1 /* 2 * soc-core.c -- ALSA SoC Audio Layer 3 * 4 * Copyright 2005 Wolfson Microelectronics PLC. 5 * Copyright 2005 Openedhand Ltd. 6 * Copyright (C) 2010 Slimlogic Ltd. 7 * Copyright (C) 2010 Texas Instruments Inc. 8 * 9 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 10 * with code, comments and ideas from :- 11 * Richard Purdie <richard@openedhand.com> 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * TODO: 19 * o Add hw rules to enforce rates, etc. 20 * o More testing with other codecs/machines. 21 * o Add more codecs and platforms to ensure good API coverage. 22 * o Support TDM on PCM and I2S 23 */ 24 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/init.h> 28 #include <linux/delay.h> 29 #include <linux/pm.h> 30 #include <linux/bitops.h> 31 #include <linux/debugfs.h> 32 #include <linux/platform_device.h> 33 #include <linux/slab.h> 34 #include <sound/ac97_codec.h> 35 #include <sound/core.h> 36 #include <sound/jack.h> 37 #include <sound/pcm.h> 38 #include <sound/pcm_params.h> 39 #include <sound/soc.h> 40 #include <sound/initval.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/asoc.h> 44 45 #define NAME_SIZE 32 46 47 static DEFINE_MUTEX(pcm_mutex); 48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq); 49 50 #ifdef CONFIG_DEBUG_FS 51 struct dentry *snd_soc_debugfs_root; 52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root); 53 #endif 54 55 static DEFINE_MUTEX(client_mutex); 56 static LIST_HEAD(card_list); 57 static LIST_HEAD(dai_list); 58 static LIST_HEAD(platform_list); 59 static LIST_HEAD(codec_list); 60 61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num); 62 63 /* 64 * This is a timeout to do a DAPM powerdown after a stream is closed(). 65 * It can be used to eliminate pops between different playback streams, e.g. 66 * between two audio tracks. 67 */ 68 static int pmdown_time = 5000; 69 module_param(pmdown_time, int, 0); 70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)"); 71 72 /* returns the minimum number of bytes needed to represent 73 * a particular given value */ 74 static int min_bytes_needed(unsigned long val) 75 { 76 int c = 0; 77 int i; 78 79 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c) 80 if (val & (1UL << i)) 81 break; 82 c = (sizeof val * 8) - c; 83 if (!c || (c % 8)) 84 c = (c + 8) / 8; 85 else 86 c /= 8; 87 return c; 88 } 89 90 /* fill buf which is 'len' bytes with a formatted 91 * string of the form 'reg: value\n' */ 92 static int format_register_str(struct snd_soc_codec *codec, 93 unsigned int reg, char *buf, size_t len) 94 { 95 int wordsize = codec->driver->reg_word_size * 2; 96 int regsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; 97 int ret; 98 char tmpbuf[len + 1]; 99 char regbuf[regsize + 1]; 100 101 /* since tmpbuf is allocated on the stack, warn the callers if they 102 * try to abuse this function */ 103 WARN_ON(len > 63); 104 105 /* +2 for ': ' and + 1 for '\n' */ 106 if (wordsize + regsize + 2 + 1 != len) 107 return -EINVAL; 108 109 ret = snd_soc_read(codec , reg); 110 if (ret < 0) { 111 memset(regbuf, 'X', regsize); 112 regbuf[regsize] = '\0'; 113 } else { 114 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret); 115 } 116 117 /* prepare the buffer */ 118 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf); 119 /* copy it back to the caller without the '\0' */ 120 memcpy(buf, tmpbuf, len); 121 122 return 0; 123 } 124 125 /* codec register dump */ 126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf, 127 size_t count, loff_t pos) 128 { 129 int i, step = 1; 130 int wordsize, regsize; 131 int len; 132 size_t total = 0; 133 loff_t p = 0; 134 135 wordsize = codec->driver->reg_word_size * 2; 136 regsize = min_bytes_needed(codec->driver->reg_cache_size) * 2; 137 138 len = wordsize + regsize + 2 + 1; 139 140 if (!codec->driver->reg_cache_size) 141 return 0; 142 143 if (codec->driver->reg_cache_step) 144 step = codec->driver->reg_cache_step; 145 146 for (i = 0; i < codec->driver->reg_cache_size; i += step) { 147 if (codec->readable_register && !codec->readable_register(codec, i)) 148 continue; 149 if (codec->driver->display_register) { 150 count += codec->driver->display_register(codec, buf + count, 151 PAGE_SIZE - count, i); 152 } else { 153 /* only support larger than PAGE_SIZE bytes debugfs 154 * entries for the default case */ 155 if (p >= pos) { 156 if (total + len >= count - 1) 157 break; 158 format_register_str(codec, i, buf + total, len); 159 total += len; 160 } 161 p += len; 162 } 163 } 164 165 total = min(total, count - 1); 166 167 return total; 168 } 169 170 static ssize_t codec_reg_show(struct device *dev, 171 struct device_attribute *attr, char *buf) 172 { 173 struct snd_soc_pcm_runtime *rtd = 174 container_of(dev, struct snd_soc_pcm_runtime, dev); 175 176 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0); 177 } 178 179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL); 180 181 static ssize_t pmdown_time_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct snd_soc_pcm_runtime *rtd = 185 container_of(dev, struct snd_soc_pcm_runtime, dev); 186 187 return sprintf(buf, "%ld\n", rtd->pmdown_time); 188 } 189 190 static ssize_t pmdown_time_set(struct device *dev, 191 struct device_attribute *attr, 192 const char *buf, size_t count) 193 { 194 struct snd_soc_pcm_runtime *rtd = 195 container_of(dev, struct snd_soc_pcm_runtime, dev); 196 int ret; 197 198 ret = strict_strtol(buf, 10, &rtd->pmdown_time); 199 if (ret) 200 return ret; 201 202 return count; 203 } 204 205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set); 206 207 #ifdef CONFIG_DEBUG_FS 208 static int codec_reg_open_file(struct inode *inode, struct file *file) 209 { 210 file->private_data = inode->i_private; 211 return 0; 212 } 213 214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf, 215 size_t count, loff_t *ppos) 216 { 217 ssize_t ret; 218 struct snd_soc_codec *codec = file->private_data; 219 char *buf; 220 221 if (*ppos < 0 || !count) 222 return -EINVAL; 223 224 buf = kmalloc(count, GFP_KERNEL); 225 if (!buf) 226 return -ENOMEM; 227 228 ret = soc_codec_reg_show(codec, buf, count, *ppos); 229 if (ret >= 0) { 230 if (copy_to_user(user_buf, buf, ret)) { 231 kfree(buf); 232 return -EFAULT; 233 } 234 *ppos += ret; 235 } 236 237 kfree(buf); 238 return ret; 239 } 240 241 static ssize_t codec_reg_write_file(struct file *file, 242 const char __user *user_buf, size_t count, loff_t *ppos) 243 { 244 char buf[32]; 245 int buf_size; 246 char *start = buf; 247 unsigned long reg, value; 248 int step = 1; 249 struct snd_soc_codec *codec = file->private_data; 250 251 buf_size = min(count, (sizeof(buf)-1)); 252 if (copy_from_user(buf, user_buf, buf_size)) 253 return -EFAULT; 254 buf[buf_size] = 0; 255 256 if (codec->driver->reg_cache_step) 257 step = codec->driver->reg_cache_step; 258 259 while (*start == ' ') 260 start++; 261 reg = simple_strtoul(start, &start, 16); 262 if ((reg >= codec->driver->reg_cache_size) || (reg % step)) 263 return -EINVAL; 264 while (*start == ' ') 265 start++; 266 if (strict_strtoul(start, 16, &value)) 267 return -EINVAL; 268 269 /* Userspace has been fiddling around behind the kernel's back */ 270 add_taint(TAINT_USER); 271 272 snd_soc_write(codec, reg, value); 273 return buf_size; 274 } 275 276 static const struct file_operations codec_reg_fops = { 277 .open = codec_reg_open_file, 278 .read = codec_reg_read_file, 279 .write = codec_reg_write_file, 280 .llseek = default_llseek, 281 }; 282 283 static void soc_init_codec_debugfs(struct snd_soc_codec *codec) 284 { 285 struct dentry *debugfs_card_root = codec->card->debugfs_card_root; 286 287 codec->debugfs_codec_root = debugfs_create_dir(codec->name, 288 debugfs_card_root); 289 if (!codec->debugfs_codec_root) { 290 printk(KERN_WARNING 291 "ASoC: Failed to create codec debugfs directory\n"); 292 return; 293 } 294 295 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root, 296 &codec->cache_sync); 297 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root, 298 &codec->cache_only); 299 300 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644, 301 codec->debugfs_codec_root, 302 codec, &codec_reg_fops); 303 if (!codec->debugfs_reg) 304 printk(KERN_WARNING 305 "ASoC: Failed to create codec register debugfs file\n"); 306 307 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm", 308 codec->debugfs_codec_root); 309 if (!codec->dapm.debugfs_dapm) 310 printk(KERN_WARNING 311 "Failed to create DAPM debugfs directory\n"); 312 313 snd_soc_dapm_debugfs_init(&codec->dapm); 314 } 315 316 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 317 { 318 debugfs_remove_recursive(codec->debugfs_codec_root); 319 } 320 321 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf, 322 size_t count, loff_t *ppos) 323 { 324 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 325 ssize_t len, ret = 0; 326 struct snd_soc_codec *codec; 327 328 if (!buf) 329 return -ENOMEM; 330 331 list_for_each_entry(codec, &codec_list, list) { 332 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 333 codec->name); 334 if (len >= 0) 335 ret += len; 336 if (ret > PAGE_SIZE) { 337 ret = PAGE_SIZE; 338 break; 339 } 340 } 341 342 if (ret >= 0) 343 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 344 345 kfree(buf); 346 347 return ret; 348 } 349 350 static const struct file_operations codec_list_fops = { 351 .read = codec_list_read_file, 352 .llseek = default_llseek,/* read accesses f_pos */ 353 }; 354 355 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf, 356 size_t count, loff_t *ppos) 357 { 358 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 359 ssize_t len, ret = 0; 360 struct snd_soc_dai *dai; 361 362 if (!buf) 363 return -ENOMEM; 364 365 list_for_each_entry(dai, &dai_list, list) { 366 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name); 367 if (len >= 0) 368 ret += len; 369 if (ret > PAGE_SIZE) { 370 ret = PAGE_SIZE; 371 break; 372 } 373 } 374 375 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 376 377 kfree(buf); 378 379 return ret; 380 } 381 382 static const struct file_operations dai_list_fops = { 383 .read = dai_list_read_file, 384 .llseek = default_llseek,/* read accesses f_pos */ 385 }; 386 387 static ssize_t platform_list_read_file(struct file *file, 388 char __user *user_buf, 389 size_t count, loff_t *ppos) 390 { 391 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 392 ssize_t len, ret = 0; 393 struct snd_soc_platform *platform; 394 395 if (!buf) 396 return -ENOMEM; 397 398 list_for_each_entry(platform, &platform_list, list) { 399 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", 400 platform->name); 401 if (len >= 0) 402 ret += len; 403 if (ret > PAGE_SIZE) { 404 ret = PAGE_SIZE; 405 break; 406 } 407 } 408 409 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 410 411 kfree(buf); 412 413 return ret; 414 } 415 416 static const struct file_operations platform_list_fops = { 417 .read = platform_list_read_file, 418 .llseek = default_llseek,/* read accesses f_pos */ 419 }; 420 421 static void soc_init_card_debugfs(struct snd_soc_card *card) 422 { 423 card->debugfs_card_root = debugfs_create_dir(card->name, 424 snd_soc_debugfs_root); 425 if (!card->debugfs_card_root) { 426 dev_warn(card->dev, 427 "ASoC: Failed to create codec debugfs directory\n"); 428 return; 429 } 430 431 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644, 432 card->debugfs_card_root, 433 &card->pop_time); 434 if (!card->debugfs_pop_time) 435 dev_warn(card->dev, 436 "Failed to create pop time debugfs file\n"); 437 } 438 439 static void soc_cleanup_card_debugfs(struct snd_soc_card *card) 440 { 441 debugfs_remove_recursive(card->debugfs_card_root); 442 } 443 444 #else 445 446 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec) 447 { 448 } 449 450 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec) 451 { 452 } 453 454 static inline void soc_init_card_debugfs(struct snd_soc_card *card) 455 { 456 } 457 458 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card) 459 { 460 } 461 #endif 462 463 #ifdef CONFIG_SND_SOC_AC97_BUS 464 /* unregister ac97 codec */ 465 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec) 466 { 467 if (codec->ac97->dev.bus) 468 device_unregister(&codec->ac97->dev); 469 return 0; 470 } 471 472 /* stop no dev release warning */ 473 static void soc_ac97_device_release(struct device *dev){} 474 475 /* register ac97 codec to bus */ 476 static int soc_ac97_dev_register(struct snd_soc_codec *codec) 477 { 478 int err; 479 480 codec->ac97->dev.bus = &ac97_bus_type; 481 codec->ac97->dev.parent = codec->card->dev; 482 codec->ac97->dev.release = soc_ac97_device_release; 483 484 dev_set_name(&codec->ac97->dev, "%d-%d:%s", 485 codec->card->snd_card->number, 0, codec->name); 486 err = device_register(&codec->ac97->dev); 487 if (err < 0) { 488 snd_printk(KERN_ERR "Can't register ac97 bus\n"); 489 codec->ac97->dev.bus = NULL; 490 return err; 491 } 492 return 0; 493 } 494 #endif 495 496 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream) 497 { 498 struct snd_soc_pcm_runtime *rtd = substream->private_data; 499 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 500 struct snd_soc_dai *codec_dai = rtd->codec_dai; 501 int ret; 502 503 if (!codec_dai->driver->symmetric_rates && 504 !cpu_dai->driver->symmetric_rates && 505 !rtd->dai_link->symmetric_rates) 506 return 0; 507 508 /* This can happen if multiple streams are starting simultaneously - 509 * the second can need to get its constraints before the first has 510 * picked a rate. Complain and allow the application to carry on. 511 */ 512 if (!rtd->rate) { 513 dev_warn(&rtd->dev, 514 "Not enforcing symmetric_rates due to race\n"); 515 return 0; 516 } 517 518 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate); 519 520 ret = snd_pcm_hw_constraint_minmax(substream->runtime, 521 SNDRV_PCM_HW_PARAM_RATE, 522 rtd->rate, rtd->rate); 523 if (ret < 0) { 524 dev_err(&rtd->dev, 525 "Unable to apply rate symmetry constraint: %d\n", ret); 526 return ret; 527 } 528 529 return 0; 530 } 531 532 /* 533 * Called by ALSA when a PCM substream is opened, the runtime->hw record is 534 * then initialized and any private data can be allocated. This also calls 535 * startup for the cpu DAI, platform, machine and codec DAI. 536 */ 537 static int soc_pcm_open(struct snd_pcm_substream *substream) 538 { 539 struct snd_soc_pcm_runtime *rtd = substream->private_data; 540 struct snd_pcm_runtime *runtime = substream->runtime; 541 struct snd_soc_platform *platform = rtd->platform; 542 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 543 struct snd_soc_dai *codec_dai = rtd->codec_dai; 544 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver; 545 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver; 546 int ret = 0; 547 548 mutex_lock(&pcm_mutex); 549 550 /* startup the audio subsystem */ 551 if (cpu_dai->driver->ops->startup) { 552 ret = cpu_dai->driver->ops->startup(substream, cpu_dai); 553 if (ret < 0) { 554 printk(KERN_ERR "asoc: can't open interface %s\n", 555 cpu_dai->name); 556 goto out; 557 } 558 } 559 560 if (platform->driver->ops->open) { 561 ret = platform->driver->ops->open(substream); 562 if (ret < 0) { 563 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name); 564 goto platform_err; 565 } 566 } 567 568 if (codec_dai->driver->ops->startup) { 569 ret = codec_dai->driver->ops->startup(substream, codec_dai); 570 if (ret < 0) { 571 printk(KERN_ERR "asoc: can't open codec %s\n", 572 codec_dai->name); 573 goto codec_dai_err; 574 } 575 } 576 577 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) { 578 ret = rtd->dai_link->ops->startup(substream); 579 if (ret < 0) { 580 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name); 581 goto machine_err; 582 } 583 } 584 585 /* Check that the codec and cpu DAIs are compatible */ 586 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 587 runtime->hw.rate_min = 588 max(codec_dai_drv->playback.rate_min, 589 cpu_dai_drv->playback.rate_min); 590 runtime->hw.rate_max = 591 min(codec_dai_drv->playback.rate_max, 592 cpu_dai_drv->playback.rate_max); 593 runtime->hw.channels_min = 594 max(codec_dai_drv->playback.channels_min, 595 cpu_dai_drv->playback.channels_min); 596 runtime->hw.channels_max = 597 min(codec_dai_drv->playback.channels_max, 598 cpu_dai_drv->playback.channels_max); 599 runtime->hw.formats = 600 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats; 601 runtime->hw.rates = 602 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates; 603 if (codec_dai_drv->playback.rates 604 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 605 runtime->hw.rates |= cpu_dai_drv->playback.rates; 606 if (cpu_dai_drv->playback.rates 607 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 608 runtime->hw.rates |= codec_dai_drv->playback.rates; 609 } else { 610 runtime->hw.rate_min = 611 max(codec_dai_drv->capture.rate_min, 612 cpu_dai_drv->capture.rate_min); 613 runtime->hw.rate_max = 614 min(codec_dai_drv->capture.rate_max, 615 cpu_dai_drv->capture.rate_max); 616 runtime->hw.channels_min = 617 max(codec_dai_drv->capture.channels_min, 618 cpu_dai_drv->capture.channels_min); 619 runtime->hw.channels_max = 620 min(codec_dai_drv->capture.channels_max, 621 cpu_dai_drv->capture.channels_max); 622 runtime->hw.formats = 623 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats; 624 runtime->hw.rates = 625 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates; 626 if (codec_dai_drv->capture.rates 627 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 628 runtime->hw.rates |= cpu_dai_drv->capture.rates; 629 if (cpu_dai_drv->capture.rates 630 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS)) 631 runtime->hw.rates |= codec_dai_drv->capture.rates; 632 } 633 634 snd_pcm_limit_hw_rates(runtime); 635 if (!runtime->hw.rates) { 636 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n", 637 codec_dai->name, cpu_dai->name); 638 goto config_err; 639 } 640 if (!runtime->hw.formats) { 641 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n", 642 codec_dai->name, cpu_dai->name); 643 goto config_err; 644 } 645 if (!runtime->hw.channels_min || !runtime->hw.channels_max) { 646 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n", 647 codec_dai->name, cpu_dai->name); 648 goto config_err; 649 } 650 651 /* Symmetry only applies if we've already got an active stream. */ 652 if (cpu_dai->active || codec_dai->active) { 653 ret = soc_pcm_apply_symmetry(substream); 654 if (ret != 0) 655 goto config_err; 656 } 657 658 pr_debug("asoc: %s <-> %s info:\n", 659 codec_dai->name, cpu_dai->name); 660 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates); 661 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min, 662 runtime->hw.channels_max); 663 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min, 664 runtime->hw.rate_max); 665 666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 667 cpu_dai->playback_active++; 668 codec_dai->playback_active++; 669 } else { 670 cpu_dai->capture_active++; 671 codec_dai->capture_active++; 672 } 673 cpu_dai->active++; 674 codec_dai->active++; 675 rtd->codec->active++; 676 mutex_unlock(&pcm_mutex); 677 return 0; 678 679 config_err: 680 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 681 rtd->dai_link->ops->shutdown(substream); 682 683 machine_err: 684 if (codec_dai->driver->ops->shutdown) 685 codec_dai->driver->ops->shutdown(substream, codec_dai); 686 687 codec_dai_err: 688 if (platform->driver->ops->close) 689 platform->driver->ops->close(substream); 690 691 platform_err: 692 if (cpu_dai->driver->ops->shutdown) 693 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 694 out: 695 mutex_unlock(&pcm_mutex); 696 return ret; 697 } 698 699 /* 700 * Power down the audio subsystem pmdown_time msecs after close is called. 701 * This is to ensure there are no pops or clicks in between any music tracks 702 * due to DAPM power cycling. 703 */ 704 static void close_delayed_work(struct work_struct *work) 705 { 706 struct snd_soc_pcm_runtime *rtd = 707 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work); 708 struct snd_soc_dai *codec_dai = rtd->codec_dai; 709 710 mutex_lock(&pcm_mutex); 711 712 pr_debug("pop wq checking: %s status: %s waiting: %s\n", 713 codec_dai->driver->playback.stream_name, 714 codec_dai->playback_active ? "active" : "inactive", 715 codec_dai->pop_wait ? "yes" : "no"); 716 717 /* are we waiting on this codec DAI stream */ 718 if (codec_dai->pop_wait == 1) { 719 codec_dai->pop_wait = 0; 720 snd_soc_dapm_stream_event(rtd, 721 codec_dai->driver->playback.stream_name, 722 SND_SOC_DAPM_STREAM_STOP); 723 } 724 725 mutex_unlock(&pcm_mutex); 726 } 727 728 /* 729 * Called by ALSA when a PCM substream is closed. Private data can be 730 * freed here. The cpu DAI, codec DAI, machine and platform are also 731 * shutdown. 732 */ 733 static int soc_codec_close(struct snd_pcm_substream *substream) 734 { 735 struct snd_soc_pcm_runtime *rtd = substream->private_data; 736 struct snd_soc_platform *platform = rtd->platform; 737 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 738 struct snd_soc_dai *codec_dai = rtd->codec_dai; 739 struct snd_soc_codec *codec = rtd->codec; 740 741 mutex_lock(&pcm_mutex); 742 743 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 744 cpu_dai->playback_active--; 745 codec_dai->playback_active--; 746 } else { 747 cpu_dai->capture_active--; 748 codec_dai->capture_active--; 749 } 750 751 cpu_dai->active--; 752 codec_dai->active--; 753 codec->active--; 754 755 /* Muting the DAC suppresses artifacts caused during digital 756 * shutdown, for example from stopping clocks. 757 */ 758 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 759 snd_soc_dai_digital_mute(codec_dai, 1); 760 761 if (cpu_dai->driver->ops->shutdown) 762 cpu_dai->driver->ops->shutdown(substream, cpu_dai); 763 764 if (codec_dai->driver->ops->shutdown) 765 codec_dai->driver->ops->shutdown(substream, codec_dai); 766 767 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown) 768 rtd->dai_link->ops->shutdown(substream); 769 770 if (platform->driver->ops->close) 771 platform->driver->ops->close(substream); 772 cpu_dai->runtime = NULL; 773 774 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 775 /* start delayed pop wq here for playback streams */ 776 codec_dai->pop_wait = 1; 777 schedule_delayed_work(&rtd->delayed_work, 778 msecs_to_jiffies(rtd->pmdown_time)); 779 } else { 780 /* capture streams can be powered down now */ 781 snd_soc_dapm_stream_event(rtd, 782 codec_dai->driver->capture.stream_name, 783 SND_SOC_DAPM_STREAM_STOP); 784 } 785 786 mutex_unlock(&pcm_mutex); 787 return 0; 788 } 789 790 /* 791 * Called by ALSA when the PCM substream is prepared, can set format, sample 792 * rate, etc. This function is non atomic and can be called multiple times, 793 * it can refer to the runtime info. 794 */ 795 static int soc_pcm_prepare(struct snd_pcm_substream *substream) 796 { 797 struct snd_soc_pcm_runtime *rtd = substream->private_data; 798 struct snd_soc_platform *platform = rtd->platform; 799 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 800 struct snd_soc_dai *codec_dai = rtd->codec_dai; 801 int ret = 0; 802 803 mutex_lock(&pcm_mutex); 804 805 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) { 806 ret = rtd->dai_link->ops->prepare(substream); 807 if (ret < 0) { 808 printk(KERN_ERR "asoc: machine prepare error\n"); 809 goto out; 810 } 811 } 812 813 if (platform->driver->ops->prepare) { 814 ret = platform->driver->ops->prepare(substream); 815 if (ret < 0) { 816 printk(KERN_ERR "asoc: platform prepare error\n"); 817 goto out; 818 } 819 } 820 821 if (codec_dai->driver->ops->prepare) { 822 ret = codec_dai->driver->ops->prepare(substream, codec_dai); 823 if (ret < 0) { 824 printk(KERN_ERR "asoc: codec DAI prepare error\n"); 825 goto out; 826 } 827 } 828 829 if (cpu_dai->driver->ops->prepare) { 830 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai); 831 if (ret < 0) { 832 printk(KERN_ERR "asoc: cpu DAI prepare error\n"); 833 goto out; 834 } 835 } 836 837 /* cancel any delayed stream shutdown that is pending */ 838 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 839 codec_dai->pop_wait) { 840 codec_dai->pop_wait = 0; 841 cancel_delayed_work(&rtd->delayed_work); 842 } 843 844 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 845 snd_soc_dapm_stream_event(rtd, 846 codec_dai->driver->playback.stream_name, 847 SND_SOC_DAPM_STREAM_START); 848 else 849 snd_soc_dapm_stream_event(rtd, 850 codec_dai->driver->capture.stream_name, 851 SND_SOC_DAPM_STREAM_START); 852 853 snd_soc_dai_digital_mute(codec_dai, 0); 854 855 out: 856 mutex_unlock(&pcm_mutex); 857 return ret; 858 } 859 860 /* 861 * Called by ALSA when the hardware params are set by application. This 862 * function can also be called multiple times and can allocate buffers 863 * (using snd_pcm_lib_* ). It's non-atomic. 864 */ 865 static int soc_pcm_hw_params(struct snd_pcm_substream *substream, 866 struct snd_pcm_hw_params *params) 867 { 868 struct snd_soc_pcm_runtime *rtd = substream->private_data; 869 struct snd_soc_platform *platform = rtd->platform; 870 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 871 struct snd_soc_dai *codec_dai = rtd->codec_dai; 872 int ret = 0; 873 874 mutex_lock(&pcm_mutex); 875 876 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) { 877 ret = rtd->dai_link->ops->hw_params(substream, params); 878 if (ret < 0) { 879 printk(KERN_ERR "asoc: machine hw_params failed\n"); 880 goto out; 881 } 882 } 883 884 if (codec_dai->driver->ops->hw_params) { 885 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai); 886 if (ret < 0) { 887 printk(KERN_ERR "asoc: can't set codec %s hw params\n", 888 codec_dai->name); 889 goto codec_err; 890 } 891 } 892 893 if (cpu_dai->driver->ops->hw_params) { 894 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai); 895 if (ret < 0) { 896 printk(KERN_ERR "asoc: interface %s hw params failed\n", 897 cpu_dai->name); 898 goto interface_err; 899 } 900 } 901 902 if (platform->driver->ops->hw_params) { 903 ret = platform->driver->ops->hw_params(substream, params); 904 if (ret < 0) { 905 printk(KERN_ERR "asoc: platform %s hw params failed\n", 906 platform->name); 907 goto platform_err; 908 } 909 } 910 911 rtd->rate = params_rate(params); 912 913 out: 914 mutex_unlock(&pcm_mutex); 915 return ret; 916 917 platform_err: 918 if (cpu_dai->driver->ops->hw_free) 919 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 920 921 interface_err: 922 if (codec_dai->driver->ops->hw_free) 923 codec_dai->driver->ops->hw_free(substream, codec_dai); 924 925 codec_err: 926 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 927 rtd->dai_link->ops->hw_free(substream); 928 929 mutex_unlock(&pcm_mutex); 930 return ret; 931 } 932 933 /* 934 * Frees resources allocated by hw_params, can be called multiple times 935 */ 936 static int soc_pcm_hw_free(struct snd_pcm_substream *substream) 937 { 938 struct snd_soc_pcm_runtime *rtd = substream->private_data; 939 struct snd_soc_platform *platform = rtd->platform; 940 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 941 struct snd_soc_dai *codec_dai = rtd->codec_dai; 942 struct snd_soc_codec *codec = rtd->codec; 943 944 mutex_lock(&pcm_mutex); 945 946 /* apply codec digital mute */ 947 if (!codec->active) 948 snd_soc_dai_digital_mute(codec_dai, 1); 949 950 /* free any machine hw params */ 951 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free) 952 rtd->dai_link->ops->hw_free(substream); 953 954 /* free any DMA resources */ 955 if (platform->driver->ops->hw_free) 956 platform->driver->ops->hw_free(substream); 957 958 /* now free hw params for the DAIs */ 959 if (codec_dai->driver->ops->hw_free) 960 codec_dai->driver->ops->hw_free(substream, codec_dai); 961 962 if (cpu_dai->driver->ops->hw_free) 963 cpu_dai->driver->ops->hw_free(substream, cpu_dai); 964 965 mutex_unlock(&pcm_mutex); 966 return 0; 967 } 968 969 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 970 { 971 struct snd_soc_pcm_runtime *rtd = substream->private_data; 972 struct snd_soc_platform *platform = rtd->platform; 973 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 974 struct snd_soc_dai *codec_dai = rtd->codec_dai; 975 int ret; 976 977 if (codec_dai->driver->ops->trigger) { 978 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai); 979 if (ret < 0) 980 return ret; 981 } 982 983 if (platform->driver->ops->trigger) { 984 ret = platform->driver->ops->trigger(substream, cmd); 985 if (ret < 0) 986 return ret; 987 } 988 989 if (cpu_dai->driver->ops->trigger) { 990 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai); 991 if (ret < 0) 992 return ret; 993 } 994 return 0; 995 } 996 997 /* 998 * soc level wrapper for pointer callback 999 * If cpu_dai, codec_dai, platform driver has the delay callback, than 1000 * the runtime->delay will be updated accordingly. 1001 */ 1002 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream) 1003 { 1004 struct snd_soc_pcm_runtime *rtd = substream->private_data; 1005 struct snd_soc_platform *platform = rtd->platform; 1006 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 1007 struct snd_soc_dai *codec_dai = rtd->codec_dai; 1008 struct snd_pcm_runtime *runtime = substream->runtime; 1009 snd_pcm_uframes_t offset = 0; 1010 snd_pcm_sframes_t delay = 0; 1011 1012 if (platform->driver->ops->pointer) 1013 offset = platform->driver->ops->pointer(substream); 1014 1015 if (cpu_dai->driver->ops->delay) 1016 delay += cpu_dai->driver->ops->delay(substream, cpu_dai); 1017 1018 if (codec_dai->driver->ops->delay) 1019 delay += codec_dai->driver->ops->delay(substream, codec_dai); 1020 1021 if (platform->driver->delay) 1022 delay += platform->driver->delay(substream, codec_dai); 1023 1024 runtime->delay = delay; 1025 1026 return offset; 1027 } 1028 1029 /* ASoC PCM operations */ 1030 static struct snd_pcm_ops soc_pcm_ops = { 1031 .open = soc_pcm_open, 1032 .close = soc_codec_close, 1033 .hw_params = soc_pcm_hw_params, 1034 .hw_free = soc_pcm_hw_free, 1035 .prepare = soc_pcm_prepare, 1036 .trigger = soc_pcm_trigger, 1037 .pointer = soc_pcm_pointer, 1038 }; 1039 1040 #ifdef CONFIG_PM_SLEEP 1041 /* powers down audio subsystem for suspend */ 1042 int snd_soc_suspend(struct device *dev) 1043 { 1044 struct snd_soc_card *card = dev_get_drvdata(dev); 1045 struct snd_soc_codec *codec; 1046 int i; 1047 1048 /* If the initialization of this soc device failed, there is no codec 1049 * associated with it. Just bail out in this case. 1050 */ 1051 if (list_empty(&card->codec_dev_list)) 1052 return 0; 1053 1054 /* Due to the resume being scheduled into a workqueue we could 1055 * suspend before that's finished - wait for it to complete. 1056 */ 1057 snd_power_lock(card->snd_card); 1058 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0); 1059 snd_power_unlock(card->snd_card); 1060 1061 /* we're going to block userspace touching us until resume completes */ 1062 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot); 1063 1064 /* mute any active DACs */ 1065 for (i = 0; i < card->num_rtd; i++) { 1066 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 1067 struct snd_soc_dai_driver *drv = dai->driver; 1068 1069 if (card->rtd[i].dai_link->ignore_suspend) 1070 continue; 1071 1072 if (drv->ops->digital_mute && dai->playback_active) 1073 drv->ops->digital_mute(dai, 1); 1074 } 1075 1076 /* suspend all pcms */ 1077 for (i = 0; i < card->num_rtd; i++) { 1078 if (card->rtd[i].dai_link->ignore_suspend) 1079 continue; 1080 1081 snd_pcm_suspend_all(card->rtd[i].pcm); 1082 } 1083 1084 if (card->suspend_pre) 1085 card->suspend_pre(card); 1086 1087 for (i = 0; i < card->num_rtd; i++) { 1088 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1089 struct snd_soc_platform *platform = card->rtd[i].platform; 1090 1091 if (card->rtd[i].dai_link->ignore_suspend) 1092 continue; 1093 1094 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control) 1095 cpu_dai->driver->suspend(cpu_dai); 1096 if (platform->driver->suspend && !platform->suspended) { 1097 platform->driver->suspend(cpu_dai); 1098 platform->suspended = 1; 1099 } 1100 } 1101 1102 /* close any waiting streams and save state */ 1103 for (i = 0; i < card->num_rtd; i++) { 1104 flush_delayed_work_sync(&card->rtd[i].delayed_work); 1105 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level; 1106 } 1107 1108 for (i = 0; i < card->num_rtd; i++) { 1109 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1110 1111 if (card->rtd[i].dai_link->ignore_suspend) 1112 continue; 1113 1114 if (driver->playback.stream_name != NULL) 1115 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1116 SND_SOC_DAPM_STREAM_SUSPEND); 1117 1118 if (driver->capture.stream_name != NULL) 1119 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1120 SND_SOC_DAPM_STREAM_SUSPEND); 1121 } 1122 1123 /* suspend all CODECs */ 1124 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 1125 /* If there are paths active then the CODEC will be held with 1126 * bias _ON and should not be suspended. */ 1127 if (!codec->suspended && codec->driver->suspend) { 1128 switch (codec->dapm.bias_level) { 1129 case SND_SOC_BIAS_STANDBY: 1130 case SND_SOC_BIAS_OFF: 1131 codec->driver->suspend(codec, PMSG_SUSPEND); 1132 codec->suspended = 1; 1133 break; 1134 default: 1135 dev_dbg(codec->dev, "CODEC is on over suspend\n"); 1136 break; 1137 } 1138 } 1139 } 1140 1141 for (i = 0; i < card->num_rtd; i++) { 1142 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1143 1144 if (card->rtd[i].dai_link->ignore_suspend) 1145 continue; 1146 1147 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control) 1148 cpu_dai->driver->suspend(cpu_dai); 1149 } 1150 1151 if (card->suspend_post) 1152 card->suspend_post(card); 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(snd_soc_suspend); 1157 1158 /* deferred resume work, so resume can complete before we finished 1159 * setting our codec back up, which can be very slow on I2C 1160 */ 1161 static void soc_resume_deferred(struct work_struct *work) 1162 { 1163 struct snd_soc_card *card = 1164 container_of(work, struct snd_soc_card, deferred_resume_work); 1165 struct snd_soc_codec *codec; 1166 int i; 1167 1168 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time, 1169 * so userspace apps are blocked from touching us 1170 */ 1171 1172 dev_dbg(card->dev, "starting resume work\n"); 1173 1174 /* Bring us up into D2 so that DAPM starts enabling things */ 1175 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2); 1176 1177 if (card->resume_pre) 1178 card->resume_pre(card); 1179 1180 /* resume AC97 DAIs */ 1181 for (i = 0; i < card->num_rtd; i++) { 1182 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1183 1184 if (card->rtd[i].dai_link->ignore_suspend) 1185 continue; 1186 1187 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control) 1188 cpu_dai->driver->resume(cpu_dai); 1189 } 1190 1191 list_for_each_entry(codec, &card->codec_dev_list, card_list) { 1192 /* If the CODEC was idle over suspend then it will have been 1193 * left with bias OFF or STANDBY and suspended so we must now 1194 * resume. Otherwise the suspend was suppressed. 1195 */ 1196 if (codec->driver->resume && codec->suspended) { 1197 switch (codec->dapm.bias_level) { 1198 case SND_SOC_BIAS_STANDBY: 1199 case SND_SOC_BIAS_OFF: 1200 codec->driver->resume(codec); 1201 codec->suspended = 0; 1202 break; 1203 default: 1204 dev_dbg(codec->dev, "CODEC was on over suspend\n"); 1205 break; 1206 } 1207 } 1208 } 1209 1210 for (i = 0; i < card->num_rtd; i++) { 1211 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver; 1212 1213 if (card->rtd[i].dai_link->ignore_suspend) 1214 continue; 1215 1216 if (driver->playback.stream_name != NULL) 1217 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name, 1218 SND_SOC_DAPM_STREAM_RESUME); 1219 1220 if (driver->capture.stream_name != NULL) 1221 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name, 1222 SND_SOC_DAPM_STREAM_RESUME); 1223 } 1224 1225 /* unmute any active DACs */ 1226 for (i = 0; i < card->num_rtd; i++) { 1227 struct snd_soc_dai *dai = card->rtd[i].codec_dai; 1228 struct snd_soc_dai_driver *drv = dai->driver; 1229 1230 if (card->rtd[i].dai_link->ignore_suspend) 1231 continue; 1232 1233 if (drv->ops->digital_mute && dai->playback_active) 1234 drv->ops->digital_mute(dai, 0); 1235 } 1236 1237 for (i = 0; i < card->num_rtd; i++) { 1238 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1239 struct snd_soc_platform *platform = card->rtd[i].platform; 1240 1241 if (card->rtd[i].dai_link->ignore_suspend) 1242 continue; 1243 1244 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control) 1245 cpu_dai->driver->resume(cpu_dai); 1246 if (platform->driver->resume && platform->suspended) { 1247 platform->driver->resume(cpu_dai); 1248 platform->suspended = 0; 1249 } 1250 } 1251 1252 if (card->resume_post) 1253 card->resume_post(card); 1254 1255 dev_dbg(card->dev, "resume work completed\n"); 1256 1257 /* userspace can access us now we are back as we were before */ 1258 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0); 1259 } 1260 1261 /* powers up audio subsystem after a suspend */ 1262 int snd_soc_resume(struct device *dev) 1263 { 1264 struct snd_soc_card *card = dev_get_drvdata(dev); 1265 int i; 1266 1267 /* AC97 devices might have other drivers hanging off them so 1268 * need to resume immediately. Other drivers don't have that 1269 * problem and may take a substantial amount of time to resume 1270 * due to I/O costs and anti-pop so handle them out of line. 1271 */ 1272 for (i = 0; i < card->num_rtd; i++) { 1273 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai; 1274 if (cpu_dai->driver->ac97_control) { 1275 dev_dbg(dev, "Resuming AC97 immediately\n"); 1276 soc_resume_deferred(&card->deferred_resume_work); 1277 } else { 1278 dev_dbg(dev, "Scheduling resume work\n"); 1279 if (!schedule_work(&card->deferred_resume_work)) 1280 dev_err(dev, "resume work item may be lost\n"); 1281 } 1282 } 1283 1284 return 0; 1285 } 1286 EXPORT_SYMBOL_GPL(snd_soc_resume); 1287 #else 1288 #define snd_soc_suspend NULL 1289 #define snd_soc_resume NULL 1290 #endif 1291 1292 static struct snd_soc_dai_ops null_dai_ops = { 1293 }; 1294 1295 static int soc_bind_dai_link(struct snd_soc_card *card, int num) 1296 { 1297 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1298 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1299 struct snd_soc_codec *codec; 1300 struct snd_soc_platform *platform; 1301 struct snd_soc_dai *codec_dai, *cpu_dai; 1302 1303 if (rtd->complete) 1304 return 1; 1305 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num); 1306 1307 /* do we already have the CPU DAI for this link ? */ 1308 if (rtd->cpu_dai) { 1309 goto find_codec; 1310 } 1311 /* no, then find CPU DAI from registered DAIs*/ 1312 list_for_each_entry(cpu_dai, &dai_list, list) { 1313 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) { 1314 1315 if (!try_module_get(cpu_dai->dev->driver->owner)) 1316 return -ENODEV; 1317 1318 rtd->cpu_dai = cpu_dai; 1319 goto find_codec; 1320 } 1321 } 1322 dev_dbg(card->dev, "CPU DAI %s not registered\n", 1323 dai_link->cpu_dai_name); 1324 1325 find_codec: 1326 /* do we already have the CODEC for this link ? */ 1327 if (rtd->codec) { 1328 goto find_platform; 1329 } 1330 1331 /* no, then find CODEC from registered CODECs*/ 1332 list_for_each_entry(codec, &codec_list, list) { 1333 if (!strcmp(codec->name, dai_link->codec_name)) { 1334 rtd->codec = codec; 1335 1336 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/ 1337 list_for_each_entry(codec_dai, &dai_list, list) { 1338 if (codec->dev == codec_dai->dev && 1339 !strcmp(codec_dai->name, dai_link->codec_dai_name)) { 1340 rtd->codec_dai = codec_dai; 1341 goto find_platform; 1342 } 1343 } 1344 dev_dbg(card->dev, "CODEC DAI %s not registered\n", 1345 dai_link->codec_dai_name); 1346 1347 goto find_platform; 1348 } 1349 } 1350 dev_dbg(card->dev, "CODEC %s not registered\n", 1351 dai_link->codec_name); 1352 1353 find_platform: 1354 /* do we already have the CODEC DAI for this link ? */ 1355 if (rtd->platform) { 1356 goto out; 1357 } 1358 /* no, then find CPU DAI from registered DAIs*/ 1359 list_for_each_entry(platform, &platform_list, list) { 1360 if (!strcmp(platform->name, dai_link->platform_name)) { 1361 rtd->platform = platform; 1362 goto out; 1363 } 1364 } 1365 1366 dev_dbg(card->dev, "platform %s not registered\n", 1367 dai_link->platform_name); 1368 return 0; 1369 1370 out: 1371 /* mark rtd as complete if we found all 4 of our client devices */ 1372 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) { 1373 rtd->complete = 1; 1374 card->num_rtd++; 1375 } 1376 return 1; 1377 } 1378 1379 static void soc_remove_codec(struct snd_soc_codec *codec) 1380 { 1381 int err; 1382 1383 if (codec->driver->remove) { 1384 err = codec->driver->remove(codec); 1385 if (err < 0) 1386 dev_err(codec->dev, 1387 "asoc: failed to remove %s: %d\n", 1388 codec->name, err); 1389 } 1390 1391 /* Make sure all DAPM widgets are freed */ 1392 snd_soc_dapm_free(&codec->dapm); 1393 1394 soc_cleanup_codec_debugfs(codec); 1395 codec->probed = 0; 1396 list_del(&codec->card_list); 1397 module_put(codec->dev->driver->owner); 1398 } 1399 1400 static void soc_remove_dai_link(struct snd_soc_card *card, int num) 1401 { 1402 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1403 struct snd_soc_codec *codec = rtd->codec; 1404 struct snd_soc_platform *platform = rtd->platform; 1405 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1406 int err; 1407 1408 /* unregister the rtd device */ 1409 if (rtd->dev_registered) { 1410 device_remove_file(&rtd->dev, &dev_attr_pmdown_time); 1411 device_remove_file(&rtd->dev, &dev_attr_codec_reg); 1412 device_unregister(&rtd->dev); 1413 rtd->dev_registered = 0; 1414 } 1415 1416 /* remove the CODEC DAI */ 1417 if (codec_dai && codec_dai->probed) { 1418 if (codec_dai->driver->remove) { 1419 err = codec_dai->driver->remove(codec_dai); 1420 if (err < 0) 1421 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name); 1422 } 1423 codec_dai->probed = 0; 1424 list_del(&codec_dai->card_list); 1425 } 1426 1427 /* remove the platform */ 1428 if (platform && platform->probed) { 1429 if (platform->driver->remove) { 1430 err = platform->driver->remove(platform); 1431 if (err < 0) 1432 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name); 1433 } 1434 platform->probed = 0; 1435 list_del(&platform->card_list); 1436 module_put(platform->dev->driver->owner); 1437 } 1438 1439 /* remove the CODEC */ 1440 if (codec && codec->probed) 1441 soc_remove_codec(codec); 1442 1443 /* remove the cpu_dai */ 1444 if (cpu_dai && cpu_dai->probed) { 1445 if (cpu_dai->driver->remove) { 1446 err = cpu_dai->driver->remove(cpu_dai); 1447 if (err < 0) 1448 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name); 1449 } 1450 cpu_dai->probed = 0; 1451 list_del(&cpu_dai->card_list); 1452 module_put(cpu_dai->dev->driver->owner); 1453 } 1454 } 1455 1456 static void soc_set_name_prefix(struct snd_soc_card *card, 1457 struct snd_soc_codec *codec) 1458 { 1459 int i; 1460 1461 if (card->codec_conf == NULL) 1462 return; 1463 1464 for (i = 0; i < card->num_configs; i++) { 1465 struct snd_soc_codec_conf *map = &card->codec_conf[i]; 1466 if (map->dev_name && !strcmp(codec->name, map->dev_name)) { 1467 codec->name_prefix = map->name_prefix; 1468 break; 1469 } 1470 } 1471 } 1472 1473 static int soc_probe_codec(struct snd_soc_card *card, 1474 struct snd_soc_codec *codec) 1475 { 1476 int ret = 0; 1477 const struct snd_soc_codec_driver *driver = codec->driver; 1478 1479 codec->card = card; 1480 codec->dapm.card = card; 1481 soc_set_name_prefix(card, codec); 1482 1483 if (!try_module_get(codec->dev->driver->owner)) 1484 return -ENODEV; 1485 1486 if (driver->probe) { 1487 ret = driver->probe(codec); 1488 if (ret < 0) { 1489 dev_err(codec->dev, 1490 "asoc: failed to probe CODEC %s: %d\n", 1491 codec->name, ret); 1492 goto err_probe; 1493 } 1494 } 1495 1496 if (driver->dapm_widgets) 1497 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets, 1498 driver->num_dapm_widgets); 1499 if (driver->dapm_routes) 1500 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes, 1501 driver->num_dapm_routes); 1502 1503 soc_init_codec_debugfs(codec); 1504 1505 /* mark codec as probed and add to card codec list */ 1506 codec->probed = 1; 1507 list_add(&codec->card_list, &card->codec_dev_list); 1508 list_add(&codec->dapm.list, &card->dapm_list); 1509 1510 return 0; 1511 1512 err_probe: 1513 module_put(codec->dev->driver->owner); 1514 1515 return ret; 1516 } 1517 1518 static void rtd_release(struct device *dev) {} 1519 1520 static int soc_post_component_init(struct snd_soc_card *card, 1521 struct snd_soc_codec *codec, 1522 int num, int dailess) 1523 { 1524 struct snd_soc_dai_link *dai_link = NULL; 1525 struct snd_soc_aux_dev *aux_dev = NULL; 1526 struct snd_soc_pcm_runtime *rtd; 1527 const char *temp, *name; 1528 int ret = 0; 1529 1530 if (!dailess) { 1531 dai_link = &card->dai_link[num]; 1532 rtd = &card->rtd[num]; 1533 name = dai_link->name; 1534 } else { 1535 aux_dev = &card->aux_dev[num]; 1536 rtd = &card->rtd_aux[num]; 1537 name = aux_dev->name; 1538 } 1539 rtd->card = card; 1540 1541 /* machine controls, routes and widgets are not prefixed */ 1542 temp = codec->name_prefix; 1543 codec->name_prefix = NULL; 1544 1545 /* do machine specific initialization */ 1546 if (!dailess && dai_link->init) 1547 ret = dai_link->init(rtd); 1548 else if (dailess && aux_dev->init) 1549 ret = aux_dev->init(&codec->dapm); 1550 if (ret < 0) { 1551 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret); 1552 return ret; 1553 } 1554 codec->name_prefix = temp; 1555 1556 /* Make sure all DAPM widgets are instantiated */ 1557 snd_soc_dapm_new_widgets(&codec->dapm); 1558 1559 /* register the rtd device */ 1560 rtd->codec = codec; 1561 rtd->dev.parent = card->dev; 1562 rtd->dev.release = rtd_release; 1563 rtd->dev.init_name = name; 1564 ret = device_register(&rtd->dev); 1565 if (ret < 0) { 1566 dev_err(card->dev, 1567 "asoc: failed to register runtime device: %d\n", ret); 1568 return ret; 1569 } 1570 rtd->dev_registered = 1; 1571 1572 /* add DAPM sysfs entries for this codec */ 1573 ret = snd_soc_dapm_sys_add(&rtd->dev); 1574 if (ret < 0) 1575 dev_err(codec->dev, 1576 "asoc: failed to add codec dapm sysfs entries: %d\n", 1577 ret); 1578 1579 /* add codec sysfs entries */ 1580 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg); 1581 if (ret < 0) 1582 dev_err(codec->dev, 1583 "asoc: failed to add codec sysfs files: %d\n", ret); 1584 1585 return 0; 1586 } 1587 1588 static int soc_probe_dai_link(struct snd_soc_card *card, int num) 1589 { 1590 struct snd_soc_dai_link *dai_link = &card->dai_link[num]; 1591 struct snd_soc_pcm_runtime *rtd = &card->rtd[num]; 1592 struct snd_soc_codec *codec = rtd->codec; 1593 struct snd_soc_platform *platform = rtd->platform; 1594 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai; 1595 int ret; 1596 1597 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num); 1598 1599 /* config components */ 1600 codec_dai->codec = codec; 1601 cpu_dai->platform = platform; 1602 codec_dai->card = card; 1603 cpu_dai->card = card; 1604 1605 /* set default power off timeout */ 1606 rtd->pmdown_time = pmdown_time; 1607 1608 /* probe the cpu_dai */ 1609 if (!cpu_dai->probed) { 1610 if (cpu_dai->driver->probe) { 1611 ret = cpu_dai->driver->probe(cpu_dai); 1612 if (ret < 0) { 1613 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n", 1614 cpu_dai->name); 1615 return ret; 1616 } 1617 } 1618 cpu_dai->probed = 1; 1619 /* mark cpu_dai as probed and add to card cpu_dai list */ 1620 list_add(&cpu_dai->card_list, &card->dai_dev_list); 1621 } 1622 1623 /* probe the CODEC */ 1624 if (!codec->probed) { 1625 ret = soc_probe_codec(card, codec); 1626 if (ret < 0) 1627 return ret; 1628 } 1629 1630 /* probe the platform */ 1631 if (!platform->probed) { 1632 if (!try_module_get(platform->dev->driver->owner)) 1633 return -ENODEV; 1634 1635 if (platform->driver->probe) { 1636 ret = platform->driver->probe(platform); 1637 if (ret < 0) { 1638 printk(KERN_ERR "asoc: failed to probe platform %s\n", 1639 platform->name); 1640 module_put(platform->dev->driver->owner); 1641 return ret; 1642 } 1643 } 1644 /* mark platform as probed and add to card platform list */ 1645 platform->probed = 1; 1646 list_add(&platform->card_list, &card->platform_dev_list); 1647 } 1648 1649 /* probe the CODEC DAI */ 1650 if (!codec_dai->probed) { 1651 if (codec_dai->driver->probe) { 1652 ret = codec_dai->driver->probe(codec_dai); 1653 if (ret < 0) { 1654 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n", 1655 codec_dai->name); 1656 return ret; 1657 } 1658 } 1659 1660 /* mark cpu_dai as probed and add to card cpu_dai list */ 1661 codec_dai->probed = 1; 1662 list_add(&codec_dai->card_list, &card->dai_dev_list); 1663 } 1664 1665 /* DAPM dai link stream work */ 1666 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work); 1667 1668 ret = soc_post_component_init(card, codec, num, 0); 1669 if (ret) 1670 return ret; 1671 1672 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time); 1673 if (ret < 0) 1674 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n"); 1675 1676 /* create the pcm */ 1677 ret = soc_new_pcm(rtd, num); 1678 if (ret < 0) { 1679 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name); 1680 return ret; 1681 } 1682 1683 /* add platform data for AC97 devices */ 1684 if (rtd->codec_dai->driver->ac97_control) 1685 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata); 1686 1687 return 0; 1688 } 1689 1690 #ifdef CONFIG_SND_SOC_AC97_BUS 1691 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd) 1692 { 1693 int ret; 1694 1695 /* Only instantiate AC97 if not already done by the adaptor 1696 * for the generic AC97 subsystem. 1697 */ 1698 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) { 1699 /* 1700 * It is possible that the AC97 device is already registered to 1701 * the device subsystem. This happens when the device is created 1702 * via snd_ac97_mixer(). Currently only SoC codec that does so 1703 * is the generic AC97 glue but others migh emerge. 1704 * 1705 * In those cases we don't try to register the device again. 1706 */ 1707 if (!rtd->codec->ac97_created) 1708 return 0; 1709 1710 ret = soc_ac97_dev_register(rtd->codec); 1711 if (ret < 0) { 1712 printk(KERN_ERR "asoc: AC97 device register failed\n"); 1713 return ret; 1714 } 1715 1716 rtd->codec->ac97_registered = 1; 1717 } 1718 return 0; 1719 } 1720 1721 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec) 1722 { 1723 if (codec->ac97_registered) { 1724 soc_ac97_dev_unregister(codec); 1725 codec->ac97_registered = 0; 1726 } 1727 } 1728 #endif 1729 1730 static int soc_probe_aux_dev(struct snd_soc_card *card, int num) 1731 { 1732 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num]; 1733 struct snd_soc_codec *codec; 1734 int ret = -ENODEV; 1735 1736 /* find CODEC from registered CODECs*/ 1737 list_for_each_entry(codec, &codec_list, list) { 1738 if (!strcmp(codec->name, aux_dev->codec_name)) { 1739 if (codec->probed) { 1740 dev_err(codec->dev, 1741 "asoc: codec already probed"); 1742 ret = -EBUSY; 1743 goto out; 1744 } 1745 goto found; 1746 } 1747 } 1748 /* codec not found */ 1749 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name); 1750 goto out; 1751 1752 found: 1753 ret = soc_probe_codec(card, codec); 1754 if (ret < 0) 1755 return ret; 1756 1757 ret = soc_post_component_init(card, codec, num, 1); 1758 1759 out: 1760 return ret; 1761 } 1762 1763 static void soc_remove_aux_dev(struct snd_soc_card *card, int num) 1764 { 1765 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num]; 1766 struct snd_soc_codec *codec = rtd->codec; 1767 1768 /* unregister the rtd device */ 1769 if (rtd->dev_registered) { 1770 device_remove_file(&rtd->dev, &dev_attr_codec_reg); 1771 device_unregister(&rtd->dev); 1772 rtd->dev_registered = 0; 1773 } 1774 1775 if (codec && codec->probed) 1776 soc_remove_codec(codec); 1777 } 1778 1779 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec, 1780 enum snd_soc_compress_type compress_type) 1781 { 1782 int ret; 1783 1784 if (codec->cache_init) 1785 return 0; 1786 1787 /* override the compress_type if necessary */ 1788 if (compress_type && codec->compress_type != compress_type) 1789 codec->compress_type = compress_type; 1790 ret = snd_soc_cache_init(codec); 1791 if (ret < 0) { 1792 dev_err(codec->dev, "Failed to set cache compression type: %d\n", 1793 ret); 1794 return ret; 1795 } 1796 codec->cache_init = 1; 1797 return 0; 1798 } 1799 1800 static void snd_soc_instantiate_card(struct snd_soc_card *card) 1801 { 1802 struct snd_soc_codec *codec; 1803 struct snd_soc_codec_conf *codec_conf; 1804 enum snd_soc_compress_type compress_type; 1805 int ret, i; 1806 1807 mutex_lock(&card->mutex); 1808 1809 if (card->instantiated) { 1810 mutex_unlock(&card->mutex); 1811 return; 1812 } 1813 1814 /* bind DAIs */ 1815 for (i = 0; i < card->num_links; i++) 1816 soc_bind_dai_link(card, i); 1817 1818 /* bind completed ? */ 1819 if (card->num_rtd != card->num_links) { 1820 mutex_unlock(&card->mutex); 1821 return; 1822 } 1823 1824 /* initialize the register cache for each available codec */ 1825 list_for_each_entry(codec, &codec_list, list) { 1826 if (codec->cache_init) 1827 continue; 1828 /* by default we don't override the compress_type */ 1829 compress_type = 0; 1830 /* check to see if we need to override the compress_type */ 1831 for (i = 0; i < card->num_configs; ++i) { 1832 codec_conf = &card->codec_conf[i]; 1833 if (!strcmp(codec->name, codec_conf->dev_name)) { 1834 compress_type = codec_conf->compress_type; 1835 if (compress_type && compress_type 1836 != codec->compress_type) 1837 break; 1838 } 1839 } 1840 ret = snd_soc_init_codec_cache(codec, compress_type); 1841 if (ret < 0) { 1842 mutex_unlock(&card->mutex); 1843 return; 1844 } 1845 } 1846 1847 /* card bind complete so register a sound card */ 1848 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, 1849 card->owner, 0, &card->snd_card); 1850 if (ret < 0) { 1851 printk(KERN_ERR "asoc: can't create sound card for card %s\n", 1852 card->name); 1853 mutex_unlock(&card->mutex); 1854 return; 1855 } 1856 card->snd_card->dev = card->dev; 1857 1858 card->dapm.bias_level = SND_SOC_BIAS_OFF; 1859 card->dapm.dev = card->dev; 1860 card->dapm.card = card; 1861 list_add(&card->dapm.list, &card->dapm_list); 1862 1863 #ifdef CONFIG_PM_SLEEP 1864 /* deferred resume work */ 1865 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred); 1866 #endif 1867 1868 /* initialise the sound card only once */ 1869 if (card->probe) { 1870 ret = card->probe(card); 1871 if (ret < 0) 1872 goto card_probe_error; 1873 } 1874 1875 for (i = 0; i < card->num_links; i++) { 1876 ret = soc_probe_dai_link(card, i); 1877 if (ret < 0) { 1878 pr_err("asoc: failed to instantiate card %s: %d\n", 1879 card->name, ret); 1880 goto probe_dai_err; 1881 } 1882 } 1883 1884 for (i = 0; i < card->num_aux_devs; i++) { 1885 ret = soc_probe_aux_dev(card, i); 1886 if (ret < 0) { 1887 pr_err("asoc: failed to add auxiliary devices %s: %d\n", 1888 card->name, ret); 1889 goto probe_aux_dev_err; 1890 } 1891 } 1892 1893 if (card->dapm_widgets) 1894 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets, 1895 card->num_dapm_widgets); 1896 if (card->dapm_routes) 1897 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes, 1898 card->num_dapm_routes); 1899 1900 #ifdef CONFIG_DEBUG_FS 1901 card->dapm.debugfs_dapm = debugfs_create_dir("dapm", 1902 card->debugfs_card_root); 1903 if (!card->dapm.debugfs_dapm) 1904 printk(KERN_WARNING 1905 "Failed to create card DAPM debugfs directory\n"); 1906 1907 snd_soc_dapm_debugfs_init(&card->dapm); 1908 #endif 1909 1910 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname), 1911 "%s", card->name); 1912 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname), 1913 "%s", card->name); 1914 1915 if (card->late_probe) { 1916 ret = card->late_probe(card); 1917 if (ret < 0) { 1918 dev_err(card->dev, "%s late_probe() failed: %d\n", 1919 card->name, ret); 1920 goto probe_aux_dev_err; 1921 } 1922 } 1923 1924 ret = snd_card_register(card->snd_card); 1925 if (ret < 0) { 1926 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name); 1927 goto probe_aux_dev_err; 1928 } 1929 1930 #ifdef CONFIG_SND_SOC_AC97_BUS 1931 /* register any AC97 codecs */ 1932 for (i = 0; i < card->num_rtd; i++) { 1933 ret = soc_register_ac97_dai_link(&card->rtd[i]); 1934 if (ret < 0) { 1935 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name); 1936 while (--i >= 0) 1937 soc_unregister_ac97_dai_link(card->rtd[i].codec); 1938 goto probe_aux_dev_err; 1939 } 1940 } 1941 #endif 1942 1943 card->instantiated = 1; 1944 mutex_unlock(&card->mutex); 1945 return; 1946 1947 probe_aux_dev_err: 1948 for (i = 0; i < card->num_aux_devs; i++) 1949 soc_remove_aux_dev(card, i); 1950 1951 probe_dai_err: 1952 for (i = 0; i < card->num_links; i++) 1953 soc_remove_dai_link(card, i); 1954 1955 card_probe_error: 1956 if (card->remove) 1957 card->remove(card); 1958 1959 snd_card_free(card->snd_card); 1960 1961 mutex_unlock(&card->mutex); 1962 } 1963 1964 /* 1965 * Attempt to initialise any uninitialised cards. Must be called with 1966 * client_mutex. 1967 */ 1968 static void snd_soc_instantiate_cards(void) 1969 { 1970 struct snd_soc_card *card; 1971 list_for_each_entry(card, &card_list, list) 1972 snd_soc_instantiate_card(card); 1973 } 1974 1975 /* probes a new socdev */ 1976 static int soc_probe(struct platform_device *pdev) 1977 { 1978 struct snd_soc_card *card = platform_get_drvdata(pdev); 1979 int ret = 0; 1980 1981 /* 1982 * no card, so machine driver should be registering card 1983 * we should not be here in that case so ret error 1984 */ 1985 if (!card) 1986 return -EINVAL; 1987 1988 /* Bodge while we unpick instantiation */ 1989 card->dev = &pdev->dev; 1990 1991 ret = snd_soc_register_card(card); 1992 if (ret != 0) { 1993 dev_err(&pdev->dev, "Failed to register card\n"); 1994 return ret; 1995 } 1996 1997 return 0; 1998 } 1999 2000 static int soc_cleanup_card_resources(struct snd_soc_card *card) 2001 { 2002 int i; 2003 2004 /* make sure any delayed work runs */ 2005 for (i = 0; i < card->num_rtd; i++) { 2006 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 2007 flush_delayed_work_sync(&rtd->delayed_work); 2008 } 2009 2010 /* remove auxiliary devices */ 2011 for (i = 0; i < card->num_aux_devs; i++) 2012 soc_remove_aux_dev(card, i); 2013 2014 /* remove and free each DAI */ 2015 for (i = 0; i < card->num_rtd; i++) 2016 soc_remove_dai_link(card, i); 2017 2018 soc_cleanup_card_debugfs(card); 2019 2020 /* remove the card */ 2021 if (card->remove) 2022 card->remove(card); 2023 2024 kfree(card->rtd); 2025 snd_card_free(card->snd_card); 2026 return 0; 2027 2028 } 2029 2030 /* removes a socdev */ 2031 static int soc_remove(struct platform_device *pdev) 2032 { 2033 struct snd_soc_card *card = platform_get_drvdata(pdev); 2034 2035 snd_soc_unregister_card(card); 2036 return 0; 2037 } 2038 2039 int snd_soc_poweroff(struct device *dev) 2040 { 2041 struct snd_soc_card *card = dev_get_drvdata(dev); 2042 int i; 2043 2044 if (!card->instantiated) 2045 return 0; 2046 2047 /* Flush out pmdown_time work - we actually do want to run it 2048 * now, we're shutting down so no imminent restart. */ 2049 for (i = 0; i < card->num_rtd; i++) { 2050 struct snd_soc_pcm_runtime *rtd = &card->rtd[i]; 2051 flush_delayed_work_sync(&rtd->delayed_work); 2052 } 2053 2054 snd_soc_dapm_shutdown(card); 2055 2056 return 0; 2057 } 2058 EXPORT_SYMBOL_GPL(snd_soc_poweroff); 2059 2060 const struct dev_pm_ops snd_soc_pm_ops = { 2061 .suspend = snd_soc_suspend, 2062 .resume = snd_soc_resume, 2063 .poweroff = snd_soc_poweroff, 2064 }; 2065 2066 /* ASoC platform driver */ 2067 static struct platform_driver soc_driver = { 2068 .driver = { 2069 .name = "soc-audio", 2070 .owner = THIS_MODULE, 2071 .pm = &snd_soc_pm_ops, 2072 }, 2073 .probe = soc_probe, 2074 .remove = soc_remove, 2075 }; 2076 2077 /* create a new pcm */ 2078 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num) 2079 { 2080 struct snd_soc_codec *codec = rtd->codec; 2081 struct snd_soc_platform *platform = rtd->platform; 2082 struct snd_soc_dai *codec_dai = rtd->codec_dai; 2083 struct snd_soc_dai *cpu_dai = rtd->cpu_dai; 2084 struct snd_pcm *pcm; 2085 char new_name[64]; 2086 int ret = 0, playback = 0, capture = 0; 2087 2088 /* check client and interface hw capabilities */ 2089 snprintf(new_name, sizeof(new_name), "%s %s-%d", 2090 rtd->dai_link->stream_name, codec_dai->name, num); 2091 2092 if (codec_dai->driver->playback.channels_min) 2093 playback = 1; 2094 if (codec_dai->driver->capture.channels_min) 2095 capture = 1; 2096 2097 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name); 2098 ret = snd_pcm_new(rtd->card->snd_card, new_name, 2099 num, playback, capture, &pcm); 2100 if (ret < 0) { 2101 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name); 2102 return ret; 2103 } 2104 2105 rtd->pcm = pcm; 2106 pcm->private_data = rtd; 2107 soc_pcm_ops.mmap = platform->driver->ops->mmap; 2108 soc_pcm_ops.pointer = platform->driver->ops->pointer; 2109 soc_pcm_ops.ioctl = platform->driver->ops->ioctl; 2110 soc_pcm_ops.copy = platform->driver->ops->copy; 2111 soc_pcm_ops.silence = platform->driver->ops->silence; 2112 soc_pcm_ops.ack = platform->driver->ops->ack; 2113 soc_pcm_ops.page = platform->driver->ops->page; 2114 2115 if (playback) 2116 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops); 2117 2118 if (capture) 2119 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops); 2120 2121 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm); 2122 if (ret < 0) { 2123 printk(KERN_ERR "asoc: platform pcm constructor failed\n"); 2124 return ret; 2125 } 2126 2127 pcm->private_free = platform->driver->pcm_free; 2128 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name, 2129 cpu_dai->name); 2130 return ret; 2131 } 2132 2133 /** 2134 * snd_soc_codec_volatile_register: Report if a register is volatile. 2135 * 2136 * @codec: CODEC to query. 2137 * @reg: Register to query. 2138 * 2139 * Boolean function indiciating if a CODEC register is volatile. 2140 */ 2141 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, 2142 unsigned int reg) 2143 { 2144 if (codec->volatile_register) 2145 return codec->volatile_register(codec, reg); 2146 else 2147 return 0; 2148 } 2149 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register); 2150 2151 /** 2152 * snd_soc_new_ac97_codec - initailise AC97 device 2153 * @codec: audio codec 2154 * @ops: AC97 bus operations 2155 * @num: AC97 codec number 2156 * 2157 * Initialises AC97 codec resources for use by ad-hoc devices only. 2158 */ 2159 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec, 2160 struct snd_ac97_bus_ops *ops, int num) 2161 { 2162 mutex_lock(&codec->mutex); 2163 2164 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL); 2165 if (codec->ac97 == NULL) { 2166 mutex_unlock(&codec->mutex); 2167 return -ENOMEM; 2168 } 2169 2170 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL); 2171 if (codec->ac97->bus == NULL) { 2172 kfree(codec->ac97); 2173 codec->ac97 = NULL; 2174 mutex_unlock(&codec->mutex); 2175 return -ENOMEM; 2176 } 2177 2178 codec->ac97->bus->ops = ops; 2179 codec->ac97->num = num; 2180 2181 /* 2182 * Mark the AC97 device to be created by us. This way we ensure that the 2183 * device will be registered with the device subsystem later on. 2184 */ 2185 codec->ac97_created = 1; 2186 2187 mutex_unlock(&codec->mutex); 2188 return 0; 2189 } 2190 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec); 2191 2192 /** 2193 * snd_soc_free_ac97_codec - free AC97 codec device 2194 * @codec: audio codec 2195 * 2196 * Frees AC97 codec device resources. 2197 */ 2198 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec) 2199 { 2200 mutex_lock(&codec->mutex); 2201 #ifdef CONFIG_SND_SOC_AC97_BUS 2202 soc_unregister_ac97_dai_link(codec); 2203 #endif 2204 kfree(codec->ac97->bus); 2205 kfree(codec->ac97); 2206 codec->ac97 = NULL; 2207 codec->ac97_created = 0; 2208 mutex_unlock(&codec->mutex); 2209 } 2210 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec); 2211 2212 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg) 2213 { 2214 unsigned int ret; 2215 2216 ret = codec->read(codec, reg); 2217 dev_dbg(codec->dev, "read %x => %x\n", reg, ret); 2218 trace_snd_soc_reg_read(codec, reg, ret); 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(snd_soc_read); 2223 2224 unsigned int snd_soc_write(struct snd_soc_codec *codec, 2225 unsigned int reg, unsigned int val) 2226 { 2227 dev_dbg(codec->dev, "write %x = %x\n", reg, val); 2228 trace_snd_soc_reg_write(codec, reg, val); 2229 return codec->write(codec, reg, val); 2230 } 2231 EXPORT_SYMBOL_GPL(snd_soc_write); 2232 2233 /** 2234 * snd_soc_update_bits - update codec register bits 2235 * @codec: audio codec 2236 * @reg: codec register 2237 * @mask: register mask 2238 * @value: new value 2239 * 2240 * Writes new register value. 2241 * 2242 * Returns 1 for change, 0 for no change, or negative error code. 2243 */ 2244 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg, 2245 unsigned int mask, unsigned int value) 2246 { 2247 int change; 2248 unsigned int old, new; 2249 int ret; 2250 2251 ret = snd_soc_read(codec, reg); 2252 if (ret < 0) 2253 return ret; 2254 2255 old = ret; 2256 new = (old & ~mask) | value; 2257 change = old != new; 2258 if (change) { 2259 ret = snd_soc_write(codec, reg, new); 2260 if (ret < 0) 2261 return ret; 2262 } 2263 2264 return change; 2265 } 2266 EXPORT_SYMBOL_GPL(snd_soc_update_bits); 2267 2268 /** 2269 * snd_soc_update_bits_locked - update codec register bits 2270 * @codec: audio codec 2271 * @reg: codec register 2272 * @mask: register mask 2273 * @value: new value 2274 * 2275 * Writes new register value, and takes the codec mutex. 2276 * 2277 * Returns 1 for change else 0. 2278 */ 2279 int snd_soc_update_bits_locked(struct snd_soc_codec *codec, 2280 unsigned short reg, unsigned int mask, 2281 unsigned int value) 2282 { 2283 int change; 2284 2285 mutex_lock(&codec->mutex); 2286 change = snd_soc_update_bits(codec, reg, mask, value); 2287 mutex_unlock(&codec->mutex); 2288 2289 return change; 2290 } 2291 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked); 2292 2293 /** 2294 * snd_soc_test_bits - test register for change 2295 * @codec: audio codec 2296 * @reg: codec register 2297 * @mask: register mask 2298 * @value: new value 2299 * 2300 * Tests a register with a new value and checks if the new value is 2301 * different from the old value. 2302 * 2303 * Returns 1 for change else 0. 2304 */ 2305 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg, 2306 unsigned int mask, unsigned int value) 2307 { 2308 int change; 2309 unsigned int old, new; 2310 2311 old = snd_soc_read(codec, reg); 2312 new = (old & ~mask) | value; 2313 change = old != new; 2314 2315 return change; 2316 } 2317 EXPORT_SYMBOL_GPL(snd_soc_test_bits); 2318 2319 /** 2320 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters 2321 * @substream: the pcm substream 2322 * @hw: the hardware parameters 2323 * 2324 * Sets the substream runtime hardware parameters. 2325 */ 2326 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, 2327 const struct snd_pcm_hardware *hw) 2328 { 2329 struct snd_pcm_runtime *runtime = substream->runtime; 2330 runtime->hw.info = hw->info; 2331 runtime->hw.formats = hw->formats; 2332 runtime->hw.period_bytes_min = hw->period_bytes_min; 2333 runtime->hw.period_bytes_max = hw->period_bytes_max; 2334 runtime->hw.periods_min = hw->periods_min; 2335 runtime->hw.periods_max = hw->periods_max; 2336 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max; 2337 runtime->hw.fifo_size = hw->fifo_size; 2338 return 0; 2339 } 2340 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams); 2341 2342 /** 2343 * snd_soc_cnew - create new control 2344 * @_template: control template 2345 * @data: control private data 2346 * @long_name: control long name 2347 * @prefix: control name prefix 2348 * 2349 * Create a new mixer control from a template control. 2350 * 2351 * Returns 0 for success, else error. 2352 */ 2353 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, 2354 void *data, char *long_name, 2355 const char *prefix) 2356 { 2357 struct snd_kcontrol_new template; 2358 struct snd_kcontrol *kcontrol; 2359 char *name = NULL; 2360 int name_len; 2361 2362 memcpy(&template, _template, sizeof(template)); 2363 template.index = 0; 2364 2365 if (!long_name) 2366 long_name = template.name; 2367 2368 if (prefix) { 2369 name_len = strlen(long_name) + strlen(prefix) + 2; 2370 name = kmalloc(name_len, GFP_ATOMIC); 2371 if (!name) 2372 return NULL; 2373 2374 snprintf(name, name_len, "%s %s", prefix, long_name); 2375 2376 template.name = name; 2377 } else { 2378 template.name = long_name; 2379 } 2380 2381 kcontrol = snd_ctl_new1(&template, data); 2382 2383 kfree(name); 2384 2385 return kcontrol; 2386 } 2387 EXPORT_SYMBOL_GPL(snd_soc_cnew); 2388 2389 /** 2390 * snd_soc_add_controls - add an array of controls to a codec. 2391 * Convienience function to add a list of controls. Many codecs were 2392 * duplicating this code. 2393 * 2394 * @codec: codec to add controls to 2395 * @controls: array of controls to add 2396 * @num_controls: number of elements in the array 2397 * 2398 * Return 0 for success, else error. 2399 */ 2400 int snd_soc_add_controls(struct snd_soc_codec *codec, 2401 const struct snd_kcontrol_new *controls, int num_controls) 2402 { 2403 struct snd_card *card = codec->card->snd_card; 2404 int err, i; 2405 2406 for (i = 0; i < num_controls; i++) { 2407 const struct snd_kcontrol_new *control = &controls[i]; 2408 err = snd_ctl_add(card, snd_soc_cnew(control, codec, 2409 control->name, 2410 codec->name_prefix)); 2411 if (err < 0) { 2412 dev_err(codec->dev, "%s: Failed to add %s: %d\n", 2413 codec->name, control->name, err); 2414 return err; 2415 } 2416 } 2417 2418 return 0; 2419 } 2420 EXPORT_SYMBOL_GPL(snd_soc_add_controls); 2421 2422 /** 2423 * snd_soc_info_enum_double - enumerated double mixer info callback 2424 * @kcontrol: mixer control 2425 * @uinfo: control element information 2426 * 2427 * Callback to provide information about a double enumerated 2428 * mixer control. 2429 * 2430 * Returns 0 for success. 2431 */ 2432 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, 2433 struct snd_ctl_elem_info *uinfo) 2434 { 2435 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2436 2437 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2438 uinfo->count = e->shift_l == e->shift_r ? 1 : 2; 2439 uinfo->value.enumerated.items = e->max; 2440 2441 if (uinfo->value.enumerated.item > e->max - 1) 2442 uinfo->value.enumerated.item = e->max - 1; 2443 strcpy(uinfo->value.enumerated.name, 2444 e->texts[uinfo->value.enumerated.item]); 2445 return 0; 2446 } 2447 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double); 2448 2449 /** 2450 * snd_soc_get_enum_double - enumerated double mixer get callback 2451 * @kcontrol: mixer control 2452 * @ucontrol: control element information 2453 * 2454 * Callback to get the value of a double enumerated mixer. 2455 * 2456 * Returns 0 for success. 2457 */ 2458 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, 2459 struct snd_ctl_elem_value *ucontrol) 2460 { 2461 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2462 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2463 unsigned int val, bitmask; 2464 2465 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2466 ; 2467 val = snd_soc_read(codec, e->reg); 2468 ucontrol->value.enumerated.item[0] 2469 = (val >> e->shift_l) & (bitmask - 1); 2470 if (e->shift_l != e->shift_r) 2471 ucontrol->value.enumerated.item[1] = 2472 (val >> e->shift_r) & (bitmask - 1); 2473 2474 return 0; 2475 } 2476 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double); 2477 2478 /** 2479 * snd_soc_put_enum_double - enumerated double mixer put callback 2480 * @kcontrol: mixer control 2481 * @ucontrol: control element information 2482 * 2483 * Callback to set the value of a double enumerated mixer. 2484 * 2485 * Returns 0 for success. 2486 */ 2487 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, 2488 struct snd_ctl_elem_value *ucontrol) 2489 { 2490 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2491 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2492 unsigned int val; 2493 unsigned int mask, bitmask; 2494 2495 for (bitmask = 1; bitmask < e->max; bitmask <<= 1) 2496 ; 2497 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2498 return -EINVAL; 2499 val = ucontrol->value.enumerated.item[0] << e->shift_l; 2500 mask = (bitmask - 1) << e->shift_l; 2501 if (e->shift_l != e->shift_r) { 2502 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2503 return -EINVAL; 2504 val |= ucontrol->value.enumerated.item[1] << e->shift_r; 2505 mask |= (bitmask - 1) << e->shift_r; 2506 } 2507 2508 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2509 } 2510 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double); 2511 2512 /** 2513 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback 2514 * @kcontrol: mixer control 2515 * @ucontrol: control element information 2516 * 2517 * Callback to get the value of a double semi enumerated mixer. 2518 * 2519 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2520 * used for handling bitfield coded enumeration for example. 2521 * 2522 * Returns 0 for success. 2523 */ 2524 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol, 2525 struct snd_ctl_elem_value *ucontrol) 2526 { 2527 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2528 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2529 unsigned int reg_val, val, mux; 2530 2531 reg_val = snd_soc_read(codec, e->reg); 2532 val = (reg_val >> e->shift_l) & e->mask; 2533 for (mux = 0; mux < e->max; mux++) { 2534 if (val == e->values[mux]) 2535 break; 2536 } 2537 ucontrol->value.enumerated.item[0] = mux; 2538 if (e->shift_l != e->shift_r) { 2539 val = (reg_val >> e->shift_r) & e->mask; 2540 for (mux = 0; mux < e->max; mux++) { 2541 if (val == e->values[mux]) 2542 break; 2543 } 2544 ucontrol->value.enumerated.item[1] = mux; 2545 } 2546 2547 return 0; 2548 } 2549 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double); 2550 2551 /** 2552 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback 2553 * @kcontrol: mixer control 2554 * @ucontrol: control element information 2555 * 2556 * Callback to set the value of a double semi enumerated mixer. 2557 * 2558 * Semi enumerated mixer: the enumerated items are referred as values. Can be 2559 * used for handling bitfield coded enumeration for example. 2560 * 2561 * Returns 0 for success. 2562 */ 2563 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol, 2564 struct snd_ctl_elem_value *ucontrol) 2565 { 2566 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2567 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2568 unsigned int val; 2569 unsigned int mask; 2570 2571 if (ucontrol->value.enumerated.item[0] > e->max - 1) 2572 return -EINVAL; 2573 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l; 2574 mask = e->mask << e->shift_l; 2575 if (e->shift_l != e->shift_r) { 2576 if (ucontrol->value.enumerated.item[1] > e->max - 1) 2577 return -EINVAL; 2578 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r; 2579 mask |= e->mask << e->shift_r; 2580 } 2581 2582 return snd_soc_update_bits_locked(codec, e->reg, mask, val); 2583 } 2584 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double); 2585 2586 /** 2587 * snd_soc_info_enum_ext - external enumerated single mixer info callback 2588 * @kcontrol: mixer control 2589 * @uinfo: control element information 2590 * 2591 * Callback to provide information about an external enumerated 2592 * single mixer. 2593 * 2594 * Returns 0 for success. 2595 */ 2596 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol, 2597 struct snd_ctl_elem_info *uinfo) 2598 { 2599 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; 2600 2601 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2602 uinfo->count = 1; 2603 uinfo->value.enumerated.items = e->max; 2604 2605 if (uinfo->value.enumerated.item > e->max - 1) 2606 uinfo->value.enumerated.item = e->max - 1; 2607 strcpy(uinfo->value.enumerated.name, 2608 e->texts[uinfo->value.enumerated.item]); 2609 return 0; 2610 } 2611 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext); 2612 2613 /** 2614 * snd_soc_info_volsw_ext - external single mixer info callback 2615 * @kcontrol: mixer control 2616 * @uinfo: control element information 2617 * 2618 * Callback to provide information about a single external mixer control. 2619 * 2620 * Returns 0 for success. 2621 */ 2622 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol, 2623 struct snd_ctl_elem_info *uinfo) 2624 { 2625 int max = kcontrol->private_value; 2626 2627 if (max == 1 && !strstr(kcontrol->id.name, " Volume")) 2628 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2629 else 2630 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2631 2632 uinfo->count = 1; 2633 uinfo->value.integer.min = 0; 2634 uinfo->value.integer.max = max; 2635 return 0; 2636 } 2637 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext); 2638 2639 /** 2640 * snd_soc_info_volsw - single mixer info callback 2641 * @kcontrol: mixer control 2642 * @uinfo: control element information 2643 * 2644 * Callback to provide information about a single mixer control. 2645 * 2646 * Returns 0 for success. 2647 */ 2648 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, 2649 struct snd_ctl_elem_info *uinfo) 2650 { 2651 struct soc_mixer_control *mc = 2652 (struct soc_mixer_control *)kcontrol->private_value; 2653 int platform_max; 2654 unsigned int shift = mc->shift; 2655 unsigned int rshift = mc->rshift; 2656 2657 if (!mc->platform_max) 2658 mc->platform_max = mc->max; 2659 platform_max = mc->platform_max; 2660 2661 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2662 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2663 else 2664 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2665 2666 uinfo->count = shift == rshift ? 1 : 2; 2667 uinfo->value.integer.min = 0; 2668 uinfo->value.integer.max = platform_max; 2669 return 0; 2670 } 2671 EXPORT_SYMBOL_GPL(snd_soc_info_volsw); 2672 2673 /** 2674 * snd_soc_get_volsw - single mixer get callback 2675 * @kcontrol: mixer control 2676 * @ucontrol: control element information 2677 * 2678 * Callback to get the value of a single mixer control. 2679 * 2680 * Returns 0 for success. 2681 */ 2682 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, 2683 struct snd_ctl_elem_value *ucontrol) 2684 { 2685 struct soc_mixer_control *mc = 2686 (struct soc_mixer_control *)kcontrol->private_value; 2687 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2688 unsigned int reg = mc->reg; 2689 unsigned int shift = mc->shift; 2690 unsigned int rshift = mc->rshift; 2691 int max = mc->max; 2692 unsigned int mask = (1 << fls(max)) - 1; 2693 unsigned int invert = mc->invert; 2694 2695 ucontrol->value.integer.value[0] = 2696 (snd_soc_read(codec, reg) >> shift) & mask; 2697 if (shift != rshift) 2698 ucontrol->value.integer.value[1] = 2699 (snd_soc_read(codec, reg) >> rshift) & mask; 2700 if (invert) { 2701 ucontrol->value.integer.value[0] = 2702 max - ucontrol->value.integer.value[0]; 2703 if (shift != rshift) 2704 ucontrol->value.integer.value[1] = 2705 max - ucontrol->value.integer.value[1]; 2706 } 2707 2708 return 0; 2709 } 2710 EXPORT_SYMBOL_GPL(snd_soc_get_volsw); 2711 2712 /** 2713 * snd_soc_put_volsw - single mixer put callback 2714 * @kcontrol: mixer control 2715 * @ucontrol: control element information 2716 * 2717 * Callback to set the value of a single mixer control. 2718 * 2719 * Returns 0 for success. 2720 */ 2721 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, 2722 struct snd_ctl_elem_value *ucontrol) 2723 { 2724 struct soc_mixer_control *mc = 2725 (struct soc_mixer_control *)kcontrol->private_value; 2726 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2727 unsigned int reg = mc->reg; 2728 unsigned int shift = mc->shift; 2729 unsigned int rshift = mc->rshift; 2730 int max = mc->max; 2731 unsigned int mask = (1 << fls(max)) - 1; 2732 unsigned int invert = mc->invert; 2733 unsigned int val, val2, val_mask; 2734 2735 val = (ucontrol->value.integer.value[0] & mask); 2736 if (invert) 2737 val = max - val; 2738 val_mask = mask << shift; 2739 val = val << shift; 2740 if (shift != rshift) { 2741 val2 = (ucontrol->value.integer.value[1] & mask); 2742 if (invert) 2743 val2 = max - val2; 2744 val_mask |= mask << rshift; 2745 val |= val2 << rshift; 2746 } 2747 return snd_soc_update_bits_locked(codec, reg, val_mask, val); 2748 } 2749 EXPORT_SYMBOL_GPL(snd_soc_put_volsw); 2750 2751 /** 2752 * snd_soc_info_volsw_2r - double mixer info callback 2753 * @kcontrol: mixer control 2754 * @uinfo: control element information 2755 * 2756 * Callback to provide information about a double mixer control that 2757 * spans 2 codec registers. 2758 * 2759 * Returns 0 for success. 2760 */ 2761 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol, 2762 struct snd_ctl_elem_info *uinfo) 2763 { 2764 struct soc_mixer_control *mc = 2765 (struct soc_mixer_control *)kcontrol->private_value; 2766 int platform_max; 2767 2768 if (!mc->platform_max) 2769 mc->platform_max = mc->max; 2770 platform_max = mc->platform_max; 2771 2772 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume")) 2773 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2774 else 2775 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2776 2777 uinfo->count = 2; 2778 uinfo->value.integer.min = 0; 2779 uinfo->value.integer.max = platform_max; 2780 return 0; 2781 } 2782 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r); 2783 2784 /** 2785 * snd_soc_get_volsw_2r - double mixer get callback 2786 * @kcontrol: mixer control 2787 * @ucontrol: control element information 2788 * 2789 * Callback to get the value of a double mixer control that spans 2 registers. 2790 * 2791 * Returns 0 for success. 2792 */ 2793 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol, 2794 struct snd_ctl_elem_value *ucontrol) 2795 { 2796 struct soc_mixer_control *mc = 2797 (struct soc_mixer_control *)kcontrol->private_value; 2798 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2799 unsigned int reg = mc->reg; 2800 unsigned int reg2 = mc->rreg; 2801 unsigned int shift = mc->shift; 2802 int max = mc->max; 2803 unsigned int mask = (1 << fls(max)) - 1; 2804 unsigned int invert = mc->invert; 2805 2806 ucontrol->value.integer.value[0] = 2807 (snd_soc_read(codec, reg) >> shift) & mask; 2808 ucontrol->value.integer.value[1] = 2809 (snd_soc_read(codec, reg2) >> shift) & mask; 2810 if (invert) { 2811 ucontrol->value.integer.value[0] = 2812 max - ucontrol->value.integer.value[0]; 2813 ucontrol->value.integer.value[1] = 2814 max - ucontrol->value.integer.value[1]; 2815 } 2816 2817 return 0; 2818 } 2819 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r); 2820 2821 /** 2822 * snd_soc_put_volsw_2r - double mixer set callback 2823 * @kcontrol: mixer control 2824 * @ucontrol: control element information 2825 * 2826 * Callback to set the value of a double mixer control that spans 2 registers. 2827 * 2828 * Returns 0 for success. 2829 */ 2830 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol, 2831 struct snd_ctl_elem_value *ucontrol) 2832 { 2833 struct soc_mixer_control *mc = 2834 (struct soc_mixer_control *)kcontrol->private_value; 2835 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2836 unsigned int reg = mc->reg; 2837 unsigned int reg2 = mc->rreg; 2838 unsigned int shift = mc->shift; 2839 int max = mc->max; 2840 unsigned int mask = (1 << fls(max)) - 1; 2841 unsigned int invert = mc->invert; 2842 int err; 2843 unsigned int val, val2, val_mask; 2844 2845 val_mask = mask << shift; 2846 val = (ucontrol->value.integer.value[0] & mask); 2847 val2 = (ucontrol->value.integer.value[1] & mask); 2848 2849 if (invert) { 2850 val = max - val; 2851 val2 = max - val2; 2852 } 2853 2854 val = val << shift; 2855 val2 = val2 << shift; 2856 2857 err = snd_soc_update_bits_locked(codec, reg, val_mask, val); 2858 if (err < 0) 2859 return err; 2860 2861 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2); 2862 return err; 2863 } 2864 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r); 2865 2866 /** 2867 * snd_soc_info_volsw_s8 - signed mixer info callback 2868 * @kcontrol: mixer control 2869 * @uinfo: control element information 2870 * 2871 * Callback to provide information about a signed mixer control. 2872 * 2873 * Returns 0 for success. 2874 */ 2875 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol, 2876 struct snd_ctl_elem_info *uinfo) 2877 { 2878 struct soc_mixer_control *mc = 2879 (struct soc_mixer_control *)kcontrol->private_value; 2880 int platform_max; 2881 int min = mc->min; 2882 2883 if (!mc->platform_max) 2884 mc->platform_max = mc->max; 2885 platform_max = mc->platform_max; 2886 2887 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2888 uinfo->count = 2; 2889 uinfo->value.integer.min = 0; 2890 uinfo->value.integer.max = platform_max - min; 2891 return 0; 2892 } 2893 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8); 2894 2895 /** 2896 * snd_soc_get_volsw_s8 - signed mixer get callback 2897 * @kcontrol: mixer control 2898 * @ucontrol: control element information 2899 * 2900 * Callback to get the value of a signed mixer control. 2901 * 2902 * Returns 0 for success. 2903 */ 2904 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol, 2905 struct snd_ctl_elem_value *ucontrol) 2906 { 2907 struct soc_mixer_control *mc = 2908 (struct soc_mixer_control *)kcontrol->private_value; 2909 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2910 unsigned int reg = mc->reg; 2911 int min = mc->min; 2912 int val = snd_soc_read(codec, reg); 2913 2914 ucontrol->value.integer.value[0] = 2915 ((signed char)(val & 0xff))-min; 2916 ucontrol->value.integer.value[1] = 2917 ((signed char)((val >> 8) & 0xff))-min; 2918 return 0; 2919 } 2920 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8); 2921 2922 /** 2923 * snd_soc_put_volsw_sgn - signed mixer put callback 2924 * @kcontrol: mixer control 2925 * @ucontrol: control element information 2926 * 2927 * Callback to set the value of a signed mixer control. 2928 * 2929 * Returns 0 for success. 2930 */ 2931 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol, 2932 struct snd_ctl_elem_value *ucontrol) 2933 { 2934 struct soc_mixer_control *mc = 2935 (struct soc_mixer_control *)kcontrol->private_value; 2936 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 2937 unsigned int reg = mc->reg; 2938 int min = mc->min; 2939 unsigned int val; 2940 2941 val = (ucontrol->value.integer.value[0]+min) & 0xff; 2942 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8; 2943 2944 return snd_soc_update_bits_locked(codec, reg, 0xffff, val); 2945 } 2946 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8); 2947 2948 /** 2949 * snd_soc_limit_volume - Set new limit to an existing volume control. 2950 * 2951 * @codec: where to look for the control 2952 * @name: Name of the control 2953 * @max: new maximum limit 2954 * 2955 * Return 0 for success, else error. 2956 */ 2957 int snd_soc_limit_volume(struct snd_soc_codec *codec, 2958 const char *name, int max) 2959 { 2960 struct snd_card *card = codec->card->snd_card; 2961 struct snd_kcontrol *kctl; 2962 struct soc_mixer_control *mc; 2963 int found = 0; 2964 int ret = -EINVAL; 2965 2966 /* Sanity check for name and max */ 2967 if (unlikely(!name || max <= 0)) 2968 return -EINVAL; 2969 2970 list_for_each_entry(kctl, &card->controls, list) { 2971 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) { 2972 found = 1; 2973 break; 2974 } 2975 } 2976 if (found) { 2977 mc = (struct soc_mixer_control *)kctl->private_value; 2978 if (max <= mc->max) { 2979 mc->platform_max = max; 2980 ret = 0; 2981 } 2982 } 2983 return ret; 2984 } 2985 EXPORT_SYMBOL_GPL(snd_soc_limit_volume); 2986 2987 /** 2988 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size 2989 * mixer info callback 2990 * @kcontrol: mixer control 2991 * @uinfo: control element information 2992 * 2993 * Returns 0 for success. 2994 */ 2995 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol, 2996 struct snd_ctl_elem_info *uinfo) 2997 { 2998 struct soc_mixer_control *mc = 2999 (struct soc_mixer_control *)kcontrol->private_value; 3000 int max = mc->max; 3001 int min = mc->min; 3002 3003 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3004 uinfo->count = 2; 3005 uinfo->value.integer.min = 0; 3006 uinfo->value.integer.max = max-min; 3007 3008 return 0; 3009 } 3010 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx); 3011 3012 /** 3013 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size 3014 * mixer get callback 3015 * @kcontrol: mixer control 3016 * @uinfo: control element information 3017 * 3018 * Returns 0 for success. 3019 */ 3020 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol, 3021 struct snd_ctl_elem_value *ucontrol) 3022 { 3023 struct soc_mixer_control *mc = 3024 (struct soc_mixer_control *)kcontrol->private_value; 3025 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3026 unsigned int mask = (1<<mc->shift)-1; 3027 int min = mc->min; 3028 int val = snd_soc_read(codec, mc->reg) & mask; 3029 int valr = snd_soc_read(codec, mc->rreg) & mask; 3030 3031 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask; 3032 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask; 3033 return 0; 3034 } 3035 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx); 3036 3037 /** 3038 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size 3039 * mixer put callback 3040 * @kcontrol: mixer control 3041 * @uinfo: control element information 3042 * 3043 * Returns 0 for success. 3044 */ 3045 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol, 3046 struct snd_ctl_elem_value *ucontrol) 3047 { 3048 struct soc_mixer_control *mc = 3049 (struct soc_mixer_control *)kcontrol->private_value; 3050 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); 3051 unsigned int mask = (1<<mc->shift)-1; 3052 int min = mc->min; 3053 int ret; 3054 unsigned int val, valr, oval, ovalr; 3055 3056 val = ((ucontrol->value.integer.value[0]+min) & 0xff); 3057 val &= mask; 3058 valr = ((ucontrol->value.integer.value[1]+min) & 0xff); 3059 valr &= mask; 3060 3061 oval = snd_soc_read(codec, mc->reg) & mask; 3062 ovalr = snd_soc_read(codec, mc->rreg) & mask; 3063 3064 ret = 0; 3065 if (oval != val) { 3066 ret = snd_soc_write(codec, mc->reg, val); 3067 if (ret < 0) 3068 return ret; 3069 } 3070 if (ovalr != valr) { 3071 ret = snd_soc_write(codec, mc->rreg, valr); 3072 if (ret < 0) 3073 return ret; 3074 } 3075 3076 return 0; 3077 } 3078 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx); 3079 3080 /** 3081 * snd_soc_dai_set_sysclk - configure DAI system or master clock. 3082 * @dai: DAI 3083 * @clk_id: DAI specific clock ID 3084 * @freq: new clock frequency in Hz 3085 * @dir: new clock direction - input/output. 3086 * 3087 * Configures the DAI master (MCLK) or system (SYSCLK) clocking. 3088 */ 3089 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, 3090 unsigned int freq, int dir) 3091 { 3092 if (dai->driver && dai->driver->ops->set_sysclk) 3093 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir); 3094 else if (dai->codec && dai->codec->driver->set_sysclk) 3095 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 3096 freq, dir); 3097 else 3098 return -EINVAL; 3099 } 3100 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk); 3101 3102 /** 3103 * snd_soc_codec_set_sysclk - configure CODEC system or master clock. 3104 * @codec: CODEC 3105 * @clk_id: DAI specific clock ID 3106 * @freq: new clock frequency in Hz 3107 * @dir: new clock direction - input/output. 3108 * 3109 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking. 3110 */ 3111 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id, 3112 unsigned int freq, int dir) 3113 { 3114 if (codec->driver->set_sysclk) 3115 return codec->driver->set_sysclk(codec, clk_id, freq, dir); 3116 else 3117 return -EINVAL; 3118 } 3119 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk); 3120 3121 /** 3122 * snd_soc_dai_set_clkdiv - configure DAI clock dividers. 3123 * @dai: DAI 3124 * @div_id: DAI specific clock divider ID 3125 * @div: new clock divisor. 3126 * 3127 * Configures the clock dividers. This is used to derive the best DAI bit and 3128 * frame clocks from the system or master clock. It's best to set the DAI bit 3129 * and frame clocks as low as possible to save system power. 3130 */ 3131 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai, 3132 int div_id, int div) 3133 { 3134 if (dai->driver && dai->driver->ops->set_clkdiv) 3135 return dai->driver->ops->set_clkdiv(dai, div_id, div); 3136 else 3137 return -EINVAL; 3138 } 3139 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv); 3140 3141 /** 3142 * snd_soc_dai_set_pll - configure DAI PLL. 3143 * @dai: DAI 3144 * @pll_id: DAI specific PLL ID 3145 * @source: DAI specific source for the PLL 3146 * @freq_in: PLL input clock frequency in Hz 3147 * @freq_out: requested PLL output clock frequency in Hz 3148 * 3149 * Configures and enables PLL to generate output clock based on input clock. 3150 */ 3151 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source, 3152 unsigned int freq_in, unsigned int freq_out) 3153 { 3154 if (dai->driver && dai->driver->ops->set_pll) 3155 return dai->driver->ops->set_pll(dai, pll_id, source, 3156 freq_in, freq_out); 3157 else if (dai->codec && dai->codec->driver->set_pll) 3158 return dai->codec->driver->set_pll(dai->codec, pll_id, source, 3159 freq_in, freq_out); 3160 else 3161 return -EINVAL; 3162 } 3163 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll); 3164 3165 /* 3166 * snd_soc_codec_set_pll - configure codec PLL. 3167 * @codec: CODEC 3168 * @pll_id: DAI specific PLL ID 3169 * @source: DAI specific source for the PLL 3170 * @freq_in: PLL input clock frequency in Hz 3171 * @freq_out: requested PLL output clock frequency in Hz 3172 * 3173 * Configures and enables PLL to generate output clock based on input clock. 3174 */ 3175 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source, 3176 unsigned int freq_in, unsigned int freq_out) 3177 { 3178 if (codec->driver->set_pll) 3179 return codec->driver->set_pll(codec, pll_id, source, 3180 freq_in, freq_out); 3181 else 3182 return -EINVAL; 3183 } 3184 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll); 3185 3186 /** 3187 * snd_soc_dai_set_fmt - configure DAI hardware audio format. 3188 * @dai: DAI 3189 * @fmt: SND_SOC_DAIFMT_ format value. 3190 * 3191 * Configures the DAI hardware format and clocking. 3192 */ 3193 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 3194 { 3195 if (dai->driver && dai->driver->ops->set_fmt) 3196 return dai->driver->ops->set_fmt(dai, fmt); 3197 else 3198 return -EINVAL; 3199 } 3200 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt); 3201 3202 /** 3203 * snd_soc_dai_set_tdm_slot - configure DAI TDM. 3204 * @dai: DAI 3205 * @tx_mask: bitmask representing active TX slots. 3206 * @rx_mask: bitmask representing active RX slots. 3207 * @slots: Number of slots in use. 3208 * @slot_width: Width in bits for each slot. 3209 * 3210 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI 3211 * specific. 3212 */ 3213 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai, 3214 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 3215 { 3216 if (dai->driver && dai->driver->ops->set_tdm_slot) 3217 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask, 3218 slots, slot_width); 3219 else 3220 return -EINVAL; 3221 } 3222 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot); 3223 3224 /** 3225 * snd_soc_dai_set_channel_map - configure DAI audio channel map 3226 * @dai: DAI 3227 * @tx_num: how many TX channels 3228 * @tx_slot: pointer to an array which imply the TX slot number channel 3229 * 0~num-1 uses 3230 * @rx_num: how many RX channels 3231 * @rx_slot: pointer to an array which imply the RX slot number channel 3232 * 0~num-1 uses 3233 * 3234 * configure the relationship between channel number and TDM slot number. 3235 */ 3236 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai, 3237 unsigned int tx_num, unsigned int *tx_slot, 3238 unsigned int rx_num, unsigned int *rx_slot) 3239 { 3240 if (dai->driver && dai->driver->ops->set_channel_map) 3241 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot, 3242 rx_num, rx_slot); 3243 else 3244 return -EINVAL; 3245 } 3246 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map); 3247 3248 /** 3249 * snd_soc_dai_set_tristate - configure DAI system or master clock. 3250 * @dai: DAI 3251 * @tristate: tristate enable 3252 * 3253 * Tristates the DAI so that others can use it. 3254 */ 3255 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate) 3256 { 3257 if (dai->driver && dai->driver->ops->set_tristate) 3258 return dai->driver->ops->set_tristate(dai, tristate); 3259 else 3260 return -EINVAL; 3261 } 3262 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate); 3263 3264 /** 3265 * snd_soc_dai_digital_mute - configure DAI system or master clock. 3266 * @dai: DAI 3267 * @mute: mute enable 3268 * 3269 * Mutes the DAI DAC. 3270 */ 3271 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute) 3272 { 3273 if (dai->driver && dai->driver->ops->digital_mute) 3274 return dai->driver->ops->digital_mute(dai, mute); 3275 else 3276 return -EINVAL; 3277 } 3278 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute); 3279 3280 /** 3281 * snd_soc_register_card - Register a card with the ASoC core 3282 * 3283 * @card: Card to register 3284 * 3285 */ 3286 int snd_soc_register_card(struct snd_soc_card *card) 3287 { 3288 int i; 3289 3290 if (!card->name || !card->dev) 3291 return -EINVAL; 3292 3293 snd_soc_initialize_card_lists(card); 3294 3295 soc_init_card_debugfs(card); 3296 3297 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * 3298 (card->num_links + card->num_aux_devs), 3299 GFP_KERNEL); 3300 if (card->rtd == NULL) 3301 return -ENOMEM; 3302 card->rtd_aux = &card->rtd[card->num_links]; 3303 3304 for (i = 0; i < card->num_links; i++) 3305 card->rtd[i].dai_link = &card->dai_link[i]; 3306 3307 INIT_LIST_HEAD(&card->list); 3308 card->instantiated = 0; 3309 mutex_init(&card->mutex); 3310 3311 mutex_lock(&client_mutex); 3312 list_add(&card->list, &card_list); 3313 snd_soc_instantiate_cards(); 3314 mutex_unlock(&client_mutex); 3315 3316 dev_dbg(card->dev, "Registered card '%s'\n", card->name); 3317 3318 return 0; 3319 } 3320 EXPORT_SYMBOL_GPL(snd_soc_register_card); 3321 3322 /** 3323 * snd_soc_unregister_card - Unregister a card with the ASoC core 3324 * 3325 * @card: Card to unregister 3326 * 3327 */ 3328 int snd_soc_unregister_card(struct snd_soc_card *card) 3329 { 3330 if (card->instantiated) 3331 soc_cleanup_card_resources(card); 3332 mutex_lock(&client_mutex); 3333 list_del(&card->list); 3334 mutex_unlock(&client_mutex); 3335 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name); 3336 3337 return 0; 3338 } 3339 EXPORT_SYMBOL_GPL(snd_soc_unregister_card); 3340 3341 /* 3342 * Simplify DAI link configuration by removing ".-1" from device names 3343 * and sanitizing names. 3344 */ 3345 static char *fmt_single_name(struct device *dev, int *id) 3346 { 3347 char *found, name[NAME_SIZE]; 3348 int id1, id2; 3349 3350 if (dev_name(dev) == NULL) 3351 return NULL; 3352 3353 strlcpy(name, dev_name(dev), NAME_SIZE); 3354 3355 /* are we a "%s.%d" name (platform and SPI components) */ 3356 found = strstr(name, dev->driver->name); 3357 if (found) { 3358 /* get ID */ 3359 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) { 3360 3361 /* discard ID from name if ID == -1 */ 3362 if (*id == -1) 3363 found[strlen(dev->driver->name)] = '\0'; 3364 } 3365 3366 } else { 3367 /* I2C component devices are named "bus-addr" */ 3368 if (sscanf(name, "%x-%x", &id1, &id2) == 2) { 3369 char tmp[NAME_SIZE]; 3370 3371 /* create unique ID number from I2C addr and bus */ 3372 *id = ((id1 & 0xffff) << 16) + id2; 3373 3374 /* sanitize component name for DAI link creation */ 3375 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name); 3376 strlcpy(name, tmp, NAME_SIZE); 3377 } else 3378 *id = 0; 3379 } 3380 3381 return kstrdup(name, GFP_KERNEL); 3382 } 3383 3384 /* 3385 * Simplify DAI link naming for single devices with multiple DAIs by removing 3386 * any ".-1" and using the DAI name (instead of device name). 3387 */ 3388 static inline char *fmt_multiple_name(struct device *dev, 3389 struct snd_soc_dai_driver *dai_drv) 3390 { 3391 if (dai_drv->name == NULL) { 3392 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n", 3393 dev_name(dev)); 3394 return NULL; 3395 } 3396 3397 return kstrdup(dai_drv->name, GFP_KERNEL); 3398 } 3399 3400 /** 3401 * snd_soc_register_dai - Register a DAI with the ASoC core 3402 * 3403 * @dai: DAI to register 3404 */ 3405 int snd_soc_register_dai(struct device *dev, 3406 struct snd_soc_dai_driver *dai_drv) 3407 { 3408 struct snd_soc_dai *dai; 3409 3410 dev_dbg(dev, "dai register %s\n", dev_name(dev)); 3411 3412 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3413 if (dai == NULL) 3414 return -ENOMEM; 3415 3416 /* create DAI component name */ 3417 dai->name = fmt_single_name(dev, &dai->id); 3418 if (dai->name == NULL) { 3419 kfree(dai); 3420 return -ENOMEM; 3421 } 3422 3423 dai->dev = dev; 3424 dai->driver = dai_drv; 3425 if (!dai->driver->ops) 3426 dai->driver->ops = &null_dai_ops; 3427 3428 mutex_lock(&client_mutex); 3429 list_add(&dai->list, &dai_list); 3430 snd_soc_instantiate_cards(); 3431 mutex_unlock(&client_mutex); 3432 3433 pr_debug("Registered DAI '%s'\n", dai->name); 3434 3435 return 0; 3436 } 3437 EXPORT_SYMBOL_GPL(snd_soc_register_dai); 3438 3439 /** 3440 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core 3441 * 3442 * @dai: DAI to unregister 3443 */ 3444 void snd_soc_unregister_dai(struct device *dev) 3445 { 3446 struct snd_soc_dai *dai; 3447 3448 list_for_each_entry(dai, &dai_list, list) { 3449 if (dev == dai->dev) 3450 goto found; 3451 } 3452 return; 3453 3454 found: 3455 mutex_lock(&client_mutex); 3456 list_del(&dai->list); 3457 mutex_unlock(&client_mutex); 3458 3459 pr_debug("Unregistered DAI '%s'\n", dai->name); 3460 kfree(dai->name); 3461 kfree(dai); 3462 } 3463 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai); 3464 3465 /** 3466 * snd_soc_register_dais - Register multiple DAIs with the ASoC core 3467 * 3468 * @dai: Array of DAIs to register 3469 * @count: Number of DAIs 3470 */ 3471 int snd_soc_register_dais(struct device *dev, 3472 struct snd_soc_dai_driver *dai_drv, size_t count) 3473 { 3474 struct snd_soc_dai *dai; 3475 int i, ret = 0; 3476 3477 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count); 3478 3479 for (i = 0; i < count; i++) { 3480 3481 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL); 3482 if (dai == NULL) { 3483 ret = -ENOMEM; 3484 goto err; 3485 } 3486 3487 /* create DAI component name */ 3488 dai->name = fmt_multiple_name(dev, &dai_drv[i]); 3489 if (dai->name == NULL) { 3490 kfree(dai); 3491 ret = -EINVAL; 3492 goto err; 3493 } 3494 3495 dai->dev = dev; 3496 dai->driver = &dai_drv[i]; 3497 if (dai->driver->id) 3498 dai->id = dai->driver->id; 3499 else 3500 dai->id = i; 3501 if (!dai->driver->ops) 3502 dai->driver->ops = &null_dai_ops; 3503 3504 mutex_lock(&client_mutex); 3505 list_add(&dai->list, &dai_list); 3506 mutex_unlock(&client_mutex); 3507 3508 pr_debug("Registered DAI '%s'\n", dai->name); 3509 } 3510 3511 mutex_lock(&client_mutex); 3512 snd_soc_instantiate_cards(); 3513 mutex_unlock(&client_mutex); 3514 return 0; 3515 3516 err: 3517 for (i--; i >= 0; i--) 3518 snd_soc_unregister_dai(dev); 3519 3520 return ret; 3521 } 3522 EXPORT_SYMBOL_GPL(snd_soc_register_dais); 3523 3524 /** 3525 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core 3526 * 3527 * @dai: Array of DAIs to unregister 3528 * @count: Number of DAIs 3529 */ 3530 void snd_soc_unregister_dais(struct device *dev, size_t count) 3531 { 3532 int i; 3533 3534 for (i = 0; i < count; i++) 3535 snd_soc_unregister_dai(dev); 3536 } 3537 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais); 3538 3539 /** 3540 * snd_soc_register_platform - Register a platform with the ASoC core 3541 * 3542 * @platform: platform to register 3543 */ 3544 int snd_soc_register_platform(struct device *dev, 3545 struct snd_soc_platform_driver *platform_drv) 3546 { 3547 struct snd_soc_platform *platform; 3548 3549 dev_dbg(dev, "platform register %s\n", dev_name(dev)); 3550 3551 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL); 3552 if (platform == NULL) 3553 return -ENOMEM; 3554 3555 /* create platform component name */ 3556 platform->name = fmt_single_name(dev, &platform->id); 3557 if (platform->name == NULL) { 3558 kfree(platform); 3559 return -ENOMEM; 3560 } 3561 3562 platform->dev = dev; 3563 platform->driver = platform_drv; 3564 3565 mutex_lock(&client_mutex); 3566 list_add(&platform->list, &platform_list); 3567 snd_soc_instantiate_cards(); 3568 mutex_unlock(&client_mutex); 3569 3570 pr_debug("Registered platform '%s'\n", platform->name); 3571 3572 return 0; 3573 } 3574 EXPORT_SYMBOL_GPL(snd_soc_register_platform); 3575 3576 /** 3577 * snd_soc_unregister_platform - Unregister a platform from the ASoC core 3578 * 3579 * @platform: platform to unregister 3580 */ 3581 void snd_soc_unregister_platform(struct device *dev) 3582 { 3583 struct snd_soc_platform *platform; 3584 3585 list_for_each_entry(platform, &platform_list, list) { 3586 if (dev == platform->dev) 3587 goto found; 3588 } 3589 return; 3590 3591 found: 3592 mutex_lock(&client_mutex); 3593 list_del(&platform->list); 3594 mutex_unlock(&client_mutex); 3595 3596 pr_debug("Unregistered platform '%s'\n", platform->name); 3597 kfree(platform->name); 3598 kfree(platform); 3599 } 3600 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform); 3601 3602 static u64 codec_format_map[] = { 3603 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE, 3604 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE, 3605 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE, 3606 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE, 3607 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE, 3608 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE, 3609 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3610 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE, 3611 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE, 3612 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE, 3613 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE, 3614 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE, 3615 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE, 3616 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE, 3617 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE 3618 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE, 3619 }; 3620 3621 /* Fix up the DAI formats for endianness: codecs don't actually see 3622 * the endianness of the data but we're using the CPU format 3623 * definitions which do need to include endianness so we ensure that 3624 * codec DAIs always have both big and little endian variants set. 3625 */ 3626 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream) 3627 { 3628 int i; 3629 3630 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++) 3631 if (stream->formats & codec_format_map[i]) 3632 stream->formats |= codec_format_map[i]; 3633 } 3634 3635 /** 3636 * snd_soc_register_codec - Register a codec with the ASoC core 3637 * 3638 * @codec: codec to register 3639 */ 3640 int snd_soc_register_codec(struct device *dev, 3641 const struct snd_soc_codec_driver *codec_drv, 3642 struct snd_soc_dai_driver *dai_drv, 3643 int num_dai) 3644 { 3645 size_t reg_size; 3646 struct snd_soc_codec *codec; 3647 int ret, i; 3648 3649 dev_dbg(dev, "codec register %s\n", dev_name(dev)); 3650 3651 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); 3652 if (codec == NULL) 3653 return -ENOMEM; 3654 3655 /* create CODEC component name */ 3656 codec->name = fmt_single_name(dev, &codec->id); 3657 if (codec->name == NULL) { 3658 kfree(codec); 3659 return -ENOMEM; 3660 } 3661 3662 if (codec_drv->compress_type) 3663 codec->compress_type = codec_drv->compress_type; 3664 else 3665 codec->compress_type = SND_SOC_FLAT_COMPRESSION; 3666 3667 codec->write = codec_drv->write; 3668 codec->read = codec_drv->read; 3669 codec->volatile_register = codec_drv->volatile_register; 3670 codec->readable_register = codec_drv->readable_register; 3671 codec->dapm.bias_level = SND_SOC_BIAS_OFF; 3672 codec->dapm.dev = dev; 3673 codec->dapm.codec = codec; 3674 codec->dapm.seq_notifier = codec_drv->seq_notifier; 3675 codec->dev = dev; 3676 codec->driver = codec_drv; 3677 codec->num_dai = num_dai; 3678 mutex_init(&codec->mutex); 3679 3680 /* allocate CODEC register cache */ 3681 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) { 3682 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size; 3683 codec->reg_size = reg_size; 3684 /* it is necessary to make a copy of the default register cache 3685 * because in the case of using a compression type that requires 3686 * the default register cache to be marked as __devinitconst the 3687 * kernel might have freed the array by the time we initialize 3688 * the cache. 3689 */ 3690 if (codec_drv->reg_cache_default) { 3691 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default, 3692 reg_size, GFP_KERNEL); 3693 if (!codec->reg_def_copy) { 3694 ret = -ENOMEM; 3695 goto fail; 3696 } 3697 } 3698 } 3699 3700 if (codec_drv->reg_access_size && codec_drv->reg_access_default) { 3701 if (!codec->volatile_register) 3702 codec->volatile_register = snd_soc_default_volatile_register; 3703 if (!codec->readable_register) 3704 codec->readable_register = snd_soc_default_readable_register; 3705 } 3706 3707 for (i = 0; i < num_dai; i++) { 3708 fixup_codec_formats(&dai_drv[i].playback); 3709 fixup_codec_formats(&dai_drv[i].capture); 3710 } 3711 3712 /* register any DAIs */ 3713 if (num_dai) { 3714 ret = snd_soc_register_dais(dev, dai_drv, num_dai); 3715 if (ret < 0) 3716 goto fail; 3717 } 3718 3719 mutex_lock(&client_mutex); 3720 list_add(&codec->list, &codec_list); 3721 snd_soc_instantiate_cards(); 3722 mutex_unlock(&client_mutex); 3723 3724 pr_debug("Registered codec '%s'\n", codec->name); 3725 return 0; 3726 3727 fail: 3728 kfree(codec->reg_def_copy); 3729 codec->reg_def_copy = NULL; 3730 kfree(codec->name); 3731 kfree(codec); 3732 return ret; 3733 } 3734 EXPORT_SYMBOL_GPL(snd_soc_register_codec); 3735 3736 /** 3737 * snd_soc_unregister_codec - Unregister a codec from the ASoC core 3738 * 3739 * @codec: codec to unregister 3740 */ 3741 void snd_soc_unregister_codec(struct device *dev) 3742 { 3743 struct snd_soc_codec *codec; 3744 int i; 3745 3746 list_for_each_entry(codec, &codec_list, list) { 3747 if (dev == codec->dev) 3748 goto found; 3749 } 3750 return; 3751 3752 found: 3753 if (codec->num_dai) 3754 for (i = 0; i < codec->num_dai; i++) 3755 snd_soc_unregister_dai(dev); 3756 3757 mutex_lock(&client_mutex); 3758 list_del(&codec->list); 3759 mutex_unlock(&client_mutex); 3760 3761 pr_debug("Unregistered codec '%s'\n", codec->name); 3762 3763 snd_soc_cache_exit(codec); 3764 kfree(codec->reg_def_copy); 3765 kfree(codec->name); 3766 kfree(codec); 3767 } 3768 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec); 3769 3770 static int __init snd_soc_init(void) 3771 { 3772 #ifdef CONFIG_DEBUG_FS 3773 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL); 3774 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) { 3775 printk(KERN_WARNING 3776 "ASoC: Failed to create debugfs directory\n"); 3777 snd_soc_debugfs_root = NULL; 3778 } 3779 3780 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL, 3781 &codec_list_fops)) 3782 pr_warn("ASoC: Failed to create CODEC list debugfs file\n"); 3783 3784 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL, 3785 &dai_list_fops)) 3786 pr_warn("ASoC: Failed to create DAI list debugfs file\n"); 3787 3788 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL, 3789 &platform_list_fops)) 3790 pr_warn("ASoC: Failed to create platform list debugfs file\n"); 3791 #endif 3792 3793 return platform_driver_register(&soc_driver); 3794 } 3795 module_init(snd_soc_init); 3796 3797 static void __exit snd_soc_exit(void) 3798 { 3799 #ifdef CONFIG_DEBUG_FS 3800 debugfs_remove_recursive(snd_soc_debugfs_root); 3801 #endif 3802 platform_driver_unregister(&soc_driver); 3803 } 3804 module_exit(snd_soc_exit); 3805 3806 /* Module information */ 3807 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk"); 3808 MODULE_DESCRIPTION("ALSA SoC Core"); 3809 MODULE_LICENSE("GPL"); 3810 MODULE_ALIAS("platform:soc-audio"); 3811