link->platform_of_node)
989 		platform_name = "snd-soc-dummy";
990 
991 	/* find one from the set of registered platforms */
992 	list_for_each_entry(platform, &platform_list, list) {
993 		if (dai_link->platform_of_node) {
994 			if (platform->dev->of_node !=
995 			    dai_link->platform_of_node)
996 				continue;
997 		} else {
998 			if (strcmp(platform->component.name, platform_name))
999 				continue;
1000 		}
1001 
1002 		rtd->platform = platform;
1003 	}
1004 	if (!rtd->platform) {
1005 		dev_err(card->dev, "ASoC: platform %s not registered\n",
1006 			dai_link->platform_name);
1007 		return -EPROBE_DEFER;
1008 	}
1009 
1010 	card->num_rtd++;
1011 
1012 	return 0;
1013 }
1014 
1015 static int soc_remove_platform(struct snd_soc_platform *platform)
1016 {
1017 	int ret;
1018 
1019 	if (platform->driver->remove) {
1020 		ret = platform->driver->remove(platform);
1021 		if (ret < 0)
1022 			dev_err(platform->dev, "ASoC: failed to remove %d\n",
1023 				ret);
1024 	}
1025 
1026 	/* Make sure all DAPM widgets are freed */
1027 	snd_soc_dapm_free(&platform->component.dapm);
1028 
1029 	soc_cleanup_platform_debugfs(platform);
1030 	platform->probed = 0;
1031 	module_put(platform->dev->driver->owner);
1032 
1033 	return 0;
1034 }
1035 
1036 static void soc_remove_codec(struct snd_soc_codec *codec)
1037 {
1038 	int err;
1039 
1040 	if (codec->driver->remove) {
1041 		err = codec->driver->remove(codec);
1042 		if (err < 0)
1043 			dev_err(codec->dev, "ASoC: failed to remove %d\n", err);
1044 	}
1045 
1046 	/* Make sure all DAPM widgets are freed */
1047 	snd_soc_dapm_free(&codec->dapm);
1048 
1049 	soc_cleanup_codec_debugfs(codec);
1050 	codec->probed = 0;
1051 	list_del(&codec->card_list);
1052 	module_put(codec->dev->driver->owner);
1053 }
1054 
1055 static void soc_remove_codec_dai(struct snd_soc_dai *codec_dai, int order)
1056 {
1057 	int err;
1058 
1059 	if (codec_dai && codec_dai->probed &&
1060 			codec_dai->driver->remove_order == order) {
1061 		if (codec_dai->driver->remove) {
1062 			err = codec_dai->driver->remove(codec_dai);
1063 			if (err < 0)
1064 				dev_err(codec_dai->dev,
1065 					"ASoC: failed to remove %s: %d\n",
1066 					codec_dai->name, err);
1067 		}
1068 		codec_dai->probed = 0;
1069 	}
1070 }
1071 
1072 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
1073 {
1074 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1075 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1076 	int i, err;
1077 
1078 	/* unregister the rtd device */
1079 	if (rtd->dev_registered) {
1080 		device_remove_file(rtd->dev, &dev_attr_pmdown_time);
1081 		device_remove_file(rtd->dev, &dev_attr_codec_reg);
1082 		device_unregister(rtd->dev);
1083 		rtd->dev_registered = 0;
1084 	}
1085 
1086 	/* remove the CODEC DAI */
1087 	for (i = 0; i < rtd->num_codecs; i++)
1088 		soc_remove_codec_dai(rtd->codec_dais[i], order);
1089 
1090 	/* remove the cpu_dai */
1091 	if (cpu_dai && cpu_dai->probed &&
1092 			cpu_dai->driver->remove_order == order) {
1093 		if (cpu_dai->driver->remove) {
1094 			err = cpu_dai->driver->remove(cpu_dai);
1095 			if (err < 0)
1096 				dev_err(cpu_dai->dev,
1097 					"ASoC: failed to remove %s: %d\n",
1098 					cpu_dai->name, err);
1099 		}
1100 		cpu_dai->probed = 0;
1101 		if (!cpu_dai->codec)
1102 			module_put(cpu_dai->dev->driver->owner);
1103 	}
1104 }
1105 
1106 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1107 				       int order)
1108 {
1109 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1110 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1111 	struct snd_soc_platform *platform = rtd->platform;
1112 	struct snd_soc_codec *codec;
1113 	int i;
1114 
1115 	/* remove the platform */
1116 	if (platform && platform->probed &&
1117 	    platform->driver->remove_order == order) {
1118 		soc_remove_platform(platform);
1119 	}
1120 
1121 	/* remove the CODEC-side CODEC */
1122 	for (i = 0; i < rtd->num_codecs; i++) {
1123 		codec = rtd->codec_dais[i]->codec;
1124 		if (codec && codec->probed &&
1125 		    codec->driver->remove_order == order)
1126 			soc_remove_codec(codec);
1127 	}
1128 
1129 	/* remove any CPU-side CODEC */
1130 	if (cpu_dai) {
1131 		codec = cpu_dai->codec;
1132 		if (codec && codec->probed &&
1133 		    codec->driver->remove_order == order)
1134 			soc_remove_codec(codec);
1135 	}
1136 }
1137 
1138 static void soc_remove_dai_links(struct snd_soc_card *card)
1139 {
1140 	int dai, order;
1141 
1142 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1143 			order++) {
1144 		for (dai = 0; dai < card->num_rtd; dai++)
1145 			soc_remove_link_dais(card, dai, order);
1146 	}
1147 
1148 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1149 			order++) {
1150 		for (dai = 0; dai < card->num_rtd; dai++)
1151 			soc_remove_link_components(card, dai, order);
1152 	}
1153 
1154 	card->num_rtd = 0;
1155 }
1156 
1157 static void soc_set_name_prefix(struct snd_soc_card *card,
1158 				struct snd_soc_component *component)
1159 {
1160 	int i;
1161 
1162 	if (card->codec_conf == NULL)
1163 		return;
1164 
1165 	for (i = 0; i < card->num_configs; i++) {
1166 		struct snd_soc_codec_conf *map = &card->codec_conf[i];
1167 		if (map->of_node && component->dev->of_node != map->of_node)
1168 			continue;
1169 		if (map->dev_name && strcmp(component->name, map->dev_name))
1170 			continue;
1171 		component->name_prefix = map->name_prefix;
1172 		break;
1173 	}
1174 }
1175 
1176 static int soc_probe_codec(struct snd_soc_card *card,
1177 			   struct snd_soc_codec *codec)
1178 {
1179 	int ret = 0;
1180 	const struct snd_soc_codec_driver *driver = codec->driver;
1181 	struct snd_soc_dai *dai;
1182 
1183 	codec->component.card = card;
1184 	codec->dapm.card = card;
1185 	soc_set_name_prefix(card, &codec->component);
1186 
1187 	if (!try_module_get(codec->dev->driver->owner))
1188 		return -ENODEV;
1189 
1190 	soc_init_codec_debugfs(codec);
1191 
1192 	if (driver->dapm_widgets) {
1193 		ret = snd_soc_dapm_new_controls(&codec->dapm,
1194 						driver->dapm_widgets,
1195 					 	driver->num_dapm_widgets);
1196 
1197 		if (ret != 0) {
1198 			dev_err(codec->dev,
1199 				"Failed to create new controls %d\n", ret);
1200 			goto err_probe;
1201 		}
1202 	}
1203 
1204 	/* Create DAPM widgets for each DAI stream */
1205 	list_for_each_entry(dai, &codec->component.dai_list, list) {
1206 		ret = snd_soc_dapm_new_dai_widgets(&codec->dapm, dai);
1207 
1208 		if (ret != 0) {
1209 			dev_err(codec->dev,
1210 				"Failed to create DAI widgets %d\n", ret);
1211 			goto err_probe;
1212 		}
1213 	}
1214 
1215 	codec->dapm.idle_bias_off = driver->idle_bias_off;
1216 
1217 	if (driver->probe) {
1218 		ret = driver->probe(codec);
1219 		if (ret < 0) {
1220 			dev_err(codec->dev,
1221 				"ASoC: failed to probe CODEC %d\n", ret);
1222 			goto err_probe;
1223 		}
1224 		WARN(codec->dapm.idle_bias_off &&
1225 			codec->dapm.bias_level != SND_SOC_BIAS_OFF,
1226 			"codec %s can not start from non-off bias with idle_bias_off==1\n",
1227 			codec->component.name);
1228 	}
1229 
1230 	if (driver->controls)
1231 		snd_soc_add_codec_controls(codec, driver->controls,
1232 				     driver->num_controls);
1233 	if (driver->dapm_routes)
1234 		snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1235 					driver->num_dapm_routes);
1236 
1237 	/* mark codec as probed and add to card codec list */
1238 	codec->probed = 1;
1239 	list_add(&codec->card_list, &card->codec_dev_list);
1240 	list_add(&codec->dapm.list, &card->dapm_list);
1241 
1242 	return 0;
1243 
1244 err_probe:
1245 	soc_cleanup_codec_debugfs(codec);
1246 	module_put(codec->dev->driver->owner);
1247 
1248 	return ret;
1249 }
1250 
1251 static int soc_probe_platform(struct snd_soc_card *card,
1252 			   struct snd_soc_platform *platform)
1253 {
1254 	int ret = 0;
1255 	const struct snd_soc_platform_driver *driver = platform->driver;
1256 	struct snd_soc_component *component;
1257 	struct snd_soc_dai *dai;
1258 
1259 	platform->component.card = card;
1260 	platform->component.dapm.card = card;
1261 
1262 	if (!try_module_get(platform->dev->driver->owner))
1263 		return -ENODEV;
1264 
1265 	soc_init_platform_debugfs(platform);
1266 
1267 	if (driver->dapm_widgets)
1268 		snd_soc_dapm_new_controls(&platform->component.dapm,
1269 			driver->dapm_widgets, driver->num_dapm_widgets);
1270 
1271 	/* Create DAPM widgets for each DAI stream */
1272 	list_for_each_entry(component, &component_list, list) {
1273 		if (component->dev != platform->dev)
1274 			continue;
1275 		list_for_each_entry(dai, &component->dai_list, list)
1276 			snd_soc_dapm_new_dai_widgets(&platform->component.dapm,
1277 				dai);
1278 	}
1279 
1280 	platform->component.dapm.idle_bias_off = 1;
1281 
1282 	if (driver->probe) {
1283 		ret = driver->probe(platform);
1284 		if (ret < 0) {
1285 			dev_err(platform->dev,
1286 				"ASoC: failed to probe platform %d\n", ret);
1287 			goto err_probe;
1288 		}
1289 	}
1290 
1291 	if (driver->controls)
1292 		snd_soc_add_platform_controls(platform, driver->controls,
1293 				     driver->num_controls);
1294 	if (driver->dapm_routes)
1295 		snd_soc_dapm_add_routes(&platform->component.dapm,
1296 			driver->dapm_routes, driver->num_dapm_routes);
1297 
1298 	/* mark platform as probed and add to card platform list */
1299 	platform->probed = 1;
1300 	list_add(&platform->component.dapm.list, &card->dapm_list);
1301 
1302 	return 0;
1303 
1304 err_probe:
1305 	soc_cleanup_platform_debugfs(platform);
1306 	module_put(platform->dev->driver->owner);
1307 
1308 	return ret;
1309 }
1310 
1311 static void rtd_release(struct device *dev)
1312 {
1313 	kfree(dev);
1314 }
1315 
1316 static int soc_post_component_init(struct snd_soc_pcm_runtime *rtd,
1317 	const char *name)
1318 {
1319 	int ret = 0;
1320 
1321 	/* register the rtd device */
1322 	rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1323 	if (!rtd->dev)
1324 		return -ENOMEM;
1325 	device_initialize(rtd->dev);
1326 	rtd->dev->parent = rtd->card->dev;
1327 	rtd->dev->release = rtd_release;
1328 	rtd->dev->init_name = name;
1329 	dev_set_drvdata(rtd->dev, rtd);
1330 	mutex_init(&rtd->pcm_mutex);
1331 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1332 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1333 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1334 	INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1335 	ret = device_add(rtd->dev);
1336 	if (ret < 0) {
1337 		/* calling put_device() here to free the rtd->dev */
1338 		put_device(rtd->dev);
1339 		dev_err(rtd->card->dev,
1340 			"ASoC: failed to register runtime device: %d\n", ret);
1341 		return ret;
1342 	}
1343 	rtd->dev_registered = 1;
1344 
1345 	/* add DAPM sysfs entries for this codec */
1346 	ret = snd_soc_dapm_sys_add(rtd->dev);
1347 	if (ret < 0)
1348 		dev_err(rtd->dev,
1349 			"ASoC: failed to add codec dapm sysfs entries: %d\n", ret);
1350 
1351 	/* add codec sysfs entries */
1352 	ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1353 	if (ret < 0)
1354 		dev_err(rtd->dev,
1355 			"ASoC: failed to add codec sysfs files: %d\n", ret);
1356 
1357 	return 0;
1358 }
1359 
1360 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1361 				     int order)
1362 {
1363 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1364 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1365 	struct snd_soc_platform *platform = rtd->platform;
1366 	int i, ret;
1367 
1368 	/* probe the CPU-side component, if it is a CODEC */
1369 	if (cpu_dai->codec &&
1370 	    !cpu_dai->codec->probed &&
1371 	    cpu_dai->codec->driver->probe_order == order) {
1372 		ret = soc_probe_codec(card, cpu_dai->codec);
1373 		if (ret < 0)
1374 			return ret;
1375 	}
1376 
1377 	/* probe the CODEC-side components */
1378 	for (i = 0; i < rtd->num_codecs; i++) {
1379 		if (!rtd->codec_dais[i]->codec->probed &&
1380 		    rtd->codec_dais[i]->codec->driver->probe_order == order) {
1381 			ret = soc_probe_codec(card, rtd->codec_dais[i]->codec);
1382 			if (ret < 0)
1383 				return ret;
1384 		}
1385 	}
1386 
1387 	/* probe the platform */
1388 	if (!platform->probed &&
1389 	    platform->driver->probe_order == order) {
1390 		ret = soc_probe_platform(card, platform);
1391 		if (ret < 0)
1392 			return ret;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int soc_probe_codec_dai(struct snd_soc_card *card,
1399 			       struct snd_soc_dai *codec_dai,
1400 			       int order)
1401 {
1402 	int ret;
1403 
1404 	if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1405 		if (codec_dai->driver->probe) {
1406 			ret = codec_dai->driver->probe(codec_dai);
1407 			if (ret < 0) {
1408 				dev_err(codec_dai->dev,
1409 					"ASoC: failed to probe CODEC DAI %s: %d\n",
1410 					codec_dai->name, ret);
1411 				return ret;
1412 			}
1413 		}
1414 
1415 		/* mark codec_dai as probed and add to card dai list */
1416 		codec_dai->probed = 1;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static int soc_link_dai_widgets(struct snd_soc_card *card,
1423 				struct snd_soc_dai_link *dai_link,
1424 				struct snd_soc_pcm_runtime *rtd)
1425 {
1426 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1427 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
1428 	struct snd_soc_dapm_widget *play_w, *capture_w;
1429 	int ret;
1430 
1431 	if (rtd->num_codecs > 1)
1432 		dev_warn(card->dev, "ASoC: Multiple codecs not supported yet\n");
1433 
1434 	/* link the DAI widgets */
1435 	play_w = codec_dai->playback_widget;
1436 	capture_w = cpu_dai->capture_widget;
1437 	if (play_w && capture_w) {
1438 		ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1439 					   capture_w, play_w);
1440 		if (ret != 0) {
1441 			dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1442 				play_w->name, capture_w->name, ret);
1443 			return ret;
1444 		}
1445 	}
1446 
1447 	play_w = cpu_dai->playback_widget;
1448 	capture_w = codec_dai->capture_widget;
1449 	if (play_w && capture_w) {
1450 		ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1451 					   capture_w, play_w);
1452 		if (ret != 0) {
1453 			dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1454 				play_w->name, capture_w->name, ret);
1455 			return ret;
1456 		}
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1463 {
1464 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1465 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1466 	struct snd_soc_platform *platform = rtd->platform;
1467 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1468 	int i, ret;
1469 
1470 	dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1471 			card->name, num, order);
1472 
1473 	/* config components */
1474 	cpu_dai->platform = platform;
1475 	cpu_dai->card = card;
1476 	for (i = 0; i < rtd->num_codecs; i++)
1477 		rtd->codec_dais[i]->card = card;
1478 
1479 	/* set default power off timeout */
1480 	rtd->pmdown_time = pmdown_time;
1481 
1482 	/* probe the cpu_dai */
1483 	if (!cpu_dai->probed &&
1484 			cpu_dai->driver->probe_order == order) {
1485 		if (!cpu_dai->codec) {
1486 			if (!try_module_get(cpu_dai->dev->driver->owner))
1487 				return -ENODEV;
1488 		}
1489 
1490 		if (cpu_dai->driver->probe) {
1491 			ret = cpu_dai->driver->probe(cpu_dai);
1492 			if (ret < 0) {
1493 				dev_err(cpu_dai->dev,
1494 					"ASoC: failed to probe CPU DAI %s: %d\n",
1495 					cpu_dai->name, ret);
1496 				module_put(cpu_dai->dev->driver->owner);
1497 				return ret;
1498 			}
1499 		}
1500 		cpu_dai->probed = 1;
1501 	}
1502 
1503 	/* probe the CODEC DAI */
1504 	for (i = 0; i < rtd->num_codecs; i++) {
1505 		ret = soc_probe_codec_dai(card, rtd->codec_dais[i], order);
1506 		if (ret)
1507 			return ret;
1508 	}
1509 
1510 	/* complete DAI probe during last probe */
1511 	if (order != SND_SOC_COMP_ORDER_LAST)
1512 		return 0;
1513 
1514 	/* do machine specific initialization */
1515 	if (dai_link->init) {
1516 		ret = dai_link->init(rtd);
1517 		if (ret < 0) {
1518 			dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1519 				dai_link->name, ret);
1520 			return ret;
1521 		}
1522 	}
1523 
1524 	ret = soc_post_component_init(rtd, dai_link->name);
1525 	if (ret)
1526 		return ret;
1527 
1528 #ifdef CONFIG_DEBUG_FS
1529 	/* add DPCM sysfs entries */
1530 	if (dai_link->dynamic) {
1531 		ret = soc_dpcm_debugfs_add(rtd);
1532 		if (ret < 0) {
1533 			dev_err(rtd->dev,
1534 				"ASoC: failed to add dpcm sysfs entries: %d\n",
1535 				ret);
1536 			return ret;
1537 		}
1538 	}
1539 #endif
1540 
1541 	ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1542 	if (ret < 0)
1543 		dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1544 			ret);
1545 
1546 	if (cpu_dai->driver->compress_dai) {
1547 		/*create compress_device"*/
1548 		ret = soc_new_compress(rtd, num);
1549 		if (ret < 0) {
1550 			dev_err(card->dev, "ASoC: can't create compress %s\n",
1551 					 dai_link->stream_name);
1552 			return ret;
1553 		}
1554 	} else {
1555 
1556 		if (!dai_link->params) {
1557 			/* create the pcm */
1558 			ret = soc_new_pcm(rtd, num);
1559 			if (ret < 0) {
1560 				dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1561 				       dai_link->stream_name, ret);
1562 				return ret;
1563 			}
1564 		} else {
1565 			INIT_DELAYED_WORK(&rtd->delayed_work,
1566 						codec2codec_close_delayed_work);
1567 
1568 			/* link the DAI widgets */
1569 			ret = soc_link_dai_widgets(card, dai_link, rtd);
1570 			if (ret)
1571 				return ret;
1572 		}
1573 	}
1574 
1575 	/* add platform data for AC97 devices */
1576 	for (i = 0; i < rtd->num_codecs; i++) {
1577 		if (rtd->codec_dais[i]->driver->ac97_control)
1578 			snd_ac97_dev_add_pdata(rtd->codec_dais[i]->codec->ac97,
1579 					       rtd->cpu_dai->ac97_pdata);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 #ifdef CONFIG_SND_SOC_AC97_BUS
1586 static int soc_register_ac97_codec(struct snd_soc_codec *codec,
1587 				   struct snd_soc_dai *codec_dai)
1588 {
1589 	int ret;
1590 
1591 	/* Only instantiate AC97 if not already done by the adaptor
1592 	 * for the generic AC97 subsystem.
1593 	 */
1594 	if (codec_dai->driver->ac97_control && !codec->ac97_registered) {
1595 		/*
1596 		 * It is possible that the AC97 device is already registered to
1597 		 * the device subsystem. This happens when the device is created
1598 		 * via snd_ac97_mixer(). Currently only SoC codec that does so
1599 		 * is the generic AC97 glue but others migh emerge.
1600 		 *
1601 		 * In those cases we don't try to register the device again.
1602 		 */
1603 		if (!codec->ac97_created)
1604 			return 0;
1605 
1606 		ret = soc_ac97_dev_register(codec);
1607 		if (ret < 0) {
1608 			dev_err(codec->dev,
1609 				"ASoC: AC97 device register failed: %d\n", ret);
1610 			return ret;
1611 		}
1612 
1613 		codec->ac97_registered = 1;
1614 	}
1615 	return 0;
1616 }
1617 
1618 static void soc_unregister_ac97_codec(struct snd_soc_codec *codec)
1619 {
1620 	if (codec->ac97_registered) {
1621 		soc_ac97_dev_unregister(codec);
1622 		codec->ac97_registered = 0;
1623 	}
1624 }
1625 
1626 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1627 {
1628 	int i, ret;
1629 
1630 	for (i = 0; i < rtd->num_codecs; i++) {
1631 		struct snd_soc_dai *codec_dai = rtd->codec_dais[i];
1632 
1633 		ret = soc_register_ac97_codec(codec_dai->codec, codec_dai);
1634 		if (ret) {
1635 			while (--i >= 0)
1636 				soc_unregister_ac97_codec(codec_dai->codec);
1637 			return ret;
1638 		}
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static void soc_unregister_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < rtd->num_codecs; i++)
1649 		soc_unregister_ac97_codec(rtd->codec_dais[i]->codec);
1650 }
1651 #endif
1652 
1653 static int soc_bind_aux_dev(struct snd_soc_card *card, int num)
1654 {
1655 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1656 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1657 	const char *codecname = aux_dev->codec_name;
1658 
1659 	rtd->codec = soc_find_codec(aux_dev->codec_of_node, codecname);
1660 	if (!rtd->codec) {
1661 		if (aux_dev->codec_of_node)
1662 			codecname = of_node_full_name(aux_dev->codec_of_node);
1663 
1664 		dev_err(card->dev, "ASoC: %s not registered\n", codecname);
1665 		return -EPROBE_DEFER;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1672 {
1673 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1674 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1675 	int ret;
1676 
1677 	if (rtd->codec->probed) {
1678 		dev_err(rtd->codec->dev, "ASoC: codec already probed\n");
1679 		return -EBUSY;
1680 	}
1681 
1682 	ret = soc_probe_codec(card, rtd->codec);
1683 	if (ret < 0)
1684 		return ret;
1685 
1686 	/* do machine specific initialization */
1687 	if (aux_dev->init) {
1688 		ret = aux_dev->init(&rtd->codec->dapm);
1689 		if (ret < 0) {
1690 			dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1691 				aux_dev->name, ret);
1692 			return ret;
1693 		}
1694 	}
1695 
1696 	return soc_post_component_init(rtd, aux_dev->name);
1697 }
1698 
1699 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1700 {
1701 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1702 	struct snd_soc_codec *codec = rtd->codec;
1703 
1704 	/* unregister the rtd device */
1705 	if (rtd->dev_registered) {
1706 		device_remove_file(rtd->dev, &dev_attr_codec_reg);
1707 		device_unregister(rtd->dev);
1708 		rtd->dev_registered = 0;
1709 	}
1710 
1711 	if (codec && codec->probed)
1712 		soc_remove_codec(codec);
1713 }
1714 
1715 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1716 {
1717 	int ret;
1718 
1719 	if (codec->cache_init)
1720 		return 0;
1721 
1722 	ret = snd_soc_cache_init(codec);
1723 	if (ret < 0) {
1724 		dev_err(codec->dev,
1725 			"ASoC: Failed to set cache compression type: %d\n",
1726 			ret);
1727 		return ret;
1728 	}
1729 	codec->cache_init = 1;
1730 	return 0;
1731 }
1732 
1733 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1734 {
1735 	struct snd_soc_codec *codec;
1736 	struct snd_soc_dai_link *dai_link;
1737 	int ret, i, order, dai_fmt;
1738 
1739 	mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1740 
1741 	/* bind DAIs */
1742 	for (i = 0; i < card->num_links; i++) {
1743 		ret = soc_bind_dai_link(card, i);
1744 		if (ret != 0)
1745 			goto base_error;
1746 	}
1747 
1748 	/* bind aux_devs too */
1749 	for (i = 0; i < card->num_aux_devs; i++) {
1750 		ret = soc_bind_aux_dev(card, i);
1751 		if (ret != 0)
1752 			goto base_error;
1753 	}
1754 
1755 	/* initialize the register cache for each available codec */
1756 	list_for_each_entry(codec, &codec_list, list) {
1757 		if (codec->cache_init)
1758 			continue;
1759 		ret = snd_soc_init_codec_cache(codec);
1760 		if (ret < 0)
1761 			goto base_error;
1762 	}
1763 
1764 	/* card bind complete so register a sound card */
1765 	ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1766 			card->owner, 0, &card->snd_card);
1767 	if (ret < 0) {
1768 		dev_err(card->dev,
1769 			"ASoC: can't create sound card for card %s: %d\n",
1770 			card->name, ret);
1771 		goto base_error;
1772 	}
1773 
1774 	card->dapm.bias_level = SND_SOC_BIAS_OFF;
1775 	card->dapm.dev = card->dev;
1776 	card->dapm.card = card;
1777 	list_add(&card->dapm.list, &card->dapm_list);
1778 
1779 #ifdef CONFIG_DEBUG_FS
1780 	snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1781 #endif
1782 
1783 #ifdef CONFIG_PM_SLEEP
1784 	/* deferred resume work */
1785 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1786 #endif
1787 
1788 	if (card->dapm_widgets)
1789 		snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1790 					  card->num_dapm_widgets);
1791 
1792 	/* initialise the sound card only once */
1793 	if (card->probe) {
1794 		ret = card->probe(card);
1795 		if (ret < 0)
1796 			goto card_probe_error;
1797 	}
1798 
1799 	/* probe all components used by DAI links on this card */
1800 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1801 			order++) {
1802 		for (i = 0; i < card->num_links; i++) {
1803 			ret = soc_probe_link_components(card, i, order);
1804 			if (ret < 0) {
1805 				dev_err(card->dev,
1806 					"ASoC: failed to instantiate card %d\n",
1807 					ret);
1808 				goto probe_dai_err;
1809 			}
1810 		}
1811 	}
1812 
1813 	/* probe all DAI links on this card */
1814 	for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1815 			order++) {
1816 		for (i = 0; i < card->num_links; i++) {
1817 			ret = soc_probe_link_dais(card, i, order);
1818 			if (ret < 0) {
1819 				dev_err(card->dev,
1820 					"ASoC: failed to instantiate card %d\n",
1821 					ret);
1822 				goto probe_dai_err;
1823 			}
1824 		}
1825 	}
1826 
1827 	for (i = 0; i < card->num_aux_devs; i++) {
1828 		ret = soc_probe_aux_dev(card, i);
1829 		if (ret < 0) {
1830 			dev_err(card->dev,
1831 				"ASoC: failed to add auxiliary devices %d\n",
1832 				ret);
1833 			goto probe_aux_dev_err;
1834 		}
1835 	}
1836 
1837 	snd_soc_dapm_link_dai_widgets(card);
1838 	snd_soc_dapm_connect_dai_link_widgets(card);
1839 
1840 	if (card->controls)
1841 		snd_soc_add_card_controls(card, card->controls, card->num_controls);
1842 
1843 	if (card->dapm_routes)
1844 		snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1845 					card->num_dapm_routes);
1846 
1847 	for (i = 0; i < card->num_links; i++) {
1848 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1849 		dai_link = &card->dai_link[i];
1850 		dai_fmt = dai_link->dai_fmt;
1851 
1852 		if (dai_fmt) {
1853 			struct snd_soc_dai **codec_dais = rtd->codec_dais;
1854 			int j;
1855 
1856 			for (j = 0; j < rtd->num_codecs; j++) {
1857 				struct snd_soc_dai *codec_dai = codec_dais[j];
1858 
1859 				ret = snd_soc_dai_set_fmt(codec_dai, dai_fmt);
1860 				if (ret != 0 && ret != -ENOTSUPP)
1861 					dev_warn(codec_dai->dev,
1862 						 "ASoC: Failed to set DAI format: %d\n",
1863 						 ret);
1864 			}
1865 		}
1866 
1867 		/* If this is a regular CPU link there will be a platform */
1868 		if (dai_fmt &&
1869 		    (dai_link->platform_name || dai_link->platform_of_node)) {
1870 			ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1871 						  dai_fmt);
1872 			if (ret != 0 && ret != -ENOTSUPP)
1873 				dev_warn(card->rtd[i].cpu_dai->dev,
1874 					 "ASoC: Failed to set DAI format: %d\n",
1875 					 ret);
1876 		} else if (dai_fmt) {
1877 			/* Flip the polarity for the "CPU" end */
1878 			dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1879 			switch (dai_link->dai_fmt &
1880 				SND_SOC_DAIFMT_MASTER_MASK) {
1881 			case SND_SOC_DAIFMT_CBM_CFM:
1882 				dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1883 				break;
1884 			case SND_SOC_DAIFMT_CBM_CFS:
1885 				dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1886 				break;
1887 			case SND_SOC_DAIFMT_CBS_CFM:
1888 				dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1889 				break;
1890 			case SND_SOC_DAIFMT_CBS_CFS:
1891 				dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1892 				break;
1893 			}
1894 
1895 			ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1896 						  dai_fmt);
1897 			if (ret != 0 && ret != -ENOTSUPP)
1898 				dev_warn(card->rtd[i].cpu_dai->dev,
1899 					 "ASoC: Failed to set DAI format: %d\n",
1900 					 ret);
1901 		}
1902 	}
1903 
1904 	snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1905 		 "%s", card->name);
1906 	snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1907 		 "%s", card->long_name ? card->long_name : card->name);
1908 	snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1909 		 "%s", card->driver_name ? card->driver_name : card->name);
1910 	for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1911 		switch (card->snd_card->driver[i]) {
1912 		case '_':
1913 		case '-':
1914 		case '\0':
1915 			break;
1916 		default:
1917 			if (!isalnum(card->snd_card->driver[i]))
1918 				card->snd_card->driver[i] = '_';
1919 			break;
1920 		}
1921 	}
1922 
1923 	if (card->late_probe) {
1924 		ret = card->late_probe(card);
1925 		if (ret < 0) {
1926 			dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1927 				card->name, ret);
1928 			goto probe_aux_dev_err;
1929 		}
1930 	}
1931 
1932 	if (card->fully_routed)
1933 		snd_soc_dapm_auto_nc_pins(card);
1934 
1935 	snd_soc_dapm_new_widgets(card);
1936 
1937 	ret = snd_card_register(card->snd_card);
1938 	if (ret < 0) {
1939 		dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1940 				ret);
1941 		goto probe_aux_dev_err;
1942 	}
1943 
1944 #ifdef CONFIG_SND_SOC_AC97_BUS
1945 	/* register any AC97 codecs */
1946 	for (i = 0; i < card->num_rtd; i++) {
1947 		ret = soc_register_ac97_dai_link(&card->rtd[i]);
1948 		if (ret < 0) {
1949 			dev_err(card->dev,
1950 				"ASoC: failed to register AC97: %d\n", ret);
1951 			while (--i >= 0)
1952 				soc_unregister_ac97_dai_link(&card->rtd[i]);
1953 			goto probe_aux_dev_err;
1954 		}
1955 	}
1956 #endif
1957 
1958 	card->instantiated = 1;
1959 	snd_soc_dapm_sync(&card->dapm);
1960 	mutex_unlock(&card->mutex);
1961 
1962 	return 0;
1963 
1964 probe_aux_dev_err:
1965 	for (i = 0; i < card->num_aux_devs; i++)
1966 		soc_remove_aux_dev(card, i);
1967 
1968 probe_dai_err:
1969 	soc_remove_dai_links(card);
1970 
1971 card_probe_error:
1972 	if (card->remove)
1973 		card->remove(card);
1974 
1975 	snd_card_free(card->snd_card);
1976 
1977 base_error:
1978 	mutex_unlock(&card->mutex);
1979 
1980 	return ret;
1981 }
1982 
1983 /* probes a new socdev */
1984 static int soc_probe(struct platform_device *pdev)
1985 {
1986 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1987 
1988 	/*
1989 	 * no card, so machine driver should be registering card
1990 	 * we should not be here in that case so ret error
1991 	 */
1992 	if (!card)
1993 		return -EINVAL;
1994 
1995 	dev_warn(&pdev->dev,
1996 		 "ASoC: machine %s should use snd_soc_register_card()\n",
1997 		 card->name);
1998 
1999 	/* Bodge while we unpick instantiation */
2000 	card->dev = &pdev->dev;
2001 
2002 	return snd_soc_register_card(card);
2003 }
2004 
2005 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2006 {
2007 	int i;
2008 
2009 	/* make sure any delayed work runs */
2010 	for (i = 0; i < card->num_rtd; i++) {
2011 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2012 		flush_delayed_work(&rtd->delayed_work);
2013 	}
2014 
2015 	/* remove auxiliary devices */
2016 	for (i = 0; i < card->num_aux_devs; i++)
2017 		soc_remove_aux_dev(card, i);
2018 
2019 	/* remove and free each DAI */
2020 	soc_remove_dai_links(card);
2021 
2022 	soc_cleanup_card_debugfs(card);
2023 
2024 	/* remove the card */
2025 	if (card->remove)
2026 		card->remove(card);
2027 
2028 	snd_soc_dapm_free(&card->dapm);
2029 
2030 	snd_card_free(card->snd_card);
2031 	return 0;
2032 
2033 }
2034 
2035 /* removes a socdev */
2036 static int soc_remove(struct platform_device *pdev)
2037 {
2038 	struct snd_soc_card *card = platform_get_drvdata(pdev);
2039 
2040 	snd_soc_unregister_card(card);
2041 	return 0;
2042 }
2043 
2044 int snd_soc_poweroff(struct device *dev)
2045 {
2046 	struct snd_soc_card *card = dev_get_drvdata(dev);
2047 	int i;
2048 
2049 	if (!card->instantiated)
2050 		return 0;
2051 
2052 	/* Flush out pmdown_time work - we actually do want to run it
2053 	 * now, we're shutting down so no imminent restart. */
2054 	for (i = 0; i < card->num_rtd; i++) {
2055 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2056 		flush_delayed_work(&rtd->delayed_work);
2057 	}
2058 
2059 	snd_soc_dapm_shutdown(card);
2060 
2061 	/* deactivate pins to sleep state */
2062 	for (i = 0; i < card->num_rtd; i++) {
2063 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2064 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2065 		int j;
2066 
2067 		pinctrl_pm_select_sleep_state(cpu_dai->dev);
2068 		for (j = 0; j < rtd->num_codecs; j++) {
2069 			struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
2070 			pinctrl_pm_select_sleep_state(codec_dai->dev);
2071 		}
2072 	}
2073 
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2077 
2078 const struct dev_pm_ops snd_soc_pm_ops = {
2079 	.suspend = snd_soc_suspend,
2080 	.resume = snd_soc_resume,
2081 	.freeze = snd_soc_suspend,
2082 	.thaw = snd_soc_resume,
2083 	.poweroff = snd_soc_poweroff,
2084 	.restore = snd_soc_resume,
2085 };
2086 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2087 
2088 /* ASoC platform driver */
2089 static struct platform_driver soc_driver = {
2090 	.driver		= {
2091 		.name		= "soc-audio",
2092 		.owner		= THIS_MODULE,
2093 		.pm		= &snd_soc_pm_ops,
2094 	},
2095 	.probe		= soc_probe,
2096 	.remove		= soc_remove,
2097 };
2098 
2099 /**
2100  * snd_soc_new_ac97_codec - initailise AC97 device
2101  * @codec: audio codec
2102  * @ops: AC97 bus operations
2103  * @num: AC97 codec number
2104  *
2105  * Initialises AC97 codec resources for use by ad-hoc devices only.
2106  */
2107 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2108 	struct snd_ac97_bus_ops *ops, int num)
2109 {
2110 	mutex_lock(&codec->mutex);
2111 
2112 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2113 	if (codec->ac97 == NULL) {
2114 		mutex_unlock(&codec->mutex);
2115 		return -ENOMEM;
2116 	}
2117 
2118 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2119 	if (codec->ac97->bus == NULL) {
2120 		kfree(codec->ac97);
2121 		codec->ac97 = NULL;
2122 		mutex_unlock(&codec->mutex);
2123 		return -ENOMEM;
2124 	}
2125 
2126 	codec->ac97->bus->ops = ops;
2127 	codec->ac97->num = num;
2128 
2129 	/*
2130 	 * Mark the AC97 device to be created by us. This way we ensure that the
2131 	 * device will be registered with the device subsystem later on.
2132 	 */
2133 	codec->ac97_created = 1;
2134 
2135 	mutex_unlock(&codec->mutex);
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2139 
2140 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
2141 
2142 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
2143 {
2144 	struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2145 
2146 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
2147 
2148 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
2149 
2150 	udelay(10);
2151 
2152 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2153 
2154 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2155 	msleep(2);
2156 }
2157 
2158 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2159 {
2160 	struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2161 
2162 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2163 
2164 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2165 	gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2166 	gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2167 
2168 	udelay(10);
2169 
2170 	gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2171 
2172 	pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2173 	msleep(2);
2174 }
2175 
2176 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2177 		struct snd_ac97_reset_cfg *cfg)
2178 {
2179 	struct pinctrl *p;
2180 	struct pinctrl_state *state;
2181 	int gpio;
2182 	int ret;
2183 
2184 	p = devm_pinctrl_get(dev);
2185 	if (IS_ERR(p)) {
2186 		dev_err(dev, "Failed to get pinctrl\n");
2187 		return PTR_ERR(p);
2188 	}
2189 	cfg->pctl = p;
2190 
2191 	state = pinctrl_lookup_state(p, "ac97-reset");
2192 	if (IS_ERR(state)) {
2193 		dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2194 		return PTR_ERR(state);
2195 	}
2196 	cfg->pstate_reset = state;
2197 
2198 	state = pinctrl_lookup_state(p, "ac97-warm-reset");
2199 	if (IS_ERR(state)) {
2200 		dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2201 		return PTR_ERR(state);
2202 	}
2203 	cfg->pstate_warm_reset = state;
2204 
2205 	state = pinctrl_lookup_state(p, "ac97-running");
2206 	if (IS_ERR(state)) {
2207 		dev_err(dev, "Can't find pinctrl state ac97-running\n");
2208 		return PTR_ERR(state);
2209 	}
2210 	cfg->pstate_run = state;
2211 
2212 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2213 	if (gpio < 0) {
2214 		dev_err(dev, "Can't find ac97-sync gpio\n");
2215 		return gpio;
2216 	}
2217 	ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2218 	if (ret) {
2219 		dev_err(dev, "Failed requesting ac97-sync gpio\n");
2220 		return ret;
2221 	}
2222 	cfg->gpio_sync = gpio;
2223 
2224 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2225 	if (gpio < 0) {
2226 		dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2227 		return gpio;
2228 	}
2229 	ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2230 	if (ret) {
2231 		dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2232 		return ret;
2233 	}
2234 	cfg->gpio_sdata = gpio;
2235 
2236 	gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2237 	if (gpio < 0) {
2238 		dev_err(dev, "Can't find ac97-reset gpio\n");
2239 		return gpio;
2240 	}
2241 	ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2242 	if (ret) {
2243 		dev_err(dev, "Failed requesting ac97-reset gpio\n");
2244 		return ret;
2245 	}
2246 	cfg->gpio_reset = gpio;
2247 
2248 	return 0;
2249 }
2250 
2251 struct snd_ac97_bus_ops *soc_ac97_ops;
2252 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2253 
2254 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2255 {
2256 	if (ops == soc_ac97_ops)
2257 		return 0;
2258 
2259 	if (soc_ac97_ops && ops)
2260 		return -EBUSY;
2261 
2262 	soc_ac97_ops = ops;
2263 
2264 	return 0;
2265 }
2266 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2267 
2268 /**
2269  * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2270  *
2271  * This function sets the reset and warm_reset properties of ops and parses
2272  * the device node of pdev to get pinctrl states and gpio numbers to use.
2273  */
2274 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2275 		struct platform_device *pdev)
2276 {
2277 	struct device *dev = &pdev->dev;
2278 	struct snd_ac97_reset_cfg cfg;
2279 	int ret;
2280 
2281 	ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2282 	if (ret)
2283 		return ret;
2284 
2285 	ret = snd_soc_set_ac97_ops(ops);
2286 	if (ret)
2287 		return ret;
2288 
2289 	ops->warm_reset = snd_soc_ac97_warm_reset;
2290 	ops->reset = snd_soc_ac97_reset;
2291 
2292 	snd_ac97_rst_cfg = cfg;
2293 	return 0;
2294 }
2295 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2296 
2297 /**
2298  * snd_soc_free_ac97_codec - free AC97 codec device
2299  * @codec: audio codec
2300  *
2301  * Frees AC97 codec device resources.
2302  */
2303 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2304 {
2305 	mutex_lock(&codec->mutex);
2306 #ifdef CONFIG_SND_SOC_AC97_BUS
2307 	soc_unregister_ac97_codec(codec);
2308 #endif
2309 	kfree(codec->ac97->bus);
2310 	kfree(codec->ac97);
2311 	codec->ac97 = NULL;
2312 	codec->ac97_created = 0;
2313 	mutex_unlock(&codec->mutex);
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2316 
2317 /**
2318  * snd_soc_cnew - create new control
2319  * @_template: control template
2320  * @data: control private data
2321  * @long_name: control long name
2322  * @prefix: control name prefix
2323  *
2324  * Create a new mixer control from a template control.
2325  *
2326  * Returns 0 for success, else error.
2327  */
2328 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2329 				  void *data, const char *long_name,
2330 				  const char *prefix)
2331 {
2332 	struct snd_kcontrol_new template;
2333 	struct snd_kcontrol *kcontrol;
2334 	char *name = NULL;
2335 
2336 	memcpy(&template, _template, sizeof(template));
2337 	template.index = 0;
2338 
2339 	if (!long_name)
2340 		long_name = template.name;
2341 
2342 	if (prefix) {
2343 		name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2344 		if (!name)
2345 			return NULL;
2346 
2347 		template.name = name;
2348 	} else {
2349 		template.name = long_name;
2350 	}
2351 
2352 	kcontrol = snd_ctl_new1(&template, data);
2353 
2354 	kfree(name);
2355 
2356 	return kcontrol;
2357 }
2358 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2359 
2360 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2361 	const struct snd_kcontrol_new *controls, int num_controls,
2362 	const char *prefix, void *data)
2363 {
2364 	int err, i;
2365 
2366 	for (i = 0; i < num_controls; i++) {
2367 		const struct snd_kcontrol_new *control = &controls[i];
2368 		err = snd_ctl_add(card, snd_soc_cnew(control, data,
2369 						     control->name, prefix));
2370 		if (err < 0) {
2371 			dev_err(dev, "ASoC: Failed to add %s: %d\n",
2372 				control->name, err);
2373 			return err;
2374 		}
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2381 					       const char *name)
2382 {
2383 	struct snd_card *card = soc_card->snd_card;
2384 	struct snd_kcontrol *kctl;
2385 
2386 	if (unlikely(!name))
2387 		return NULL;
2388 
2389 	list_for_each_entry(kctl, &card->controls, list)
2390 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2391 			return kctl;
2392 	return NULL;
2393 }
2394 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2395 
2396 /**
2397  * snd_soc_add_component_controls - Add an array of controls to a component.
2398  *
2399  * @component: Component to add controls to
2400  * @controls: Array of controls to add
2401  * @num_controls: Number of elements in the array
2402  *
2403  * Return: 0 for success, else error.
2404  */
2405 int snd_soc_add_component_controls(struct snd_soc_component *component,
2406 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2407 {
2408 	struct snd_card *card = component->card->snd_card;
2409 
2410 	return snd_soc_add_controls(card, component->dev, controls,
2411 			num_controls, component->name_prefix, component);
2412 }
2413 EXPORT_SYMBOL_GPL(snd_soc_add_component_controls);
2414 
2415 /**
2416  * snd_soc_add_codec_controls - add an array of controls to a codec.
2417  * Convenience function to add a list of controls. Many codecs were
2418  * duplicating this code.
2419  *
2420  * @codec: codec to add controls to
2421  * @controls: array of controls to add
2422  * @num_controls: number of elements in the array
2423  *
2424  * Return 0 for success, else error.
2425  */
2426 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2427 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2428 {
2429 	return snd_soc_add_component_controls(&codec->component, controls,
2430 		num_controls);
2431 }
2432 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2433 
2434 /**
2435  * snd_soc_add_platform_controls - add an array of controls to a platform.
2436  * Convenience function to add a list of controls.
2437  *
2438  * @platform: platform to add controls to
2439  * @controls: array of controls to add
2440  * @num_controls: number of elements in the array
2441  *
2442  * Return 0 for success, else error.
2443  */
2444 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2445 	const struct snd_kcontrol_new *controls, unsigned int num_controls)
2446 {
2447 	return snd_soc_add_component_controls(&platform->component, controls,
2448 		num_controls);
2449 }
2450 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2451 
2452 /**
2453  * snd_soc_add_card_controls - add an array of controls to a SoC card.
2454  * Convenience function to add a list of controls.
2455  *
2456  * @soc_card: SoC card to add controls to
2457  * @controls: array of controls to add
2458  * @num_controls: number of elements in the array
2459  *
2460  * Return 0 for success, else error.
2461  */
2462 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2463 	const struct snd_kcontrol_new *controls, int num_controls)
2464 {
2465 	struct snd_card *card = soc_card->snd_card;
2466 
2467 	return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2468 			NULL, soc_card);
2469 }
2470 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2471 
2472 /**
2473  * snd_soc_add_dai_controls - add an array of controls to a DAI.
2474  * Convienience function to add a list of controls.
2475  *
2476  * @dai: DAI to add controls to
2477  * @controls: array of controls to add
2478  * @num_controls: number of elements in the array
2479  *
2480  * Return 0 for success, else error.
2481  */
2482 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2483 	const struct snd_kcontrol_new *controls, int num_controls)
2484 {
2485 	struct snd_card *card = dai->card->snd_card;
2486 
2487 	return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2488 			NULL, dai);
2489 }
2490 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2491 
2492 /**
2493  * snd_soc_info_enum_double - enumerated double mixer info callback
2494  * @kcontrol: mixer control
2495  * @uinfo: control element information
2496  *
2497  * Callback to provide information about a double enumerated
2498  * mixer control.
2499  *
2500  * Returns 0 for success.
2501  */
2502 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2503 	struct snd_ctl_elem_info *uinfo)
2504 {
2505 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2506 
2507 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2508 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2509 	uinfo->value.enumerated.items = e->items;
2510 
2511 	if (uinfo->value.enumerated.item >= e->items)
2512 		uinfo->value.enumerated.item = e->items - 1;
2513 	strlcpy(uinfo->value.enumerated.name,
2514 		e->texts[uinfo->value.enumerated.item],
2515 		sizeof(uinfo->value.enumerated.name));
2516 	return 0;
2517 }
2518 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2519 
2520 /**
2521  * snd_soc_get_enum_double - enumerated double mixer get callback
2522  * @kcontrol: mixer control
2523  * @ucontrol: control element information
2524  *
2525  * Callback to get the value of a double enumerated mixer.
2526  *
2527  * Returns 0 for success.
2528  */
2529 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2530 	struct snd_ctl_elem_value *ucontrol)
2531 {
2532 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2533 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2534 	unsigned int val, item;
2535 	unsigned int reg_val;
2536 	int ret;
2537 
2538 	ret = snd_soc_component_read(component, e->reg, &reg_val);
2539 	if (ret)
2540 		return ret;
2541 	val = (reg_val >> e->shift_l) & e->mask;
2542 	item = snd_soc_enum_val_to_item(e, val);
2543 	ucontrol->value.enumerated.item[0] = item;
2544 	if (e->shift_l != e->shift_r) {
2545 		val = (reg_val >> e->shift_l) & e->mask;
2546 		item = snd_soc_enum_val_to_item(e, val);
2547 		ucontrol->value.enumerated.item[1] = item;
2548 	}
2549 
2550 	return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2553 
2554 /**
2555  * snd_soc_put_enum_double - enumerated double mixer put callback
2556  * @kcontrol: mixer control
2557  * @ucontrol: control element information
2558  *
2559  * Callback to set the value of a double enumerated mixer.
2560  *
2561  * Returns 0 for success.
2562  */
2563 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2564 	struct snd_ctl_elem_value *ucontrol)
2565 {
2566 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2567 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2568 	unsigned int *item = ucontrol->value.enumerated.item;
2569 	unsigned int val;
2570 	unsigned int mask;
2571 
2572 	if (item[0] >= e->items)
2573 		return -EINVAL;
2574 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2575 	mask = e->mask << e->shift_l;
2576 	if (e->shift_l != e->shift_r) {
2577 		if (item[1] >= e->items)
2578 			return -EINVAL;
2579 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2580 		mask |= e->mask << e->shift_r;
2581 	}
2582 
2583 	return snd_soc_component_update_bits(component, e->reg, mask, val);
2584 }
2585 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2586 
2587 /**
2588  * snd_soc_read_signed - Read a codec register and interprete as signed value
2589  * @component: component
2590  * @reg: Register to read
2591  * @mask: Mask to use after shifting the register value
2592  * @shift: Right shift of register value
2593  * @sign_bit: Bit that describes if a number is negative or not.
2594  * @signed_val: Pointer to where the read value should be stored
2595  *
2596  * This functions reads a codec register. The register value is shifted right
2597  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2598  * the given registervalue into a signed integer if sign_bit is non-zero.
2599  *
2600  * Returns 0 on sucess, otherwise an error value
2601  */
2602 static int snd_soc_read_signed(struct snd_soc_component *component,
2603 	unsigned int reg, unsigned int mask, unsigned int shift,
2604 	unsigned int sign_bit, int *signed_val)
2605 {
2606 	int ret;
2607 	unsigned int val;
2608 
2609 	ret = snd_soc_component_read(component, reg, &val);
2610 	if (ret < 0)
2611 		return ret;
2612 
2613 	val = (val >> shift) & mask;
2614 
2615 	if (!sign_bit) {
2616 		*signed_val = val;
2617 		return 0;
2618 	}
2619 
2620 	/* non-negative number */
2621 	if (!(val & BIT(sign_bit))) {
2622 		*signed_val = val;
2623 		return 0;
2624 	}
2625 
2626 	ret = val;
2627 
2628 	/*
2629 	 * The register most probably does not contain a full-sized int.
2630 	 * Instead we have an arbitrary number of bits in a signed
2631 	 * representation which has to be translated into a full-sized int.
2632 	 * This is done by filling up all bits above the sign-bit.
2633 	 */
2634 	ret |= ~((int)(BIT(sign_bit) - 1));
2635 
2636 	*signed_val = ret;
2637 
2638 	return 0;
2639 }
2640 
2641 /**
2642  * snd_soc_info_volsw - single mixer info callback
2643  * @kcontrol: mixer control
2644  * @uinfo: control element information
2645  *
2646  * Callback to provide information about a single mixer control, or a double
2647  * mixer control that spans 2 registers.
2648  *
2649  * Returns 0 for success.
2650  */
2651 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2652 	struct snd_ctl_elem_info *uinfo)
2653 {
2654 	struct soc_mixer_control *mc =
2655 		(struct soc_mixer_control *)kcontrol->private_value;
2656 	int platform_max;
2657 
2658 	if (!mc->platform_max)
2659 		mc->platform_max = mc->max;
2660 	platform_max = mc->platform_max;
2661 
2662 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2663 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2664 	else
2665 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2666 
2667 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2668 	uinfo->value.integer.min = 0;
2669 	uinfo->value.integer.max = platform_max - mc->min;
2670 	return 0;
2671 }
2672 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2673 
2674 /**
2675  * snd_soc_get_volsw - single mixer get callback
2676  * @kcontrol: mixer control
2677  * @ucontrol: control element information
2678  *
2679  * Callback to get the value of a single mixer control, or a double mixer
2680  * control that spans 2 registers.
2681  *
2682  * Returns 0 for success.
2683  */
2684 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2685 	struct snd_ctl_elem_value *ucontrol)
2686 {
2687 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2688 	struct soc_mixer_control *mc =
2689 		(struct soc_mixer_control *)kcontrol->private_value;
2690 	unsigned int reg = mc->reg;
2691 	unsigned int reg2 = mc->rreg;
2692 	unsigned int shift = mc->shift;
2693 	unsigned int rshift = mc->rshift;
2694 	int max = mc->max;
2695 	int min = mc->min;
2696 	int sign_bit = mc->sign_bit;
2697 	unsigned int mask = (1 << fls(max)) - 1;
2698 	unsigned int invert = mc->invert;
2699 	int val;
2700 	int ret;
2701 
2702 	if (sign_bit)
2703 		mask = BIT(sign_bit + 1) - 1;
2704 
2705 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2706 	if (ret)
2707 		return ret;
2708 
2709 	ucontrol->value.integer.value[0] = val - min;
2710 	if (invert)
2711 		ucontrol->value.integer.value[0] =
2712 			max - ucontrol->value.integer.value[0];
2713 
2714 	if (snd_soc_volsw_is_stereo(mc)) {
2715 		if (reg == reg2)
2716 			ret = snd_soc_read_signed(component, reg, mask, rshift,
2717 				sign_bit, &val);
2718 		else
2719 			ret = snd_soc_read_signed(component, reg2, mask, shift,
2720 				sign_bit, &val);
2721 		if (ret)
2722 			return ret;
2723 
2724 		ucontrol->value.integer.value[1] = val - min;
2725 		if (invert)
2726 			ucontrol->value.integer.value[1] =
2727 				max - ucontrol->value.integer.value[1];
2728 	}
2729 
2730 	return 0;
2731 }
2732 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2733 
2734 /**
2735  * snd_soc_put_volsw - single mixer put callback
2736  * @kcontrol: mixer control
2737  * @ucontrol: control element information
2738  *
2739  * Callback to set the value of a single mixer control, or a double mixer
2740  * control that spans 2 registers.
2741  *
2742  * Returns 0 for success.
2743  */
2744 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2745 	struct snd_ctl_elem_value *ucontrol)
2746 {
2747 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2748 	struct soc_mixer_control *mc =
2749 		(struct soc_mixer_control *)kcontrol->private_value;
2750 	unsigned int reg = mc->reg;
2751 	unsigned int reg2 = mc->rreg;
2752 	unsigned int shift = mc->shift;
2753 	unsigned int rshift = mc->rshift;
2754 	int max = mc->max;
2755 	int min = mc->min;
2756 	unsigned int sign_bit = mc->sign_bit;
2757 	unsigned int mask = (1 << fls(max)) - 1;
2758 	unsigned int invert = mc->invert;
2759 	int err;
2760 	bool type_2r = false;
2761 	unsigned int val2 = 0;
2762 	unsigned int val, val_mask;
2763 
2764 	if (sign_bit)
2765 		mask = BIT(sign_bit + 1) - 1;
2766 
2767 	val = ((ucontrol->value.integer.value[0] + min) & mask);
2768 	if (invert)
2769 		val = max - val;
2770 	val_mask = mask << shift;
2771 	val = val << shift;
2772 	if (snd_soc_volsw_is_stereo(mc)) {
2773 		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2774 		if (invert)
2775 			val2 = max - val2;
2776 		if (reg == reg2) {
2777 			val_mask |= mask << rshift;
2778 			val |= val2 << rshift;
2779 		} else {
2780 			val2 = val2 << shift;
2781 			type_2r = true;
2782 		}
2783 	}
2784 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
2785 	if (err < 0)
2786 		return err;
2787 
2788 	if (type_2r)
2789 		err = snd_soc_component_update_bits(component, reg2, val_mask,
2790 			val2);
2791 
2792 	return err;
2793 }
2794 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2795 
2796 /**
2797  * snd_soc_get_volsw_sx - single mixer get callback
2798  * @kcontrol: mixer control
2799  * @ucontrol: control element information
2800  *
2801  * Callback to get the value of a single mixer control, or a double mixer
2802  * control that spans 2 registers.
2803  *
2804  * Returns 0 for success.
2805  */
2806 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2807 		      struct snd_ctl_elem_value *ucontrol)
2808 {
2809 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2810 	struct soc_mixer_control *mc =
2811 	    (struct soc_mixer_control *)kcontrol->private_value;
2812 	unsigned int reg = mc->reg;
2813 	unsigned int reg2 = mc->rreg;
2814 	unsigned int shift = mc->shift;
2815 	unsigned int rshift = mc->rshift;
2816 	int max = mc->max;
2817 	int min = mc->min;
2818 	int mask = (1 << (fls(min + max) - 1)) - 1;
2819 	unsigned int val;
2820 	int ret;
2821 
2822 	ret = snd_soc_component_read(component, reg, &val);
2823 	if (ret < 0)
2824 		return ret;
2825 
2826 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2827 
2828 	if (snd_soc_volsw_is_stereo(mc)) {
2829 		ret = snd_soc_component_read(component, reg2, &val);
2830 		if (ret < 0)
2831 			return ret;
2832 
2833 		val = ((val >> rshift) - min) & mask;
2834 		ucontrol->value.integer.value[1] = val;
2835 	}
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2840 
2841 /**
2842  * snd_soc_put_volsw_sx - double mixer set callback
2843  * @kcontrol: mixer control
2844  * @uinfo: control element information
2845  *
2846  * Callback to set the value of a double mixer control that spans 2 registers.
2847  *
2848  * Returns 0 for success.
2849  */
2850 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2851 			 struct snd_ctl_elem_value *ucontrol)
2852 {
2853 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2854 	struct soc_mixer_control *mc =
2855 	    (struct soc_mixer_control *)kcontrol->private_value;
2856 
2857 	unsigned int reg = mc->reg;
2858 	unsigned int reg2 = mc->rreg;
2859 	unsigned int shift = mc->shift;
2860 	unsigned int rshift = mc->rshift;
2861 	int max = mc->max;
2862 	int min = mc->min;
2863 	int mask = (1 << (fls(min + max) - 1)) - 1;
2864 	int err = 0;
2865 	unsigned int val, val_mask, val2 = 0;
2866 
2867 	val_mask = mask << shift;
2868 	val = (ucontrol->value.integer.value[0] + min) & mask;
2869 	val = val << shift;
2870 
2871 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
2872 	if (err < 0)
2873 		return err;
2874 
2875 	if (snd_soc_volsw_is_stereo(mc)) {
2876 		val_mask = mask << rshift;
2877 		val2 = (ucontrol->value.integer.value[1] + min) & mask;
2878 		val2 = val2 << rshift;
2879 
2880 		err = snd_soc_component_update_bits(component, reg2, val_mask,
2881 			val2);
2882 	}
2883 	return err;
2884 }
2885 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2886 
2887 /**
2888  * snd_soc_info_volsw_s8 - signed mixer info callback
2889  * @kcontrol: mixer control
2890  * @uinfo: control element information
2891  *
2892  * Callback to provide information about a signed mixer control.
2893  *
2894  * Returns 0 for success.
2895  */
2896 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2897 	struct snd_ctl_elem_info *uinfo)
2898 {
2899 	struct soc_mixer_control *mc =
2900 		(struct soc_mixer_control *)kcontrol->private_value;
2901 	int platform_max;
2902 	int min = mc->min;
2903 
2904 	if (!mc->platform_max)
2905 		mc->platform_max = mc->max;
2906 	platform_max = mc->platform_max;
2907 
2908 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2909 	uinfo->count = 2;
2910 	uinfo->value.integer.min = 0;
2911 	uinfo->value.integer.max = platform_max - min;
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2915 
2916 /**
2917  * snd_soc_get_volsw_s8 - signed mixer get callback
2918  * @kcontrol: mixer control
2919  * @ucontrol: control element information
2920  *
2921  * Callback to get the value of a signed mixer control.
2922  *
2923  * Returns 0 for success.
2924  */
2925 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2926 	struct snd_ctl_elem_value *ucontrol)
2927 {
2928 	struct soc_mixer_control *mc =
2929 		(struct soc_mixer_control *)kcontrol->private_value;
2930 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2931 	unsigned int reg = mc->reg;
2932 	unsigned int val;
2933 	int min = mc->min;
2934 	int ret;
2935 
2936 	ret = snd_soc_component_read(component, reg, &val);
2937 	if (ret)
2938 		return ret;
2939 
2940 	ucontrol->value.integer.value[0] =
2941 		((signed char)(val & 0xff))-min;
2942 	ucontrol->value.integer.value[1] =
2943 		((signed char)((val >> 8) & 0xff))-min;
2944 	return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2947 
2948 /**
2949  * snd_soc_put_volsw_sgn - signed mixer put callback
2950  * @kcontrol: mixer control
2951  * @ucontrol: control element information
2952  *
2953  * Callback to set the value of a signed mixer control.
2954  *
2955  * Returns 0 for success.
2956  */
2957 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2958 	struct snd_ctl_elem_value *ucontrol)
2959 {
2960 	struct soc_mixer_control *mc =
2961 		(struct soc_mixer_control *)kcontrol->private_value;
2962 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2963 	unsigned int reg = mc->reg;
2964 	int min = mc->min;
2965 	unsigned int val;
2966 
2967 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2968 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2969 
2970 	return snd_soc_component_update_bits(component, reg, 0xffff, val);
2971 }
2972 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2973 
2974 /**
2975  * snd_soc_info_volsw_range - single mixer info callback with range.
2976  * @kcontrol: mixer control
2977  * @uinfo: control element information
2978  *
2979  * Callback to provide information, within a range, about a single
2980  * mixer control.
2981  *
2982  * returns 0 for success.
2983  */
2984 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2985 	struct snd_ctl_elem_info *uinfo)
2986 {
2987 	struct soc_mixer_control *mc =
2988 		(struct soc_mixer_control *)kcontrol->private_value;
2989 	int platform_max;
2990 	int min = mc->min;
2991 
2992 	if (!mc->platform_max)
2993 		mc->platform_max = mc->max;
2994 	platform_max = mc->platform_max;
2995 
2996 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2997 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2998 	uinfo->value.integer.min = 0;
2999 	uinfo->value.integer.max = platform_max - min;
3000 
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
3004 
3005 /**
3006  * snd_soc_put_volsw_range - single mixer put value callback with range.
3007  * @kcontrol: mixer control
3008  * @ucontrol: control element information
3009  *
3010  * Callback to set the value, within a range, for a single mixer control.
3011  *
3012  * Returns 0 for success.
3013  */
3014 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
3015 	struct snd_ctl_elem_value *ucontrol)
3016 {
3017 	struct soc_mixer_control *mc =
3018 		(struct soc_mixer_control *)kcontrol->private_value;
3019 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3020 	unsigned int reg = mc->reg;
3021 	unsigned int rreg = mc->rreg;
3022 	unsigned int shift = mc->shift;
3023 	int min = mc->min;
3024 	int max = mc->max;
3025 	unsigned int mask = (1 << fls(max)) - 1;
3026 	unsigned int invert = mc->invert;
3027 	unsigned int val, val_mask;
3028 	int ret;
3029 
3030 	val = ((ucontrol->value.integer.value[0] + min) & mask);
3031 	if (invert)
3032 		val = max - val;
3033 	val_mask = mask << shift;
3034 	val = val << shift;
3035 
3036 	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
3037 	if (ret < 0)
3038 		return ret;
3039 
3040 	if (snd_soc_volsw_is_stereo(mc)) {
3041 		val = ((ucontrol->value.integer.value[1] + min) & mask);
3042 		if (invert)
3043 			val = max - val;
3044 		val_mask = mask << shift;
3045 		val = val << shift;
3046 
3047 		ret = snd_soc_component_update_bits(component, rreg, val_mask,
3048 			val);
3049 	}
3050 
3051 	return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
3054 
3055 /**
3056  * snd_soc_get_volsw_range - single mixer get callback with range
3057  * @kcontrol: mixer control
3058  * @ucontrol: control element information
3059  *
3060  * Callback to get the value, within a range, of a single mixer control.
3061  *
3062  * Returns 0 for success.
3063  */
3064 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
3065 	struct snd_ctl_elem_value *ucontrol)
3066 {
3067 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3068 	struct soc_mixer_control *mc =
3069 		(struct soc_mixer_control *)kcontrol->private_value;
3070 	unsigned int reg = mc->reg;
3071 	unsigned int rreg = mc->rreg;
3072 	unsigned int shift = mc->shift;
3073 	int min = mc->min;
3074 	int max = mc->max;
3075 	unsigned int mask = (1 << fls(max)) - 1;
3076 	unsigned int invert = mc->invert;
3077 	unsigned int val;
3078 	int ret;
3079 
3080 	ret = snd_soc_component_read(component, reg, &val);
3081 	if (ret)
3082 		return ret;
3083 
3084 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
3085 	if (invert)
3086 		ucontrol->value.integer.value[0] =
3087 			max - ucontrol->value.integer.value[0];
3088 	ucontrol->value.integer.value[0] =
3089 		ucontrol->value.integer.value[0] - min;
3090 
3091 	if (snd_soc_volsw_is_stereo(mc)) {
3092 		ret = snd_soc_component_read(component, rreg, &val);
3093 		if (ret)
3094 			return ret;
3095 
3096 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
3097 		if (invert)
3098 			ucontrol->value.integer.value[1] =
3099 				max - ucontrol->value.integer.value[1];
3100 		ucontrol->value.integer.value[1] =
3101 			ucontrol->value.integer.value[1] - min;
3102 	}
3103 
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
3107 
3108 /**
3109  * snd_soc_limit_volume - Set new limit to an existing volume control.
3110  *
3111  * @codec: where to look for the control
3112  * @name: Name of the control
3113  * @max: new maximum limit
3114  *
3115  * Return 0 for success, else error.
3116  */
3117 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3118 	const char *name, int max)
3119 {
3120 	struct snd_card *card = codec->component.card->snd_card;
3121 	struct snd_kcontrol *kctl;
3122 	struct soc_mixer_control *mc;
3123 	int found = 0;
3124 	int ret = -EINVAL;
3125 
3126 	/* Sanity check for name and max */
3127 	if (unlikely(!name || max <= 0))
3128 		return -EINVAL;
3129 
3130 	list_for_each_entry(kctl, &card->controls, list) {
3131 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3132 			found = 1;
3133 			break;
3134 		}
3135 	}
3136 	if (found) {
3137 		mc = (struct soc_mixer_control *)kctl->private_value;
3138 		if (max <= mc->max) {
3139 			mc->platform_max = max;
3140 			ret = 0;
3141 		}
3142 	}
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3146 
3147 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
3148 		       struct snd_ctl_elem_info *uinfo)
3149 {
3150 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3151 	struct soc_bytes *params = (void *)kcontrol->private_value;
3152 
3153 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3154 	uinfo->count = params->num_regs * component->val_bytes;
3155 
3156 	return 0;
3157 }
3158 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3159 
3160 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3161 		      struct snd_ctl_elem_value *ucontrol)
3162 {
3163 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3164 	struct soc_bytes *params = (void *)kcontrol->private_value;
3165 	int ret;
3166 
3167 	if (component->regmap)
3168 		ret = regmap_raw_read(component->regmap, params->base,
3169 				      ucontrol->value.bytes.data,
3170 				      params->num_regs * component->val_bytes);
3171 	else
3172 		ret = -EINVAL;
3173 
3174 	/* Hide any masked bytes to ensure consistent data reporting */
3175 	if (ret == 0 && params->mask) {
3176 		switch (component->val_bytes) {
3177 		case 1:
3178 			ucontrol->value.bytes.data[0] &= ~params->mask;
3179 			break;
3180 		case 2:
3181 			((u16 *)(&ucontrol->value.bytes.data))[0]
3182 				&= cpu_to_be16(~params->mask);
3183 			break;
3184 		case 4:
3185 			((u32 *)(&ucontrol->value.bytes.data))[0]
3186 				&= cpu_to_be32(~params->mask);
3187 			break;
3188 		default:
3189 			return -EINVAL;
3190 		}
3191 	}
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3196 
3197 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3198 		      struct snd_ctl_elem_value *ucontrol)
3199 {
3200 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3201 	struct soc_bytes *params = (void *)kcontrol->private_value;
3202 	int ret, len;
3203 	unsigned int val, mask;
3204 	void *data;
3205 
3206 	if (!component->regmap)
3207 		return -EINVAL;
3208 
3209 	len = params->num_regs * component->val_bytes;
3210 
3211 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3212 	if (!data)
3213 		return -ENOMEM;
3214 
3215 	/*
3216 	 * If we've got a mask then we need to preserve the register
3217 	 * bits.  We shouldn't modify the incoming data so take a
3218 	 * copy.
3219 	 */
3220 	if (params->mask) {
3221 		ret = regmap_read(component->regmap, params->base, &val);
3222 		if (ret != 0)
3223 			goto out;
3224 
3225 		val &= params->mask;
3226 
3227 		switch (component->val_bytes) {
3228 		case 1:
3229 			((u8 *)data)[0] &= ~params->mask;
3230 			((u8 *)data)[0] |= val;
3231 			break;
3232 		case 2:
3233 			mask = ~params->mask;
3234 			ret = regmap_parse_val(component->regmap,
3235 							&mask, &mask);
3236 			if (ret != 0)
3237 				goto out;
3238 
3239 			((u16 *)data)[0] &= mask;
3240 
3241 			ret = regmap_parse_val(component->regmap,
3242 							&val, &val);
3243 			if (ret != 0)
3244 				goto out;
3245 
3246 			((u16 *)data)[0] |= val;
3247 			break;
3248 		case 4:
3249 			mask = ~params->mask;
3250 			ret = regmap_parse_val(component->regmap,
3251 							&mask, &mask);
3252 			if (ret != 0)
3253 				goto out;
3254 
3255 			((u32 *)data)[0] &= mask;
3256 
3257 			ret = regmap_parse_val(component->regmap,
3258 							&val, &val);
3259 			if (ret != 0)
3260 				goto out;
3261 
3262 			((u32 *)data)[0] |= val;
3263 			break;
3264 		default:
3265 			ret = -EINVAL;
3266 			goto out;
3267 		}
3268 	}
3269 
3270 	ret = regmap_raw_write(component->regmap, params->base,
3271 			       data, len);
3272 
3273 out:
3274 	kfree(data);
3275 
3276 	return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3279 
3280 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3281 			struct snd_ctl_elem_info *ucontrol)
3282 {
3283 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3284 
3285 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3286 	ucontrol->count = params->max;
3287 
3288 	return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3291 
3292 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
3293 				unsigned int size, unsigned int __user *tlv)
3294 {
3295 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3296 	unsigned int count = size < params->max ? size : params->max;
3297 	int ret = -ENXIO;
3298 
3299 	switch (op_flag) {
3300 	case SNDRV_CTL_TLV_OP_READ:
3301 		if (params->get)
3302 			ret = params->get(tlv, count);
3303 		break;
3304 	case SNDRV_CTL_TLV_OP_WRITE:
3305 		if (params->put)
3306 			ret = params->put(tlv, count);
3307 		break;
3308 	}
3309 	return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
3312 
3313 /**
3314  * snd_soc_info_xr_sx - signed multi register info callback
3315  * @kcontrol: mreg control
3316  * @uinfo: control element information
3317  *
3318  * Callback to provide information of a control that can
3319  * span multiple codec registers which together
3320  * forms a single signed value in a MSB/LSB manner.
3321  *
3322  * Returns 0 for success.
3323  */
3324 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3325 	struct snd_ctl_elem_info *uinfo)
3326 {
3327 	struct soc_mreg_control *mc =
3328 		(struct soc_mreg_control *)kcontrol->private_value;
3329 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3330 	uinfo->count = 1;
3331 	uinfo->value.integer.min = mc->min;
3332 	uinfo->value.integer.max = mc->max;
3333 
3334 	return 0;
3335 }
3336 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3337 
3338 /**
3339  * snd_soc_get_xr_sx - signed multi register get callback
3340  * @kcontrol: mreg control
3341  * @ucontrol: control element information
3342  *
3343  * Callback to get the value of a control that can span
3344  * multiple codec registers which together forms a single
3345  * signed value in a MSB/LSB manner. The control supports
3346  * specifying total no of bits used to allow for bitfields
3347  * across the multiple codec registers.
3348  *
3349  * Returns 0 for success.
3350  */
3351 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3352 	struct snd_ctl_elem_value *ucontrol)
3353 {
3354 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3355 	struct soc_mreg_control *mc =
3356 		(struct soc_mreg_control *)kcontrol->private_value;
3357 	unsigned int regbase = mc->regbase;
3358 	unsigned int regcount = mc->regcount;
3359 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3360 	unsigned int regwmask = (1<<regwshift)-1;
3361 	unsigned int invert = mc->invert;
3362 	unsigned long mask = (1UL<<mc->nbits)-1;
3363 	long min = mc->min;
3364 	long max = mc->max;
3365 	long val = 0;
3366 	unsigned int regval;
3367 	unsigned int i;
3368 	int ret;
3369 
3370 	for (i = 0; i < regcount; i++) {
3371 		ret = snd_soc_component_read(component, regbase+i, &regval);
3372 		if (ret)
3373 			return ret;
3374 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3375 	}
3376 	val &= mask;
3377 	if (min < 0 && val > max)
3378 		val |= ~mask;
3379 	if (invert)
3380 		val = max - val;
3381 	ucontrol->value.integer.value[0] = val;
3382 
3383 	return 0;
3384 }
3385 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3386 
3387 /**
3388  * snd_soc_put_xr_sx - signed multi register get callback
3389  * @kcontrol: mreg control
3390  * @ucontrol: control element information
3391  *
3392  * Callback to set the value of a control that can span
3393  * multiple codec registers which together forms a single
3394  * signed value in a MSB/LSB manner. The control supports
3395  * specifying total no of bits used to allow for bitfields
3396  * across the multiple codec registers.
3397  *
3398  * Returns 0 for success.
3399  */
3400 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3401 	struct snd_ctl_elem_value *ucontrol)
3402 {
3403 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3404 	struct soc_mreg_control *mc =
3405 		(struct soc_mreg_control *)kcontrol->private_value;
3406 	unsigned int regbase = mc->regbase;
3407 	unsigned int regcount = mc->regcount;
3408 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3409 	unsigned int regwmask = (1<<regwshift)-1;
3410 	unsigned int invert = mc->invert;
3411 	unsigned long mask = (1UL<<mc->nbits)-1;
3412 	long max = mc->max;
3413 	long val = ucontrol->value.integer.value[0];
3414 	unsigned int i, regval, regmask;
3415 	int err;
3416 
3417 	if (invert)
3418 		val = max - val;
3419 	val &= mask;
3420 	for (i = 0; i < regcount; i++) {
3421 		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3422 		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3423 		err = snd_soc_component_update_bits(component, regbase+i,
3424 				regmask, regval);
3425 		if (err < 0)
3426 			return err;
3427 	}
3428 
3429 	return 0;
3430 }
3431 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3432 
3433 /**
3434  * snd_soc_get_strobe - strobe get callback
3435  * @kcontrol: mixer control
3436  * @ucontrol: control element information
3437  *
3438  * Callback get the value of a strobe mixer control.
3439  *
3440  * Returns 0 for success.
3441  */
3442 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3443 	struct snd_ctl_elem_value *ucontrol)
3444 {
3445 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3446 	struct soc_mixer_control *mc =
3447 		(struct soc_mixer_control *)kcontrol->private_value;
3448 	unsigned int reg = mc->reg;
3449 	unsigned int shift = mc->shift;
3450 	unsigned int mask = 1 << shift;
3451 	unsigned int invert = mc->invert != 0;
3452 	unsigned int val;
3453 	int ret;
3454 
3455 	ret = snd_soc_component_read(component, reg, &val);
3456 	if (ret)
3457 		return ret;
3458 
3459 	val &= mask;
3460 
3461 	if (shift != 0 && val != 0)
3462 		val = val >> shift;
3463 	ucontrol->value.enumerated.item[0] = val ^ invert;
3464 
3465 	return 0;
3466 }
3467 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3468 
3469 /**
3470  * snd_soc_put_strobe - strobe put callback
3471  * @kcontrol: mixer control
3472  * @ucontrol: control element information
3473  *
3474  * Callback strobe a register bit to high then low (or the inverse)
3475  * in one pass of a single mixer enum control.
3476  *
3477  * Returns 1 for success.
3478  */
3479 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3480 	struct snd_ctl_elem_value *ucontrol)
3481 {
3482 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3483 	struct soc_mixer_control *mc =
3484 		(struct soc_mixer_control *)kcontrol->private_value;
3485 	unsigned int reg = mc->reg;
3486 	unsigned int shift = mc->shift;
3487 	unsigned int mask = 1 << shift;
3488 	unsigned int invert = mc->invert != 0;
3489 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3490 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
3491 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3492 	int err;
3493 
3494 	err = snd_soc_component_update_bits(component, reg, mask, val1);
3495 	if (err < 0)
3496 		return err;
3497 
3498 	return snd_soc_component_update_bits(component, reg, mask, val2);
3499 }
3500 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3501 
3502 /**
3503  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3504  * @dai: DAI
3505  * @clk_id: DAI specific clock ID
3506  * @freq: new clock frequency in Hz
3507  * @dir: new clock direction - input/output.
3508  *
3509  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3510  */
3511 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3512 	unsigned int freq, int dir)
3513 {
3514 	if (dai->driver && dai->driver->ops->set_sysclk)
3515 		return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3516 	else if (dai->codec && dai->codec->driver->set_sysclk)
3517 		return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3518 						      freq, dir);
3519 	else
3520 		return -ENOTSUPP;
3521 }
3522 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3523 
3524 /**
3525  * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3526  * @codec: CODEC
3527  * @clk_id: DAI specific clock ID
3528  * @source: Source for the clock
3529  * @freq: new clock frequency in Hz
3530  * @dir: new clock direction - input/output.
3531  *
3532  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3533  */
3534 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3535 			     int source, unsigned int freq, int dir)
3536 {
3537 	if (codec->driver->set_sysclk)
3538 		return codec->driver->set_sysclk(codec, clk_id, source,
3539 						 freq, dir);
3540 	else
3541 		return -ENOTSUPP;
3542 }
3543 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3544 
3545 /**
3546  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3547  * @dai: DAI
3548  * @div_id: DAI specific clock divider ID
3549  * @div: new clock divisor.
3550  *
3551  * Configures the clock dividers. This is used to derive the best DAI bit and
3552  * frame clocks from the system or master clock. It's best to set the DAI bit
3553  * and frame clocks as low as possible to save system power.
3554  */
3555 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3556 	int div_id, int div)
3557 {
3558 	if (dai->driver && dai->driver->ops->set_clkdiv)
3559 		return dai->driver->ops->set_clkdiv(dai, div_id, div);
3560 	else
3561 		return -EINVAL;
3562 }
3563 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3564 
3565 /**
3566  * snd_soc_dai_set_pll - configure DAI PLL.
3567  * @dai: DAI
3568  * @pll_id: DAI specific PLL ID
3569  * @source: DAI specific source for the PLL
3570  * @freq_in: PLL input clock frequency in Hz
3571  * @freq_out: requested PLL output clock frequency in Hz
3572  *
3573  * Configures and enables PLL to generate output clock based on input clock.
3574  */
3575 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3576 	unsigned int freq_in, unsigned int freq_out)
3577 {
3578 	if (dai->driver && dai->driver->ops->set_pll)
3579 		return dai->driver->ops->set_pll(dai, pll_id, source,
3580 					 freq_in, freq_out);
3581 	else if (dai->codec && dai->codec->driver->set_pll)
3582 		return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3583 						   freq_in, freq_out);
3584 	else
3585 		return -EINVAL;
3586 }
3587 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3588 
3589 /*
3590  * snd_soc_codec_set_pll - configure codec PLL.
3591  * @codec: CODEC
3592  * @pll_id: DAI specific PLL ID
3593  * @source: DAI specific source for the PLL
3594  * @freq_in: PLL input clock frequency in Hz
3595  * @freq_out: requested PLL output clock frequency in Hz
3596  *
3597  * Configures and enables PLL to generate output clock based on input clock.
3598  */
3599 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3600 			  unsigned int freq_in, unsigned int freq_out)
3601 {
3602 	if (codec->driver->set_pll)
3603 		return codec->driver->set_pll(codec, pll_id, source,
3604 					      freq_in, freq_out);
3605 	else
3606 		return -EINVAL;
3607 }
3608 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3609 
3610 /**
3611  * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
3612  * @dai: DAI
3613  * @ratio Ratio of BCLK to Sample rate.
3614  *
3615  * Configures the DAI for a preset BCLK to sample rate ratio.
3616  */
3617 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
3618 {
3619 	if (dai->driver && dai->driver->ops->set_bclk_ratio)
3620 		return dai->driver->ops->set_bclk_ratio(dai, ratio);
3621 	else
3622 		return -EINVAL;
3623 }
3624 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
3625 
3626 /**
3627  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3628  * @dai: DAI
3629  * @fmt: SND_SOC_DAIFMT_ format value.
3630  *
3631  * Configures the DAI hardware format and clocking.
3632  */
3633 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3634 {
3635 	if (dai->driver == NULL)
3636 		return -EINVAL;
3637 	if (dai->driver->ops->set_fmt == NULL)
3638 		return -ENOTSUPP;
3639 	return dai->driver->ops->set_fmt(dai, fmt);
3640 }
3641 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3642 
3643 /**
3644  * snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
3645  * @slots: Number of slots in use.
3646  * @tx_mask: bitmask representing active TX slots.
3647  * @rx_mask: bitmask representing active RX slots.
3648  *
3649  * Generates the TDM tx and rx slot default masks for DAI.
3650  */
3651 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
3652 					  unsigned int *tx_mask,
3653 					  unsigned int *rx_mask)
3654 {
3655 	if (*tx_mask || *rx_mask)
3656 		return 0;
3657 
3658 	if (!slots)
3659 		return -EINVAL;
3660 
3661 	*tx_mask = (1 << slots) - 1;
3662 	*rx_mask = (1 << slots) - 1;
3663 
3664 	return 0;
3665 }
3666 
3667 /**
3668  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3669  * @dai: DAI
3670  * @tx_mask: bitmask representing active TX slots.
3671  * @rx_mask: bitmask representing active RX slots.
3672  * @slots: Number of slots in use.
3673  * @slot_width: Width in bits for each slot.
3674  *
3675  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3676  * specific.
3677  */
3678 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3679 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3680 {
3681 	if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
3682 		dai->driver->ops->xlate_tdm_slot_mask(slots,
3683 						&tx_mask, &rx_mask);
3684 	else
3685 		snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
3686 
3687 	dai->tx_mask = tx_mask;
3688 	dai->rx_mask = rx_mask;
3689 
3690 	if (dai->driver && dai->driver->ops->set_tdm_slot)
3691 		return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3692 				slots, slot_width);
3693 	else
3694 		return -ENOTSUPP;
3695 }
3696 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3697 
3698 /**
3699  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3700  * @dai: DAI
3701  * @tx_num: how many TX channels
3702  * @tx_slot: pointer to an array which imply the TX slot number channel
3703  *           0~num-1 uses
3704  * @rx_num: how many RX channels
3705  * @rx_slot: pointer to an array which imply the RX slot number channel
3706  *           0~num-1 uses
3707  *
3708  * configure the relationship between channel number and TDM slot number.
3709  */
3710 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3711 	unsigned int tx_num, unsigned int *tx_slot,
3712 	unsigned int rx_num, unsigned int *rx_slot)
3713 {
3714 	if (dai->driver && dai->driver->ops->set_channel_map)
3715 		return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3716 			rx_num, rx_slot);
3717 	else
3718 		return -EINVAL;
3719 }
3720 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3721 
3722 /**
3723  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3724  * @dai: DAI
3725  * @tristate: tristate enable
3726  *
3727  * Tristates the DAI so that others can use it.
3728  */
3729 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3730 {
3731 	if (dai->driver && dai->driver->ops->set_tristate)
3732 		return dai->driver->ops->set_tristate(dai, tristate);
3733 	else
3734 		return -EINVAL;
3735 }
3736 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3737 
3738 /**
3739  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3740  * @dai: DAI
3741  * @mute: mute enable
3742  * @direction: stream to mute
3743  *
3744  * Mutes the DAI DAC.
3745  */
3746 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3747 			     int direction)
3748 {
3749 	if (!dai->driver)
3750 		return -ENOTSUPP;
3751 
3752 	if (dai->driver->ops->mute_stream)
3753 		return dai->driver->ops->mute_stream(dai, mute, direction);
3754 	else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3755 		 dai->driver->ops->digital_mute)
3756 		return dai->driver->ops->digital_mute(dai, mute);
3757 	else
3758 		return -ENOTSUPP;
3759 }
3760 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3761 
3762 static int snd_soc_init_multicodec(struct snd_soc_card *card,
3763 				   struct snd_soc_dai_link *dai_link)
3764 {
3765 	/* Legacy codec/codec_dai link is a single entry in multicodec */
3766 	if (dai_link->codec_name || dai_link->codec_of_node ||
3767 	    dai_link->codec_dai_name) {
3768 		dai_link->num_codecs = 1;
3769 
3770 		dai_link->codecs = devm_kzalloc(card->dev,
3771 				sizeof(struct snd_soc_dai_link_component),
3772 				GFP_KERNEL);
3773 		if (!dai_link->codecs)
3774 			return -ENOMEM;
3775 
3776 		dai_link->codecs[0].name = dai_link->codec_name;
3777 		dai_link->codecs[0].of_node = dai_link->codec_of_node;
3778 		dai_link->codecs[0].dai_name = dai_link->codec_dai_name;
3779 	}
3780 
3781 	if (!dai_link->codecs) {
3782 		dev_err(card->dev, "ASoC: DAI link has no CODECs\n");
3783 		return -EINVAL;
3784 	}
3785 
3786 	return 0;
3787 }
3788 
3789 /**
3790  * snd_soc_register_card - Register a card with the ASoC core
3791  *
3792  * @card: Card to register
3793  *
3794  */
3795 int snd_soc_register_card(struct snd_soc_card *card)
3796 {
3797 	int i, j, ret;
3798 
3799 	if (!card->name || !card->dev)
3800 		return -EINVAL;
3801 
3802 	for (i = 0; i < card->num_links; i++) {
3803 		struct snd_soc_dai_link *link = &card->dai_link[i];
3804 
3805 		ret = snd_soc_init_multicodec(card, link);
3806 		if (ret) {
3807 			dev_err(card->dev, "ASoC: failed to init multicodec\n");
3808 			return ret;
3809 		}
3810 
3811 		for (j = 0; j < link->num_codecs; j++) {
3812 			/*
3813 			 * Codec must be specified by 1 of name or OF node,
3814 			 * not both or neither.
3815 			 */
3816 			if (!!link->codecs[j].name ==
3817 			    !!link->codecs[j].of_node) {
3818 				dev_err(card->dev, "ASoC: Neither/both codec name/of_node are set for %s\n",
3819 					link->name);
3820 				return -EINVAL;
3821 			}
3822 			/* Codec DAI name must be specified */
3823 			if (!link->codecs[j].dai_name) {
3824 				dev_err(card->dev, "ASoC: codec_dai_name not set for %s\n",
3825 					link->name);
3826 				return -EINVAL;
3827 			}
3828 		}
3829 
3830 		/*
3831 		 * Platform may be specified by either name or OF node, but
3832 		 * can be left unspecified, and a dummy platform will be used.
3833 		 */
3834 		if (link->platform_name && link->platform_of_node) {
3835 			dev_err(card->dev,
3836 				"ASoC: Both platform name/of_node are set for %s\n",
3837 				link->name);
3838 			return -EINVAL;
3839 		}
3840 
3841 		/*
3842 		 * CPU device may be specified by either name or OF node, but
3843 		 * can be left unspecified, and will be matched based on DAI
3844 		 * name alone..
3845 		 */
3846 		if (link->cpu_name && link->cpu_of_node) {
3847 			dev_err(card->dev,
3848 				"ASoC: Neither/both cpu name/of_node are set for %s\n",
3849 				link->name);
3850 			return -EINVAL;
3851 		}
3852 		/*
3853 		 * At least one of CPU DAI name or CPU device name/node must be
3854 		 * specified
3855 		 */
3856 		if (!link->cpu_dai_name &&
3857 		    !(link->cpu_name || link->cpu_of_node)) {
3858 			dev_err(card->dev,
3859 				"ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3860 				link->name);
3861 			return -EINVAL;
3862 		}
3863 	}
3864 
3865 	dev_set_drvdata(card->dev, card);
3866 
3867 	snd_soc_initialize_card_lists(card);
3868 
3869 	soc_init_card_debugfs(card);
3870 
3871 	card->rtd = devm_kzalloc(card->dev,
3872 				 sizeof(struct snd_soc_pcm_runtime) *
3873 				 (card->num_links + card->num_aux_devs),
3874 				 GFP_KERNEL);
3875 	if (card->rtd == NULL)
3876 		return -ENOMEM;
3877 	card->num_rtd = 0;
3878 	card->rtd_aux = &card->rtd[card->num_links];
3879 
3880 	for (i = 0; i < card->num_links; i++) {
3881 		card->rtd[i].card = card;
3882 		card->rtd[i].dai_link = &card->dai_link[i];
3883 		card->rtd[i].codec_dais = devm_kzalloc(card->dev,
3884 					sizeof(struct snd_soc_dai *) *
3885 					(card->rtd[i].dai_link->num_codecs),
3886 					GFP_KERNEL);
3887 		if (card->rtd[i].codec_dais == NULL)
3888 			return -ENOMEM;
3889 	}
3890 
3891 	for (i = 0; i < card->num_aux_devs; i++)
3892 		card->rtd_aux[i].card = card;
3893 
3894 	INIT_LIST_HEAD(&card->dapm_dirty);
3895 	card->instantiated = 0;
3896 	mutex_init(&card->mutex);
3897 	mutex_init(&card->dapm_mutex);
3898 
3899 	ret = snd_soc_instantiate_card(card);
3900 	if (ret != 0)
3901 		soc_cleanup_card_debugfs(card);
3902 
3903 	/* deactivate pins to sleep state */
3904 	for (i = 0; i < card->num_rtd; i++) {
3905 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
3906 		struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
3907 		int j;
3908 
3909 		for (j = 0; j < rtd->num_codecs; j++) {
3910 			struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
3911 			if (!codec_dai->active)
3912 				pinctrl_pm_select_sleep_state(codec_dai->dev);
3913 		}
3914 
3915 		if (!cpu_dai->active)
3916 			pinctrl_pm_select_sleep_state(cpu_dai->dev);
3917 	}
3918 
3919 	return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3922 
3923 /**
3924  * snd_soc_unregister_card - Unregister a card with the ASoC core
3925  *
3926  * @card: Card to unregister
3927  *
3928  */
3929 int snd_soc_unregister_card(struct snd_soc_card *card)
3930 {
3931 	if (card->instantiated)
3932 		soc_cleanup_card_resources(card);
3933 	dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3934 
3935 	return 0;
3936 }
3937 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3938 
3939 /*
3940  * Simplify DAI link configuration by removing ".-1" from device names
3941  * and sanitizing names.
3942  */
3943 static char *fmt_single_name(struct device *dev, int *id)
3944 {
3945 	char *found, name[NAME_SIZE];
3946 	int id1, id2;
3947 
3948 	if (dev_name(dev) == NULL)
3949 		return NULL;
3950 
3951 	strlcpy(name, dev_name(dev), NAME_SIZE);
3952 
3953 	/* are we a "%s.%d" name (platform and SPI components) */
3954 	found = strstr(name, dev->driver->name);
3955 	if (found) {
3956 		/* get ID */
3957 		if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3958 
3959 			/* discard ID from name if ID == -1 */
3960 			if (*id == -1)
3961 				found[strlen(dev->driver->name)] = '\0';
3962 		}
3963 
3964 	} else {
3965 		/* I2C component devices are named "bus-addr"  */
3966 		if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3967 			char tmp[NAME_SIZE];
3968 
3969 			/* create unique ID number from I2C addr and bus */
3970 			*id = ((id1 & 0xffff) << 16) + id2;
3971 
3972 			/* sanitize component name for DAI link creation */
3973 			snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3974 			strlcpy(name, tmp, NAME_SIZE);
3975 		} else
3976 			*id = 0;
3977 	}
3978 
3979 	return kstrdup(name, GFP_KERNEL);
3980 }
3981 
3982 /*
3983  * Simplify DAI link naming for single devices with multiple DAIs by removing
3984  * any ".-1" and using the DAI name (instead of device name).
3985  */
3986 static inline char *fmt_multiple_name(struct device *dev,
3987 		struct snd_soc_dai_driver *dai_drv)
3988 {
3989 	if (dai_drv->name == NULL) {
3990 		dev_err(dev,
3991 			"ASoC: error - multiple DAI %s registered with no name\n",
3992 			dev_name(dev));
3993 		return NULL;
3994 	}
3995 
3996 	return kstrdup(dai_drv->name, GFP_KERNEL);
3997 }
3998 
3999 /**
4000  * snd_soc_unregister_dai - Unregister DAIs from the ASoC core
4001  *
4002  * @component: The component for which the DAIs should be unregistered
4003  */
4004 static void snd_soc_unregister_dais(struct snd_soc_component *component)
4005 {
4006 	struct snd_soc_dai *dai, *_dai;
4007 
4008 	list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
4009 		dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
4010 			dai->name);
4011 		list_del(&dai->list);
4012 		kfree(dai->name);
4013 		kfree(dai);
4014 	}
4015 }
4016 
4017 /**
4018  * snd_soc_register_dais - Register a DAI with the ASoC core
4019  *
4020  * @component: The component the DAIs are registered for
4021  * @dai_drv: DAI driver to use for the DAIs
4022  * @count: Number of DAIs
4023  * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
4024  *                     parent's name.
4025  */
4026 static int snd_soc_register_dais(struct snd_soc_component *component,
4027 	struct snd_soc_dai_driver *dai_drv, size_t count,
4028 	bool legacy_dai_naming)
4029 {
4030 	struct device *dev = component->dev;
4031 	struct snd_soc_dai *dai;
4032 	unsigned int i;
4033 	int ret;
4034 
4035 	dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
4036 
4037 	component->dai_drv = dai_drv;
4038 	component->num_dai = count;
4039 
4040 	for (i = 0; i < count; i++) {
4041 
4042 		dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
4043 		if (dai == NULL) {
4044 			ret = -ENOMEM;
4045 			goto err;
4046 		}
4047 
4048 		/*
4049 		 * Back in the old days when we still had component-less DAIs,
4050 		 * instead of having a static name, component-less DAIs would
4051 		 * inherit the name of the parent device so it is possible to
4052 		 * register multiple instances of the DAI. We still need to keep
4053 		 * the same naming style even though those DAIs are not
4054 		 * component-less anymore.
4055 		 */
4056 		if (count == 1 && legacy_dai_naming) {
4057 			dai->name = fmt_single_name(dev, &dai->id);
4058 		} else {
4059 			dai->name = fmt_multiple_name(dev, &dai_drv[i]);
4060 			if (dai_drv[i].id)
4061 				dai->id = dai_drv[i].id;
4062 			else
4063 				dai->id = i;
4064 		}
4065 		if (dai->name == NULL) {
4066 			kfree(dai);
4067 			ret = -ENOMEM;
4068 			goto err;
4069 		}
4070 
4071 		dai->component = component;
4072 		dai->dev = dev;
4073 		dai->driver = &dai_drv[i];
4074 		if (!dai->driver->ops)
4075 			dai->driver->ops = &null_dai_ops;
4076 
4077 		list_add(&dai->list, &component->dai_list);
4078 
4079 		dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
4080 	}
4081 
4082 	return 0;
4083 
4084 err:
4085 	snd_soc_unregister_dais(component);
4086 
4087 	return ret;
4088 }
4089 
4090 static void snd_soc_component_seq_notifier(struct snd_soc_dapm_context *dapm,
4091 	enum snd_soc_dapm_type type, int subseq)
4092 {
4093 	struct snd_soc_component *component = dapm->component;
4094 
4095 	component->driver->seq_notifier(component, type, subseq);
4096 }
4097 
4098 static int snd_soc_component_stream_event(struct snd_soc_dapm_context *dapm,
4099 	int event)
4100 {
4101 	struct snd_soc_component *component = dapm->component;
4102 
4103 	return component->driver->stream_event(component, event);
4104 }
4105 
4106 static int snd_soc_component_initialize(struct snd_soc_component *component,
4107 	const struct snd_soc_component_driver *driver, struct device *dev)
4108 {
4109 	struct snd_soc_dapm_context *dapm;
4110 
4111 	component->name = fmt_single_name(dev, &component->id);
4112 	if (!component->name) {
4113 		dev_err(dev, "ASoC: Failed to allocate name\n");
4114 		return -ENOMEM;
4115 	}
4116 
4117 	component->dev = dev;
4118 	component->driver = driver;
4119 
4120 	if (!component->dapm_ptr)
4121 		component->dapm_ptr = &component->dapm;
4122 
4123 	dapm = component->dapm_ptr;
4124 	dapm->dev = dev;
4125 	dapm->component = component;
4126 	dapm->bias_level = SND_SOC_BIAS_OFF;
4127 	if (driver->seq_notifier)
4128 		dapm->seq_notifier = snd_soc_component_seq_notifier;
4129 	if (driver->stream_event)
4130 		dapm->stream_event = snd_soc_component_stream_event;
4131 
4132 	INIT_LIST_HEAD(&component->dai_list);
4133 	mutex_init(&component->io_mutex);
4134 
4135 	return 0;
4136 }
4137 
4138 static void snd_soc_component_add_unlocked(struct snd_soc_component *component)
4139 {
4140 	list_add(&component->list, &component_list);
4141 }
4142 
4143 static void snd_soc_component_add(struct snd_soc_component *component)
4144 {
4145 	mutex_lock(&client_mutex);
4146 	snd_soc_component_add_unlocked(component);
4147 	mutex_unlock(&client_mutex);
4148 }
4149 
4150 static void snd_soc_component_cleanup(struct snd_soc_component *component)
4151 {
4152 	snd_soc_unregister_dais(component);
4153 	kfree(component->name);
4154 }
4155 
4156 static void snd_soc_component_del_unlocked(struct snd_soc_component *component)
4157 {
4158 	list_del(&component->list);
4159 }
4160 
4161 static void snd_soc_component_del(struct snd_soc_component *component)
4162 {
4163 	mutex_lock(&client_mutex);
4164 	snd_soc_component_del_unlocked(component);
4165 	mutex_unlock(&client_mutex);
4166 }
4167 
4168 int snd_soc_register_component(struct device *dev,
4169 			       const struct snd_soc_component_driver *cmpnt_drv,
4170 			       struct snd_soc_dai_driver *dai_drv,
4171 			       int num_dai)
4172 {
4173 	struct snd_soc_component *cmpnt;
4174 	int ret;
4175 
4176 	cmpnt = kzalloc(sizeof(*cmpnt), GFP_KERNEL);
4177 	if (!cmpnt) {
4178 		dev_err(dev, "ASoC: Failed to allocate memory\n");
4179 		return -ENOMEM;
4180 	}
4181 
4182 	ret = snd_soc_component_initialize(cmpnt, cmpnt_drv, dev);
4183 	if (ret)
4184 		goto err_free;
4185 
4186 	cmpnt->ignore_pmdown_time = true;
4187 	cmpnt->registered_as_component = true;
4188 
4189 	ret = snd_soc_register_dais(cmpnt, dai_drv, num_dai, true);
4190 	if (ret < 0) {
4191 		dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4192 		goto err_cleanup;
4193 	}
4194 
4195 	snd_soc_component_add(cmpnt);
4196 
4197 	return 0;
4198 
4199 err_cleanup:
4200 	snd_soc_component_cleanup(cmpnt);
4201 err_free:
4202 	kfree(cmpnt);
4203 	return ret;
4204 }
4205 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4206 
4207 /**
4208  * snd_soc_unregister_component - Unregister a component from the ASoC core
4209  *
4210  */
4211 void snd_soc_unregister_component(struct device *dev)
4212 {
4213 	struct snd_soc_component *cmpnt;
4214 
4215 	list_for_each_entry(cmpnt, &component_list, list) {
4216 		if (dev == cmpnt->dev && cmpnt->registered_as_component)
4217 			goto found;
4218 	}
4219 	return;
4220 
4221 found:
4222 	snd_soc_component_del(cmpnt);
4223 	snd_soc_component_cleanup(cmpnt);
4224 	kfree(cmpnt);
4225 }
4226 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4227 
4228 static int snd_soc_platform_drv_write(struct snd_soc_component *component,
4229 	unsigned int reg, unsigned int val)
4230 {
4231 	struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4232 
4233 	return platform->driver->write(platform, reg, val);
4234 }
4235 
4236 static int snd_soc_platform_drv_read(struct snd_soc_component *component,
4237 	unsigned int reg, unsigned int *val)
4238 {
4239 	struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4240 
4241 	*val = platform->driver->read(platform, reg);
4242 
4243 	return 0;
4244 }
4245 
4246 /**
4247  * snd_soc_add_platform - Add a platform to the ASoC core
4248  * @dev: The parent device for the platform
4249  * @platform: The platform to add
4250  * @platform_driver: The driver for the platform
4251  */
4252 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4253 		const struct snd_soc_platform_driver *platform_drv)
4254 {
4255 	int ret;
4256 
4257 	ret = snd_soc_component_initialize(&platform->component,
4258 			&platform_drv->component_driver, dev);
4259 	if (ret)
4260 		return ret;
4261 
4262 	platform->dev = dev;
4263 	platform->driver = platform_drv;
4264 	if (platform_drv->write)
4265 		platform->component.write = snd_soc_platform_drv_write;
4266 	if (platform_drv->read)
4267 		platform->component.read = snd_soc_platform_drv_read;
4268 
4269 	mutex_lock(&client_mutex);
4270 	snd_soc_component_add_unlocked(&platform->component);
4271 	list_add(&platform->list, &platform_list);
4272 	mutex_unlock(&client_mutex);
4273 
4274 	dev_dbg(dev, "ASoC: Registered platform '%s'\n",
4275 		platform->component.name);
4276 
4277 	return 0;
4278 }
4279 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4280 
4281 /**
4282  * snd_soc_register_platform - Register a platform with the ASoC core
4283  *
4284  * @platform: platform to register
4285  */
4286 int snd_soc_register_platform(struct device *dev,
4287 		const struct snd_soc_platform_driver *platform_drv)
4288 {
4289 	struct snd_soc_platform *platform;
4290 	int ret;
4291 
4292 	dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4293 
4294 	platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4295 	if (platform == NULL)
4296 		return -ENOMEM;
4297 
4298 	ret = snd_soc_add_platform(dev, platform, platform_drv);
4299 	if (ret)
4300 		kfree(platform);
4301 
4302 	return ret;
4303 }
4304 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4305 
4306 /**
4307  * snd_soc_remove_platform - Remove a platform from the ASoC core
4308  * @platform: the platform to remove
4309  */
4310 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4311 {
4312 
4313 	mutex_lock(&client_mutex);
4314 	list_del(&platform->list);
4315 	snd_soc_component_del_unlocked(&platform->component);
4316 	mutex_unlock(&client_mutex);
4317 
4318 	snd_soc_component_cleanup(&platform->component);
4319 
4320 	dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4321 		platform->component.name);
4322 }
4323 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4324 
4325 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4326 {
4327 	struct snd_soc_platform *platform;
4328 
4329 	list_for_each_entry(platform, &platform_list, list) {
4330 		if (dev == platform->dev)
4331 			return platform;
4332 	}
4333 
4334 	return NULL;
4335 }
4336 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4337 
4338 /**
4339  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4340  *
4341  * @platform: platform to unregister
4342  */
4343 void snd_soc_unregister_platform(struct device *dev)
4344 {
4345 	struct snd_soc_platform *platform;
4346 
4347 	platform = snd_soc_lookup_platform(dev);
4348 	if (!platform)
4349 		return;
4350 
4351 	snd_soc_remove_platform(platform);
4352 	kfree(platform);
4353 }
4354 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4355 
4356 static u64 codec_format_map[] = {
4357 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4358 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4359 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4360 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4361 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4362 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4363 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4364 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4365 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4366 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4367 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4368 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4369 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4370 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4371 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4372 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4373 };
4374 
4375 /* Fix up the DAI formats for endianness: codecs don't actually see
4376  * the endianness of the data but we're using the CPU format
4377  * definitions which do need to include endianness so we ensure that
4378  * codec DAIs always have both big and little endian variants set.
4379  */
4380 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4381 {
4382 	int i;
4383 
4384 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4385 		if (stream->formats & codec_format_map[i])
4386 			stream->formats |= codec_format_map[i];
4387 }
4388 
4389 static int snd_soc_codec_drv_write(struct snd_soc_component *component,
4390 	unsigned int reg, unsigned int val)
4391 {
4392 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4393 
4394 	return codec->driver->write(codec, reg, val);
4395 }
4396 
4397 static int snd_soc_codec_drv_read(struct snd_soc_component *component,
4398 	unsigned int reg, unsigned int *val)
4399 {
4400 	struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4401 
4402 	*val = codec->driver->read(codec, reg);
4403 
4404 	return 0;
4405 }
4406 
4407 static int snd_soc_codec_set_bias_level(struct snd_soc_dapm_context *dapm,
4408 	enum snd_soc_bias_level level)
4409 {
4410 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(dapm);
4411 
4412 	return codec->driver->set_bias_level(codec, level);
4413 }
4414 
4415 /**
4416  * snd_soc_register_codec - Register a codec with the ASoC core
4417  *
4418  * @codec: codec to register
4419  */
4420 int snd_soc_register_codec(struct device *dev,
4421 			   const struct snd_soc_codec_driver *codec_drv,
4422 			   struct snd_soc_dai_driver *dai_drv,
4423 			   int num_dai)
4424 {
4425 	struct snd_soc_codec *codec;
4426 	struct snd_soc_dai *dai;
4427 	struct regmap *regmap;
4428 	int ret, i;
4429 
4430 	dev_dbg(dev, "codec register %s\n", dev_name(dev));
4431 
4432 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4433 	if (codec == NULL)
4434 		return -ENOMEM;
4435 
4436 	codec->component.dapm_ptr = &codec->dapm;
4437 
4438 	ret = snd_soc_component_initialize(&codec->component,
4439 			&codec_drv->component_driver, dev);
4440 	if (ret)
4441 		goto err_free;
4442 
4443 	if (codec_drv->write)
4444 		codec->component.write = snd_soc_codec_drv_write;
4445 	if (codec_drv->read)
4446 		codec->component.read = snd_soc_codec_drv_read;
4447 	codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4448 	codec->dapm.codec = codec;
4449 	if (codec_drv->seq_notifier)
4450 		codec->dapm.seq_notifier = codec_drv->seq_notifier;
4451 	if (codec_drv->set_bias_level)
4452 		codec->dapm.set_bias_level = snd_soc_codec_set_bias_level;
4453 	codec->dev = dev;
4454 	codec->driver = codec_drv;
4455 	codec->component.val_bytes = codec_drv->reg_word_size;
4456 	mutex_init(&codec->mutex);
4457 
4458 	if (!codec->component.write) {
4459 		if (codec_drv->get_regmap)
4460 			regmap = codec_drv->get_regmap(dev);
4461 		else
4462 			regmap = dev_get_regmap(dev, NULL);
4463 
4464 		if (regmap) {
4465 			ret = snd_soc_component_init_io(&codec->component,
4466 				regmap);
4467 			if (ret) {
4468 				dev_err(codec->dev,
4469 						"Failed to set cache I/O:%d\n",
4470 						ret);
4471 				goto err_cleanup;
4472 			}
4473 		}
4474 	}
4475 
4476 	for (i = 0; i < num_dai; i++) {
4477 		fixup_codec_formats(&dai_drv[i].playback);
4478 		fixup_codec_formats(&dai_drv[i].capture);
4479 	}
4480 
4481 	ret = snd_soc_register_dais(&codec->component, dai_drv, num_dai, false);
4482 	if (ret < 0) {
4483 		dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4484 		goto err_cleanup;
4485 	}
4486 
4487 	list_for_each_entry(dai, &codec->component.dai_list, list)
4488 		dai->codec = codec;
4489 
4490 	mutex_lock(&client_mutex);
4491 	snd_soc_component_add_unlocked(&codec->component);
4492 	list_add(&codec->list, &codec_list);
4493 	mutex_unlock(&client_mutex);
4494 
4495 	dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n",
4496 		codec->component.name);
4497 	return 0;
4498 
4499 err_cleanup:
4500 	snd_soc_component_cleanup(&codec->component);
4501 err_free:
4502 	kfree(codec);
4503 	return ret;
4504 }
4505 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4506 
4507 /**
4508  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4509  *
4510  * @codec: codec to unregister
4511  */
4512 void snd_soc_unregister_codec(struct device *dev)
4513 {
4514 	struct snd_soc_codec *codec;
4515 
4516 	list_for_each_entry(codec, &codec_list, list) {
4517 		if (dev == codec->dev)
4518 			goto found;
4519 	}
4520 	return;
4521 
4522 found:
4523 
4524 	mutex_lock(&client_mutex);
4525 	list_del(&codec->list);
4526 	snd_soc_component_del_unlocked(&codec->component);
4527 	mutex_unlock(&client_mutex);
4528 
4529 	dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n",
4530 			codec->component.name);
4531 
4532 	snd_soc_component_cleanup(&codec->component);
4533 	snd_soc_cache_exit(codec);
4534 	kfree(codec);
4535 }
4536 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4537 
4538 /* Retrieve a card's name from device tree */
4539 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4540 			       const char *propname)
4541 {
4542 	struct device_node *np;
4543 	int ret;
4544 
4545 	if (!card->dev) {
4546 		pr_err("card->dev is not set before calling %s\n", __func__);
4547 		return -EINVAL;
4548 	}
4549 
4550 	np = card->dev->of_node;
4551 
4552 	ret = of_property_read_string_index(np, propname, 0, &card->name);
4553 	/*
4554 	 * EINVAL means the property does not exist. This is fine providing
4555 	 * card->name was previously set, which is checked later in
4556 	 * snd_soc_register_card.
4557 	 */
4558 	if (ret < 0 && ret != -EINVAL) {
4559 		dev_err(card->dev,
4560 			"ASoC: Property '%s' could not be read: %d\n",
4561 			propname, ret);
4562 		return ret;
4563 	}
4564 
4565 	return 0;
4566 }
4567 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4568 
4569 static const struct snd_soc_dapm_widget simple_widgets[] = {
4570 	SND_SOC_DAPM_MIC("Microphone", NULL),
4571 	SND_SOC_DAPM_LINE("Line", NULL),
4572 	SND_SOC_DAPM_HP("Headphone", NULL),
4573 	SND_SOC_DAPM_SPK("Speaker", NULL),
4574 };
4575 
4576 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
4577 					  const char *propname)
4578 {
4579 	struct device_node *np = card->dev->of_node;
4580 	struct snd_soc_dapm_widget *widgets;
4581 	const char *template, *wname;
4582 	int i, j, num_widgets, ret;
4583 
4584 	num_widgets = of_property_count_strings(np, propname);
4585 	if (num_widgets < 0) {
4586 		dev_err(card->dev,
4587 			"ASoC: Property '%s' does not exist\n",	propname);
4588 		return -EINVAL;
4589 	}
4590 	if (num_widgets & 1) {
4591 		dev_err(card->dev,
4592 			"ASoC: Property '%s' length is not even\n", propname);
4593 		return -EINVAL;
4594 	}
4595 
4596 	num_widgets /= 2;
4597 	if (!num_widgets) {
4598 		dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4599 			propname);
4600 		return -EINVAL;
4601 	}
4602 
4603 	widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
4604 			       GFP_KERNEL);
4605 	if (!widgets) {
4606 		dev_err(card->dev,
4607 			"ASoC: Could not allocate memory for widgets\n");
4608 		return -ENOMEM;
4609 	}
4610 
4611 	for (i = 0; i < num_widgets; i++) {
4612 		ret = of_property_read_string_index(np, propname,
4613 			2 * i, &template);
4614 		if (ret) {
4615 			dev_err(card->dev,
4616 				"ASoC: Property '%s' index %d read error:%d\n",
4617 				propname, 2 * i, ret);
4618 			return -EINVAL;
4619 		}
4620 
4621 		for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
4622 			if (!strncmp(template, simple_widgets[j].name,
4623 				     strlen(simple_widgets[j].name))) {
4624 				widgets[i] = simple_widgets[j];
4625 				break;
4626 			}
4627 		}
4628 
4629 		if (j >= ARRAY_SIZE(simple_widgets)) {
4630 			dev_err(card->dev,
4631 				"ASoC: DAPM widget '%s' is not supported\n",
4632 				template);
4633 			return -EINVAL;
4634 		}
4635 
4636 		ret = of_property_read_string_index(np, propname,
4637 						    (2 * i) + 1,
4638 						    &wname);
4639 		if (ret) {
4640 			dev_err(card->dev,
4641 				"ASoC: Property '%s' index %d read error:%d\n",
4642 				propname, (2 * i) + 1, ret);
4643 			return -EINVAL;
4644 		}
4645 
4646 		widgets[i].name = wname;
4647 	}
4648 
4649 	card->dapm_widgets = widgets;
4650 	card->num_dapm_widgets = num_widgets;
4651 
4652 	return 0;
4653 }
4654 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
4655 
4656 int snd_soc_of_parse_tdm_slot(struct device_node *np,
4657 			      unsigned int *slots,
4658 			      unsigned int *slot_width)
4659 {
4660 	u32 val;
4661 	int ret;
4662 
4663 	if (of_property_read_bool(np, "dai-tdm-slot-num")) {
4664 		ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
4665 		if (ret)
4666 			return ret;
4667 
4668 		if (slots)
4669 			*slots = val;
4670 	}
4671 
4672 	if (of_property_read_bool(np, "dai-tdm-slot-width")) {
4673 		ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
4674 		if (ret)
4675 			return ret;
4676 
4677 		if (slot_width)
4678 			*slot_width = val;
4679 	}
4680 
4681 	return 0;
4682 }
4683 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
4684 
4685 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4686 				   const char *propname)
4687 {
4688 	struct device_node *np = card->dev->of_node;
4689 	int num_routes;
4690 	struct snd_soc_dapm_route *routes;
4691 	int i, ret;
4692 
4693 	num_routes = of_property_count_strings(np, propname);
4694 	if (num_routes < 0 || num_routes & 1) {
4695 		dev_err(card->dev,
4696 			"ASoC: Property '%s' does not exist or its length is not even\n",
4697 			propname);
4698 		return -EINVAL;
4699 	}
4700 	num_routes /= 2;
4701 	if (!num_routes) {
4702 		dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4703 			propname);
4704 		return -EINVAL;
4705 	}
4706 
4707 	routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4708 			      GFP_KERNEL);
4709 	if (!routes) {
4710 		dev_err(card->dev,
4711 			"ASoC: Could not allocate DAPM route table\n");
4712 		return -EINVAL;
4713 	}
4714 
4715 	for (i = 0; i < num_routes; i++) {
4716 		ret = of_property_read_string_index(np, propname,
4717 			2 * i, &routes[i].sink);
4718 		if (ret) {
4719 			dev_err(card->dev,
4720 				"ASoC: Property '%s' index %d could not be read: %d\n",
4721 				propname, 2 * i, ret);
4722 			return -EINVAL;
4723 		}
4724 		ret = of_property_read_string_index(np, propname,
4725 			(2 * i) + 1, &routes[i].source);
4726 		if (ret) {
4727 			dev_err(card->dev,
4728 				"ASoC: Property '%s' index %d could not be read: %d\n",
4729 				propname, (2 * i) + 1, ret);
4730 			return -EINVAL;
4731 		}
4732 	}
4733 
4734 	card->num_dapm_routes = num_routes;
4735 	card->dapm_routes = routes;
4736 
4737 	return 0;
4738 }
4739 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4740 
4741 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4742 				     const char *prefix,
4743 				     struct device_node **bitclkmaster,
4744 				     struct device_node **framemaster)
4745 {
4746 	int ret, i;
4747 	char prop[128];
4748 	unsigned int format = 0;
4749 	int bit, frame;
4750 	const char *str;
4751 	struct {
4752 		char *name;
4753 		unsigned int val;
4754 	} of_fmt_table[] = {
4755 		{ "i2s",	SND_SOC_DAIFMT_I2S },
4756 		{ "right_j",	SND_SOC_DAIFMT_RIGHT_J },
4757 		{ "left_j",	SND_SOC_DAIFMT_LEFT_J },
4758 		{ "dsp_a",	SND_SOC_DAIFMT_DSP_A },
4759 		{ "dsp_b",	SND_SOC_DAIFMT_DSP_B },
4760 		{ "ac97",	SND_SOC_DAIFMT_AC97 },
4761 		{ "pdm",	SND_SOC_DAIFMT_PDM},
4762 		{ "msb",	SND_SOC_DAIFMT_MSB },
4763 		{ "lsb",	SND_SOC_DAIFMT_LSB },
4764 	};
4765 
4766 	if (!prefix)
4767 		prefix = "";
4768 
4769 	/*
4770 	 * check "[prefix]format = xxx"
4771 	 * SND_SOC_DAIFMT_FORMAT_MASK area
4772 	 */
4773 	snprintf(prop, sizeof(prop), "%sformat", prefix);
4774 	ret = of_property_read_string(np, prop, &str);
4775 	if (ret == 0) {
4776 		for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4777 			if (strcmp(str, of_fmt_table[i].name) == 0) {
4778 				format |= of_fmt_table[i].val;
4779 				break;
4780 			}
4781 		}
4782 	}
4783 
4784 	/*
4785 	 * check "[prefix]continuous-clock"
4786 	 * SND_SOC_DAIFMT_CLOCK_MASK area
4787 	 */
4788 	snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4789 	if (of_get_property(np, prop, NULL))
4790 		format |= SND_SOC_DAIFMT_CONT;
4791 	else
4792 		format |= SND_SOC_DAIFMT_GATED;
4793 
4794 	/*
4795 	 * check "[prefix]bitclock-inversion"
4796 	 * check "[prefix]frame-inversion"
4797 	 * SND_SOC_DAIFMT_INV_MASK area
4798 	 */
4799 	snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4800 	bit = !!of_get_property(np, prop, NULL);
4801 
4802 	snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4803 	frame = !!of_get_property(np, prop, NULL);
4804 
4805 	switch ((bit << 4) + frame) {
4806 	case 0x11:
4807 		format |= SND_SOC_DAIFMT_IB_IF;
4808 		break;
4809 	case 0x10:
4810 		format |= SND_SOC_DAIFMT_IB_NF;
4811 		break;
4812 	case 0x01:
4813 		format |= SND_SOC_DAIFMT_NB_IF;
4814 		break;
4815 	default:
4816 		/* SND_SOC_DAIFMT_NB_NF is default */
4817 		break;
4818 	}
4819 
4820 	/*
4821 	 * check "[prefix]bitclock-master"
4822 	 * check "[prefix]frame-master"
4823 	 * SND_SOC_DAIFMT_MASTER_MASK area
4824 	 */
4825 	snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4826 	bit = !!of_get_property(np, prop, NULL);
4827 	if (bit && bitclkmaster)
4828 		*bitclkmaster = of_parse_phandle(np, prop, 0);
4829 
4830 	snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4831 	frame = !!of_get_property(np, prop, NULL);
4832 	if (frame && framemaster)
4833 		*framemaster = of_parse_phandle(np, prop, 0);
4834 
4835 	switch ((bit << 4) + frame) {
4836 	case 0x11:
4837 		format |= SND_SOC_DAIFMT_CBM_CFM;
4838 		break;
4839 	case 0x10:
4840 		format |= SND_SOC_DAIFMT_CBM_CFS;
4841 		break;
4842 	case 0x01:
4843 		format |= SND_SOC_DAIFMT_CBS_CFM;
4844 		break;
4845 	default:
4846 		format |= SND_SOC_DAIFMT_CBS_CFS;
4847 		break;
4848 	}
4849 
4850 	return format;
4851 }
4852 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4853 
4854 int snd_soc_of_get_dai_name(struct device_node *of_node,
4855 			    const char **dai_name)
4856 {
4857 	struct snd_soc_component *pos;
4858 	struct of_phandle_args args;
4859 	int ret;
4860 
4861 	ret = of_parse_phandle_with_args(of_node, "sound-dai",
4862 					 "#sound-dai-cells", 0, &args);
4863 	if (ret)
4864 		return ret;
4865 
4866 	ret = -EPROBE_DEFER;
4867 
4868 	mutex_lock(&client_mutex);
4869 	list_for_each_entry(pos, &component_list, list) {
4870 		if (pos->dev->of_node != args.np)
4871 			continue;
4872 
4873 		if (pos->driver->of_xlate_dai_name) {
4874 			ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4875 		} else {
4876 			int id = -1;
4877 
4878 			switch (args.args_count) {
4879 			case 0:
4880 				id = 0; /* same as dai_drv[0] */
4881 				break;
4882 			case 1:
4883 				id = args.args[0];
4884 				break;
4885 			default:
4886 				/* not supported */
4887 				break;
4888 			}
4889 
4890 			if (id < 0 || id >= pos->num_dai) {
4891 				ret = -EINVAL;
4892 				continue;
4893 			}
4894 
4895 			ret = 0;
4896 
4897 			*dai_name = pos->dai_drv[id].name;
4898 			if (!*dai_name)
4899 				*dai_name = pos->name;
4900 		}
4901 
4902 		break;
4903 	}
4904 	mutex_unlock(&client_mutex);
4905 
4906 	of_node_put(args.np);
4907 
4908 	return ret;
4909 }
4910 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4911 
4912 static int __init snd_soc_init(void)
4913 {
4914 #ifdef CONFIG_DEBUG_FS
4915 	snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4916 	if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4917 		pr_warn("ASoC: Failed to create debugfs directory\n");
4918 		snd_soc_debugfs_root = NULL;
4919 	}
4920 
4921 	if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4922 				 &codec_list_fops))
4923 		pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4924 
4925 	if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4926 				 &dai_list_fops))
4927 		pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4928 
4929 	if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4930 				 &platform_list_fops))
4931 		pr_warn("ASoC: Failed to create platform list debugfs file\n");
4932 #endif
4933 
4934 	snd_soc_util_init();
4935 
4936 	return platform_driver_register(&soc_driver);
4937 }
4938 module_init(snd_soc_init);
4939 
4940 static void __exit snd_soc_exit(void)
4941 {
4942 	snd_soc_util_exit();
4943 
4944 #ifdef CONFIG_DEBUG_FS
4945 	debugfs_remove_recursive(snd_soc_debugfs_root);
4946 #endif
4947 	platform_driver_unregister(&soc_driver);
4948 }
4949 module_exit(snd_soc_exit);
4950 
4951 /* Module information */
4952 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4953 MODULE_DESCRIPTION("ALSA SoC Core");
4954 MODULE_LICENSE("GPL");
4955 MODULE_ALIAS("platform:soc-audio");
4956