xref: /openbmc/linux/sound/soc/soc-core.c (revision 565d76cb)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24 
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44 
45 #define NAME_SIZE	32
46 
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49 
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54 
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60 
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62 
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71 
72 /* returns the minimum number of bytes needed to represent
73  * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 	int c = 0;
77 	int i;
78 
79 	for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 		if (val & (1UL << i))
81 			break;
82 	c = (sizeof val * 8) - c;
83 	if (!c || (c % 8))
84 		c = (c + 8) / 8;
85 	else
86 		c /= 8;
87 	return c;
88 }
89 
90 /* fill buf which is 'len' bytes with a formatted
91  * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 			       unsigned int reg, char *buf, size_t len)
94 {
95 	int wordsize = codec->driver->reg_word_size * 2;
96 	int regsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
97 	int ret;
98 	char tmpbuf[len + 1];
99 	char regbuf[regsize + 1];
100 
101 	/* since tmpbuf is allocated on the stack, warn the callers if they
102 	 * try to abuse this function */
103 	WARN_ON(len > 63);
104 
105 	/* +2 for ': ' and + 1 for '\n' */
106 	if (wordsize + regsize + 2 + 1 != len)
107 		return -EINVAL;
108 
109 	ret = snd_soc_read(codec , reg);
110 	if (ret < 0) {
111 		memset(regbuf, 'X', regsize);
112 		regbuf[regsize] = '\0';
113 	} else {
114 		snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 	}
116 
117 	/* prepare the buffer */
118 	snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 	/* copy it back to the caller without the '\0' */
120 	memcpy(buf, tmpbuf, len);
121 
122 	return 0;
123 }
124 
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 				  size_t count, loff_t pos)
128 {
129 	int i, step = 1;
130 	int wordsize, regsize;
131 	int len;
132 	size_t total = 0;
133 	loff_t p = 0;
134 
135 	wordsize = codec->driver->reg_word_size * 2;
136 	regsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
137 
138 	len = wordsize + regsize + 2 + 1;
139 
140 	if (!codec->driver->reg_cache_size)
141 		return 0;
142 
143 	if (codec->driver->reg_cache_step)
144 		step = codec->driver->reg_cache_step;
145 
146 	for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 		if (codec->readable_register && !codec->readable_register(codec, i))
148 			continue;
149 		if (codec->driver->display_register) {
150 			count += codec->driver->display_register(codec, buf + count,
151 							 PAGE_SIZE - count, i);
152 		} else {
153 			/* only support larger than PAGE_SIZE bytes debugfs
154 			 * entries for the default case */
155 			if (p >= pos) {
156 				if (total + len >= count - 1)
157 					break;
158 				format_register_str(codec, i, buf + total, len);
159 				total += len;
160 			}
161 			p += len;
162 		}
163 	}
164 
165 	total = min(total, count - 1);
166 
167 	return total;
168 }
169 
170 static ssize_t codec_reg_show(struct device *dev,
171 	struct device_attribute *attr, char *buf)
172 {
173 	struct snd_soc_pcm_runtime *rtd =
174 			container_of(dev, struct snd_soc_pcm_runtime, dev);
175 
176 	return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178 
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180 
181 static ssize_t pmdown_time_show(struct device *dev,
182 				struct device_attribute *attr, char *buf)
183 {
184 	struct snd_soc_pcm_runtime *rtd =
185 			container_of(dev, struct snd_soc_pcm_runtime, dev);
186 
187 	return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189 
190 static ssize_t pmdown_time_set(struct device *dev,
191 			       struct device_attribute *attr,
192 			       const char *buf, size_t count)
193 {
194 	struct snd_soc_pcm_runtime *rtd =
195 			container_of(dev, struct snd_soc_pcm_runtime, dev);
196 	int ret;
197 
198 	ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 	if (ret)
200 		return ret;
201 
202 	return count;
203 }
204 
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206 
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 	file->private_data = inode->i_private;
211 	return 0;
212 }
213 
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 				   size_t count, loff_t *ppos)
216 {
217 	ssize_t ret;
218 	struct snd_soc_codec *codec = file->private_data;
219 	char *buf;
220 
221 	if (*ppos < 0 || !count)
222 		return -EINVAL;
223 
224 	buf = kmalloc(count, GFP_KERNEL);
225 	if (!buf)
226 		return -ENOMEM;
227 
228 	ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 	if (ret >= 0) {
230 		if (copy_to_user(user_buf, buf, ret)) {
231 			kfree(buf);
232 			return -EFAULT;
233 		}
234 		*ppos += ret;
235 	}
236 
237 	kfree(buf);
238 	return ret;
239 }
240 
241 static ssize_t codec_reg_write_file(struct file *file,
242 		const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 	char buf[32];
245 	int buf_size;
246 	char *start = buf;
247 	unsigned long reg, value;
248 	int step = 1;
249 	struct snd_soc_codec *codec = file->private_data;
250 
251 	buf_size = min(count, (sizeof(buf)-1));
252 	if (copy_from_user(buf, user_buf, buf_size))
253 		return -EFAULT;
254 	buf[buf_size] = 0;
255 
256 	if (codec->driver->reg_cache_step)
257 		step = codec->driver->reg_cache_step;
258 
259 	while (*start == ' ')
260 		start++;
261 	reg = simple_strtoul(start, &start, 16);
262 	if ((reg >= codec->driver->reg_cache_size) || (reg % step))
263 		return -EINVAL;
264 	while (*start == ' ')
265 		start++;
266 	if (strict_strtoul(start, 16, &value))
267 		return -EINVAL;
268 
269 	/* Userspace has been fiddling around behind the kernel's back */
270 	add_taint(TAINT_USER);
271 
272 	snd_soc_write(codec, reg, value);
273 	return buf_size;
274 }
275 
276 static const struct file_operations codec_reg_fops = {
277 	.open = codec_reg_open_file,
278 	.read = codec_reg_read_file,
279 	.write = codec_reg_write_file,
280 	.llseek = default_llseek,
281 };
282 
283 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
284 {
285 	struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
286 
287 	codec->debugfs_codec_root = debugfs_create_dir(codec->name,
288 						       debugfs_card_root);
289 	if (!codec->debugfs_codec_root) {
290 		printk(KERN_WARNING
291 		       "ASoC: Failed to create codec debugfs directory\n");
292 		return;
293 	}
294 
295 	debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
296 			    &codec->cache_sync);
297 	debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
298 			    &codec->cache_only);
299 
300 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
301 						 codec->debugfs_codec_root,
302 						 codec, &codec_reg_fops);
303 	if (!codec->debugfs_reg)
304 		printk(KERN_WARNING
305 		       "ASoC: Failed to create codec register debugfs file\n");
306 
307 	codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
308 						 codec->debugfs_codec_root);
309 	if (!codec->dapm.debugfs_dapm)
310 		printk(KERN_WARNING
311 		       "Failed to create DAPM debugfs directory\n");
312 
313 	snd_soc_dapm_debugfs_init(&codec->dapm);
314 }
315 
316 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
317 {
318 	debugfs_remove_recursive(codec->debugfs_codec_root);
319 }
320 
321 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
322 				    size_t count, loff_t *ppos)
323 {
324 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
325 	ssize_t len, ret = 0;
326 	struct snd_soc_codec *codec;
327 
328 	if (!buf)
329 		return -ENOMEM;
330 
331 	list_for_each_entry(codec, &codec_list, list) {
332 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
333 			       codec->name);
334 		if (len >= 0)
335 			ret += len;
336 		if (ret > PAGE_SIZE) {
337 			ret = PAGE_SIZE;
338 			break;
339 		}
340 	}
341 
342 	if (ret >= 0)
343 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
344 
345 	kfree(buf);
346 
347 	return ret;
348 }
349 
350 static const struct file_operations codec_list_fops = {
351 	.read = codec_list_read_file,
352 	.llseek = default_llseek,/* read accesses f_pos */
353 };
354 
355 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
356 				  size_t count, loff_t *ppos)
357 {
358 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
359 	ssize_t len, ret = 0;
360 	struct snd_soc_dai *dai;
361 
362 	if (!buf)
363 		return -ENOMEM;
364 
365 	list_for_each_entry(dai, &dai_list, list) {
366 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
367 		if (len >= 0)
368 			ret += len;
369 		if (ret > PAGE_SIZE) {
370 			ret = PAGE_SIZE;
371 			break;
372 		}
373 	}
374 
375 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
376 
377 	kfree(buf);
378 
379 	return ret;
380 }
381 
382 static const struct file_operations dai_list_fops = {
383 	.read = dai_list_read_file,
384 	.llseek = default_llseek,/* read accesses f_pos */
385 };
386 
387 static ssize_t platform_list_read_file(struct file *file,
388 				       char __user *user_buf,
389 				       size_t count, loff_t *ppos)
390 {
391 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
392 	ssize_t len, ret = 0;
393 	struct snd_soc_platform *platform;
394 
395 	if (!buf)
396 		return -ENOMEM;
397 
398 	list_for_each_entry(platform, &platform_list, list) {
399 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
400 			       platform->name);
401 		if (len >= 0)
402 			ret += len;
403 		if (ret > PAGE_SIZE) {
404 			ret = PAGE_SIZE;
405 			break;
406 		}
407 	}
408 
409 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
410 
411 	kfree(buf);
412 
413 	return ret;
414 }
415 
416 static const struct file_operations platform_list_fops = {
417 	.read = platform_list_read_file,
418 	.llseek = default_llseek,/* read accesses f_pos */
419 };
420 
421 static void soc_init_card_debugfs(struct snd_soc_card *card)
422 {
423 	card->debugfs_card_root = debugfs_create_dir(card->name,
424 						     snd_soc_debugfs_root);
425 	if (!card->debugfs_card_root) {
426 		dev_warn(card->dev,
427 			 "ASoC: Failed to create codec debugfs directory\n");
428 		return;
429 	}
430 
431 	card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
432 						    card->debugfs_card_root,
433 						    &card->pop_time);
434 	if (!card->debugfs_pop_time)
435 		dev_warn(card->dev,
436 		       "Failed to create pop time debugfs file\n");
437 }
438 
439 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
440 {
441 	debugfs_remove_recursive(card->debugfs_card_root);
442 }
443 
444 #else
445 
446 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
447 {
448 }
449 
450 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
451 {
452 }
453 
454 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
455 {
456 }
457 
458 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
459 {
460 }
461 #endif
462 
463 #ifdef CONFIG_SND_SOC_AC97_BUS
464 /* unregister ac97 codec */
465 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
466 {
467 	if (codec->ac97->dev.bus)
468 		device_unregister(&codec->ac97->dev);
469 	return 0;
470 }
471 
472 /* stop no dev release warning */
473 static void soc_ac97_device_release(struct device *dev){}
474 
475 /* register ac97 codec to bus */
476 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
477 {
478 	int err;
479 
480 	codec->ac97->dev.bus = &ac97_bus_type;
481 	codec->ac97->dev.parent = codec->card->dev;
482 	codec->ac97->dev.release = soc_ac97_device_release;
483 
484 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
485 		     codec->card->snd_card->number, 0, codec->name);
486 	err = device_register(&codec->ac97->dev);
487 	if (err < 0) {
488 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
489 		codec->ac97->dev.bus = NULL;
490 		return err;
491 	}
492 	return 0;
493 }
494 #endif
495 
496 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
497 {
498 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
499 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
500 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
501 	int ret;
502 
503 	if (!codec_dai->driver->symmetric_rates &&
504 	    !cpu_dai->driver->symmetric_rates &&
505 	    !rtd->dai_link->symmetric_rates)
506 		return 0;
507 
508 	/* This can happen if multiple streams are starting simultaneously -
509 	 * the second can need to get its constraints before the first has
510 	 * picked a rate.  Complain and allow the application to carry on.
511 	 */
512 	if (!rtd->rate) {
513 		dev_warn(&rtd->dev,
514 			 "Not enforcing symmetric_rates due to race\n");
515 		return 0;
516 	}
517 
518 	dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
519 
520 	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
521 					   SNDRV_PCM_HW_PARAM_RATE,
522 					   rtd->rate, rtd->rate);
523 	if (ret < 0) {
524 		dev_err(&rtd->dev,
525 			"Unable to apply rate symmetry constraint: %d\n", ret);
526 		return ret;
527 	}
528 
529 	return 0;
530 }
531 
532 /*
533  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
534  * then initialized and any private data can be allocated. This also calls
535  * startup for the cpu DAI, platform, machine and codec DAI.
536  */
537 static int soc_pcm_open(struct snd_pcm_substream *substream)
538 {
539 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
540 	struct snd_pcm_runtime *runtime = substream->runtime;
541 	struct snd_soc_platform *platform = rtd->platform;
542 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
543 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
544 	struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
545 	struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
546 	int ret = 0;
547 
548 	mutex_lock(&pcm_mutex);
549 
550 	/* startup the audio subsystem */
551 	if (cpu_dai->driver->ops->startup) {
552 		ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
553 		if (ret < 0) {
554 			printk(KERN_ERR "asoc: can't open interface %s\n",
555 				cpu_dai->name);
556 			goto out;
557 		}
558 	}
559 
560 	if (platform->driver->ops->open) {
561 		ret = platform->driver->ops->open(substream);
562 		if (ret < 0) {
563 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
564 			goto platform_err;
565 		}
566 	}
567 
568 	if (codec_dai->driver->ops->startup) {
569 		ret = codec_dai->driver->ops->startup(substream, codec_dai);
570 		if (ret < 0) {
571 			printk(KERN_ERR "asoc: can't open codec %s\n",
572 				codec_dai->name);
573 			goto codec_dai_err;
574 		}
575 	}
576 
577 	if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
578 		ret = rtd->dai_link->ops->startup(substream);
579 		if (ret < 0) {
580 			printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
581 			goto machine_err;
582 		}
583 	}
584 
585 	/* Check that the codec and cpu DAIs are compatible */
586 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
587 		runtime->hw.rate_min =
588 			max(codec_dai_drv->playback.rate_min,
589 			    cpu_dai_drv->playback.rate_min);
590 		runtime->hw.rate_max =
591 			min(codec_dai_drv->playback.rate_max,
592 			    cpu_dai_drv->playback.rate_max);
593 		runtime->hw.channels_min =
594 			max(codec_dai_drv->playback.channels_min,
595 				cpu_dai_drv->playback.channels_min);
596 		runtime->hw.channels_max =
597 			min(codec_dai_drv->playback.channels_max,
598 				cpu_dai_drv->playback.channels_max);
599 		runtime->hw.formats =
600 			codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
601 		runtime->hw.rates =
602 			codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
603 		if (codec_dai_drv->playback.rates
604 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
605 			runtime->hw.rates |= cpu_dai_drv->playback.rates;
606 		if (cpu_dai_drv->playback.rates
607 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
608 			runtime->hw.rates |= codec_dai_drv->playback.rates;
609 	} else {
610 		runtime->hw.rate_min =
611 			max(codec_dai_drv->capture.rate_min,
612 			    cpu_dai_drv->capture.rate_min);
613 		runtime->hw.rate_max =
614 			min(codec_dai_drv->capture.rate_max,
615 			    cpu_dai_drv->capture.rate_max);
616 		runtime->hw.channels_min =
617 			max(codec_dai_drv->capture.channels_min,
618 				cpu_dai_drv->capture.channels_min);
619 		runtime->hw.channels_max =
620 			min(codec_dai_drv->capture.channels_max,
621 				cpu_dai_drv->capture.channels_max);
622 		runtime->hw.formats =
623 			codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
624 		runtime->hw.rates =
625 			codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
626 		if (codec_dai_drv->capture.rates
627 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
628 			runtime->hw.rates |= cpu_dai_drv->capture.rates;
629 		if (cpu_dai_drv->capture.rates
630 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
631 			runtime->hw.rates |= codec_dai_drv->capture.rates;
632 	}
633 
634 	snd_pcm_limit_hw_rates(runtime);
635 	if (!runtime->hw.rates) {
636 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
637 			codec_dai->name, cpu_dai->name);
638 		goto config_err;
639 	}
640 	if (!runtime->hw.formats) {
641 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
642 			codec_dai->name, cpu_dai->name);
643 		goto config_err;
644 	}
645 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
646 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
647 				codec_dai->name, cpu_dai->name);
648 		goto config_err;
649 	}
650 
651 	/* Symmetry only applies if we've already got an active stream. */
652 	if (cpu_dai->active || codec_dai->active) {
653 		ret = soc_pcm_apply_symmetry(substream);
654 		if (ret != 0)
655 			goto config_err;
656 	}
657 
658 	pr_debug("asoc: %s <-> %s info:\n",
659 			codec_dai->name, cpu_dai->name);
660 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
661 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
662 		 runtime->hw.channels_max);
663 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
664 		 runtime->hw.rate_max);
665 
666 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
667 		cpu_dai->playback_active++;
668 		codec_dai->playback_active++;
669 	} else {
670 		cpu_dai->capture_active++;
671 		codec_dai->capture_active++;
672 	}
673 	cpu_dai->active++;
674 	codec_dai->active++;
675 	rtd->codec->active++;
676 	mutex_unlock(&pcm_mutex);
677 	return 0;
678 
679 config_err:
680 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
681 		rtd->dai_link->ops->shutdown(substream);
682 
683 machine_err:
684 	if (codec_dai->driver->ops->shutdown)
685 		codec_dai->driver->ops->shutdown(substream, codec_dai);
686 
687 codec_dai_err:
688 	if (platform->driver->ops->close)
689 		platform->driver->ops->close(substream);
690 
691 platform_err:
692 	if (cpu_dai->driver->ops->shutdown)
693 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
694 out:
695 	mutex_unlock(&pcm_mutex);
696 	return ret;
697 }
698 
699 /*
700  * Power down the audio subsystem pmdown_time msecs after close is called.
701  * This is to ensure there are no pops or clicks in between any music tracks
702  * due to DAPM power cycling.
703  */
704 static void close_delayed_work(struct work_struct *work)
705 {
706 	struct snd_soc_pcm_runtime *rtd =
707 			container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
708 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
709 
710 	mutex_lock(&pcm_mutex);
711 
712 	pr_debug("pop wq checking: %s status: %s waiting: %s\n",
713 		 codec_dai->driver->playback.stream_name,
714 		 codec_dai->playback_active ? "active" : "inactive",
715 		 codec_dai->pop_wait ? "yes" : "no");
716 
717 	/* are we waiting on this codec DAI stream */
718 	if (codec_dai->pop_wait == 1) {
719 		codec_dai->pop_wait = 0;
720 		snd_soc_dapm_stream_event(rtd,
721 			codec_dai->driver->playback.stream_name,
722 			SND_SOC_DAPM_STREAM_STOP);
723 	}
724 
725 	mutex_unlock(&pcm_mutex);
726 }
727 
728 /*
729  * Called by ALSA when a PCM substream is closed. Private data can be
730  * freed here. The cpu DAI, codec DAI, machine and platform are also
731  * shutdown.
732  */
733 static int soc_codec_close(struct snd_pcm_substream *substream)
734 {
735 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
736 	struct snd_soc_platform *platform = rtd->platform;
737 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
738 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
739 	struct snd_soc_codec *codec = rtd->codec;
740 
741 	mutex_lock(&pcm_mutex);
742 
743 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
744 		cpu_dai->playback_active--;
745 		codec_dai->playback_active--;
746 	} else {
747 		cpu_dai->capture_active--;
748 		codec_dai->capture_active--;
749 	}
750 
751 	cpu_dai->active--;
752 	codec_dai->active--;
753 	codec->active--;
754 
755 	/* Muting the DAC suppresses artifacts caused during digital
756 	 * shutdown, for example from stopping clocks.
757 	 */
758 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
759 		snd_soc_dai_digital_mute(codec_dai, 1);
760 
761 	if (cpu_dai->driver->ops->shutdown)
762 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
763 
764 	if (codec_dai->driver->ops->shutdown)
765 		codec_dai->driver->ops->shutdown(substream, codec_dai);
766 
767 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
768 		rtd->dai_link->ops->shutdown(substream);
769 
770 	if (platform->driver->ops->close)
771 		platform->driver->ops->close(substream);
772 	cpu_dai->runtime = NULL;
773 
774 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
775 		/* start delayed pop wq here for playback streams */
776 		codec_dai->pop_wait = 1;
777 		schedule_delayed_work(&rtd->delayed_work,
778 			msecs_to_jiffies(rtd->pmdown_time));
779 	} else {
780 		/* capture streams can be powered down now */
781 		snd_soc_dapm_stream_event(rtd,
782 			codec_dai->driver->capture.stream_name,
783 			SND_SOC_DAPM_STREAM_STOP);
784 	}
785 
786 	mutex_unlock(&pcm_mutex);
787 	return 0;
788 }
789 
790 /*
791  * Called by ALSA when the PCM substream is prepared, can set format, sample
792  * rate, etc.  This function is non atomic and can be called multiple times,
793  * it can refer to the runtime info.
794  */
795 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
796 {
797 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
798 	struct snd_soc_platform *platform = rtd->platform;
799 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
800 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
801 	int ret = 0;
802 
803 	mutex_lock(&pcm_mutex);
804 
805 	if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
806 		ret = rtd->dai_link->ops->prepare(substream);
807 		if (ret < 0) {
808 			printk(KERN_ERR "asoc: machine prepare error\n");
809 			goto out;
810 		}
811 	}
812 
813 	if (platform->driver->ops->prepare) {
814 		ret = platform->driver->ops->prepare(substream);
815 		if (ret < 0) {
816 			printk(KERN_ERR "asoc: platform prepare error\n");
817 			goto out;
818 		}
819 	}
820 
821 	if (codec_dai->driver->ops->prepare) {
822 		ret = codec_dai->driver->ops->prepare(substream, codec_dai);
823 		if (ret < 0) {
824 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
825 			goto out;
826 		}
827 	}
828 
829 	if (cpu_dai->driver->ops->prepare) {
830 		ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
831 		if (ret < 0) {
832 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
833 			goto out;
834 		}
835 	}
836 
837 	/* cancel any delayed stream shutdown that is pending */
838 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
839 	    codec_dai->pop_wait) {
840 		codec_dai->pop_wait = 0;
841 		cancel_delayed_work(&rtd->delayed_work);
842 	}
843 
844 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
845 		snd_soc_dapm_stream_event(rtd,
846 					  codec_dai->driver->playback.stream_name,
847 					  SND_SOC_DAPM_STREAM_START);
848 	else
849 		snd_soc_dapm_stream_event(rtd,
850 					  codec_dai->driver->capture.stream_name,
851 					  SND_SOC_DAPM_STREAM_START);
852 
853 	snd_soc_dai_digital_mute(codec_dai, 0);
854 
855 out:
856 	mutex_unlock(&pcm_mutex);
857 	return ret;
858 }
859 
860 /*
861  * Called by ALSA when the hardware params are set by application. This
862  * function can also be called multiple times and can allocate buffers
863  * (using snd_pcm_lib_* ). It's non-atomic.
864  */
865 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
866 				struct snd_pcm_hw_params *params)
867 {
868 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
869 	struct snd_soc_platform *platform = rtd->platform;
870 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
871 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
872 	int ret = 0;
873 
874 	mutex_lock(&pcm_mutex);
875 
876 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
877 		ret = rtd->dai_link->ops->hw_params(substream, params);
878 		if (ret < 0) {
879 			printk(KERN_ERR "asoc: machine hw_params failed\n");
880 			goto out;
881 		}
882 	}
883 
884 	if (codec_dai->driver->ops->hw_params) {
885 		ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
886 		if (ret < 0) {
887 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
888 				codec_dai->name);
889 			goto codec_err;
890 		}
891 	}
892 
893 	if (cpu_dai->driver->ops->hw_params) {
894 		ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
895 		if (ret < 0) {
896 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
897 				cpu_dai->name);
898 			goto interface_err;
899 		}
900 	}
901 
902 	if (platform->driver->ops->hw_params) {
903 		ret = platform->driver->ops->hw_params(substream, params);
904 		if (ret < 0) {
905 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
906 				platform->name);
907 			goto platform_err;
908 		}
909 	}
910 
911 	rtd->rate = params_rate(params);
912 
913 out:
914 	mutex_unlock(&pcm_mutex);
915 	return ret;
916 
917 platform_err:
918 	if (cpu_dai->driver->ops->hw_free)
919 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
920 
921 interface_err:
922 	if (codec_dai->driver->ops->hw_free)
923 		codec_dai->driver->ops->hw_free(substream, codec_dai);
924 
925 codec_err:
926 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
927 		rtd->dai_link->ops->hw_free(substream);
928 
929 	mutex_unlock(&pcm_mutex);
930 	return ret;
931 }
932 
933 /*
934  * Frees resources allocated by hw_params, can be called multiple times
935  */
936 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
937 {
938 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
939 	struct snd_soc_platform *platform = rtd->platform;
940 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
941 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
942 	struct snd_soc_codec *codec = rtd->codec;
943 
944 	mutex_lock(&pcm_mutex);
945 
946 	/* apply codec digital mute */
947 	if (!codec->active)
948 		snd_soc_dai_digital_mute(codec_dai, 1);
949 
950 	/* free any machine hw params */
951 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
952 		rtd->dai_link->ops->hw_free(substream);
953 
954 	/* free any DMA resources */
955 	if (platform->driver->ops->hw_free)
956 		platform->driver->ops->hw_free(substream);
957 
958 	/* now free hw params for the DAIs  */
959 	if (codec_dai->driver->ops->hw_free)
960 		codec_dai->driver->ops->hw_free(substream, codec_dai);
961 
962 	if (cpu_dai->driver->ops->hw_free)
963 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
964 
965 	mutex_unlock(&pcm_mutex);
966 	return 0;
967 }
968 
969 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
970 {
971 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
972 	struct snd_soc_platform *platform = rtd->platform;
973 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
974 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
975 	int ret;
976 
977 	if (codec_dai->driver->ops->trigger) {
978 		ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
979 		if (ret < 0)
980 			return ret;
981 	}
982 
983 	if (platform->driver->ops->trigger) {
984 		ret = platform->driver->ops->trigger(substream, cmd);
985 		if (ret < 0)
986 			return ret;
987 	}
988 
989 	if (cpu_dai->driver->ops->trigger) {
990 		ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
991 		if (ret < 0)
992 			return ret;
993 	}
994 	return 0;
995 }
996 
997 /*
998  * soc level wrapper for pointer callback
999  * If cpu_dai, codec_dai, platform driver has the delay callback, than
1000  * the runtime->delay will be updated accordingly.
1001  */
1002 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
1003 {
1004 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1005 	struct snd_soc_platform *platform = rtd->platform;
1006 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1007 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
1008 	struct snd_pcm_runtime *runtime = substream->runtime;
1009 	snd_pcm_uframes_t offset = 0;
1010 	snd_pcm_sframes_t delay = 0;
1011 
1012 	if (platform->driver->ops->pointer)
1013 		offset = platform->driver->ops->pointer(substream);
1014 
1015 	if (cpu_dai->driver->ops->delay)
1016 		delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1017 
1018 	if (codec_dai->driver->ops->delay)
1019 		delay += codec_dai->driver->ops->delay(substream, codec_dai);
1020 
1021 	if (platform->driver->delay)
1022 		delay += platform->driver->delay(substream, codec_dai);
1023 
1024 	runtime->delay = delay;
1025 
1026 	return offset;
1027 }
1028 
1029 /* ASoC PCM operations */
1030 static struct snd_pcm_ops soc_pcm_ops = {
1031 	.open		= soc_pcm_open,
1032 	.close		= soc_codec_close,
1033 	.hw_params	= soc_pcm_hw_params,
1034 	.hw_free	= soc_pcm_hw_free,
1035 	.prepare	= soc_pcm_prepare,
1036 	.trigger	= soc_pcm_trigger,
1037 	.pointer	= soc_pcm_pointer,
1038 };
1039 
1040 #ifdef CONFIG_PM_SLEEP
1041 /* powers down audio subsystem for suspend */
1042 int snd_soc_suspend(struct device *dev)
1043 {
1044 	struct snd_soc_card *card = dev_get_drvdata(dev);
1045 	struct snd_soc_codec *codec;
1046 	int i;
1047 
1048 	/* If the initialization of this soc device failed, there is no codec
1049 	 * associated with it. Just bail out in this case.
1050 	 */
1051 	if (list_empty(&card->codec_dev_list))
1052 		return 0;
1053 
1054 	/* Due to the resume being scheduled into a workqueue we could
1055 	* suspend before that's finished - wait for it to complete.
1056 	 */
1057 	snd_power_lock(card->snd_card);
1058 	snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1059 	snd_power_unlock(card->snd_card);
1060 
1061 	/* we're going to block userspace touching us until resume completes */
1062 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1063 
1064 	/* mute any active DACs */
1065 	for (i = 0; i < card->num_rtd; i++) {
1066 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1067 		struct snd_soc_dai_driver *drv = dai->driver;
1068 
1069 		if (card->rtd[i].dai_link->ignore_suspend)
1070 			continue;
1071 
1072 		if (drv->ops->digital_mute && dai->playback_active)
1073 			drv->ops->digital_mute(dai, 1);
1074 	}
1075 
1076 	/* suspend all pcms */
1077 	for (i = 0; i < card->num_rtd; i++) {
1078 		if (card->rtd[i].dai_link->ignore_suspend)
1079 			continue;
1080 
1081 		snd_pcm_suspend_all(card->rtd[i].pcm);
1082 	}
1083 
1084 	if (card->suspend_pre)
1085 		card->suspend_pre(card);
1086 
1087 	for (i = 0; i < card->num_rtd; i++) {
1088 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1089 		struct snd_soc_platform *platform = card->rtd[i].platform;
1090 
1091 		if (card->rtd[i].dai_link->ignore_suspend)
1092 			continue;
1093 
1094 		if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1095 			cpu_dai->driver->suspend(cpu_dai);
1096 		if (platform->driver->suspend && !platform->suspended) {
1097 			platform->driver->suspend(cpu_dai);
1098 			platform->suspended = 1;
1099 		}
1100 	}
1101 
1102 	/* close any waiting streams and save state */
1103 	for (i = 0; i < card->num_rtd; i++) {
1104 		flush_delayed_work_sync(&card->rtd[i].delayed_work);
1105 		card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1106 	}
1107 
1108 	for (i = 0; i < card->num_rtd; i++) {
1109 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1110 
1111 		if (card->rtd[i].dai_link->ignore_suspend)
1112 			continue;
1113 
1114 		if (driver->playback.stream_name != NULL)
1115 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1116 				SND_SOC_DAPM_STREAM_SUSPEND);
1117 
1118 		if (driver->capture.stream_name != NULL)
1119 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1120 				SND_SOC_DAPM_STREAM_SUSPEND);
1121 	}
1122 
1123 	/* suspend all CODECs */
1124 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1125 		/* If there are paths active then the CODEC will be held with
1126 		 * bias _ON and should not be suspended. */
1127 		if (!codec->suspended && codec->driver->suspend) {
1128 			switch (codec->dapm.bias_level) {
1129 			case SND_SOC_BIAS_STANDBY:
1130 			case SND_SOC_BIAS_OFF:
1131 				codec->driver->suspend(codec, PMSG_SUSPEND);
1132 				codec->suspended = 1;
1133 				break;
1134 			default:
1135 				dev_dbg(codec->dev, "CODEC is on over suspend\n");
1136 				break;
1137 			}
1138 		}
1139 	}
1140 
1141 	for (i = 0; i < card->num_rtd; i++) {
1142 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1143 
1144 		if (card->rtd[i].dai_link->ignore_suspend)
1145 			continue;
1146 
1147 		if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1148 			cpu_dai->driver->suspend(cpu_dai);
1149 	}
1150 
1151 	if (card->suspend_post)
1152 		card->suspend_post(card);
1153 
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1157 
1158 /* deferred resume work, so resume can complete before we finished
1159  * setting our codec back up, which can be very slow on I2C
1160  */
1161 static void soc_resume_deferred(struct work_struct *work)
1162 {
1163 	struct snd_soc_card *card =
1164 			container_of(work, struct snd_soc_card, deferred_resume_work);
1165 	struct snd_soc_codec *codec;
1166 	int i;
1167 
1168 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1169 	 * so userspace apps are blocked from touching us
1170 	 */
1171 
1172 	dev_dbg(card->dev, "starting resume work\n");
1173 
1174 	/* Bring us up into D2 so that DAPM starts enabling things */
1175 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1176 
1177 	if (card->resume_pre)
1178 		card->resume_pre(card);
1179 
1180 	/* resume AC97 DAIs */
1181 	for (i = 0; i < card->num_rtd; i++) {
1182 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183 
1184 		if (card->rtd[i].dai_link->ignore_suspend)
1185 			continue;
1186 
1187 		if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1188 			cpu_dai->driver->resume(cpu_dai);
1189 	}
1190 
1191 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1192 		/* If the CODEC was idle over suspend then it will have been
1193 		 * left with bias OFF or STANDBY and suspended so we must now
1194 		 * resume.  Otherwise the suspend was suppressed.
1195 		 */
1196 		if (codec->driver->resume && codec->suspended) {
1197 			switch (codec->dapm.bias_level) {
1198 			case SND_SOC_BIAS_STANDBY:
1199 			case SND_SOC_BIAS_OFF:
1200 				codec->driver->resume(codec);
1201 				codec->suspended = 0;
1202 				break;
1203 			default:
1204 				dev_dbg(codec->dev, "CODEC was on over suspend\n");
1205 				break;
1206 			}
1207 		}
1208 	}
1209 
1210 	for (i = 0; i < card->num_rtd; i++) {
1211 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1212 
1213 		if (card->rtd[i].dai_link->ignore_suspend)
1214 			continue;
1215 
1216 		if (driver->playback.stream_name != NULL)
1217 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1218 				SND_SOC_DAPM_STREAM_RESUME);
1219 
1220 		if (driver->capture.stream_name != NULL)
1221 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1222 				SND_SOC_DAPM_STREAM_RESUME);
1223 	}
1224 
1225 	/* unmute any active DACs */
1226 	for (i = 0; i < card->num_rtd; i++) {
1227 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1228 		struct snd_soc_dai_driver *drv = dai->driver;
1229 
1230 		if (card->rtd[i].dai_link->ignore_suspend)
1231 			continue;
1232 
1233 		if (drv->ops->digital_mute && dai->playback_active)
1234 			drv->ops->digital_mute(dai, 0);
1235 	}
1236 
1237 	for (i = 0; i < card->num_rtd; i++) {
1238 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1239 		struct snd_soc_platform *platform = card->rtd[i].platform;
1240 
1241 		if (card->rtd[i].dai_link->ignore_suspend)
1242 			continue;
1243 
1244 		if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1245 			cpu_dai->driver->resume(cpu_dai);
1246 		if (platform->driver->resume && platform->suspended) {
1247 			platform->driver->resume(cpu_dai);
1248 			platform->suspended = 0;
1249 		}
1250 	}
1251 
1252 	if (card->resume_post)
1253 		card->resume_post(card);
1254 
1255 	dev_dbg(card->dev, "resume work completed\n");
1256 
1257 	/* userspace can access us now we are back as we were before */
1258 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1259 }
1260 
1261 /* powers up audio subsystem after a suspend */
1262 int snd_soc_resume(struct device *dev)
1263 {
1264 	struct snd_soc_card *card = dev_get_drvdata(dev);
1265 	int i;
1266 
1267 	/* AC97 devices might have other drivers hanging off them so
1268 	 * need to resume immediately.  Other drivers don't have that
1269 	 * problem and may take a substantial amount of time to resume
1270 	 * due to I/O costs and anti-pop so handle them out of line.
1271 	 */
1272 	for (i = 0; i < card->num_rtd; i++) {
1273 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1274 		if (cpu_dai->driver->ac97_control) {
1275 			dev_dbg(dev, "Resuming AC97 immediately\n");
1276 			soc_resume_deferred(&card->deferred_resume_work);
1277 		} else {
1278 			dev_dbg(dev, "Scheduling resume work\n");
1279 			if (!schedule_work(&card->deferred_resume_work))
1280 				dev_err(dev, "resume work item may be lost\n");
1281 		}
1282 	}
1283 
1284 	return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(snd_soc_resume);
1287 #else
1288 #define snd_soc_suspend NULL
1289 #define snd_soc_resume NULL
1290 #endif
1291 
1292 static struct snd_soc_dai_ops null_dai_ops = {
1293 };
1294 
1295 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1296 {
1297 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1298 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1299 	struct snd_soc_codec *codec;
1300 	struct snd_soc_platform *platform;
1301 	struct snd_soc_dai *codec_dai, *cpu_dai;
1302 
1303 	if (rtd->complete)
1304 		return 1;
1305 	dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1306 
1307 	/* do we already have the CPU DAI for this link ? */
1308 	if (rtd->cpu_dai) {
1309 		goto find_codec;
1310 	}
1311 	/* no, then find CPU DAI from registered DAIs*/
1312 	list_for_each_entry(cpu_dai, &dai_list, list) {
1313 		if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1314 
1315 			if (!try_module_get(cpu_dai->dev->driver->owner))
1316 				return -ENODEV;
1317 
1318 			rtd->cpu_dai = cpu_dai;
1319 			goto find_codec;
1320 		}
1321 	}
1322 	dev_dbg(card->dev, "CPU DAI %s not registered\n",
1323 			dai_link->cpu_dai_name);
1324 
1325 find_codec:
1326 	/* do we already have the CODEC for this link ? */
1327 	if (rtd->codec) {
1328 		goto find_platform;
1329 	}
1330 
1331 	/* no, then find CODEC from registered CODECs*/
1332 	list_for_each_entry(codec, &codec_list, list) {
1333 		if (!strcmp(codec->name, dai_link->codec_name)) {
1334 			rtd->codec = codec;
1335 
1336 			/* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1337 			list_for_each_entry(codec_dai, &dai_list, list) {
1338 				if (codec->dev == codec_dai->dev &&
1339 						!strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1340 					rtd->codec_dai = codec_dai;
1341 					goto find_platform;
1342 				}
1343 			}
1344 			dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1345 					dai_link->codec_dai_name);
1346 
1347 			goto find_platform;
1348 		}
1349 	}
1350 	dev_dbg(card->dev, "CODEC %s not registered\n",
1351 			dai_link->codec_name);
1352 
1353 find_platform:
1354 	/* do we already have the CODEC DAI for this link ? */
1355 	if (rtd->platform) {
1356 		goto out;
1357 	}
1358 	/* no, then find CPU DAI from registered DAIs*/
1359 	list_for_each_entry(platform, &platform_list, list) {
1360 		if (!strcmp(platform->name, dai_link->platform_name)) {
1361 			rtd->platform = platform;
1362 			goto out;
1363 		}
1364 	}
1365 
1366 	dev_dbg(card->dev, "platform %s not registered\n",
1367 			dai_link->platform_name);
1368 	return 0;
1369 
1370 out:
1371 	/* mark rtd as complete if we found all 4 of our client devices */
1372 	if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1373 		rtd->complete = 1;
1374 		card->num_rtd++;
1375 	}
1376 	return 1;
1377 }
1378 
1379 static void soc_remove_codec(struct snd_soc_codec *codec)
1380 {
1381 	int err;
1382 
1383 	if (codec->driver->remove) {
1384 		err = codec->driver->remove(codec);
1385 		if (err < 0)
1386 			dev_err(codec->dev,
1387 				"asoc: failed to remove %s: %d\n",
1388 				codec->name, err);
1389 	}
1390 
1391 	/* Make sure all DAPM widgets are freed */
1392 	snd_soc_dapm_free(&codec->dapm);
1393 
1394 	soc_cleanup_codec_debugfs(codec);
1395 	codec->probed = 0;
1396 	list_del(&codec->card_list);
1397 	module_put(codec->dev->driver->owner);
1398 }
1399 
1400 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1401 {
1402 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1403 	struct snd_soc_codec *codec = rtd->codec;
1404 	struct snd_soc_platform *platform = rtd->platform;
1405 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1406 	int err;
1407 
1408 	/* unregister the rtd device */
1409 	if (rtd->dev_registered) {
1410 		device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1411 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1412 		device_unregister(&rtd->dev);
1413 		rtd->dev_registered = 0;
1414 	}
1415 
1416 	/* remove the CODEC DAI */
1417 	if (codec_dai && codec_dai->probed) {
1418 		if (codec_dai->driver->remove) {
1419 			err = codec_dai->driver->remove(codec_dai);
1420 			if (err < 0)
1421 				printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1422 		}
1423 		codec_dai->probed = 0;
1424 		list_del(&codec_dai->card_list);
1425 	}
1426 
1427 	/* remove the platform */
1428 	if (platform && platform->probed) {
1429 		if (platform->driver->remove) {
1430 			err = platform->driver->remove(platform);
1431 			if (err < 0)
1432 				printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1433 		}
1434 		platform->probed = 0;
1435 		list_del(&platform->card_list);
1436 		module_put(platform->dev->driver->owner);
1437 	}
1438 
1439 	/* remove the CODEC */
1440 	if (codec && codec->probed)
1441 		soc_remove_codec(codec);
1442 
1443 	/* remove the cpu_dai */
1444 	if (cpu_dai && cpu_dai->probed) {
1445 		if (cpu_dai->driver->remove) {
1446 			err = cpu_dai->driver->remove(cpu_dai);
1447 			if (err < 0)
1448 				printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1449 		}
1450 		cpu_dai->probed = 0;
1451 		list_del(&cpu_dai->card_list);
1452 		module_put(cpu_dai->dev->driver->owner);
1453 	}
1454 }
1455 
1456 static void soc_set_name_prefix(struct snd_soc_card *card,
1457 				struct snd_soc_codec *codec)
1458 {
1459 	int i;
1460 
1461 	if (card->codec_conf == NULL)
1462 		return;
1463 
1464 	for (i = 0; i < card->num_configs; i++) {
1465 		struct snd_soc_codec_conf *map = &card->codec_conf[i];
1466 		if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1467 			codec->name_prefix = map->name_prefix;
1468 			break;
1469 		}
1470 	}
1471 }
1472 
1473 static int soc_probe_codec(struct snd_soc_card *card,
1474 			   struct snd_soc_codec *codec)
1475 {
1476 	int ret = 0;
1477 	const struct snd_soc_codec_driver *driver = codec->driver;
1478 
1479 	codec->card = card;
1480 	codec->dapm.card = card;
1481 	soc_set_name_prefix(card, codec);
1482 
1483 	if (!try_module_get(codec->dev->driver->owner))
1484 		return -ENODEV;
1485 
1486 	if (driver->probe) {
1487 		ret = driver->probe(codec);
1488 		if (ret < 0) {
1489 			dev_err(codec->dev,
1490 				"asoc: failed to probe CODEC %s: %d\n",
1491 				codec->name, ret);
1492 			goto err_probe;
1493 		}
1494 	}
1495 
1496 	if (driver->dapm_widgets)
1497 		snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1498 					  driver->num_dapm_widgets);
1499 	if (driver->dapm_routes)
1500 		snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1501 					driver->num_dapm_routes);
1502 
1503 	soc_init_codec_debugfs(codec);
1504 
1505 	/* mark codec as probed and add to card codec list */
1506 	codec->probed = 1;
1507 	list_add(&codec->card_list, &card->codec_dev_list);
1508 	list_add(&codec->dapm.list, &card->dapm_list);
1509 
1510 	return 0;
1511 
1512 err_probe:
1513 	module_put(codec->dev->driver->owner);
1514 
1515 	return ret;
1516 }
1517 
1518 static void rtd_release(struct device *dev) {}
1519 
1520 static int soc_post_component_init(struct snd_soc_card *card,
1521 				   struct snd_soc_codec *codec,
1522 				   int num, int dailess)
1523 {
1524 	struct snd_soc_dai_link *dai_link = NULL;
1525 	struct snd_soc_aux_dev *aux_dev = NULL;
1526 	struct snd_soc_pcm_runtime *rtd;
1527 	const char *temp, *name;
1528 	int ret = 0;
1529 
1530 	if (!dailess) {
1531 		dai_link = &card->dai_link[num];
1532 		rtd = &card->rtd[num];
1533 		name = dai_link->name;
1534 	} else {
1535 		aux_dev = &card->aux_dev[num];
1536 		rtd = &card->rtd_aux[num];
1537 		name = aux_dev->name;
1538 	}
1539 	rtd->card = card;
1540 
1541 	/* machine controls, routes and widgets are not prefixed */
1542 	temp = codec->name_prefix;
1543 	codec->name_prefix = NULL;
1544 
1545 	/* do machine specific initialization */
1546 	if (!dailess && dai_link->init)
1547 		ret = dai_link->init(rtd);
1548 	else if (dailess && aux_dev->init)
1549 		ret = aux_dev->init(&codec->dapm);
1550 	if (ret < 0) {
1551 		dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1552 		return ret;
1553 	}
1554 	codec->name_prefix = temp;
1555 
1556 	/* Make sure all DAPM widgets are instantiated */
1557 	snd_soc_dapm_new_widgets(&codec->dapm);
1558 
1559 	/* register the rtd device */
1560 	rtd->codec = codec;
1561 	rtd->dev.parent = card->dev;
1562 	rtd->dev.release = rtd_release;
1563 	rtd->dev.init_name = name;
1564 	ret = device_register(&rtd->dev);
1565 	if (ret < 0) {
1566 		dev_err(card->dev,
1567 			"asoc: failed to register runtime device: %d\n", ret);
1568 		return ret;
1569 	}
1570 	rtd->dev_registered = 1;
1571 
1572 	/* add DAPM sysfs entries for this codec */
1573 	ret = snd_soc_dapm_sys_add(&rtd->dev);
1574 	if (ret < 0)
1575 		dev_err(codec->dev,
1576 			"asoc: failed to add codec dapm sysfs entries: %d\n",
1577 			ret);
1578 
1579 	/* add codec sysfs entries */
1580 	ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1581 	if (ret < 0)
1582 		dev_err(codec->dev,
1583 			"asoc: failed to add codec sysfs files: %d\n", ret);
1584 
1585 	return 0;
1586 }
1587 
1588 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1589 {
1590 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1591 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1592 	struct snd_soc_codec *codec = rtd->codec;
1593 	struct snd_soc_platform *platform = rtd->platform;
1594 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1595 	int ret;
1596 
1597 	dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1598 
1599 	/* config components */
1600 	codec_dai->codec = codec;
1601 	cpu_dai->platform = platform;
1602 	codec_dai->card = card;
1603 	cpu_dai->card = card;
1604 
1605 	/* set default power off timeout */
1606 	rtd->pmdown_time = pmdown_time;
1607 
1608 	/* probe the cpu_dai */
1609 	if (!cpu_dai->probed) {
1610 		if (cpu_dai->driver->probe) {
1611 			ret = cpu_dai->driver->probe(cpu_dai);
1612 			if (ret < 0) {
1613 				printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1614 						cpu_dai->name);
1615 				return ret;
1616 			}
1617 		}
1618 		cpu_dai->probed = 1;
1619 		/* mark cpu_dai as probed and add to card cpu_dai list */
1620 		list_add(&cpu_dai->card_list, &card->dai_dev_list);
1621 	}
1622 
1623 	/* probe the CODEC */
1624 	if (!codec->probed) {
1625 		ret = soc_probe_codec(card, codec);
1626 		if (ret < 0)
1627 			return ret;
1628 	}
1629 
1630 	/* probe the platform */
1631 	if (!platform->probed) {
1632 		if (!try_module_get(platform->dev->driver->owner))
1633 			return -ENODEV;
1634 
1635 		if (platform->driver->probe) {
1636 			ret = platform->driver->probe(platform);
1637 			if (ret < 0) {
1638 				printk(KERN_ERR "asoc: failed to probe platform %s\n",
1639 						platform->name);
1640 				module_put(platform->dev->driver->owner);
1641 				return ret;
1642 			}
1643 		}
1644 		/* mark platform as probed and add to card platform list */
1645 		platform->probed = 1;
1646 		list_add(&platform->card_list, &card->platform_dev_list);
1647 	}
1648 
1649 	/* probe the CODEC DAI */
1650 	if (!codec_dai->probed) {
1651 		if (codec_dai->driver->probe) {
1652 			ret = codec_dai->driver->probe(codec_dai);
1653 			if (ret < 0) {
1654 				printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1655 						codec_dai->name);
1656 				return ret;
1657 			}
1658 		}
1659 
1660 		/* mark cpu_dai as probed and add to card cpu_dai list */
1661 		codec_dai->probed = 1;
1662 		list_add(&codec_dai->card_list, &card->dai_dev_list);
1663 	}
1664 
1665 	/* DAPM dai link stream work */
1666 	INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1667 
1668 	ret = soc_post_component_init(card, codec, num, 0);
1669 	if (ret)
1670 		return ret;
1671 
1672 	ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1673 	if (ret < 0)
1674 		printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1675 
1676 	/* create the pcm */
1677 	ret = soc_new_pcm(rtd, num);
1678 	if (ret < 0) {
1679 		printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1680 		return ret;
1681 	}
1682 
1683 	/* add platform data for AC97 devices */
1684 	if (rtd->codec_dai->driver->ac97_control)
1685 		snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1686 
1687 	return 0;
1688 }
1689 
1690 #ifdef CONFIG_SND_SOC_AC97_BUS
1691 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1692 {
1693 	int ret;
1694 
1695 	/* Only instantiate AC97 if not already done by the adaptor
1696 	 * for the generic AC97 subsystem.
1697 	 */
1698 	if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1699 		/*
1700 		 * It is possible that the AC97 device is already registered to
1701 		 * the device subsystem. This happens when the device is created
1702 		 * via snd_ac97_mixer(). Currently only SoC codec that does so
1703 		 * is the generic AC97 glue but others migh emerge.
1704 		 *
1705 		 * In those cases we don't try to register the device again.
1706 		 */
1707 		if (!rtd->codec->ac97_created)
1708 			return 0;
1709 
1710 		ret = soc_ac97_dev_register(rtd->codec);
1711 		if (ret < 0) {
1712 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1713 			return ret;
1714 		}
1715 
1716 		rtd->codec->ac97_registered = 1;
1717 	}
1718 	return 0;
1719 }
1720 
1721 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1722 {
1723 	if (codec->ac97_registered) {
1724 		soc_ac97_dev_unregister(codec);
1725 		codec->ac97_registered = 0;
1726 	}
1727 }
1728 #endif
1729 
1730 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1731 {
1732 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1733 	struct snd_soc_codec *codec;
1734 	int ret = -ENODEV;
1735 
1736 	/* find CODEC from registered CODECs*/
1737 	list_for_each_entry(codec, &codec_list, list) {
1738 		if (!strcmp(codec->name, aux_dev->codec_name)) {
1739 			if (codec->probed) {
1740 				dev_err(codec->dev,
1741 					"asoc: codec already probed");
1742 				ret = -EBUSY;
1743 				goto out;
1744 			}
1745 			goto found;
1746 		}
1747 	}
1748 	/* codec not found */
1749 	dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1750 	goto out;
1751 
1752 found:
1753 	ret = soc_probe_codec(card, codec);
1754 	if (ret < 0)
1755 		return ret;
1756 
1757 	ret = soc_post_component_init(card, codec, num, 1);
1758 
1759 out:
1760 	return ret;
1761 }
1762 
1763 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1764 {
1765 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1766 	struct snd_soc_codec *codec = rtd->codec;
1767 
1768 	/* unregister the rtd device */
1769 	if (rtd->dev_registered) {
1770 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1771 		device_unregister(&rtd->dev);
1772 		rtd->dev_registered = 0;
1773 	}
1774 
1775 	if (codec && codec->probed)
1776 		soc_remove_codec(codec);
1777 }
1778 
1779 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1780 				    enum snd_soc_compress_type compress_type)
1781 {
1782 	int ret;
1783 
1784 	if (codec->cache_init)
1785 		return 0;
1786 
1787 	/* override the compress_type if necessary */
1788 	if (compress_type && codec->compress_type != compress_type)
1789 		codec->compress_type = compress_type;
1790 	ret = snd_soc_cache_init(codec);
1791 	if (ret < 0) {
1792 		dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1793 			ret);
1794 		return ret;
1795 	}
1796 	codec->cache_init = 1;
1797 	return 0;
1798 }
1799 
1800 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1801 {
1802 	struct snd_soc_codec *codec;
1803 	struct snd_soc_codec_conf *codec_conf;
1804 	enum snd_soc_compress_type compress_type;
1805 	int ret, i;
1806 
1807 	mutex_lock(&card->mutex);
1808 
1809 	if (card->instantiated) {
1810 		mutex_unlock(&card->mutex);
1811 		return;
1812 	}
1813 
1814 	/* bind DAIs */
1815 	for (i = 0; i < card->num_links; i++)
1816 		soc_bind_dai_link(card, i);
1817 
1818 	/* bind completed ? */
1819 	if (card->num_rtd != card->num_links) {
1820 		mutex_unlock(&card->mutex);
1821 		return;
1822 	}
1823 
1824 	/* initialize the register cache for each available codec */
1825 	list_for_each_entry(codec, &codec_list, list) {
1826 		if (codec->cache_init)
1827 			continue;
1828 		/* by default we don't override the compress_type */
1829 		compress_type = 0;
1830 		/* check to see if we need to override the compress_type */
1831 		for (i = 0; i < card->num_configs; ++i) {
1832 			codec_conf = &card->codec_conf[i];
1833 			if (!strcmp(codec->name, codec_conf->dev_name)) {
1834 				compress_type = codec_conf->compress_type;
1835 				if (compress_type && compress_type
1836 				    != codec->compress_type)
1837 					break;
1838 			}
1839 		}
1840 		ret = snd_soc_init_codec_cache(codec, compress_type);
1841 		if (ret < 0) {
1842 			mutex_unlock(&card->mutex);
1843 			return;
1844 		}
1845 	}
1846 
1847 	/* card bind complete so register a sound card */
1848 	ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1849 			card->owner, 0, &card->snd_card);
1850 	if (ret < 0) {
1851 		printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1852 			card->name);
1853 		mutex_unlock(&card->mutex);
1854 		return;
1855 	}
1856 	card->snd_card->dev = card->dev;
1857 
1858 	card->dapm.bias_level = SND_SOC_BIAS_OFF;
1859 	card->dapm.dev = card->dev;
1860 	card->dapm.card = card;
1861 	list_add(&card->dapm.list, &card->dapm_list);
1862 
1863 #ifdef CONFIG_PM_SLEEP
1864 	/* deferred resume work */
1865 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1866 #endif
1867 
1868 	/* initialise the sound card only once */
1869 	if (card->probe) {
1870 		ret = card->probe(card);
1871 		if (ret < 0)
1872 			goto card_probe_error;
1873 	}
1874 
1875 	for (i = 0; i < card->num_links; i++) {
1876 		ret = soc_probe_dai_link(card, i);
1877 		if (ret < 0) {
1878 			pr_err("asoc: failed to instantiate card %s: %d\n",
1879 			       card->name, ret);
1880 			goto probe_dai_err;
1881 		}
1882 	}
1883 
1884 	for (i = 0; i < card->num_aux_devs; i++) {
1885 		ret = soc_probe_aux_dev(card, i);
1886 		if (ret < 0) {
1887 			pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1888 			       card->name, ret);
1889 			goto probe_aux_dev_err;
1890 		}
1891 	}
1892 
1893 	if (card->dapm_widgets)
1894 		snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1895 					  card->num_dapm_widgets);
1896 	if (card->dapm_routes)
1897 		snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1898 					card->num_dapm_routes);
1899 
1900 #ifdef CONFIG_DEBUG_FS
1901 	card->dapm.debugfs_dapm = debugfs_create_dir("dapm",
1902 						     card->debugfs_card_root);
1903 	if (!card->dapm.debugfs_dapm)
1904 		printk(KERN_WARNING
1905 		       "Failed to create card DAPM debugfs directory\n");
1906 
1907 	snd_soc_dapm_debugfs_init(&card->dapm);
1908 #endif
1909 
1910 	snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1911 		 "%s",  card->name);
1912 	snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1913 		 "%s", card->name);
1914 
1915 	if (card->late_probe) {
1916 		ret = card->late_probe(card);
1917 		if (ret < 0) {
1918 			dev_err(card->dev, "%s late_probe() failed: %d\n",
1919 				card->name, ret);
1920 			goto probe_aux_dev_err;
1921 		}
1922 	}
1923 
1924 	ret = snd_card_register(card->snd_card);
1925 	if (ret < 0) {
1926 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1927 		goto probe_aux_dev_err;
1928 	}
1929 
1930 #ifdef CONFIG_SND_SOC_AC97_BUS
1931 	/* register any AC97 codecs */
1932 	for (i = 0; i < card->num_rtd; i++) {
1933 		ret = soc_register_ac97_dai_link(&card->rtd[i]);
1934 		if (ret < 0) {
1935 			printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1936 			while (--i >= 0)
1937 				soc_unregister_ac97_dai_link(card->rtd[i].codec);
1938 			goto probe_aux_dev_err;
1939 		}
1940 	}
1941 #endif
1942 
1943 	card->instantiated = 1;
1944 	mutex_unlock(&card->mutex);
1945 	return;
1946 
1947 probe_aux_dev_err:
1948 	for (i = 0; i < card->num_aux_devs; i++)
1949 		soc_remove_aux_dev(card, i);
1950 
1951 probe_dai_err:
1952 	for (i = 0; i < card->num_links; i++)
1953 		soc_remove_dai_link(card, i);
1954 
1955 card_probe_error:
1956 	if (card->remove)
1957 		card->remove(card);
1958 
1959 	snd_card_free(card->snd_card);
1960 
1961 	mutex_unlock(&card->mutex);
1962 }
1963 
1964 /*
1965  * Attempt to initialise any uninitialised cards.  Must be called with
1966  * client_mutex.
1967  */
1968 static void snd_soc_instantiate_cards(void)
1969 {
1970 	struct snd_soc_card *card;
1971 	list_for_each_entry(card, &card_list, list)
1972 		snd_soc_instantiate_card(card);
1973 }
1974 
1975 /* probes a new socdev */
1976 static int soc_probe(struct platform_device *pdev)
1977 {
1978 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1979 	int ret = 0;
1980 
1981 	/*
1982 	 * no card, so machine driver should be registering card
1983 	 * we should not be here in that case so ret error
1984 	 */
1985 	if (!card)
1986 		return -EINVAL;
1987 
1988 	/* Bodge while we unpick instantiation */
1989 	card->dev = &pdev->dev;
1990 
1991 	ret = snd_soc_register_card(card);
1992 	if (ret != 0) {
1993 		dev_err(&pdev->dev, "Failed to register card\n");
1994 		return ret;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2001 {
2002 	int i;
2003 
2004 	/* make sure any delayed work runs */
2005 	for (i = 0; i < card->num_rtd; i++) {
2006 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2007 		flush_delayed_work_sync(&rtd->delayed_work);
2008 	}
2009 
2010 	/* remove auxiliary devices */
2011 	for (i = 0; i < card->num_aux_devs; i++)
2012 		soc_remove_aux_dev(card, i);
2013 
2014 	/* remove and free each DAI */
2015 	for (i = 0; i < card->num_rtd; i++)
2016 		soc_remove_dai_link(card, i);
2017 
2018 	soc_cleanup_card_debugfs(card);
2019 
2020 	/* remove the card */
2021 	if (card->remove)
2022 		card->remove(card);
2023 
2024 	kfree(card->rtd);
2025 	snd_card_free(card->snd_card);
2026 	return 0;
2027 
2028 }
2029 
2030 /* removes a socdev */
2031 static int soc_remove(struct platform_device *pdev)
2032 {
2033 	struct snd_soc_card *card = platform_get_drvdata(pdev);
2034 
2035 	snd_soc_unregister_card(card);
2036 	return 0;
2037 }
2038 
2039 int snd_soc_poweroff(struct device *dev)
2040 {
2041 	struct snd_soc_card *card = dev_get_drvdata(dev);
2042 	int i;
2043 
2044 	if (!card->instantiated)
2045 		return 0;
2046 
2047 	/* Flush out pmdown_time work - we actually do want to run it
2048 	 * now, we're shutting down so no imminent restart. */
2049 	for (i = 0; i < card->num_rtd; i++) {
2050 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2051 		flush_delayed_work_sync(&rtd->delayed_work);
2052 	}
2053 
2054 	snd_soc_dapm_shutdown(card);
2055 
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2059 
2060 const struct dev_pm_ops snd_soc_pm_ops = {
2061 	.suspend = snd_soc_suspend,
2062 	.resume = snd_soc_resume,
2063 	.poweroff = snd_soc_poweroff,
2064 };
2065 
2066 /* ASoC platform driver */
2067 static struct platform_driver soc_driver = {
2068 	.driver		= {
2069 		.name		= "soc-audio",
2070 		.owner		= THIS_MODULE,
2071 		.pm		= &snd_soc_pm_ops,
2072 	},
2073 	.probe		= soc_probe,
2074 	.remove		= soc_remove,
2075 };
2076 
2077 /* create a new pcm */
2078 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2079 {
2080 	struct snd_soc_codec *codec = rtd->codec;
2081 	struct snd_soc_platform *platform = rtd->platform;
2082 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
2083 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2084 	struct snd_pcm *pcm;
2085 	char new_name[64];
2086 	int ret = 0, playback = 0, capture = 0;
2087 
2088 	/* check client and interface hw capabilities */
2089 	snprintf(new_name, sizeof(new_name), "%s %s-%d",
2090 			rtd->dai_link->stream_name, codec_dai->name, num);
2091 
2092 	if (codec_dai->driver->playback.channels_min)
2093 		playback = 1;
2094 	if (codec_dai->driver->capture.channels_min)
2095 		capture = 1;
2096 
2097 	dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2098 	ret = snd_pcm_new(rtd->card->snd_card, new_name,
2099 			num, playback, capture, &pcm);
2100 	if (ret < 0) {
2101 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2102 		return ret;
2103 	}
2104 
2105 	rtd->pcm = pcm;
2106 	pcm->private_data = rtd;
2107 	soc_pcm_ops.mmap = platform->driver->ops->mmap;
2108 	soc_pcm_ops.pointer = platform->driver->ops->pointer;
2109 	soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2110 	soc_pcm_ops.copy = platform->driver->ops->copy;
2111 	soc_pcm_ops.silence = platform->driver->ops->silence;
2112 	soc_pcm_ops.ack = platform->driver->ops->ack;
2113 	soc_pcm_ops.page = platform->driver->ops->page;
2114 
2115 	if (playback)
2116 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2117 
2118 	if (capture)
2119 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2120 
2121 	ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2122 	if (ret < 0) {
2123 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2124 		return ret;
2125 	}
2126 
2127 	pcm->private_free = platform->driver->pcm_free;
2128 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2129 		cpu_dai->name);
2130 	return ret;
2131 }
2132 
2133 /**
2134  * snd_soc_codec_volatile_register: Report if a register is volatile.
2135  *
2136  * @codec: CODEC to query.
2137  * @reg: Register to query.
2138  *
2139  * Boolean function indiciating if a CODEC register is volatile.
2140  */
2141 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2142 				    unsigned int reg)
2143 {
2144 	if (codec->volatile_register)
2145 		return codec->volatile_register(codec, reg);
2146 	else
2147 		return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2150 
2151 /**
2152  * snd_soc_new_ac97_codec - initailise AC97 device
2153  * @codec: audio codec
2154  * @ops: AC97 bus operations
2155  * @num: AC97 codec number
2156  *
2157  * Initialises AC97 codec resources for use by ad-hoc devices only.
2158  */
2159 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2160 	struct snd_ac97_bus_ops *ops, int num)
2161 {
2162 	mutex_lock(&codec->mutex);
2163 
2164 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2165 	if (codec->ac97 == NULL) {
2166 		mutex_unlock(&codec->mutex);
2167 		return -ENOMEM;
2168 	}
2169 
2170 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2171 	if (codec->ac97->bus == NULL) {
2172 		kfree(codec->ac97);
2173 		codec->ac97 = NULL;
2174 		mutex_unlock(&codec->mutex);
2175 		return -ENOMEM;
2176 	}
2177 
2178 	codec->ac97->bus->ops = ops;
2179 	codec->ac97->num = num;
2180 
2181 	/*
2182 	 * Mark the AC97 device to be created by us. This way we ensure that the
2183 	 * device will be registered with the device subsystem later on.
2184 	 */
2185 	codec->ac97_created = 1;
2186 
2187 	mutex_unlock(&codec->mutex);
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2191 
2192 /**
2193  * snd_soc_free_ac97_codec - free AC97 codec device
2194  * @codec: audio codec
2195  *
2196  * Frees AC97 codec device resources.
2197  */
2198 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2199 {
2200 	mutex_lock(&codec->mutex);
2201 #ifdef CONFIG_SND_SOC_AC97_BUS
2202 	soc_unregister_ac97_dai_link(codec);
2203 #endif
2204 	kfree(codec->ac97->bus);
2205 	kfree(codec->ac97);
2206 	codec->ac97 = NULL;
2207 	codec->ac97_created = 0;
2208 	mutex_unlock(&codec->mutex);
2209 }
2210 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2211 
2212 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2213 {
2214 	unsigned int ret;
2215 
2216 	ret = codec->read(codec, reg);
2217 	dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2218 	trace_snd_soc_reg_read(codec, reg, ret);
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(snd_soc_read);
2223 
2224 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2225 			   unsigned int reg, unsigned int val)
2226 {
2227 	dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2228 	trace_snd_soc_reg_write(codec, reg, val);
2229 	return codec->write(codec, reg, val);
2230 }
2231 EXPORT_SYMBOL_GPL(snd_soc_write);
2232 
2233 /**
2234  * snd_soc_update_bits - update codec register bits
2235  * @codec: audio codec
2236  * @reg: codec register
2237  * @mask: register mask
2238  * @value: new value
2239  *
2240  * Writes new register value.
2241  *
2242  * Returns 1 for change, 0 for no change, or negative error code.
2243  */
2244 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2245 				unsigned int mask, unsigned int value)
2246 {
2247 	int change;
2248 	unsigned int old, new;
2249 	int ret;
2250 
2251 	ret = snd_soc_read(codec, reg);
2252 	if (ret < 0)
2253 		return ret;
2254 
2255 	old = ret;
2256 	new = (old & ~mask) | value;
2257 	change = old != new;
2258 	if (change) {
2259 		ret = snd_soc_write(codec, reg, new);
2260 		if (ret < 0)
2261 			return ret;
2262 	}
2263 
2264 	return change;
2265 }
2266 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2267 
2268 /**
2269  * snd_soc_update_bits_locked - update codec register bits
2270  * @codec: audio codec
2271  * @reg: codec register
2272  * @mask: register mask
2273  * @value: new value
2274  *
2275  * Writes new register value, and takes the codec mutex.
2276  *
2277  * Returns 1 for change else 0.
2278  */
2279 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2280 			       unsigned short reg, unsigned int mask,
2281 			       unsigned int value)
2282 {
2283 	int change;
2284 
2285 	mutex_lock(&codec->mutex);
2286 	change = snd_soc_update_bits(codec, reg, mask, value);
2287 	mutex_unlock(&codec->mutex);
2288 
2289 	return change;
2290 }
2291 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2292 
2293 /**
2294  * snd_soc_test_bits - test register for change
2295  * @codec: audio codec
2296  * @reg: codec register
2297  * @mask: register mask
2298  * @value: new value
2299  *
2300  * Tests a register with a new value and checks if the new value is
2301  * different from the old value.
2302  *
2303  * Returns 1 for change else 0.
2304  */
2305 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2306 				unsigned int mask, unsigned int value)
2307 {
2308 	int change;
2309 	unsigned int old, new;
2310 
2311 	old = snd_soc_read(codec, reg);
2312 	new = (old & ~mask) | value;
2313 	change = old != new;
2314 
2315 	return change;
2316 }
2317 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2318 
2319 /**
2320  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2321  * @substream: the pcm substream
2322  * @hw: the hardware parameters
2323  *
2324  * Sets the substream runtime hardware parameters.
2325  */
2326 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2327 	const struct snd_pcm_hardware *hw)
2328 {
2329 	struct snd_pcm_runtime *runtime = substream->runtime;
2330 	runtime->hw.info = hw->info;
2331 	runtime->hw.formats = hw->formats;
2332 	runtime->hw.period_bytes_min = hw->period_bytes_min;
2333 	runtime->hw.period_bytes_max = hw->period_bytes_max;
2334 	runtime->hw.periods_min = hw->periods_min;
2335 	runtime->hw.periods_max = hw->periods_max;
2336 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2337 	runtime->hw.fifo_size = hw->fifo_size;
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2341 
2342 /**
2343  * snd_soc_cnew - create new control
2344  * @_template: control template
2345  * @data: control private data
2346  * @long_name: control long name
2347  * @prefix: control name prefix
2348  *
2349  * Create a new mixer control from a template control.
2350  *
2351  * Returns 0 for success, else error.
2352  */
2353 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2354 				  void *data, char *long_name,
2355 				  const char *prefix)
2356 {
2357 	struct snd_kcontrol_new template;
2358 	struct snd_kcontrol *kcontrol;
2359 	char *name = NULL;
2360 	int name_len;
2361 
2362 	memcpy(&template, _template, sizeof(template));
2363 	template.index = 0;
2364 
2365 	if (!long_name)
2366 		long_name = template.name;
2367 
2368 	if (prefix) {
2369 		name_len = strlen(long_name) + strlen(prefix) + 2;
2370 		name = kmalloc(name_len, GFP_ATOMIC);
2371 		if (!name)
2372 			return NULL;
2373 
2374 		snprintf(name, name_len, "%s %s", prefix, long_name);
2375 
2376 		template.name = name;
2377 	} else {
2378 		template.name = long_name;
2379 	}
2380 
2381 	kcontrol = snd_ctl_new1(&template, data);
2382 
2383 	kfree(name);
2384 
2385 	return kcontrol;
2386 }
2387 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2388 
2389 /**
2390  * snd_soc_add_controls - add an array of controls to a codec.
2391  * Convienience function to add a list of controls. Many codecs were
2392  * duplicating this code.
2393  *
2394  * @codec: codec to add controls to
2395  * @controls: array of controls to add
2396  * @num_controls: number of elements in the array
2397  *
2398  * Return 0 for success, else error.
2399  */
2400 int snd_soc_add_controls(struct snd_soc_codec *codec,
2401 	const struct snd_kcontrol_new *controls, int num_controls)
2402 {
2403 	struct snd_card *card = codec->card->snd_card;
2404 	int err, i;
2405 
2406 	for (i = 0; i < num_controls; i++) {
2407 		const struct snd_kcontrol_new *control = &controls[i];
2408 		err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2409 						     control->name,
2410 						     codec->name_prefix));
2411 		if (err < 0) {
2412 			dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2413 				codec->name, control->name, err);
2414 			return err;
2415 		}
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2421 
2422 /**
2423  * snd_soc_info_enum_double - enumerated double mixer info callback
2424  * @kcontrol: mixer control
2425  * @uinfo: control element information
2426  *
2427  * Callback to provide information about a double enumerated
2428  * mixer control.
2429  *
2430  * Returns 0 for success.
2431  */
2432 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2433 	struct snd_ctl_elem_info *uinfo)
2434 {
2435 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2436 
2437 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2438 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2439 	uinfo->value.enumerated.items = e->max;
2440 
2441 	if (uinfo->value.enumerated.item > e->max - 1)
2442 		uinfo->value.enumerated.item = e->max - 1;
2443 	strcpy(uinfo->value.enumerated.name,
2444 		e->texts[uinfo->value.enumerated.item]);
2445 	return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2448 
2449 /**
2450  * snd_soc_get_enum_double - enumerated double mixer get callback
2451  * @kcontrol: mixer control
2452  * @ucontrol: control element information
2453  *
2454  * Callback to get the value of a double enumerated mixer.
2455  *
2456  * Returns 0 for success.
2457  */
2458 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2459 	struct snd_ctl_elem_value *ucontrol)
2460 {
2461 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2462 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2463 	unsigned int val, bitmask;
2464 
2465 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2466 		;
2467 	val = snd_soc_read(codec, e->reg);
2468 	ucontrol->value.enumerated.item[0]
2469 		= (val >> e->shift_l) & (bitmask - 1);
2470 	if (e->shift_l != e->shift_r)
2471 		ucontrol->value.enumerated.item[1] =
2472 			(val >> e->shift_r) & (bitmask - 1);
2473 
2474 	return 0;
2475 }
2476 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2477 
2478 /**
2479  * snd_soc_put_enum_double - enumerated double mixer put callback
2480  * @kcontrol: mixer control
2481  * @ucontrol: control element information
2482  *
2483  * Callback to set the value of a double enumerated mixer.
2484  *
2485  * Returns 0 for success.
2486  */
2487 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2488 	struct snd_ctl_elem_value *ucontrol)
2489 {
2490 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2491 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2492 	unsigned int val;
2493 	unsigned int mask, bitmask;
2494 
2495 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2496 		;
2497 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2498 		return -EINVAL;
2499 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
2500 	mask = (bitmask - 1) << e->shift_l;
2501 	if (e->shift_l != e->shift_r) {
2502 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2503 			return -EINVAL;
2504 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2505 		mask |= (bitmask - 1) << e->shift_r;
2506 	}
2507 
2508 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2509 }
2510 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2511 
2512 /**
2513  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2514  * @kcontrol: mixer control
2515  * @ucontrol: control element information
2516  *
2517  * Callback to get the value of a double semi enumerated mixer.
2518  *
2519  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2520  * used for handling bitfield coded enumeration for example.
2521  *
2522  * Returns 0 for success.
2523  */
2524 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2525 	struct snd_ctl_elem_value *ucontrol)
2526 {
2527 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2528 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2529 	unsigned int reg_val, val, mux;
2530 
2531 	reg_val = snd_soc_read(codec, e->reg);
2532 	val = (reg_val >> e->shift_l) & e->mask;
2533 	for (mux = 0; mux < e->max; mux++) {
2534 		if (val == e->values[mux])
2535 			break;
2536 	}
2537 	ucontrol->value.enumerated.item[0] = mux;
2538 	if (e->shift_l != e->shift_r) {
2539 		val = (reg_val >> e->shift_r) & e->mask;
2540 		for (mux = 0; mux < e->max; mux++) {
2541 			if (val == e->values[mux])
2542 				break;
2543 		}
2544 		ucontrol->value.enumerated.item[1] = mux;
2545 	}
2546 
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2550 
2551 /**
2552  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2553  * @kcontrol: mixer control
2554  * @ucontrol: control element information
2555  *
2556  * Callback to set the value of a double semi enumerated mixer.
2557  *
2558  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2559  * used for handling bitfield coded enumeration for example.
2560  *
2561  * Returns 0 for success.
2562  */
2563 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2564 	struct snd_ctl_elem_value *ucontrol)
2565 {
2566 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2567 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2568 	unsigned int val;
2569 	unsigned int mask;
2570 
2571 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2572 		return -EINVAL;
2573 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2574 	mask = e->mask << e->shift_l;
2575 	if (e->shift_l != e->shift_r) {
2576 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2577 			return -EINVAL;
2578 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2579 		mask |= e->mask << e->shift_r;
2580 	}
2581 
2582 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2583 }
2584 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2585 
2586 /**
2587  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2588  * @kcontrol: mixer control
2589  * @uinfo: control element information
2590  *
2591  * Callback to provide information about an external enumerated
2592  * single mixer.
2593  *
2594  * Returns 0 for success.
2595  */
2596 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2597 	struct snd_ctl_elem_info *uinfo)
2598 {
2599 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2600 
2601 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2602 	uinfo->count = 1;
2603 	uinfo->value.enumerated.items = e->max;
2604 
2605 	if (uinfo->value.enumerated.item > e->max - 1)
2606 		uinfo->value.enumerated.item = e->max - 1;
2607 	strcpy(uinfo->value.enumerated.name,
2608 		e->texts[uinfo->value.enumerated.item]);
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2612 
2613 /**
2614  * snd_soc_info_volsw_ext - external single mixer info callback
2615  * @kcontrol: mixer control
2616  * @uinfo: control element information
2617  *
2618  * Callback to provide information about a single external mixer control.
2619  *
2620  * Returns 0 for success.
2621  */
2622 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2623 	struct snd_ctl_elem_info *uinfo)
2624 {
2625 	int max = kcontrol->private_value;
2626 
2627 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2628 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2629 	else
2630 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2631 
2632 	uinfo->count = 1;
2633 	uinfo->value.integer.min = 0;
2634 	uinfo->value.integer.max = max;
2635 	return 0;
2636 }
2637 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2638 
2639 /**
2640  * snd_soc_info_volsw - single mixer info callback
2641  * @kcontrol: mixer control
2642  * @uinfo: control element information
2643  *
2644  * Callback to provide information about a single mixer control.
2645  *
2646  * Returns 0 for success.
2647  */
2648 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2649 	struct snd_ctl_elem_info *uinfo)
2650 {
2651 	struct soc_mixer_control *mc =
2652 		(struct soc_mixer_control *)kcontrol->private_value;
2653 	int platform_max;
2654 	unsigned int shift = mc->shift;
2655 	unsigned int rshift = mc->rshift;
2656 
2657 	if (!mc->platform_max)
2658 		mc->platform_max = mc->max;
2659 	platform_max = mc->platform_max;
2660 
2661 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2662 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2663 	else
2664 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2665 
2666 	uinfo->count = shift == rshift ? 1 : 2;
2667 	uinfo->value.integer.min = 0;
2668 	uinfo->value.integer.max = platform_max;
2669 	return 0;
2670 }
2671 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2672 
2673 /**
2674  * snd_soc_get_volsw - single mixer get callback
2675  * @kcontrol: mixer control
2676  * @ucontrol: control element information
2677  *
2678  * Callback to get the value of a single mixer control.
2679  *
2680  * Returns 0 for success.
2681  */
2682 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2683 	struct snd_ctl_elem_value *ucontrol)
2684 {
2685 	struct soc_mixer_control *mc =
2686 		(struct soc_mixer_control *)kcontrol->private_value;
2687 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2688 	unsigned int reg = mc->reg;
2689 	unsigned int shift = mc->shift;
2690 	unsigned int rshift = mc->rshift;
2691 	int max = mc->max;
2692 	unsigned int mask = (1 << fls(max)) - 1;
2693 	unsigned int invert = mc->invert;
2694 
2695 	ucontrol->value.integer.value[0] =
2696 		(snd_soc_read(codec, reg) >> shift) & mask;
2697 	if (shift != rshift)
2698 		ucontrol->value.integer.value[1] =
2699 			(snd_soc_read(codec, reg) >> rshift) & mask;
2700 	if (invert) {
2701 		ucontrol->value.integer.value[0] =
2702 			max - ucontrol->value.integer.value[0];
2703 		if (shift != rshift)
2704 			ucontrol->value.integer.value[1] =
2705 				max - ucontrol->value.integer.value[1];
2706 	}
2707 
2708 	return 0;
2709 }
2710 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2711 
2712 /**
2713  * snd_soc_put_volsw - single mixer put callback
2714  * @kcontrol: mixer control
2715  * @ucontrol: control element information
2716  *
2717  * Callback to set the value of a single mixer control.
2718  *
2719  * Returns 0 for success.
2720  */
2721 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2722 	struct snd_ctl_elem_value *ucontrol)
2723 {
2724 	struct soc_mixer_control *mc =
2725 		(struct soc_mixer_control *)kcontrol->private_value;
2726 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2727 	unsigned int reg = mc->reg;
2728 	unsigned int shift = mc->shift;
2729 	unsigned int rshift = mc->rshift;
2730 	int max = mc->max;
2731 	unsigned int mask = (1 << fls(max)) - 1;
2732 	unsigned int invert = mc->invert;
2733 	unsigned int val, val2, val_mask;
2734 
2735 	val = (ucontrol->value.integer.value[0] & mask);
2736 	if (invert)
2737 		val = max - val;
2738 	val_mask = mask << shift;
2739 	val = val << shift;
2740 	if (shift != rshift) {
2741 		val2 = (ucontrol->value.integer.value[1] & mask);
2742 		if (invert)
2743 			val2 = max - val2;
2744 		val_mask |= mask << rshift;
2745 		val |= val2 << rshift;
2746 	}
2747 	return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2748 }
2749 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2750 
2751 /**
2752  * snd_soc_info_volsw_2r - double mixer info callback
2753  * @kcontrol: mixer control
2754  * @uinfo: control element information
2755  *
2756  * Callback to provide information about a double mixer control that
2757  * spans 2 codec registers.
2758  *
2759  * Returns 0 for success.
2760  */
2761 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2762 	struct snd_ctl_elem_info *uinfo)
2763 {
2764 	struct soc_mixer_control *mc =
2765 		(struct soc_mixer_control *)kcontrol->private_value;
2766 	int platform_max;
2767 
2768 	if (!mc->platform_max)
2769 		mc->platform_max = mc->max;
2770 	platform_max = mc->platform_max;
2771 
2772 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2773 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2774 	else
2775 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2776 
2777 	uinfo->count = 2;
2778 	uinfo->value.integer.min = 0;
2779 	uinfo->value.integer.max = platform_max;
2780 	return 0;
2781 }
2782 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2783 
2784 /**
2785  * snd_soc_get_volsw_2r - double mixer get callback
2786  * @kcontrol: mixer control
2787  * @ucontrol: control element information
2788  *
2789  * Callback to get the value of a double mixer control that spans 2 registers.
2790  *
2791  * Returns 0 for success.
2792  */
2793 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2794 	struct snd_ctl_elem_value *ucontrol)
2795 {
2796 	struct soc_mixer_control *mc =
2797 		(struct soc_mixer_control *)kcontrol->private_value;
2798 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2799 	unsigned int reg = mc->reg;
2800 	unsigned int reg2 = mc->rreg;
2801 	unsigned int shift = mc->shift;
2802 	int max = mc->max;
2803 	unsigned int mask = (1 << fls(max)) - 1;
2804 	unsigned int invert = mc->invert;
2805 
2806 	ucontrol->value.integer.value[0] =
2807 		(snd_soc_read(codec, reg) >> shift) & mask;
2808 	ucontrol->value.integer.value[1] =
2809 		(snd_soc_read(codec, reg2) >> shift) & mask;
2810 	if (invert) {
2811 		ucontrol->value.integer.value[0] =
2812 			max - ucontrol->value.integer.value[0];
2813 		ucontrol->value.integer.value[1] =
2814 			max - ucontrol->value.integer.value[1];
2815 	}
2816 
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2820 
2821 /**
2822  * snd_soc_put_volsw_2r - double mixer set callback
2823  * @kcontrol: mixer control
2824  * @ucontrol: control element information
2825  *
2826  * Callback to set the value of a double mixer control that spans 2 registers.
2827  *
2828  * Returns 0 for success.
2829  */
2830 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2831 	struct snd_ctl_elem_value *ucontrol)
2832 {
2833 	struct soc_mixer_control *mc =
2834 		(struct soc_mixer_control *)kcontrol->private_value;
2835 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2836 	unsigned int reg = mc->reg;
2837 	unsigned int reg2 = mc->rreg;
2838 	unsigned int shift = mc->shift;
2839 	int max = mc->max;
2840 	unsigned int mask = (1 << fls(max)) - 1;
2841 	unsigned int invert = mc->invert;
2842 	int err;
2843 	unsigned int val, val2, val_mask;
2844 
2845 	val_mask = mask << shift;
2846 	val = (ucontrol->value.integer.value[0] & mask);
2847 	val2 = (ucontrol->value.integer.value[1] & mask);
2848 
2849 	if (invert) {
2850 		val = max - val;
2851 		val2 = max - val2;
2852 	}
2853 
2854 	val = val << shift;
2855 	val2 = val2 << shift;
2856 
2857 	err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2858 	if (err < 0)
2859 		return err;
2860 
2861 	err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2862 	return err;
2863 }
2864 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2865 
2866 /**
2867  * snd_soc_info_volsw_s8 - signed mixer info callback
2868  * @kcontrol: mixer control
2869  * @uinfo: control element information
2870  *
2871  * Callback to provide information about a signed mixer control.
2872  *
2873  * Returns 0 for success.
2874  */
2875 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2876 	struct snd_ctl_elem_info *uinfo)
2877 {
2878 	struct soc_mixer_control *mc =
2879 		(struct soc_mixer_control *)kcontrol->private_value;
2880 	int platform_max;
2881 	int min = mc->min;
2882 
2883 	if (!mc->platform_max)
2884 		mc->platform_max = mc->max;
2885 	platform_max = mc->platform_max;
2886 
2887 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2888 	uinfo->count = 2;
2889 	uinfo->value.integer.min = 0;
2890 	uinfo->value.integer.max = platform_max - min;
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2894 
2895 /**
2896  * snd_soc_get_volsw_s8 - signed mixer get callback
2897  * @kcontrol: mixer control
2898  * @ucontrol: control element information
2899  *
2900  * Callback to get the value of a signed mixer control.
2901  *
2902  * Returns 0 for success.
2903  */
2904 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2905 	struct snd_ctl_elem_value *ucontrol)
2906 {
2907 	struct soc_mixer_control *mc =
2908 		(struct soc_mixer_control *)kcontrol->private_value;
2909 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2910 	unsigned int reg = mc->reg;
2911 	int min = mc->min;
2912 	int val = snd_soc_read(codec, reg);
2913 
2914 	ucontrol->value.integer.value[0] =
2915 		((signed char)(val & 0xff))-min;
2916 	ucontrol->value.integer.value[1] =
2917 		((signed char)((val >> 8) & 0xff))-min;
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2921 
2922 /**
2923  * snd_soc_put_volsw_sgn - signed mixer put callback
2924  * @kcontrol: mixer control
2925  * @ucontrol: control element information
2926  *
2927  * Callback to set the value of a signed mixer control.
2928  *
2929  * Returns 0 for success.
2930  */
2931 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2932 	struct snd_ctl_elem_value *ucontrol)
2933 {
2934 	struct soc_mixer_control *mc =
2935 		(struct soc_mixer_control *)kcontrol->private_value;
2936 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2937 	unsigned int reg = mc->reg;
2938 	int min = mc->min;
2939 	unsigned int val;
2940 
2941 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
2942 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2943 
2944 	return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2945 }
2946 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2947 
2948 /**
2949  * snd_soc_limit_volume - Set new limit to an existing volume control.
2950  *
2951  * @codec: where to look for the control
2952  * @name: Name of the control
2953  * @max: new maximum limit
2954  *
2955  * Return 0 for success, else error.
2956  */
2957 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2958 	const char *name, int max)
2959 {
2960 	struct snd_card *card = codec->card->snd_card;
2961 	struct snd_kcontrol *kctl;
2962 	struct soc_mixer_control *mc;
2963 	int found = 0;
2964 	int ret = -EINVAL;
2965 
2966 	/* Sanity check for name and max */
2967 	if (unlikely(!name || max <= 0))
2968 		return -EINVAL;
2969 
2970 	list_for_each_entry(kctl, &card->controls, list) {
2971 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2972 			found = 1;
2973 			break;
2974 		}
2975 	}
2976 	if (found) {
2977 		mc = (struct soc_mixer_control *)kctl->private_value;
2978 		if (max <= mc->max) {
2979 			mc->platform_max = max;
2980 			ret = 0;
2981 		}
2982 	}
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2986 
2987 /**
2988  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2989  *  mixer info callback
2990  * @kcontrol: mixer control
2991  * @uinfo: control element information
2992  *
2993  * Returns 0 for success.
2994  */
2995 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2996 			struct snd_ctl_elem_info *uinfo)
2997 {
2998 	struct soc_mixer_control *mc =
2999 		(struct soc_mixer_control *)kcontrol->private_value;
3000 	int max = mc->max;
3001 	int min = mc->min;
3002 
3003 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3004 	uinfo->count = 2;
3005 	uinfo->value.integer.min = 0;
3006 	uinfo->value.integer.max = max-min;
3007 
3008 	return 0;
3009 }
3010 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3011 
3012 /**
3013  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3014  *  mixer get callback
3015  * @kcontrol: mixer control
3016  * @uinfo: control element information
3017  *
3018  * Returns 0 for success.
3019  */
3020 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3021 			struct snd_ctl_elem_value *ucontrol)
3022 {
3023 	struct soc_mixer_control *mc =
3024 		(struct soc_mixer_control *)kcontrol->private_value;
3025 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3026 	unsigned int mask = (1<<mc->shift)-1;
3027 	int min = mc->min;
3028 	int val = snd_soc_read(codec, mc->reg) & mask;
3029 	int valr = snd_soc_read(codec, mc->rreg) & mask;
3030 
3031 	ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3032 	ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3033 	return 0;
3034 }
3035 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3036 
3037 /**
3038  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3039  *  mixer put callback
3040  * @kcontrol: mixer control
3041  * @uinfo: control element information
3042  *
3043  * Returns 0 for success.
3044  */
3045 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3046 			struct snd_ctl_elem_value *ucontrol)
3047 {
3048 	struct soc_mixer_control *mc =
3049 		(struct soc_mixer_control *)kcontrol->private_value;
3050 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3051 	unsigned int mask = (1<<mc->shift)-1;
3052 	int min = mc->min;
3053 	int ret;
3054 	unsigned int val, valr, oval, ovalr;
3055 
3056 	val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3057 	val &= mask;
3058 	valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3059 	valr &= mask;
3060 
3061 	oval = snd_soc_read(codec, mc->reg) & mask;
3062 	ovalr = snd_soc_read(codec, mc->rreg) & mask;
3063 
3064 	ret = 0;
3065 	if (oval != val) {
3066 		ret = snd_soc_write(codec, mc->reg, val);
3067 		if (ret < 0)
3068 			return ret;
3069 	}
3070 	if (ovalr != valr) {
3071 		ret = snd_soc_write(codec, mc->rreg, valr);
3072 		if (ret < 0)
3073 			return ret;
3074 	}
3075 
3076 	return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3079 
3080 /**
3081  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3082  * @dai: DAI
3083  * @clk_id: DAI specific clock ID
3084  * @freq: new clock frequency in Hz
3085  * @dir: new clock direction - input/output.
3086  *
3087  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3088  */
3089 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3090 	unsigned int freq, int dir)
3091 {
3092 	if (dai->driver && dai->driver->ops->set_sysclk)
3093 		return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3094 	else if (dai->codec && dai->codec->driver->set_sysclk)
3095 		return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3096 						      freq, dir);
3097 	else
3098 		return -EINVAL;
3099 }
3100 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3101 
3102 /**
3103  * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3104  * @codec: CODEC
3105  * @clk_id: DAI specific clock ID
3106  * @freq: new clock frequency in Hz
3107  * @dir: new clock direction - input/output.
3108  *
3109  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3110  */
3111 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3112 	unsigned int freq, int dir)
3113 {
3114 	if (codec->driver->set_sysclk)
3115 		return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3116 	else
3117 		return -EINVAL;
3118 }
3119 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3120 
3121 /**
3122  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3123  * @dai: DAI
3124  * @div_id: DAI specific clock divider ID
3125  * @div: new clock divisor.
3126  *
3127  * Configures the clock dividers. This is used to derive the best DAI bit and
3128  * frame clocks from the system or master clock. It's best to set the DAI bit
3129  * and frame clocks as low as possible to save system power.
3130  */
3131 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3132 	int div_id, int div)
3133 {
3134 	if (dai->driver && dai->driver->ops->set_clkdiv)
3135 		return dai->driver->ops->set_clkdiv(dai, div_id, div);
3136 	else
3137 		return -EINVAL;
3138 }
3139 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3140 
3141 /**
3142  * snd_soc_dai_set_pll - configure DAI PLL.
3143  * @dai: DAI
3144  * @pll_id: DAI specific PLL ID
3145  * @source: DAI specific source for the PLL
3146  * @freq_in: PLL input clock frequency in Hz
3147  * @freq_out: requested PLL output clock frequency in Hz
3148  *
3149  * Configures and enables PLL to generate output clock based on input clock.
3150  */
3151 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3152 	unsigned int freq_in, unsigned int freq_out)
3153 {
3154 	if (dai->driver && dai->driver->ops->set_pll)
3155 		return dai->driver->ops->set_pll(dai, pll_id, source,
3156 					 freq_in, freq_out);
3157 	else if (dai->codec && dai->codec->driver->set_pll)
3158 		return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3159 						   freq_in, freq_out);
3160 	else
3161 		return -EINVAL;
3162 }
3163 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3164 
3165 /*
3166  * snd_soc_codec_set_pll - configure codec PLL.
3167  * @codec: CODEC
3168  * @pll_id: DAI specific PLL ID
3169  * @source: DAI specific source for the PLL
3170  * @freq_in: PLL input clock frequency in Hz
3171  * @freq_out: requested PLL output clock frequency in Hz
3172  *
3173  * Configures and enables PLL to generate output clock based on input clock.
3174  */
3175 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3176 			  unsigned int freq_in, unsigned int freq_out)
3177 {
3178 	if (codec->driver->set_pll)
3179 		return codec->driver->set_pll(codec, pll_id, source,
3180 					      freq_in, freq_out);
3181 	else
3182 		return -EINVAL;
3183 }
3184 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3185 
3186 /**
3187  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3188  * @dai: DAI
3189  * @fmt: SND_SOC_DAIFMT_ format value.
3190  *
3191  * Configures the DAI hardware format and clocking.
3192  */
3193 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3194 {
3195 	if (dai->driver && dai->driver->ops->set_fmt)
3196 		return dai->driver->ops->set_fmt(dai, fmt);
3197 	else
3198 		return -EINVAL;
3199 }
3200 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3201 
3202 /**
3203  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3204  * @dai: DAI
3205  * @tx_mask: bitmask representing active TX slots.
3206  * @rx_mask: bitmask representing active RX slots.
3207  * @slots: Number of slots in use.
3208  * @slot_width: Width in bits for each slot.
3209  *
3210  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3211  * specific.
3212  */
3213 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3214 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3215 {
3216 	if (dai->driver && dai->driver->ops->set_tdm_slot)
3217 		return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3218 				slots, slot_width);
3219 	else
3220 		return -EINVAL;
3221 }
3222 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3223 
3224 /**
3225  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3226  * @dai: DAI
3227  * @tx_num: how many TX channels
3228  * @tx_slot: pointer to an array which imply the TX slot number channel
3229  *           0~num-1 uses
3230  * @rx_num: how many RX channels
3231  * @rx_slot: pointer to an array which imply the RX slot number channel
3232  *           0~num-1 uses
3233  *
3234  * configure the relationship between channel number and TDM slot number.
3235  */
3236 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3237 	unsigned int tx_num, unsigned int *tx_slot,
3238 	unsigned int rx_num, unsigned int *rx_slot)
3239 {
3240 	if (dai->driver && dai->driver->ops->set_channel_map)
3241 		return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3242 			rx_num, rx_slot);
3243 	else
3244 		return -EINVAL;
3245 }
3246 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3247 
3248 /**
3249  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3250  * @dai: DAI
3251  * @tristate: tristate enable
3252  *
3253  * Tristates the DAI so that others can use it.
3254  */
3255 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3256 {
3257 	if (dai->driver && dai->driver->ops->set_tristate)
3258 		return dai->driver->ops->set_tristate(dai, tristate);
3259 	else
3260 		return -EINVAL;
3261 }
3262 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3263 
3264 /**
3265  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3266  * @dai: DAI
3267  * @mute: mute enable
3268  *
3269  * Mutes the DAI DAC.
3270  */
3271 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3272 {
3273 	if (dai->driver && dai->driver->ops->digital_mute)
3274 		return dai->driver->ops->digital_mute(dai, mute);
3275 	else
3276 		return -EINVAL;
3277 }
3278 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3279 
3280 /**
3281  * snd_soc_register_card - Register a card with the ASoC core
3282  *
3283  * @card: Card to register
3284  *
3285  */
3286 int snd_soc_register_card(struct snd_soc_card *card)
3287 {
3288 	int i;
3289 
3290 	if (!card->name || !card->dev)
3291 		return -EINVAL;
3292 
3293 	snd_soc_initialize_card_lists(card);
3294 
3295 	soc_init_card_debugfs(card);
3296 
3297 	card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3298 			    (card->num_links + card->num_aux_devs),
3299 			    GFP_KERNEL);
3300 	if (card->rtd == NULL)
3301 		return -ENOMEM;
3302 	card->rtd_aux = &card->rtd[card->num_links];
3303 
3304 	for (i = 0; i < card->num_links; i++)
3305 		card->rtd[i].dai_link = &card->dai_link[i];
3306 
3307 	INIT_LIST_HEAD(&card->list);
3308 	card->instantiated = 0;
3309 	mutex_init(&card->mutex);
3310 
3311 	mutex_lock(&client_mutex);
3312 	list_add(&card->list, &card_list);
3313 	snd_soc_instantiate_cards();
3314 	mutex_unlock(&client_mutex);
3315 
3316 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3317 
3318 	return 0;
3319 }
3320 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3321 
3322 /**
3323  * snd_soc_unregister_card - Unregister a card with the ASoC core
3324  *
3325  * @card: Card to unregister
3326  *
3327  */
3328 int snd_soc_unregister_card(struct snd_soc_card *card)
3329 {
3330 	if (card->instantiated)
3331 		soc_cleanup_card_resources(card);
3332 	mutex_lock(&client_mutex);
3333 	list_del(&card->list);
3334 	mutex_unlock(&client_mutex);
3335 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3336 
3337 	return 0;
3338 }
3339 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3340 
3341 /*
3342  * Simplify DAI link configuration by removing ".-1" from device names
3343  * and sanitizing names.
3344  */
3345 static char *fmt_single_name(struct device *dev, int *id)
3346 {
3347 	char *found, name[NAME_SIZE];
3348 	int id1, id2;
3349 
3350 	if (dev_name(dev) == NULL)
3351 		return NULL;
3352 
3353 	strlcpy(name, dev_name(dev), NAME_SIZE);
3354 
3355 	/* are we a "%s.%d" name (platform and SPI components) */
3356 	found = strstr(name, dev->driver->name);
3357 	if (found) {
3358 		/* get ID */
3359 		if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3360 
3361 			/* discard ID from name if ID == -1 */
3362 			if (*id == -1)
3363 				found[strlen(dev->driver->name)] = '\0';
3364 		}
3365 
3366 	} else {
3367 		/* I2C component devices are named "bus-addr"  */
3368 		if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3369 			char tmp[NAME_SIZE];
3370 
3371 			/* create unique ID number from I2C addr and bus */
3372 			*id = ((id1 & 0xffff) << 16) + id2;
3373 
3374 			/* sanitize component name for DAI link creation */
3375 			snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3376 			strlcpy(name, tmp, NAME_SIZE);
3377 		} else
3378 			*id = 0;
3379 	}
3380 
3381 	return kstrdup(name, GFP_KERNEL);
3382 }
3383 
3384 /*
3385  * Simplify DAI link naming for single devices with multiple DAIs by removing
3386  * any ".-1" and using the DAI name (instead of device name).
3387  */
3388 static inline char *fmt_multiple_name(struct device *dev,
3389 		struct snd_soc_dai_driver *dai_drv)
3390 {
3391 	if (dai_drv->name == NULL) {
3392 		printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3393 				dev_name(dev));
3394 		return NULL;
3395 	}
3396 
3397 	return kstrdup(dai_drv->name, GFP_KERNEL);
3398 }
3399 
3400 /**
3401  * snd_soc_register_dai - Register a DAI with the ASoC core
3402  *
3403  * @dai: DAI to register
3404  */
3405 int snd_soc_register_dai(struct device *dev,
3406 		struct snd_soc_dai_driver *dai_drv)
3407 {
3408 	struct snd_soc_dai *dai;
3409 
3410 	dev_dbg(dev, "dai register %s\n", dev_name(dev));
3411 
3412 	dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3413 	if (dai == NULL)
3414 			return -ENOMEM;
3415 
3416 	/* create DAI component name */
3417 	dai->name = fmt_single_name(dev, &dai->id);
3418 	if (dai->name == NULL) {
3419 		kfree(dai);
3420 		return -ENOMEM;
3421 	}
3422 
3423 	dai->dev = dev;
3424 	dai->driver = dai_drv;
3425 	if (!dai->driver->ops)
3426 		dai->driver->ops = &null_dai_ops;
3427 
3428 	mutex_lock(&client_mutex);
3429 	list_add(&dai->list, &dai_list);
3430 	snd_soc_instantiate_cards();
3431 	mutex_unlock(&client_mutex);
3432 
3433 	pr_debug("Registered DAI '%s'\n", dai->name);
3434 
3435 	return 0;
3436 }
3437 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3438 
3439 /**
3440  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3441  *
3442  * @dai: DAI to unregister
3443  */
3444 void snd_soc_unregister_dai(struct device *dev)
3445 {
3446 	struct snd_soc_dai *dai;
3447 
3448 	list_for_each_entry(dai, &dai_list, list) {
3449 		if (dev == dai->dev)
3450 			goto found;
3451 	}
3452 	return;
3453 
3454 found:
3455 	mutex_lock(&client_mutex);
3456 	list_del(&dai->list);
3457 	mutex_unlock(&client_mutex);
3458 
3459 	pr_debug("Unregistered DAI '%s'\n", dai->name);
3460 	kfree(dai->name);
3461 	kfree(dai);
3462 }
3463 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3464 
3465 /**
3466  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3467  *
3468  * @dai: Array of DAIs to register
3469  * @count: Number of DAIs
3470  */
3471 int snd_soc_register_dais(struct device *dev,
3472 		struct snd_soc_dai_driver *dai_drv, size_t count)
3473 {
3474 	struct snd_soc_dai *dai;
3475 	int i, ret = 0;
3476 
3477 	dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3478 
3479 	for (i = 0; i < count; i++) {
3480 
3481 		dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3482 		if (dai == NULL) {
3483 			ret = -ENOMEM;
3484 			goto err;
3485 		}
3486 
3487 		/* create DAI component name */
3488 		dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3489 		if (dai->name == NULL) {
3490 			kfree(dai);
3491 			ret = -EINVAL;
3492 			goto err;
3493 		}
3494 
3495 		dai->dev = dev;
3496 		dai->driver = &dai_drv[i];
3497 		if (dai->driver->id)
3498 			dai->id = dai->driver->id;
3499 		else
3500 			dai->id = i;
3501 		if (!dai->driver->ops)
3502 			dai->driver->ops = &null_dai_ops;
3503 
3504 		mutex_lock(&client_mutex);
3505 		list_add(&dai->list, &dai_list);
3506 		mutex_unlock(&client_mutex);
3507 
3508 		pr_debug("Registered DAI '%s'\n", dai->name);
3509 	}
3510 
3511 	mutex_lock(&client_mutex);
3512 	snd_soc_instantiate_cards();
3513 	mutex_unlock(&client_mutex);
3514 	return 0;
3515 
3516 err:
3517 	for (i--; i >= 0; i--)
3518 		snd_soc_unregister_dai(dev);
3519 
3520 	return ret;
3521 }
3522 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3523 
3524 /**
3525  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3526  *
3527  * @dai: Array of DAIs to unregister
3528  * @count: Number of DAIs
3529  */
3530 void snd_soc_unregister_dais(struct device *dev, size_t count)
3531 {
3532 	int i;
3533 
3534 	for (i = 0; i < count; i++)
3535 		snd_soc_unregister_dai(dev);
3536 }
3537 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3538 
3539 /**
3540  * snd_soc_register_platform - Register a platform with the ASoC core
3541  *
3542  * @platform: platform to register
3543  */
3544 int snd_soc_register_platform(struct device *dev,
3545 		struct snd_soc_platform_driver *platform_drv)
3546 {
3547 	struct snd_soc_platform *platform;
3548 
3549 	dev_dbg(dev, "platform register %s\n", dev_name(dev));
3550 
3551 	platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3552 	if (platform == NULL)
3553 			return -ENOMEM;
3554 
3555 	/* create platform component name */
3556 	platform->name = fmt_single_name(dev, &platform->id);
3557 	if (platform->name == NULL) {
3558 		kfree(platform);
3559 		return -ENOMEM;
3560 	}
3561 
3562 	platform->dev = dev;
3563 	platform->driver = platform_drv;
3564 
3565 	mutex_lock(&client_mutex);
3566 	list_add(&platform->list, &platform_list);
3567 	snd_soc_instantiate_cards();
3568 	mutex_unlock(&client_mutex);
3569 
3570 	pr_debug("Registered platform '%s'\n", platform->name);
3571 
3572 	return 0;
3573 }
3574 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3575 
3576 /**
3577  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3578  *
3579  * @platform: platform to unregister
3580  */
3581 void snd_soc_unregister_platform(struct device *dev)
3582 {
3583 	struct snd_soc_platform *platform;
3584 
3585 	list_for_each_entry(platform, &platform_list, list) {
3586 		if (dev == platform->dev)
3587 			goto found;
3588 	}
3589 	return;
3590 
3591 found:
3592 	mutex_lock(&client_mutex);
3593 	list_del(&platform->list);
3594 	mutex_unlock(&client_mutex);
3595 
3596 	pr_debug("Unregistered platform '%s'\n", platform->name);
3597 	kfree(platform->name);
3598 	kfree(platform);
3599 }
3600 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3601 
3602 static u64 codec_format_map[] = {
3603 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3604 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3605 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3606 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3607 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3608 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3609 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3610 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3611 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3612 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3613 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3614 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3615 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3616 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3617 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3618 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3619 };
3620 
3621 /* Fix up the DAI formats for endianness: codecs don't actually see
3622  * the endianness of the data but we're using the CPU format
3623  * definitions which do need to include endianness so we ensure that
3624  * codec DAIs always have both big and little endian variants set.
3625  */
3626 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3627 {
3628 	int i;
3629 
3630 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3631 		if (stream->formats & codec_format_map[i])
3632 			stream->formats |= codec_format_map[i];
3633 }
3634 
3635 /**
3636  * snd_soc_register_codec - Register a codec with the ASoC core
3637  *
3638  * @codec: codec to register
3639  */
3640 int snd_soc_register_codec(struct device *dev,
3641 			   const struct snd_soc_codec_driver *codec_drv,
3642 			   struct snd_soc_dai_driver *dai_drv,
3643 			   int num_dai)
3644 {
3645 	size_t reg_size;
3646 	struct snd_soc_codec *codec;
3647 	int ret, i;
3648 
3649 	dev_dbg(dev, "codec register %s\n", dev_name(dev));
3650 
3651 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3652 	if (codec == NULL)
3653 		return -ENOMEM;
3654 
3655 	/* create CODEC component name */
3656 	codec->name = fmt_single_name(dev, &codec->id);
3657 	if (codec->name == NULL) {
3658 		kfree(codec);
3659 		return -ENOMEM;
3660 	}
3661 
3662 	if (codec_drv->compress_type)
3663 		codec->compress_type = codec_drv->compress_type;
3664 	else
3665 		codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3666 
3667 	codec->write = codec_drv->write;
3668 	codec->read = codec_drv->read;
3669 	codec->volatile_register = codec_drv->volatile_register;
3670 	codec->readable_register = codec_drv->readable_register;
3671 	codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3672 	codec->dapm.dev = dev;
3673 	codec->dapm.codec = codec;
3674 	codec->dapm.seq_notifier = codec_drv->seq_notifier;
3675 	codec->dev = dev;
3676 	codec->driver = codec_drv;
3677 	codec->num_dai = num_dai;
3678 	mutex_init(&codec->mutex);
3679 
3680 	/* allocate CODEC register cache */
3681 	if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3682 		reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3683 		codec->reg_size = reg_size;
3684 		/* it is necessary to make a copy of the default register cache
3685 		 * because in the case of using a compression type that requires
3686 		 * the default register cache to be marked as __devinitconst the
3687 		 * kernel might have freed the array by the time we initialize
3688 		 * the cache.
3689 		 */
3690 		if (codec_drv->reg_cache_default) {
3691 			codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3692 						      reg_size, GFP_KERNEL);
3693 			if (!codec->reg_def_copy) {
3694 				ret = -ENOMEM;
3695 				goto fail;
3696 			}
3697 		}
3698 	}
3699 
3700 	if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3701 		if (!codec->volatile_register)
3702 			codec->volatile_register = snd_soc_default_volatile_register;
3703 		if (!codec->readable_register)
3704 			codec->readable_register = snd_soc_default_readable_register;
3705 	}
3706 
3707 	for (i = 0; i < num_dai; i++) {
3708 		fixup_codec_formats(&dai_drv[i].playback);
3709 		fixup_codec_formats(&dai_drv[i].capture);
3710 	}
3711 
3712 	/* register any DAIs */
3713 	if (num_dai) {
3714 		ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3715 		if (ret < 0)
3716 			goto fail;
3717 	}
3718 
3719 	mutex_lock(&client_mutex);
3720 	list_add(&codec->list, &codec_list);
3721 	snd_soc_instantiate_cards();
3722 	mutex_unlock(&client_mutex);
3723 
3724 	pr_debug("Registered codec '%s'\n", codec->name);
3725 	return 0;
3726 
3727 fail:
3728 	kfree(codec->reg_def_copy);
3729 	codec->reg_def_copy = NULL;
3730 	kfree(codec->name);
3731 	kfree(codec);
3732 	return ret;
3733 }
3734 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3735 
3736 /**
3737  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3738  *
3739  * @codec: codec to unregister
3740  */
3741 void snd_soc_unregister_codec(struct device *dev)
3742 {
3743 	struct snd_soc_codec *codec;
3744 	int i;
3745 
3746 	list_for_each_entry(codec, &codec_list, list) {
3747 		if (dev == codec->dev)
3748 			goto found;
3749 	}
3750 	return;
3751 
3752 found:
3753 	if (codec->num_dai)
3754 		for (i = 0; i < codec->num_dai; i++)
3755 			snd_soc_unregister_dai(dev);
3756 
3757 	mutex_lock(&client_mutex);
3758 	list_del(&codec->list);
3759 	mutex_unlock(&client_mutex);
3760 
3761 	pr_debug("Unregistered codec '%s'\n", codec->name);
3762 
3763 	snd_soc_cache_exit(codec);
3764 	kfree(codec->reg_def_copy);
3765 	kfree(codec->name);
3766 	kfree(codec);
3767 }
3768 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3769 
3770 static int __init snd_soc_init(void)
3771 {
3772 #ifdef CONFIG_DEBUG_FS
3773 	snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3774 	if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3775 		printk(KERN_WARNING
3776 		       "ASoC: Failed to create debugfs directory\n");
3777 		snd_soc_debugfs_root = NULL;
3778 	}
3779 
3780 	if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3781 				 &codec_list_fops))
3782 		pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3783 
3784 	if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3785 				 &dai_list_fops))
3786 		pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3787 
3788 	if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3789 				 &platform_list_fops))
3790 		pr_warn("ASoC: Failed to create platform list debugfs file\n");
3791 #endif
3792 
3793 	return platform_driver_register(&soc_driver);
3794 }
3795 module_init(snd_soc_init);
3796 
3797 static void __exit snd_soc_exit(void)
3798 {
3799 #ifdef CONFIG_DEBUG_FS
3800 	debugfs_remove_recursive(snd_soc_debugfs_root);
3801 #endif
3802 	platform_driver_unregister(&soc_driver);
3803 }
3804 module_exit(snd_soc_exit);
3805 
3806 /* Module information */
3807 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3808 MODULE_DESCRIPTION("ALSA SoC Core");
3809 MODULE_LICENSE("GPL");
3810 MODULE_ALIAS("platform:soc-audio");
3811