xref: /openbmc/linux/sound/soc/soc-core.c (revision 54525552)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24 
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44 
45 #define NAME_SIZE	32
46 
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49 
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54 
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60 
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62 
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71 
72 /* returns the minimum number of bytes needed to represent
73  * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 	int c = 0;
77 	int i;
78 
79 	for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 		if (val & (1UL << i))
81 			break;
82 	c = (sizeof val * 8) - c;
83 	if (!c || (c % 8))
84 		c = (c + 8) / 8;
85 	else
86 		c /= 8;
87 	return c;
88 }
89 
90 /* fill buf which is 'len' bytes with a formatted
91  * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 			       unsigned int reg, char *buf, size_t len)
94 {
95 	int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
96 	int regsize = codec->driver->reg_word_size * 2;
97 	int ret;
98 	char tmpbuf[len + 1];
99 	char regbuf[regsize + 1];
100 
101 	/* since tmpbuf is allocated on the stack, warn the callers if they
102 	 * try to abuse this function */
103 	WARN_ON(len > 63);
104 
105 	/* +2 for ': ' and + 1 for '\n' */
106 	if (wordsize + regsize + 2 + 1 != len)
107 		return -EINVAL;
108 
109 	ret = snd_soc_read(codec , reg);
110 	if (ret < 0) {
111 		memset(regbuf, 'X', regsize);
112 		regbuf[regsize] = '\0';
113 	} else {
114 		snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 	}
116 
117 	/* prepare the buffer */
118 	snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 	/* copy it back to the caller without the '\0' */
120 	memcpy(buf, tmpbuf, len);
121 
122 	return 0;
123 }
124 
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 				  size_t count, loff_t pos)
128 {
129 	int i, step = 1;
130 	int wordsize, regsize;
131 	int len;
132 	size_t total = 0;
133 	loff_t p = 0;
134 
135 	wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
136 	regsize = codec->driver->reg_word_size * 2;
137 
138 	len = wordsize + regsize + 2 + 1;
139 
140 	if (!codec->driver->reg_cache_size)
141 		return 0;
142 
143 	if (codec->driver->reg_cache_step)
144 		step = codec->driver->reg_cache_step;
145 
146 	for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 		if (codec->readable_register && !codec->readable_register(codec, i))
148 			continue;
149 		if (codec->driver->display_register) {
150 			count += codec->driver->display_register(codec, buf + count,
151 							 PAGE_SIZE - count, i);
152 		} else {
153 			/* only support larger than PAGE_SIZE bytes debugfs
154 			 * entries for the default case */
155 			if (p >= pos) {
156 				if (total + len >= count - 1)
157 					break;
158 				format_register_str(codec, i, buf + total, len);
159 				total += len;
160 			}
161 			p += len;
162 		}
163 	}
164 
165 	total = min(total, count - 1);
166 
167 	return total;
168 }
169 
170 static ssize_t codec_reg_show(struct device *dev,
171 	struct device_attribute *attr, char *buf)
172 {
173 	struct snd_soc_pcm_runtime *rtd =
174 			container_of(dev, struct snd_soc_pcm_runtime, dev);
175 
176 	return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178 
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180 
181 static ssize_t pmdown_time_show(struct device *dev,
182 				struct device_attribute *attr, char *buf)
183 {
184 	struct snd_soc_pcm_runtime *rtd =
185 			container_of(dev, struct snd_soc_pcm_runtime, dev);
186 
187 	return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189 
190 static ssize_t pmdown_time_set(struct device *dev,
191 			       struct device_attribute *attr,
192 			       const char *buf, size_t count)
193 {
194 	struct snd_soc_pcm_runtime *rtd =
195 			container_of(dev, struct snd_soc_pcm_runtime, dev);
196 	int ret;
197 
198 	ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 	if (ret)
200 		return ret;
201 
202 	return count;
203 }
204 
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206 
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 	file->private_data = inode->i_private;
211 	return 0;
212 }
213 
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 				   size_t count, loff_t *ppos)
216 {
217 	ssize_t ret;
218 	struct snd_soc_codec *codec = file->private_data;
219 	char *buf;
220 
221 	if (*ppos < 0 || !count)
222 		return -EINVAL;
223 
224 	buf = kmalloc(count, GFP_KERNEL);
225 	if (!buf)
226 		return -ENOMEM;
227 
228 	ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 	if (ret >= 0) {
230 		if (copy_to_user(user_buf, buf, ret)) {
231 			kfree(buf);
232 			return -EFAULT;
233 		}
234 		*ppos += ret;
235 	}
236 
237 	kfree(buf);
238 	return ret;
239 }
240 
241 static ssize_t codec_reg_write_file(struct file *file,
242 		const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 	char buf[32];
245 	size_t buf_size;
246 	char *start = buf;
247 	unsigned long reg, value;
248 	int step = 1;
249 	struct snd_soc_codec *codec = file->private_data;
250 
251 	buf_size = min(count, (sizeof(buf)-1));
252 	if (copy_from_user(buf, user_buf, buf_size))
253 		return -EFAULT;
254 	buf[buf_size] = 0;
255 
256 	if (codec->driver->reg_cache_step)
257 		step = codec->driver->reg_cache_step;
258 
259 	while (*start == ' ')
260 		start++;
261 	reg = simple_strtoul(start, &start, 16);
262 	while (*start == ' ')
263 		start++;
264 	if (strict_strtoul(start, 16, &value))
265 		return -EINVAL;
266 
267 	/* Userspace has been fiddling around behind the kernel's back */
268 	add_taint(TAINT_USER);
269 
270 	snd_soc_write(codec, reg, value);
271 	return buf_size;
272 }
273 
274 static const struct file_operations codec_reg_fops = {
275 	.open = codec_reg_open_file,
276 	.read = codec_reg_read_file,
277 	.write = codec_reg_write_file,
278 	.llseek = default_llseek,
279 };
280 
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 	struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284 
285 	codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 						       debugfs_card_root);
287 	if (!codec->debugfs_codec_root) {
288 		printk(KERN_WARNING
289 		       "ASoC: Failed to create codec debugfs directory\n");
290 		return;
291 	}
292 
293 	debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 			    &codec->cache_sync);
295 	debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 			    &codec->cache_only);
297 
298 	codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 						 codec->debugfs_codec_root,
300 						 codec, &codec_reg_fops);
301 	if (!codec->debugfs_reg)
302 		printk(KERN_WARNING
303 		       "ASoC: Failed to create codec register debugfs file\n");
304 
305 	snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
306 }
307 
308 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
309 {
310 	debugfs_remove_recursive(codec->debugfs_codec_root);
311 }
312 
313 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
314 				    size_t count, loff_t *ppos)
315 {
316 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
317 	ssize_t len, ret = 0;
318 	struct snd_soc_codec *codec;
319 
320 	if (!buf)
321 		return -ENOMEM;
322 
323 	list_for_each_entry(codec, &codec_list, list) {
324 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
325 			       codec->name);
326 		if (len >= 0)
327 			ret += len;
328 		if (ret > PAGE_SIZE) {
329 			ret = PAGE_SIZE;
330 			break;
331 		}
332 	}
333 
334 	if (ret >= 0)
335 		ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
336 
337 	kfree(buf);
338 
339 	return ret;
340 }
341 
342 static const struct file_operations codec_list_fops = {
343 	.read = codec_list_read_file,
344 	.llseek = default_llseek,/* read accesses f_pos */
345 };
346 
347 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
348 				  size_t count, loff_t *ppos)
349 {
350 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
351 	ssize_t len, ret = 0;
352 	struct snd_soc_dai *dai;
353 
354 	if (!buf)
355 		return -ENOMEM;
356 
357 	list_for_each_entry(dai, &dai_list, list) {
358 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
359 		if (len >= 0)
360 			ret += len;
361 		if (ret > PAGE_SIZE) {
362 			ret = PAGE_SIZE;
363 			break;
364 		}
365 	}
366 
367 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
368 
369 	kfree(buf);
370 
371 	return ret;
372 }
373 
374 static const struct file_operations dai_list_fops = {
375 	.read = dai_list_read_file,
376 	.llseek = default_llseek,/* read accesses f_pos */
377 };
378 
379 static ssize_t platform_list_read_file(struct file *file,
380 				       char __user *user_buf,
381 				       size_t count, loff_t *ppos)
382 {
383 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
384 	ssize_t len, ret = 0;
385 	struct snd_soc_platform *platform;
386 
387 	if (!buf)
388 		return -ENOMEM;
389 
390 	list_for_each_entry(platform, &platform_list, list) {
391 		len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
392 			       platform->name);
393 		if (len >= 0)
394 			ret += len;
395 		if (ret > PAGE_SIZE) {
396 			ret = PAGE_SIZE;
397 			break;
398 		}
399 	}
400 
401 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
402 
403 	kfree(buf);
404 
405 	return ret;
406 }
407 
408 static const struct file_operations platform_list_fops = {
409 	.read = platform_list_read_file,
410 	.llseek = default_llseek,/* read accesses f_pos */
411 };
412 
413 static void soc_init_card_debugfs(struct snd_soc_card *card)
414 {
415 	card->debugfs_card_root = debugfs_create_dir(card->name,
416 						     snd_soc_debugfs_root);
417 	if (!card->debugfs_card_root) {
418 		dev_warn(card->dev,
419 			 "ASoC: Failed to create codec debugfs directory\n");
420 		return;
421 	}
422 
423 	card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
424 						    card->debugfs_card_root,
425 						    &card->pop_time);
426 	if (!card->debugfs_pop_time)
427 		dev_warn(card->dev,
428 		       "Failed to create pop time debugfs file\n");
429 }
430 
431 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
432 {
433 	debugfs_remove_recursive(card->debugfs_card_root);
434 }
435 
436 #else
437 
438 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
439 {
440 }
441 
442 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
443 {
444 }
445 
446 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
447 {
448 }
449 
450 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
451 {
452 }
453 #endif
454 
455 #ifdef CONFIG_SND_SOC_AC97_BUS
456 /* unregister ac97 codec */
457 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
458 {
459 	if (codec->ac97->dev.bus)
460 		device_unregister(&codec->ac97->dev);
461 	return 0;
462 }
463 
464 /* stop no dev release warning */
465 static void soc_ac97_device_release(struct device *dev){}
466 
467 /* register ac97 codec to bus */
468 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
469 {
470 	int err;
471 
472 	codec->ac97->dev.bus = &ac97_bus_type;
473 	codec->ac97->dev.parent = codec->card->dev;
474 	codec->ac97->dev.release = soc_ac97_device_release;
475 
476 	dev_set_name(&codec->ac97->dev, "%d-%d:%s",
477 		     codec->card->snd_card->number, 0, codec->name);
478 	err = device_register(&codec->ac97->dev);
479 	if (err < 0) {
480 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
481 		codec->ac97->dev.bus = NULL;
482 		return err;
483 	}
484 	return 0;
485 }
486 #endif
487 
488 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
489 {
490 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
491 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
492 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
493 	int ret;
494 
495 	if (!codec_dai->driver->symmetric_rates &&
496 	    !cpu_dai->driver->symmetric_rates &&
497 	    !rtd->dai_link->symmetric_rates)
498 		return 0;
499 
500 	/* This can happen if multiple streams are starting simultaneously -
501 	 * the second can need to get its constraints before the first has
502 	 * picked a rate.  Complain and allow the application to carry on.
503 	 */
504 	if (!rtd->rate) {
505 		dev_warn(&rtd->dev,
506 			 "Not enforcing symmetric_rates due to race\n");
507 		return 0;
508 	}
509 
510 	dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
511 
512 	ret = snd_pcm_hw_constraint_minmax(substream->runtime,
513 					   SNDRV_PCM_HW_PARAM_RATE,
514 					   rtd->rate, rtd->rate);
515 	if (ret < 0) {
516 		dev_err(&rtd->dev,
517 			"Unable to apply rate symmetry constraint: %d\n", ret);
518 		return ret;
519 	}
520 
521 	return 0;
522 }
523 
524 /*
525  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
526  * then initialized and any private data can be allocated. This also calls
527  * startup for the cpu DAI, platform, machine and codec DAI.
528  */
529 static int soc_pcm_open(struct snd_pcm_substream *substream)
530 {
531 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
532 	struct snd_pcm_runtime *runtime = substream->runtime;
533 	struct snd_soc_platform *platform = rtd->platform;
534 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
535 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
536 	struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
537 	struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
538 	int ret = 0;
539 
540 	mutex_lock(&pcm_mutex);
541 
542 	/* startup the audio subsystem */
543 	if (cpu_dai->driver->ops->startup) {
544 		ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
545 		if (ret < 0) {
546 			printk(KERN_ERR "asoc: can't open interface %s\n",
547 				cpu_dai->name);
548 			goto out;
549 		}
550 	}
551 
552 	if (platform->driver->ops && platform->driver->ops->open) {
553 		ret = platform->driver->ops->open(substream);
554 		if (ret < 0) {
555 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
556 			goto platform_err;
557 		}
558 	}
559 
560 	if (codec_dai->driver->ops->startup) {
561 		ret = codec_dai->driver->ops->startup(substream, codec_dai);
562 		if (ret < 0) {
563 			printk(KERN_ERR "asoc: can't open codec %s\n",
564 				codec_dai->name);
565 			goto codec_dai_err;
566 		}
567 	}
568 
569 	if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
570 		ret = rtd->dai_link->ops->startup(substream);
571 		if (ret < 0) {
572 			printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
573 			goto machine_err;
574 		}
575 	}
576 
577 	/* Check that the codec and cpu DAIs are compatible */
578 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
579 		runtime->hw.rate_min =
580 			max(codec_dai_drv->playback.rate_min,
581 			    cpu_dai_drv->playback.rate_min);
582 		runtime->hw.rate_max =
583 			min(codec_dai_drv->playback.rate_max,
584 			    cpu_dai_drv->playback.rate_max);
585 		runtime->hw.channels_min =
586 			max(codec_dai_drv->playback.channels_min,
587 				cpu_dai_drv->playback.channels_min);
588 		runtime->hw.channels_max =
589 			min(codec_dai_drv->playback.channels_max,
590 				cpu_dai_drv->playback.channels_max);
591 		runtime->hw.formats =
592 			codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
593 		runtime->hw.rates =
594 			codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
595 		if (codec_dai_drv->playback.rates
596 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
597 			runtime->hw.rates |= cpu_dai_drv->playback.rates;
598 		if (cpu_dai_drv->playback.rates
599 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
600 			runtime->hw.rates |= codec_dai_drv->playback.rates;
601 	} else {
602 		runtime->hw.rate_min =
603 			max(codec_dai_drv->capture.rate_min,
604 			    cpu_dai_drv->capture.rate_min);
605 		runtime->hw.rate_max =
606 			min(codec_dai_drv->capture.rate_max,
607 			    cpu_dai_drv->capture.rate_max);
608 		runtime->hw.channels_min =
609 			max(codec_dai_drv->capture.channels_min,
610 				cpu_dai_drv->capture.channels_min);
611 		runtime->hw.channels_max =
612 			min(codec_dai_drv->capture.channels_max,
613 				cpu_dai_drv->capture.channels_max);
614 		runtime->hw.formats =
615 			codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
616 		runtime->hw.rates =
617 			codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
618 		if (codec_dai_drv->capture.rates
619 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
620 			runtime->hw.rates |= cpu_dai_drv->capture.rates;
621 		if (cpu_dai_drv->capture.rates
622 			   & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
623 			runtime->hw.rates |= codec_dai_drv->capture.rates;
624 	}
625 
626 	ret = -EINVAL;
627 	snd_pcm_limit_hw_rates(runtime);
628 	if (!runtime->hw.rates) {
629 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
630 			codec_dai->name, cpu_dai->name);
631 		goto config_err;
632 	}
633 	if (!runtime->hw.formats) {
634 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
635 			codec_dai->name, cpu_dai->name);
636 		goto config_err;
637 	}
638 	if (!runtime->hw.channels_min || !runtime->hw.channels_max ||
639 	    runtime->hw.channels_min > runtime->hw.channels_max) {
640 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
641 				codec_dai->name, cpu_dai->name);
642 		goto config_err;
643 	}
644 
645 	/* Symmetry only applies if we've already got an active stream. */
646 	if (cpu_dai->active || codec_dai->active) {
647 		ret = soc_pcm_apply_symmetry(substream);
648 		if (ret != 0)
649 			goto config_err;
650 	}
651 
652 	pr_debug("asoc: %s <-> %s info:\n",
653 			codec_dai->name, cpu_dai->name);
654 	pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
655 	pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
656 		 runtime->hw.channels_max);
657 	pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
658 		 runtime->hw.rate_max);
659 
660 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
661 		cpu_dai->playback_active++;
662 		codec_dai->playback_active++;
663 	} else {
664 		cpu_dai->capture_active++;
665 		codec_dai->capture_active++;
666 	}
667 	cpu_dai->active++;
668 	codec_dai->active++;
669 	rtd->codec->active++;
670 	mutex_unlock(&pcm_mutex);
671 	return 0;
672 
673 config_err:
674 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
675 		rtd->dai_link->ops->shutdown(substream);
676 
677 machine_err:
678 	if (codec_dai->driver->ops->shutdown)
679 		codec_dai->driver->ops->shutdown(substream, codec_dai);
680 
681 codec_dai_err:
682 	if (platform->driver->ops && platform->driver->ops->close)
683 		platform->driver->ops->close(substream);
684 
685 platform_err:
686 	if (cpu_dai->driver->ops->shutdown)
687 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
688 out:
689 	mutex_unlock(&pcm_mutex);
690 	return ret;
691 }
692 
693 /*
694  * Power down the audio subsystem pmdown_time msecs after close is called.
695  * This is to ensure there are no pops or clicks in between any music tracks
696  * due to DAPM power cycling.
697  */
698 static void close_delayed_work(struct work_struct *work)
699 {
700 	struct snd_soc_pcm_runtime *rtd =
701 			container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
702 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
703 
704 	mutex_lock(&pcm_mutex);
705 
706 	pr_debug("pop wq checking: %s status: %s waiting: %s\n",
707 		 codec_dai->driver->playback.stream_name,
708 		 codec_dai->playback_active ? "active" : "inactive",
709 		 codec_dai->pop_wait ? "yes" : "no");
710 
711 	/* are we waiting on this codec DAI stream */
712 	if (codec_dai->pop_wait == 1) {
713 		codec_dai->pop_wait = 0;
714 		snd_soc_dapm_stream_event(rtd,
715 			codec_dai->driver->playback.stream_name,
716 			SND_SOC_DAPM_STREAM_STOP);
717 	}
718 
719 	mutex_unlock(&pcm_mutex);
720 }
721 
722 /*
723  * Called by ALSA when a PCM substream is closed. Private data can be
724  * freed here. The cpu DAI, codec DAI, machine and platform are also
725  * shutdown.
726  */
727 static int soc_codec_close(struct snd_pcm_substream *substream)
728 {
729 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
730 	struct snd_soc_platform *platform = rtd->platform;
731 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
732 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
733 	struct snd_soc_codec *codec = rtd->codec;
734 
735 	mutex_lock(&pcm_mutex);
736 
737 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
738 		cpu_dai->playback_active--;
739 		codec_dai->playback_active--;
740 	} else {
741 		cpu_dai->capture_active--;
742 		codec_dai->capture_active--;
743 	}
744 
745 	cpu_dai->active--;
746 	codec_dai->active--;
747 	codec->active--;
748 
749 	/* Muting the DAC suppresses artifacts caused during digital
750 	 * shutdown, for example from stopping clocks.
751 	 */
752 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
753 		snd_soc_dai_digital_mute(codec_dai, 1);
754 
755 	if (cpu_dai->driver->ops->shutdown)
756 		cpu_dai->driver->ops->shutdown(substream, cpu_dai);
757 
758 	if (codec_dai->driver->ops->shutdown)
759 		codec_dai->driver->ops->shutdown(substream, codec_dai);
760 
761 	if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
762 		rtd->dai_link->ops->shutdown(substream);
763 
764 	if (platform->driver->ops && platform->driver->ops->close)
765 		platform->driver->ops->close(substream);
766 	cpu_dai->runtime = NULL;
767 
768 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
769 		/* start delayed pop wq here for playback streams */
770 		codec_dai->pop_wait = 1;
771 		schedule_delayed_work(&rtd->delayed_work,
772 			msecs_to_jiffies(rtd->pmdown_time));
773 	} else {
774 		/* capture streams can be powered down now */
775 		snd_soc_dapm_stream_event(rtd,
776 			codec_dai->driver->capture.stream_name,
777 			SND_SOC_DAPM_STREAM_STOP);
778 	}
779 
780 	mutex_unlock(&pcm_mutex);
781 	return 0;
782 }
783 
784 /*
785  * Called by ALSA when the PCM substream is prepared, can set format, sample
786  * rate, etc.  This function is non atomic and can be called multiple times,
787  * it can refer to the runtime info.
788  */
789 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
790 {
791 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
792 	struct snd_soc_platform *platform = rtd->platform;
793 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
794 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
795 	int ret = 0;
796 
797 	mutex_lock(&pcm_mutex);
798 
799 	if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
800 		ret = rtd->dai_link->ops->prepare(substream);
801 		if (ret < 0) {
802 			printk(KERN_ERR "asoc: machine prepare error\n");
803 			goto out;
804 		}
805 	}
806 
807 	if (platform->driver->ops && platform->driver->ops->prepare) {
808 		ret = platform->driver->ops->prepare(substream);
809 		if (ret < 0) {
810 			printk(KERN_ERR "asoc: platform prepare error\n");
811 			goto out;
812 		}
813 	}
814 
815 	if (codec_dai->driver->ops->prepare) {
816 		ret = codec_dai->driver->ops->prepare(substream, codec_dai);
817 		if (ret < 0) {
818 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
819 			goto out;
820 		}
821 	}
822 
823 	if (cpu_dai->driver->ops->prepare) {
824 		ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
825 		if (ret < 0) {
826 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
827 			goto out;
828 		}
829 	}
830 
831 	/* cancel any delayed stream shutdown that is pending */
832 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
833 	    codec_dai->pop_wait) {
834 		codec_dai->pop_wait = 0;
835 		cancel_delayed_work(&rtd->delayed_work);
836 	}
837 
838 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
839 		snd_soc_dapm_stream_event(rtd,
840 					  codec_dai->driver->playback.stream_name,
841 					  SND_SOC_DAPM_STREAM_START);
842 	else
843 		snd_soc_dapm_stream_event(rtd,
844 					  codec_dai->driver->capture.stream_name,
845 					  SND_SOC_DAPM_STREAM_START);
846 
847 	snd_soc_dai_digital_mute(codec_dai, 0);
848 
849 out:
850 	mutex_unlock(&pcm_mutex);
851 	return ret;
852 }
853 
854 /*
855  * Called by ALSA when the hardware params are set by application. This
856  * function can also be called multiple times and can allocate buffers
857  * (using snd_pcm_lib_* ). It's non-atomic.
858  */
859 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
860 				struct snd_pcm_hw_params *params)
861 {
862 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
863 	struct snd_soc_platform *platform = rtd->platform;
864 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
865 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
866 	int ret = 0;
867 
868 	mutex_lock(&pcm_mutex);
869 
870 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
871 		ret = rtd->dai_link->ops->hw_params(substream, params);
872 		if (ret < 0) {
873 			printk(KERN_ERR "asoc: machine hw_params failed\n");
874 			goto out;
875 		}
876 	}
877 
878 	if (codec_dai->driver->ops->hw_params) {
879 		ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
880 		if (ret < 0) {
881 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
882 				codec_dai->name);
883 			goto codec_err;
884 		}
885 	}
886 
887 	if (cpu_dai->driver->ops->hw_params) {
888 		ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
889 		if (ret < 0) {
890 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
891 				cpu_dai->name);
892 			goto interface_err;
893 		}
894 	}
895 
896 	if (platform->driver->ops && platform->driver->ops->hw_params) {
897 		ret = platform->driver->ops->hw_params(substream, params);
898 		if (ret < 0) {
899 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
900 				platform->name);
901 			goto platform_err;
902 		}
903 	}
904 
905 	rtd->rate = params_rate(params);
906 
907 out:
908 	mutex_unlock(&pcm_mutex);
909 	return ret;
910 
911 platform_err:
912 	if (cpu_dai->driver->ops->hw_free)
913 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
914 
915 interface_err:
916 	if (codec_dai->driver->ops->hw_free)
917 		codec_dai->driver->ops->hw_free(substream, codec_dai);
918 
919 codec_err:
920 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
921 		rtd->dai_link->ops->hw_free(substream);
922 
923 	mutex_unlock(&pcm_mutex);
924 	return ret;
925 }
926 
927 /*
928  * Frees resources allocated by hw_params, can be called multiple times
929  */
930 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
931 {
932 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
933 	struct snd_soc_platform *platform = rtd->platform;
934 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
935 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
936 	struct snd_soc_codec *codec = rtd->codec;
937 
938 	mutex_lock(&pcm_mutex);
939 
940 	/* apply codec digital mute */
941 	if (!codec->active)
942 		snd_soc_dai_digital_mute(codec_dai, 1);
943 
944 	/* free any machine hw params */
945 	if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
946 		rtd->dai_link->ops->hw_free(substream);
947 
948 	/* free any DMA resources */
949 	if (platform->driver->ops && platform->driver->ops->hw_free)
950 		platform->driver->ops->hw_free(substream);
951 
952 	/* now free hw params for the DAIs  */
953 	if (codec_dai->driver->ops->hw_free)
954 		codec_dai->driver->ops->hw_free(substream, codec_dai);
955 
956 	if (cpu_dai->driver->ops->hw_free)
957 		cpu_dai->driver->ops->hw_free(substream, cpu_dai);
958 
959 	mutex_unlock(&pcm_mutex);
960 	return 0;
961 }
962 
963 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
964 {
965 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
966 	struct snd_soc_platform *platform = rtd->platform;
967 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
968 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
969 	int ret;
970 
971 	if (codec_dai->driver->ops->trigger) {
972 		ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
973 		if (ret < 0)
974 			return ret;
975 	}
976 
977 	if (platform->driver->ops && platform->driver->ops->trigger) {
978 		ret = platform->driver->ops->trigger(substream, cmd);
979 		if (ret < 0)
980 			return ret;
981 	}
982 
983 	if (cpu_dai->driver->ops->trigger) {
984 		ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
985 		if (ret < 0)
986 			return ret;
987 	}
988 	return 0;
989 }
990 
991 /*
992  * soc level wrapper for pointer callback
993  * If cpu_dai, codec_dai, platform driver has the delay callback, than
994  * the runtime->delay will be updated accordingly.
995  */
996 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
997 {
998 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
999 	struct snd_soc_platform *platform = rtd->platform;
1000 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1001 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
1002 	struct snd_pcm_runtime *runtime = substream->runtime;
1003 	snd_pcm_uframes_t offset = 0;
1004 	snd_pcm_sframes_t delay = 0;
1005 
1006 	if (platform->driver->ops && platform->driver->ops->pointer)
1007 		offset = platform->driver->ops->pointer(substream);
1008 
1009 	if (cpu_dai->driver->ops->delay)
1010 		delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1011 
1012 	if (codec_dai->driver->ops->delay)
1013 		delay += codec_dai->driver->ops->delay(substream, codec_dai);
1014 
1015 	if (platform->driver->delay)
1016 		delay += platform->driver->delay(substream, codec_dai);
1017 
1018 	runtime->delay = delay;
1019 
1020 	return offset;
1021 }
1022 
1023 /* ASoC PCM operations */
1024 static struct snd_pcm_ops soc_pcm_ops = {
1025 	.open		= soc_pcm_open,
1026 	.close		= soc_codec_close,
1027 	.hw_params	= soc_pcm_hw_params,
1028 	.hw_free	= soc_pcm_hw_free,
1029 	.prepare	= soc_pcm_prepare,
1030 	.trigger	= soc_pcm_trigger,
1031 	.pointer	= soc_pcm_pointer,
1032 };
1033 
1034 #ifdef CONFIG_PM_SLEEP
1035 /* powers down audio subsystem for suspend */
1036 int snd_soc_suspend(struct device *dev)
1037 {
1038 	struct snd_soc_card *card = dev_get_drvdata(dev);
1039 	struct snd_soc_codec *codec;
1040 	int i;
1041 
1042 	/* If the initialization of this soc device failed, there is no codec
1043 	 * associated with it. Just bail out in this case.
1044 	 */
1045 	if (list_empty(&card->codec_dev_list))
1046 		return 0;
1047 
1048 	/* Due to the resume being scheduled into a workqueue we could
1049 	* suspend before that's finished - wait for it to complete.
1050 	 */
1051 	snd_power_lock(card->snd_card);
1052 	snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1053 	snd_power_unlock(card->snd_card);
1054 
1055 	/* we're going to block userspace touching us until resume completes */
1056 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1057 
1058 	/* mute any active DACs */
1059 	for (i = 0; i < card->num_rtd; i++) {
1060 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1061 		struct snd_soc_dai_driver *drv = dai->driver;
1062 
1063 		if (card->rtd[i].dai_link->ignore_suspend)
1064 			continue;
1065 
1066 		if (drv->ops->digital_mute && dai->playback_active)
1067 			drv->ops->digital_mute(dai, 1);
1068 	}
1069 
1070 	/* suspend all pcms */
1071 	for (i = 0; i < card->num_rtd; i++) {
1072 		if (card->rtd[i].dai_link->ignore_suspend)
1073 			continue;
1074 
1075 		snd_pcm_suspend_all(card->rtd[i].pcm);
1076 	}
1077 
1078 	if (card->suspend_pre)
1079 		card->suspend_pre(card);
1080 
1081 	for (i = 0; i < card->num_rtd; i++) {
1082 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1083 		struct snd_soc_platform *platform = card->rtd[i].platform;
1084 
1085 		if (card->rtd[i].dai_link->ignore_suspend)
1086 			continue;
1087 
1088 		if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1089 			cpu_dai->driver->suspend(cpu_dai);
1090 		if (platform->driver->suspend && !platform->suspended) {
1091 			platform->driver->suspend(cpu_dai);
1092 			platform->suspended = 1;
1093 		}
1094 	}
1095 
1096 	/* close any waiting streams and save state */
1097 	for (i = 0; i < card->num_rtd; i++) {
1098 		flush_delayed_work_sync(&card->rtd[i].delayed_work);
1099 		card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1100 	}
1101 
1102 	for (i = 0; i < card->num_rtd; i++) {
1103 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1104 
1105 		if (card->rtd[i].dai_link->ignore_suspend)
1106 			continue;
1107 
1108 		if (driver->playback.stream_name != NULL)
1109 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1110 				SND_SOC_DAPM_STREAM_SUSPEND);
1111 
1112 		if (driver->capture.stream_name != NULL)
1113 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1114 				SND_SOC_DAPM_STREAM_SUSPEND);
1115 	}
1116 
1117 	/* suspend all CODECs */
1118 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1119 		/* If there are paths active then the CODEC will be held with
1120 		 * bias _ON and should not be suspended. */
1121 		if (!codec->suspended && codec->driver->suspend) {
1122 			switch (codec->dapm.bias_level) {
1123 			case SND_SOC_BIAS_STANDBY:
1124 			case SND_SOC_BIAS_OFF:
1125 				codec->driver->suspend(codec, PMSG_SUSPEND);
1126 				codec->suspended = 1;
1127 				break;
1128 			default:
1129 				dev_dbg(codec->dev, "CODEC is on over suspend\n");
1130 				break;
1131 			}
1132 		}
1133 	}
1134 
1135 	for (i = 0; i < card->num_rtd; i++) {
1136 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1137 
1138 		if (card->rtd[i].dai_link->ignore_suspend)
1139 			continue;
1140 
1141 		if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1142 			cpu_dai->driver->suspend(cpu_dai);
1143 	}
1144 
1145 	if (card->suspend_post)
1146 		card->suspend_post(card);
1147 
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1151 
1152 /* deferred resume work, so resume can complete before we finished
1153  * setting our codec back up, which can be very slow on I2C
1154  */
1155 static void soc_resume_deferred(struct work_struct *work)
1156 {
1157 	struct snd_soc_card *card =
1158 			container_of(work, struct snd_soc_card, deferred_resume_work);
1159 	struct snd_soc_codec *codec;
1160 	int i;
1161 
1162 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1163 	 * so userspace apps are blocked from touching us
1164 	 */
1165 
1166 	dev_dbg(card->dev, "starting resume work\n");
1167 
1168 	/* Bring us up into D2 so that DAPM starts enabling things */
1169 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1170 
1171 	if (card->resume_pre)
1172 		card->resume_pre(card);
1173 
1174 	/* resume AC97 DAIs */
1175 	for (i = 0; i < card->num_rtd; i++) {
1176 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1177 
1178 		if (card->rtd[i].dai_link->ignore_suspend)
1179 			continue;
1180 
1181 		if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1182 			cpu_dai->driver->resume(cpu_dai);
1183 	}
1184 
1185 	list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1186 		/* If the CODEC was idle over suspend then it will have been
1187 		 * left with bias OFF or STANDBY and suspended so we must now
1188 		 * resume.  Otherwise the suspend was suppressed.
1189 		 */
1190 		if (codec->driver->resume && codec->suspended) {
1191 			switch (codec->dapm.bias_level) {
1192 			case SND_SOC_BIAS_STANDBY:
1193 			case SND_SOC_BIAS_OFF:
1194 				codec->driver->resume(codec);
1195 				codec->suspended = 0;
1196 				break;
1197 			default:
1198 				dev_dbg(codec->dev, "CODEC was on over suspend\n");
1199 				break;
1200 			}
1201 		}
1202 	}
1203 
1204 	for (i = 0; i < card->num_rtd; i++) {
1205 		struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1206 
1207 		if (card->rtd[i].dai_link->ignore_suspend)
1208 			continue;
1209 
1210 		if (driver->playback.stream_name != NULL)
1211 			snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1212 				SND_SOC_DAPM_STREAM_RESUME);
1213 
1214 		if (driver->capture.stream_name != NULL)
1215 			snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1216 				SND_SOC_DAPM_STREAM_RESUME);
1217 	}
1218 
1219 	/* unmute any active DACs */
1220 	for (i = 0; i < card->num_rtd; i++) {
1221 		struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1222 		struct snd_soc_dai_driver *drv = dai->driver;
1223 
1224 		if (card->rtd[i].dai_link->ignore_suspend)
1225 			continue;
1226 
1227 		if (drv->ops->digital_mute && dai->playback_active)
1228 			drv->ops->digital_mute(dai, 0);
1229 	}
1230 
1231 	for (i = 0; i < card->num_rtd; i++) {
1232 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1233 		struct snd_soc_platform *platform = card->rtd[i].platform;
1234 
1235 		if (card->rtd[i].dai_link->ignore_suspend)
1236 			continue;
1237 
1238 		if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1239 			cpu_dai->driver->resume(cpu_dai);
1240 		if (platform->driver->resume && platform->suspended) {
1241 			platform->driver->resume(cpu_dai);
1242 			platform->suspended = 0;
1243 		}
1244 	}
1245 
1246 	if (card->resume_post)
1247 		card->resume_post(card);
1248 
1249 	dev_dbg(card->dev, "resume work completed\n");
1250 
1251 	/* userspace can access us now we are back as we were before */
1252 	snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1253 }
1254 
1255 /* powers up audio subsystem after a suspend */
1256 int snd_soc_resume(struct device *dev)
1257 {
1258 	struct snd_soc_card *card = dev_get_drvdata(dev);
1259 	int i;
1260 
1261 	/* AC97 devices might have other drivers hanging off them so
1262 	 * need to resume immediately.  Other drivers don't have that
1263 	 * problem and may take a substantial amount of time to resume
1264 	 * due to I/O costs and anti-pop so handle them out of line.
1265 	 */
1266 	for (i = 0; i < card->num_rtd; i++) {
1267 		struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1268 		if (cpu_dai->driver->ac97_control) {
1269 			dev_dbg(dev, "Resuming AC97 immediately\n");
1270 			soc_resume_deferred(&card->deferred_resume_work);
1271 		} else {
1272 			dev_dbg(dev, "Scheduling resume work\n");
1273 			if (!schedule_work(&card->deferred_resume_work))
1274 				dev_err(dev, "resume work item may be lost\n");
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(snd_soc_resume);
1281 #else
1282 #define snd_soc_suspend NULL
1283 #define snd_soc_resume NULL
1284 #endif
1285 
1286 static struct snd_soc_dai_ops null_dai_ops = {
1287 };
1288 
1289 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1290 {
1291 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1292 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1293 	struct snd_soc_codec *codec;
1294 	struct snd_soc_platform *platform;
1295 	struct snd_soc_dai *codec_dai, *cpu_dai;
1296 	const char *platform_name;
1297 
1298 	if (rtd->complete)
1299 		return 1;
1300 	dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1301 
1302 	/* do we already have the CPU DAI for this link ? */
1303 	if (rtd->cpu_dai) {
1304 		goto find_codec;
1305 	}
1306 	/* no, then find CPU DAI from registered DAIs*/
1307 	list_for_each_entry(cpu_dai, &dai_list, list) {
1308 		if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1309 
1310 			if (!try_module_get(cpu_dai->dev->driver->owner))
1311 				return -ENODEV;
1312 
1313 			rtd->cpu_dai = cpu_dai;
1314 			goto find_codec;
1315 		}
1316 	}
1317 	dev_dbg(card->dev, "CPU DAI %s not registered\n",
1318 			dai_link->cpu_dai_name);
1319 
1320 find_codec:
1321 	/* do we already have the CODEC for this link ? */
1322 	if (rtd->codec) {
1323 		goto find_platform;
1324 	}
1325 
1326 	/* no, then find CODEC from registered CODECs*/
1327 	list_for_each_entry(codec, &codec_list, list) {
1328 		if (!strcmp(codec->name, dai_link->codec_name)) {
1329 			rtd->codec = codec;
1330 
1331 			/* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1332 			list_for_each_entry(codec_dai, &dai_list, list) {
1333 				if (codec->dev == codec_dai->dev &&
1334 						!strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1335 					rtd->codec_dai = codec_dai;
1336 					goto find_platform;
1337 				}
1338 			}
1339 			dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1340 					dai_link->codec_dai_name);
1341 
1342 			goto find_platform;
1343 		}
1344 	}
1345 	dev_dbg(card->dev, "CODEC %s not registered\n",
1346 			dai_link->codec_name);
1347 
1348 find_platform:
1349 	/* do we need a platform? */
1350 	if (rtd->platform)
1351 		goto out;
1352 
1353 	/* if there's no platform we match on the empty platform */
1354 	platform_name = dai_link->platform_name;
1355 	if (!platform_name)
1356 		platform_name = "snd-soc-dummy";
1357 
1358 	/* no, then find one from the set of registered platforms */
1359 	list_for_each_entry(platform, &platform_list, list) {
1360 		if (!strcmp(platform->name, platform_name)) {
1361 			rtd->platform = platform;
1362 			goto out;
1363 		}
1364 	}
1365 
1366 	dev_dbg(card->dev, "platform %s not registered\n",
1367 			dai_link->platform_name);
1368 	return 0;
1369 
1370 out:
1371 	/* mark rtd as complete if we found all 4 of our client devices */
1372 	if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1373 		rtd->complete = 1;
1374 		card->num_rtd++;
1375 	}
1376 	return 1;
1377 }
1378 
1379 static void soc_remove_codec(struct snd_soc_codec *codec)
1380 {
1381 	int err;
1382 
1383 	if (codec->driver->remove) {
1384 		err = codec->driver->remove(codec);
1385 		if (err < 0)
1386 			dev_err(codec->dev,
1387 				"asoc: failed to remove %s: %d\n",
1388 				codec->name, err);
1389 	}
1390 
1391 	/* Make sure all DAPM widgets are freed */
1392 	snd_soc_dapm_free(&codec->dapm);
1393 
1394 	soc_cleanup_codec_debugfs(codec);
1395 	codec->probed = 0;
1396 	list_del(&codec->card_list);
1397 	module_put(codec->dev->driver->owner);
1398 }
1399 
1400 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1401 {
1402 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1403 	struct snd_soc_codec *codec = rtd->codec;
1404 	struct snd_soc_platform *platform = rtd->platform;
1405 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1406 	int err;
1407 
1408 	/* unregister the rtd device */
1409 	if (rtd->dev_registered) {
1410 		device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1411 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1412 		device_unregister(&rtd->dev);
1413 		rtd->dev_registered = 0;
1414 	}
1415 
1416 	/* remove the CODEC DAI */
1417 	if (codec_dai && codec_dai->probed) {
1418 		if (codec_dai->driver->remove) {
1419 			err = codec_dai->driver->remove(codec_dai);
1420 			if (err < 0)
1421 				printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1422 		}
1423 		codec_dai->probed = 0;
1424 		list_del(&codec_dai->card_list);
1425 	}
1426 
1427 	/* remove the platform */
1428 	if (platform && platform->probed) {
1429 		if (platform->driver->remove) {
1430 			err = platform->driver->remove(platform);
1431 			if (err < 0)
1432 				printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1433 		}
1434 		platform->probed = 0;
1435 		list_del(&platform->card_list);
1436 		module_put(platform->dev->driver->owner);
1437 	}
1438 
1439 	/* remove the CODEC */
1440 	if (codec && codec->probed)
1441 		soc_remove_codec(codec);
1442 
1443 	/* remove the cpu_dai */
1444 	if (cpu_dai && cpu_dai->probed) {
1445 		if (cpu_dai->driver->remove) {
1446 			err = cpu_dai->driver->remove(cpu_dai);
1447 			if (err < 0)
1448 				printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1449 		}
1450 		cpu_dai->probed = 0;
1451 		list_del(&cpu_dai->card_list);
1452 		module_put(cpu_dai->dev->driver->owner);
1453 	}
1454 }
1455 
1456 static void soc_remove_dai_links(struct snd_soc_card *card)
1457 {
1458 	int i;
1459 
1460 	for (i = 0; i < card->num_rtd; i++)
1461 		soc_remove_dai_link(card, i);
1462 
1463 	card->num_rtd = 0;
1464 }
1465 
1466 static void soc_set_name_prefix(struct snd_soc_card *card,
1467 				struct snd_soc_codec *codec)
1468 {
1469 	int i;
1470 
1471 	if (card->codec_conf == NULL)
1472 		return;
1473 
1474 	for (i = 0; i < card->num_configs; i++) {
1475 		struct snd_soc_codec_conf *map = &card->codec_conf[i];
1476 		if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1477 			codec->name_prefix = map->name_prefix;
1478 			break;
1479 		}
1480 	}
1481 }
1482 
1483 static int soc_probe_codec(struct snd_soc_card *card,
1484 			   struct snd_soc_codec *codec)
1485 {
1486 	int ret = 0;
1487 	const struct snd_soc_codec_driver *driver = codec->driver;
1488 
1489 	codec->card = card;
1490 	codec->dapm.card = card;
1491 	soc_set_name_prefix(card, codec);
1492 
1493 	if (!try_module_get(codec->dev->driver->owner))
1494 		return -ENODEV;
1495 
1496 	soc_init_codec_debugfs(codec);
1497 
1498 	if (driver->dapm_widgets)
1499 		snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1500 					  driver->num_dapm_widgets);
1501 
1502 	if (driver->probe) {
1503 		ret = driver->probe(codec);
1504 		if (ret < 0) {
1505 			dev_err(codec->dev,
1506 				"asoc: failed to probe CODEC %s: %d\n",
1507 				codec->name, ret);
1508 			goto err_probe;
1509 		}
1510 	}
1511 
1512 	if (driver->controls)
1513 		snd_soc_add_controls(codec, driver->controls,
1514 				     driver->num_controls);
1515 	if (driver->dapm_routes)
1516 		snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1517 					driver->num_dapm_routes);
1518 
1519 	/* mark codec as probed and add to card codec list */
1520 	codec->probed = 1;
1521 	list_add(&codec->card_list, &card->codec_dev_list);
1522 	list_add(&codec->dapm.list, &card->dapm_list);
1523 
1524 	return 0;
1525 
1526 err_probe:
1527 	soc_cleanup_codec_debugfs(codec);
1528 	module_put(codec->dev->driver->owner);
1529 
1530 	return ret;
1531 }
1532 
1533 static void rtd_release(struct device *dev) {}
1534 
1535 static int soc_post_component_init(struct snd_soc_card *card,
1536 				   struct snd_soc_codec *codec,
1537 				   int num, int dailess)
1538 {
1539 	struct snd_soc_dai_link *dai_link = NULL;
1540 	struct snd_soc_aux_dev *aux_dev = NULL;
1541 	struct snd_soc_pcm_runtime *rtd;
1542 	const char *temp, *name;
1543 	int ret = 0;
1544 
1545 	if (!dailess) {
1546 		dai_link = &card->dai_link[num];
1547 		rtd = &card->rtd[num];
1548 		name = dai_link->name;
1549 	} else {
1550 		aux_dev = &card->aux_dev[num];
1551 		rtd = &card->rtd_aux[num];
1552 		name = aux_dev->name;
1553 	}
1554 	rtd->card = card;
1555 
1556 	/* machine controls, routes and widgets are not prefixed */
1557 	temp = codec->name_prefix;
1558 	codec->name_prefix = NULL;
1559 
1560 	/* do machine specific initialization */
1561 	if (!dailess && dai_link->init)
1562 		ret = dai_link->init(rtd);
1563 	else if (dailess && aux_dev->init)
1564 		ret = aux_dev->init(&codec->dapm);
1565 	if (ret < 0) {
1566 		dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1567 		return ret;
1568 	}
1569 	codec->name_prefix = temp;
1570 
1571 	/* Make sure all DAPM widgets are instantiated */
1572 	snd_soc_dapm_new_widgets(&codec->dapm);
1573 
1574 	/* register the rtd device */
1575 	rtd->codec = codec;
1576 	rtd->dev.parent = card->dev;
1577 	rtd->dev.release = rtd_release;
1578 	rtd->dev.init_name = name;
1579 	ret = device_register(&rtd->dev);
1580 	if (ret < 0) {
1581 		dev_err(card->dev,
1582 			"asoc: failed to register runtime device: %d\n", ret);
1583 		return ret;
1584 	}
1585 	rtd->dev_registered = 1;
1586 
1587 	/* add DAPM sysfs entries for this codec */
1588 	ret = snd_soc_dapm_sys_add(&rtd->dev);
1589 	if (ret < 0)
1590 		dev_err(codec->dev,
1591 			"asoc: failed to add codec dapm sysfs entries: %d\n",
1592 			ret);
1593 
1594 	/* add codec sysfs entries */
1595 	ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1596 	if (ret < 0)
1597 		dev_err(codec->dev,
1598 			"asoc: failed to add codec sysfs files: %d\n", ret);
1599 
1600 	return 0;
1601 }
1602 
1603 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1604 {
1605 	struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1606 	struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1607 	struct snd_soc_codec *codec = rtd->codec;
1608 	struct snd_soc_platform *platform = rtd->platform;
1609 	struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1610 	int ret;
1611 
1612 	dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1613 
1614 	/* config components */
1615 	codec_dai->codec = codec;
1616 	cpu_dai->platform = platform;
1617 	codec_dai->card = card;
1618 	cpu_dai->card = card;
1619 
1620 	/* set default power off timeout */
1621 	rtd->pmdown_time = pmdown_time;
1622 
1623 	/* probe the cpu_dai */
1624 	if (!cpu_dai->probed) {
1625 		if (cpu_dai->driver->probe) {
1626 			ret = cpu_dai->driver->probe(cpu_dai);
1627 			if (ret < 0) {
1628 				printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1629 						cpu_dai->name);
1630 				return ret;
1631 			}
1632 		}
1633 		cpu_dai->probed = 1;
1634 		/* mark cpu_dai as probed and add to card cpu_dai list */
1635 		list_add(&cpu_dai->card_list, &card->dai_dev_list);
1636 	}
1637 
1638 	/* probe the CODEC */
1639 	if (!codec->probed) {
1640 		ret = soc_probe_codec(card, codec);
1641 		if (ret < 0)
1642 			return ret;
1643 	}
1644 
1645 	/* probe the platform */
1646 	if (!platform->probed) {
1647 		if (!try_module_get(platform->dev->driver->owner))
1648 			return -ENODEV;
1649 
1650 		if (platform->driver->probe) {
1651 			ret = platform->driver->probe(platform);
1652 			if (ret < 0) {
1653 				printk(KERN_ERR "asoc: failed to probe platform %s\n",
1654 						platform->name);
1655 				module_put(platform->dev->driver->owner);
1656 				return ret;
1657 			}
1658 		}
1659 		/* mark platform as probed and add to card platform list */
1660 		platform->probed = 1;
1661 		list_add(&platform->card_list, &card->platform_dev_list);
1662 	}
1663 
1664 	/* probe the CODEC DAI */
1665 	if (!codec_dai->probed) {
1666 		if (codec_dai->driver->probe) {
1667 			ret = codec_dai->driver->probe(codec_dai);
1668 			if (ret < 0) {
1669 				printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1670 						codec_dai->name);
1671 				return ret;
1672 			}
1673 		}
1674 
1675 		/* mark cpu_dai as probed and add to card cpu_dai list */
1676 		codec_dai->probed = 1;
1677 		list_add(&codec_dai->card_list, &card->dai_dev_list);
1678 	}
1679 
1680 	/* DAPM dai link stream work */
1681 	INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1682 
1683 	ret = soc_post_component_init(card, codec, num, 0);
1684 	if (ret)
1685 		return ret;
1686 
1687 	ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1688 	if (ret < 0)
1689 		printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1690 
1691 	/* create the pcm */
1692 	ret = soc_new_pcm(rtd, num);
1693 	if (ret < 0) {
1694 		printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1695 		return ret;
1696 	}
1697 
1698 	/* add platform data for AC97 devices */
1699 	if (rtd->codec_dai->driver->ac97_control)
1700 		snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1701 
1702 	return 0;
1703 }
1704 
1705 #ifdef CONFIG_SND_SOC_AC97_BUS
1706 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1707 {
1708 	int ret;
1709 
1710 	/* Only instantiate AC97 if not already done by the adaptor
1711 	 * for the generic AC97 subsystem.
1712 	 */
1713 	if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1714 		/*
1715 		 * It is possible that the AC97 device is already registered to
1716 		 * the device subsystem. This happens when the device is created
1717 		 * via snd_ac97_mixer(). Currently only SoC codec that does so
1718 		 * is the generic AC97 glue but others migh emerge.
1719 		 *
1720 		 * In those cases we don't try to register the device again.
1721 		 */
1722 		if (!rtd->codec->ac97_created)
1723 			return 0;
1724 
1725 		ret = soc_ac97_dev_register(rtd->codec);
1726 		if (ret < 0) {
1727 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1728 			return ret;
1729 		}
1730 
1731 		rtd->codec->ac97_registered = 1;
1732 	}
1733 	return 0;
1734 }
1735 
1736 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1737 {
1738 	if (codec->ac97_registered) {
1739 		soc_ac97_dev_unregister(codec);
1740 		codec->ac97_registered = 0;
1741 	}
1742 }
1743 #endif
1744 
1745 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1746 {
1747 	struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1748 	struct snd_soc_codec *codec;
1749 	int ret = -ENODEV;
1750 
1751 	/* find CODEC from registered CODECs*/
1752 	list_for_each_entry(codec, &codec_list, list) {
1753 		if (!strcmp(codec->name, aux_dev->codec_name)) {
1754 			if (codec->probed) {
1755 				dev_err(codec->dev,
1756 					"asoc: codec already probed");
1757 				ret = -EBUSY;
1758 				goto out;
1759 			}
1760 			goto found;
1761 		}
1762 	}
1763 	/* codec not found */
1764 	dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1765 	goto out;
1766 
1767 found:
1768 	ret = soc_probe_codec(card, codec);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	ret = soc_post_component_init(card, codec, num, 1);
1773 
1774 out:
1775 	return ret;
1776 }
1777 
1778 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1779 {
1780 	struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1781 	struct snd_soc_codec *codec = rtd->codec;
1782 
1783 	/* unregister the rtd device */
1784 	if (rtd->dev_registered) {
1785 		device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1786 		device_unregister(&rtd->dev);
1787 		rtd->dev_registered = 0;
1788 	}
1789 
1790 	if (codec && codec->probed)
1791 		soc_remove_codec(codec);
1792 }
1793 
1794 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1795 				    enum snd_soc_compress_type compress_type)
1796 {
1797 	int ret;
1798 
1799 	if (codec->cache_init)
1800 		return 0;
1801 
1802 	/* override the compress_type if necessary */
1803 	if (compress_type && codec->compress_type != compress_type)
1804 		codec->compress_type = compress_type;
1805 	ret = snd_soc_cache_init(codec);
1806 	if (ret < 0) {
1807 		dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1808 			ret);
1809 		return ret;
1810 	}
1811 	codec->cache_init = 1;
1812 	return 0;
1813 }
1814 
1815 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1816 {
1817 	struct snd_soc_codec *codec;
1818 	struct snd_soc_codec_conf *codec_conf;
1819 	enum snd_soc_compress_type compress_type;
1820 	int ret, i;
1821 
1822 	mutex_lock(&card->mutex);
1823 
1824 	if (card->instantiated) {
1825 		mutex_unlock(&card->mutex);
1826 		return;
1827 	}
1828 
1829 	/* bind DAIs */
1830 	for (i = 0; i < card->num_links; i++)
1831 		soc_bind_dai_link(card, i);
1832 
1833 	/* bind completed ? */
1834 	if (card->num_rtd != card->num_links) {
1835 		mutex_unlock(&card->mutex);
1836 		return;
1837 	}
1838 
1839 	/* initialize the register cache for each available codec */
1840 	list_for_each_entry(codec, &codec_list, list) {
1841 		if (codec->cache_init)
1842 			continue;
1843 		/* by default we don't override the compress_type */
1844 		compress_type = 0;
1845 		/* check to see if we need to override the compress_type */
1846 		for (i = 0; i < card->num_configs; ++i) {
1847 			codec_conf = &card->codec_conf[i];
1848 			if (!strcmp(codec->name, codec_conf->dev_name)) {
1849 				compress_type = codec_conf->compress_type;
1850 				if (compress_type && compress_type
1851 				    != codec->compress_type)
1852 					break;
1853 			}
1854 		}
1855 		ret = snd_soc_init_codec_cache(codec, compress_type);
1856 		if (ret < 0) {
1857 			mutex_unlock(&card->mutex);
1858 			return;
1859 		}
1860 	}
1861 
1862 	/* card bind complete so register a sound card */
1863 	ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1864 			card->owner, 0, &card->snd_card);
1865 	if (ret < 0) {
1866 		printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1867 			card->name);
1868 		mutex_unlock(&card->mutex);
1869 		return;
1870 	}
1871 	card->snd_card->dev = card->dev;
1872 
1873 	card->dapm.bias_level = SND_SOC_BIAS_OFF;
1874 	card->dapm.dev = card->dev;
1875 	card->dapm.card = card;
1876 	list_add(&card->dapm.list, &card->dapm_list);
1877 
1878 #ifdef CONFIG_DEBUG_FS
1879 	snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1880 #endif
1881 
1882 #ifdef CONFIG_PM_SLEEP
1883 	/* deferred resume work */
1884 	INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1885 #endif
1886 
1887 	if (card->dapm_widgets)
1888 		snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1889 					  card->num_dapm_widgets);
1890 
1891 	/* initialise the sound card only once */
1892 	if (card->probe) {
1893 		ret = card->probe(card);
1894 		if (ret < 0)
1895 			goto card_probe_error;
1896 	}
1897 
1898 	for (i = 0; i < card->num_links; i++) {
1899 		ret = soc_probe_dai_link(card, i);
1900 		if (ret < 0) {
1901 			pr_err("asoc: failed to instantiate card %s: %d\n",
1902 			       card->name, ret);
1903 			goto probe_dai_err;
1904 		}
1905 	}
1906 
1907 	for (i = 0; i < card->num_aux_devs; i++) {
1908 		ret = soc_probe_aux_dev(card, i);
1909 		if (ret < 0) {
1910 			pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1911 			       card->name, ret);
1912 			goto probe_aux_dev_err;
1913 		}
1914 	}
1915 
1916 	/* We should have a non-codec control add function but we don't */
1917 	if (card->controls)
1918 		snd_soc_add_controls(list_first_entry(&card->codec_dev_list,
1919 						      struct snd_soc_codec,
1920 						      card_list),
1921 				     card->controls,
1922 				     card->num_controls);
1923 
1924 	if (card->dapm_routes)
1925 		snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1926 					card->num_dapm_routes);
1927 
1928 	snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1929 		 "%s", card->name);
1930 	snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1931 		 "%s", card->long_name ? card->long_name : card->name);
1932 	snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1933 		 "%s", card->driver_name ? card->driver_name : card->name);
1934 
1935 	if (card->late_probe) {
1936 		ret = card->late_probe(card);
1937 		if (ret < 0) {
1938 			dev_err(card->dev, "%s late_probe() failed: %d\n",
1939 				card->name, ret);
1940 			goto probe_aux_dev_err;
1941 		}
1942 	}
1943 
1944 	ret = snd_card_register(card->snd_card);
1945 	if (ret < 0) {
1946 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1947 		goto probe_aux_dev_err;
1948 	}
1949 
1950 #ifdef CONFIG_SND_SOC_AC97_BUS
1951 	/* register any AC97 codecs */
1952 	for (i = 0; i < card->num_rtd; i++) {
1953 		ret = soc_register_ac97_dai_link(&card->rtd[i]);
1954 		if (ret < 0) {
1955 			printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1956 			while (--i >= 0)
1957 				soc_unregister_ac97_dai_link(card->rtd[i].codec);
1958 			goto probe_aux_dev_err;
1959 		}
1960 	}
1961 #endif
1962 
1963 	card->instantiated = 1;
1964 	mutex_unlock(&card->mutex);
1965 	return;
1966 
1967 probe_aux_dev_err:
1968 	for (i = 0; i < card->num_aux_devs; i++)
1969 		soc_remove_aux_dev(card, i);
1970 
1971 probe_dai_err:
1972 	soc_remove_dai_links(card);
1973 
1974 card_probe_error:
1975 	if (card->remove)
1976 		card->remove(card);
1977 
1978 	snd_card_free(card->snd_card);
1979 
1980 	mutex_unlock(&card->mutex);
1981 }
1982 
1983 /*
1984  * Attempt to initialise any uninitialised cards.  Must be called with
1985  * client_mutex.
1986  */
1987 static void snd_soc_instantiate_cards(void)
1988 {
1989 	struct snd_soc_card *card;
1990 	list_for_each_entry(card, &card_list, list)
1991 		snd_soc_instantiate_card(card);
1992 }
1993 
1994 /* probes a new socdev */
1995 static int soc_probe(struct platform_device *pdev)
1996 {
1997 	struct snd_soc_card *card = platform_get_drvdata(pdev);
1998 	int ret = 0;
1999 
2000 	/*
2001 	 * no card, so machine driver should be registering card
2002 	 * we should not be here in that case so ret error
2003 	 */
2004 	if (!card)
2005 		return -EINVAL;
2006 
2007 	/* Bodge while we unpick instantiation */
2008 	card->dev = &pdev->dev;
2009 
2010 	ret = snd_soc_register_card(card);
2011 	if (ret != 0) {
2012 		dev_err(&pdev->dev, "Failed to register card\n");
2013 		return ret;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2020 {
2021 	int i;
2022 
2023 	/* make sure any delayed work runs */
2024 	for (i = 0; i < card->num_rtd; i++) {
2025 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2026 		flush_delayed_work_sync(&rtd->delayed_work);
2027 	}
2028 
2029 	/* remove auxiliary devices */
2030 	for (i = 0; i < card->num_aux_devs; i++)
2031 		soc_remove_aux_dev(card, i);
2032 
2033 	/* remove and free each DAI */
2034 	soc_remove_dai_links(card);
2035 
2036 	soc_cleanup_card_debugfs(card);
2037 
2038 	/* remove the card */
2039 	if (card->remove)
2040 		card->remove(card);
2041 
2042 	snd_soc_dapm_free(&card->dapm);
2043 
2044 	kfree(card->rtd);
2045 	snd_card_free(card->snd_card);
2046 	return 0;
2047 
2048 }
2049 
2050 /* removes a socdev */
2051 static int soc_remove(struct platform_device *pdev)
2052 {
2053 	struct snd_soc_card *card = platform_get_drvdata(pdev);
2054 
2055 	snd_soc_unregister_card(card);
2056 	return 0;
2057 }
2058 
2059 int snd_soc_poweroff(struct device *dev)
2060 {
2061 	struct snd_soc_card *card = dev_get_drvdata(dev);
2062 	int i;
2063 
2064 	if (!card->instantiated)
2065 		return 0;
2066 
2067 	/* Flush out pmdown_time work - we actually do want to run it
2068 	 * now, we're shutting down so no imminent restart. */
2069 	for (i = 0; i < card->num_rtd; i++) {
2070 		struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2071 		flush_delayed_work_sync(&rtd->delayed_work);
2072 	}
2073 
2074 	snd_soc_dapm_shutdown(card);
2075 
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2079 
2080 const struct dev_pm_ops snd_soc_pm_ops = {
2081 	.suspend = snd_soc_suspend,
2082 	.resume = snd_soc_resume,
2083 	.poweroff = snd_soc_poweroff,
2084 };
2085 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2086 
2087 /* ASoC platform driver */
2088 static struct platform_driver soc_driver = {
2089 	.driver		= {
2090 		.name		= "soc-audio",
2091 		.owner		= THIS_MODULE,
2092 		.pm		= &snd_soc_pm_ops,
2093 	},
2094 	.probe		= soc_probe,
2095 	.remove		= soc_remove,
2096 };
2097 
2098 /* create a new pcm */
2099 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2100 {
2101 	struct snd_soc_codec *codec = rtd->codec;
2102 	struct snd_soc_platform *platform = rtd->platform;
2103 	struct snd_soc_dai *codec_dai = rtd->codec_dai;
2104 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2105 	struct snd_pcm *pcm;
2106 	char new_name[64];
2107 	int ret = 0, playback = 0, capture = 0;
2108 
2109 	/* check client and interface hw capabilities */
2110 	snprintf(new_name, sizeof(new_name), "%s %s-%d",
2111 			rtd->dai_link->stream_name, codec_dai->name, num);
2112 
2113 	if (codec_dai->driver->playback.channels_min)
2114 		playback = 1;
2115 	if (codec_dai->driver->capture.channels_min)
2116 		capture = 1;
2117 
2118 	dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2119 	ret = snd_pcm_new(rtd->card->snd_card, new_name,
2120 			num, playback, capture, &pcm);
2121 	if (ret < 0) {
2122 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2123 		return ret;
2124 	}
2125 
2126 	rtd->pcm = pcm;
2127 	pcm->private_data = rtd;
2128 	if (platform->driver->ops) {
2129 		soc_pcm_ops.mmap = platform->driver->ops->mmap;
2130 		soc_pcm_ops.pointer = platform->driver->ops->pointer;
2131 		soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2132 		soc_pcm_ops.copy = platform->driver->ops->copy;
2133 		soc_pcm_ops.silence = platform->driver->ops->silence;
2134 		soc_pcm_ops.ack = platform->driver->ops->ack;
2135 		soc_pcm_ops.page = platform->driver->ops->page;
2136 	}
2137 
2138 	if (playback)
2139 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2140 
2141 	if (capture)
2142 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2143 
2144 	if (platform->driver->pcm_new) {
2145 		ret = platform->driver->pcm_new(rtd->card->snd_card,
2146 						codec_dai, pcm);
2147 		if (ret < 0) {
2148 			pr_err("asoc: platform pcm constructor failed\n");
2149 			return ret;
2150 		}
2151 	}
2152 
2153 	pcm->private_free = platform->driver->pcm_free;
2154 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2155 		cpu_dai->name);
2156 	return ret;
2157 }
2158 
2159 /**
2160  * snd_soc_codec_volatile_register: Report if a register is volatile.
2161  *
2162  * @codec: CODEC to query.
2163  * @reg: Register to query.
2164  *
2165  * Boolean function indiciating if a CODEC register is volatile.
2166  */
2167 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2168 				    unsigned int reg)
2169 {
2170 	if (codec->volatile_register)
2171 		return codec->volatile_register(codec, reg);
2172 	else
2173 		return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2176 
2177 /**
2178  * snd_soc_codec_readable_register: Report if a register is readable.
2179  *
2180  * @codec: CODEC to query.
2181  * @reg: Register to query.
2182  *
2183  * Boolean function indicating if a CODEC register is readable.
2184  */
2185 int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
2186 				    unsigned int reg)
2187 {
2188 	if (codec->readable_register)
2189 		return codec->readable_register(codec, reg);
2190 	else
2191 		return 0;
2192 }
2193 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
2194 
2195 /**
2196  * snd_soc_codec_writable_register: Report if a register is writable.
2197  *
2198  * @codec: CODEC to query.
2199  * @reg: Register to query.
2200  *
2201  * Boolean function indicating if a CODEC register is writable.
2202  */
2203 int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
2204 				    unsigned int reg)
2205 {
2206 	if (codec->writable_register)
2207 		return codec->writable_register(codec, reg);
2208 	else
2209 		return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
2212 
2213 /**
2214  * snd_soc_new_ac97_codec - initailise AC97 device
2215  * @codec: audio codec
2216  * @ops: AC97 bus operations
2217  * @num: AC97 codec number
2218  *
2219  * Initialises AC97 codec resources for use by ad-hoc devices only.
2220  */
2221 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2222 	struct snd_ac97_bus_ops *ops, int num)
2223 {
2224 	mutex_lock(&codec->mutex);
2225 
2226 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2227 	if (codec->ac97 == NULL) {
2228 		mutex_unlock(&codec->mutex);
2229 		return -ENOMEM;
2230 	}
2231 
2232 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2233 	if (codec->ac97->bus == NULL) {
2234 		kfree(codec->ac97);
2235 		codec->ac97 = NULL;
2236 		mutex_unlock(&codec->mutex);
2237 		return -ENOMEM;
2238 	}
2239 
2240 	codec->ac97->bus->ops = ops;
2241 	codec->ac97->num = num;
2242 
2243 	/*
2244 	 * Mark the AC97 device to be created by us. This way we ensure that the
2245 	 * device will be registered with the device subsystem later on.
2246 	 */
2247 	codec->ac97_created = 1;
2248 
2249 	mutex_unlock(&codec->mutex);
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2253 
2254 /**
2255  * snd_soc_free_ac97_codec - free AC97 codec device
2256  * @codec: audio codec
2257  *
2258  * Frees AC97 codec device resources.
2259  */
2260 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2261 {
2262 	mutex_lock(&codec->mutex);
2263 #ifdef CONFIG_SND_SOC_AC97_BUS
2264 	soc_unregister_ac97_dai_link(codec);
2265 #endif
2266 	kfree(codec->ac97->bus);
2267 	kfree(codec->ac97);
2268 	codec->ac97 = NULL;
2269 	codec->ac97_created = 0;
2270 	mutex_unlock(&codec->mutex);
2271 }
2272 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2273 
2274 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2275 {
2276 	unsigned int ret;
2277 
2278 	ret = codec->read(codec, reg);
2279 	dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2280 	trace_snd_soc_reg_read(codec, reg, ret);
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(snd_soc_read);
2285 
2286 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2287 			   unsigned int reg, unsigned int val)
2288 {
2289 	dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2290 	trace_snd_soc_reg_write(codec, reg, val);
2291 	return codec->write(codec, reg, val);
2292 }
2293 EXPORT_SYMBOL_GPL(snd_soc_write);
2294 
2295 unsigned int snd_soc_bulk_write_raw(struct snd_soc_codec *codec,
2296 				    unsigned int reg, const void *data, size_t len)
2297 {
2298 	return codec->bulk_write_raw(codec, reg, data, len);
2299 }
2300 EXPORT_SYMBOL_GPL(snd_soc_bulk_write_raw);
2301 
2302 /**
2303  * snd_soc_update_bits - update codec register bits
2304  * @codec: audio codec
2305  * @reg: codec register
2306  * @mask: register mask
2307  * @value: new value
2308  *
2309  * Writes new register value.
2310  *
2311  * Returns 1 for change, 0 for no change, or negative error code.
2312  */
2313 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2314 				unsigned int mask, unsigned int value)
2315 {
2316 	int change;
2317 	unsigned int old, new;
2318 	int ret;
2319 
2320 	ret = snd_soc_read(codec, reg);
2321 	if (ret < 0)
2322 		return ret;
2323 
2324 	old = ret;
2325 	new = (old & ~mask) | value;
2326 	change = old != new;
2327 	if (change) {
2328 		ret = snd_soc_write(codec, reg, new);
2329 		if (ret < 0)
2330 			return ret;
2331 	}
2332 
2333 	return change;
2334 }
2335 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2336 
2337 /**
2338  * snd_soc_update_bits_locked - update codec register bits
2339  * @codec: audio codec
2340  * @reg: codec register
2341  * @mask: register mask
2342  * @value: new value
2343  *
2344  * Writes new register value, and takes the codec mutex.
2345  *
2346  * Returns 1 for change else 0.
2347  */
2348 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2349 			       unsigned short reg, unsigned int mask,
2350 			       unsigned int value)
2351 {
2352 	int change;
2353 
2354 	mutex_lock(&codec->mutex);
2355 	change = snd_soc_update_bits(codec, reg, mask, value);
2356 	mutex_unlock(&codec->mutex);
2357 
2358 	return change;
2359 }
2360 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2361 
2362 /**
2363  * snd_soc_test_bits - test register for change
2364  * @codec: audio codec
2365  * @reg: codec register
2366  * @mask: register mask
2367  * @value: new value
2368  *
2369  * Tests a register with a new value and checks if the new value is
2370  * different from the old value.
2371  *
2372  * Returns 1 for change else 0.
2373  */
2374 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2375 				unsigned int mask, unsigned int value)
2376 {
2377 	int change;
2378 	unsigned int old, new;
2379 
2380 	old = snd_soc_read(codec, reg);
2381 	new = (old & ~mask) | value;
2382 	change = old != new;
2383 
2384 	return change;
2385 }
2386 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2387 
2388 /**
2389  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2390  * @substream: the pcm substream
2391  * @hw: the hardware parameters
2392  *
2393  * Sets the substream runtime hardware parameters.
2394  */
2395 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2396 	const struct snd_pcm_hardware *hw)
2397 {
2398 	struct snd_pcm_runtime *runtime = substream->runtime;
2399 	runtime->hw.info = hw->info;
2400 	runtime->hw.formats = hw->formats;
2401 	runtime->hw.period_bytes_min = hw->period_bytes_min;
2402 	runtime->hw.period_bytes_max = hw->period_bytes_max;
2403 	runtime->hw.periods_min = hw->periods_min;
2404 	runtime->hw.periods_max = hw->periods_max;
2405 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2406 	runtime->hw.fifo_size = hw->fifo_size;
2407 	return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2410 
2411 /**
2412  * snd_soc_cnew - create new control
2413  * @_template: control template
2414  * @data: control private data
2415  * @long_name: control long name
2416  * @prefix: control name prefix
2417  *
2418  * Create a new mixer control from a template control.
2419  *
2420  * Returns 0 for success, else error.
2421  */
2422 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2423 				  void *data, char *long_name,
2424 				  const char *prefix)
2425 {
2426 	struct snd_kcontrol_new template;
2427 	struct snd_kcontrol *kcontrol;
2428 	char *name = NULL;
2429 	int name_len;
2430 
2431 	memcpy(&template, _template, sizeof(template));
2432 	template.index = 0;
2433 
2434 	if (!long_name)
2435 		long_name = template.name;
2436 
2437 	if (prefix) {
2438 		name_len = strlen(long_name) + strlen(prefix) + 2;
2439 		name = kmalloc(name_len, GFP_ATOMIC);
2440 		if (!name)
2441 			return NULL;
2442 
2443 		snprintf(name, name_len, "%s %s", prefix, long_name);
2444 
2445 		template.name = name;
2446 	} else {
2447 		template.name = long_name;
2448 	}
2449 
2450 	kcontrol = snd_ctl_new1(&template, data);
2451 
2452 	kfree(name);
2453 
2454 	return kcontrol;
2455 }
2456 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2457 
2458 /**
2459  * snd_soc_add_controls - add an array of controls to a codec.
2460  * Convienience function to add a list of controls. Many codecs were
2461  * duplicating this code.
2462  *
2463  * @codec: codec to add controls to
2464  * @controls: array of controls to add
2465  * @num_controls: number of elements in the array
2466  *
2467  * Return 0 for success, else error.
2468  */
2469 int snd_soc_add_controls(struct snd_soc_codec *codec,
2470 	const struct snd_kcontrol_new *controls, int num_controls)
2471 {
2472 	struct snd_card *card = codec->card->snd_card;
2473 	int err, i;
2474 
2475 	for (i = 0; i < num_controls; i++) {
2476 		const struct snd_kcontrol_new *control = &controls[i];
2477 		err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2478 						     control->name,
2479 						     codec->name_prefix));
2480 		if (err < 0) {
2481 			dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2482 				codec->name, control->name, err);
2483 			return err;
2484 		}
2485 	}
2486 
2487 	return 0;
2488 }
2489 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2490 
2491 /**
2492  * snd_soc_info_enum_double - enumerated double mixer info callback
2493  * @kcontrol: mixer control
2494  * @uinfo: control element information
2495  *
2496  * Callback to provide information about a double enumerated
2497  * mixer control.
2498  *
2499  * Returns 0 for success.
2500  */
2501 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2502 	struct snd_ctl_elem_info *uinfo)
2503 {
2504 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2505 
2506 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2507 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2508 	uinfo->value.enumerated.items = e->max;
2509 
2510 	if (uinfo->value.enumerated.item > e->max - 1)
2511 		uinfo->value.enumerated.item = e->max - 1;
2512 	strcpy(uinfo->value.enumerated.name,
2513 		e->texts[uinfo->value.enumerated.item]);
2514 	return 0;
2515 }
2516 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2517 
2518 /**
2519  * snd_soc_get_enum_double - enumerated double mixer get callback
2520  * @kcontrol: mixer control
2521  * @ucontrol: control element information
2522  *
2523  * Callback to get the value of a double enumerated mixer.
2524  *
2525  * Returns 0 for success.
2526  */
2527 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2528 	struct snd_ctl_elem_value *ucontrol)
2529 {
2530 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2531 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2532 	unsigned int val, bitmask;
2533 
2534 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2535 		;
2536 	val = snd_soc_read(codec, e->reg);
2537 	ucontrol->value.enumerated.item[0]
2538 		= (val >> e->shift_l) & (bitmask - 1);
2539 	if (e->shift_l != e->shift_r)
2540 		ucontrol->value.enumerated.item[1] =
2541 			(val >> e->shift_r) & (bitmask - 1);
2542 
2543 	return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2546 
2547 /**
2548  * snd_soc_put_enum_double - enumerated double mixer put callback
2549  * @kcontrol: mixer control
2550  * @ucontrol: control element information
2551  *
2552  * Callback to set the value of a double enumerated mixer.
2553  *
2554  * Returns 0 for success.
2555  */
2556 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2557 	struct snd_ctl_elem_value *ucontrol)
2558 {
2559 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2560 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2561 	unsigned int val;
2562 	unsigned int mask, bitmask;
2563 
2564 	for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2565 		;
2566 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2567 		return -EINVAL;
2568 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
2569 	mask = (bitmask - 1) << e->shift_l;
2570 	if (e->shift_l != e->shift_r) {
2571 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2572 			return -EINVAL;
2573 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2574 		mask |= (bitmask - 1) << e->shift_r;
2575 	}
2576 
2577 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2578 }
2579 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2580 
2581 /**
2582  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2583  * @kcontrol: mixer control
2584  * @ucontrol: control element information
2585  *
2586  * Callback to get the value of a double semi enumerated mixer.
2587  *
2588  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2589  * used for handling bitfield coded enumeration for example.
2590  *
2591  * Returns 0 for success.
2592  */
2593 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2594 	struct snd_ctl_elem_value *ucontrol)
2595 {
2596 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2597 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2598 	unsigned int reg_val, val, mux;
2599 
2600 	reg_val = snd_soc_read(codec, e->reg);
2601 	val = (reg_val >> e->shift_l) & e->mask;
2602 	for (mux = 0; mux < e->max; mux++) {
2603 		if (val == e->values[mux])
2604 			break;
2605 	}
2606 	ucontrol->value.enumerated.item[0] = mux;
2607 	if (e->shift_l != e->shift_r) {
2608 		val = (reg_val >> e->shift_r) & e->mask;
2609 		for (mux = 0; mux < e->max; mux++) {
2610 			if (val == e->values[mux])
2611 				break;
2612 		}
2613 		ucontrol->value.enumerated.item[1] = mux;
2614 	}
2615 
2616 	return 0;
2617 }
2618 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2619 
2620 /**
2621  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2622  * @kcontrol: mixer control
2623  * @ucontrol: control element information
2624  *
2625  * Callback to set the value of a double semi enumerated mixer.
2626  *
2627  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2628  * used for handling bitfield coded enumeration for example.
2629  *
2630  * Returns 0 for success.
2631  */
2632 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2633 	struct snd_ctl_elem_value *ucontrol)
2634 {
2635 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2636 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2637 	unsigned int val;
2638 	unsigned int mask;
2639 
2640 	if (ucontrol->value.enumerated.item[0] > e->max - 1)
2641 		return -EINVAL;
2642 	val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2643 	mask = e->mask << e->shift_l;
2644 	if (e->shift_l != e->shift_r) {
2645 		if (ucontrol->value.enumerated.item[1] > e->max - 1)
2646 			return -EINVAL;
2647 		val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2648 		mask |= e->mask << e->shift_r;
2649 	}
2650 
2651 	return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2652 }
2653 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2654 
2655 /**
2656  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2657  * @kcontrol: mixer control
2658  * @uinfo: control element information
2659  *
2660  * Callback to provide information about an external enumerated
2661  * single mixer.
2662  *
2663  * Returns 0 for success.
2664  */
2665 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2666 	struct snd_ctl_elem_info *uinfo)
2667 {
2668 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2669 
2670 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2671 	uinfo->count = 1;
2672 	uinfo->value.enumerated.items = e->max;
2673 
2674 	if (uinfo->value.enumerated.item > e->max - 1)
2675 		uinfo->value.enumerated.item = e->max - 1;
2676 	strcpy(uinfo->value.enumerated.name,
2677 		e->texts[uinfo->value.enumerated.item]);
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2681 
2682 /**
2683  * snd_soc_info_volsw_ext - external single mixer info callback
2684  * @kcontrol: mixer control
2685  * @uinfo: control element information
2686  *
2687  * Callback to provide information about a single external mixer control.
2688  *
2689  * Returns 0 for success.
2690  */
2691 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2692 	struct snd_ctl_elem_info *uinfo)
2693 {
2694 	int max = kcontrol->private_value;
2695 
2696 	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2697 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2698 	else
2699 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2700 
2701 	uinfo->count = 1;
2702 	uinfo->value.integer.min = 0;
2703 	uinfo->value.integer.max = max;
2704 	return 0;
2705 }
2706 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2707 
2708 /**
2709  * snd_soc_info_volsw - single mixer info callback
2710  * @kcontrol: mixer control
2711  * @uinfo: control element information
2712  *
2713  * Callback to provide information about a single mixer control.
2714  *
2715  * Returns 0 for success.
2716  */
2717 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2718 	struct snd_ctl_elem_info *uinfo)
2719 {
2720 	struct soc_mixer_control *mc =
2721 		(struct soc_mixer_control *)kcontrol->private_value;
2722 	int platform_max;
2723 	unsigned int shift = mc->shift;
2724 	unsigned int rshift = mc->rshift;
2725 
2726 	if (!mc->platform_max)
2727 		mc->platform_max = mc->max;
2728 	platform_max = mc->platform_max;
2729 
2730 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2731 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2732 	else
2733 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2734 
2735 	uinfo->count = shift == rshift ? 1 : 2;
2736 	uinfo->value.integer.min = 0;
2737 	uinfo->value.integer.max = platform_max;
2738 	return 0;
2739 }
2740 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2741 
2742 /**
2743  * snd_soc_get_volsw - single mixer get callback
2744  * @kcontrol: mixer control
2745  * @ucontrol: control element information
2746  *
2747  * Callback to get the value of a single mixer control.
2748  *
2749  * Returns 0 for success.
2750  */
2751 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2752 	struct snd_ctl_elem_value *ucontrol)
2753 {
2754 	struct soc_mixer_control *mc =
2755 		(struct soc_mixer_control *)kcontrol->private_value;
2756 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2757 	unsigned int reg = mc->reg;
2758 	unsigned int shift = mc->shift;
2759 	unsigned int rshift = mc->rshift;
2760 	int max = mc->max;
2761 	unsigned int mask = (1 << fls(max)) - 1;
2762 	unsigned int invert = mc->invert;
2763 
2764 	ucontrol->value.integer.value[0] =
2765 		(snd_soc_read(codec, reg) >> shift) & mask;
2766 	if (shift != rshift)
2767 		ucontrol->value.integer.value[1] =
2768 			(snd_soc_read(codec, reg) >> rshift) & mask;
2769 	if (invert) {
2770 		ucontrol->value.integer.value[0] =
2771 			max - ucontrol->value.integer.value[0];
2772 		if (shift != rshift)
2773 			ucontrol->value.integer.value[1] =
2774 				max - ucontrol->value.integer.value[1];
2775 	}
2776 
2777 	return 0;
2778 }
2779 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2780 
2781 /**
2782  * snd_soc_put_volsw - single mixer put callback
2783  * @kcontrol: mixer control
2784  * @ucontrol: control element information
2785  *
2786  * Callback to set the value of a single mixer control.
2787  *
2788  * Returns 0 for success.
2789  */
2790 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2791 	struct snd_ctl_elem_value *ucontrol)
2792 {
2793 	struct soc_mixer_control *mc =
2794 		(struct soc_mixer_control *)kcontrol->private_value;
2795 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2796 	unsigned int reg = mc->reg;
2797 	unsigned int shift = mc->shift;
2798 	unsigned int rshift = mc->rshift;
2799 	int max = mc->max;
2800 	unsigned int mask = (1 << fls(max)) - 1;
2801 	unsigned int invert = mc->invert;
2802 	unsigned int val, val2, val_mask;
2803 
2804 	val = (ucontrol->value.integer.value[0] & mask);
2805 	if (invert)
2806 		val = max - val;
2807 	val_mask = mask << shift;
2808 	val = val << shift;
2809 	if (shift != rshift) {
2810 		val2 = (ucontrol->value.integer.value[1] & mask);
2811 		if (invert)
2812 			val2 = max - val2;
2813 		val_mask |= mask << rshift;
2814 		val |= val2 << rshift;
2815 	}
2816 	return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2817 }
2818 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2819 
2820 /**
2821  * snd_soc_info_volsw_2r - double mixer info callback
2822  * @kcontrol: mixer control
2823  * @uinfo: control element information
2824  *
2825  * Callback to provide information about a double mixer control that
2826  * spans 2 codec registers.
2827  *
2828  * Returns 0 for success.
2829  */
2830 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2831 	struct snd_ctl_elem_info *uinfo)
2832 {
2833 	struct soc_mixer_control *mc =
2834 		(struct soc_mixer_control *)kcontrol->private_value;
2835 	int platform_max;
2836 
2837 	if (!mc->platform_max)
2838 		mc->platform_max = mc->max;
2839 	platform_max = mc->platform_max;
2840 
2841 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2842 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2843 	else
2844 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2845 
2846 	uinfo->count = 2;
2847 	uinfo->value.integer.min = 0;
2848 	uinfo->value.integer.max = platform_max;
2849 	return 0;
2850 }
2851 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2852 
2853 /**
2854  * snd_soc_get_volsw_2r - double mixer get callback
2855  * @kcontrol: mixer control
2856  * @ucontrol: control element information
2857  *
2858  * Callback to get the value of a double mixer control that spans 2 registers.
2859  *
2860  * Returns 0 for success.
2861  */
2862 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2863 	struct snd_ctl_elem_value *ucontrol)
2864 {
2865 	struct soc_mixer_control *mc =
2866 		(struct soc_mixer_control *)kcontrol->private_value;
2867 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2868 	unsigned int reg = mc->reg;
2869 	unsigned int reg2 = mc->rreg;
2870 	unsigned int shift = mc->shift;
2871 	int max = mc->max;
2872 	unsigned int mask = (1 << fls(max)) - 1;
2873 	unsigned int invert = mc->invert;
2874 
2875 	ucontrol->value.integer.value[0] =
2876 		(snd_soc_read(codec, reg) >> shift) & mask;
2877 	ucontrol->value.integer.value[1] =
2878 		(snd_soc_read(codec, reg2) >> shift) & mask;
2879 	if (invert) {
2880 		ucontrol->value.integer.value[0] =
2881 			max - ucontrol->value.integer.value[0];
2882 		ucontrol->value.integer.value[1] =
2883 			max - ucontrol->value.integer.value[1];
2884 	}
2885 
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2889 
2890 /**
2891  * snd_soc_put_volsw_2r - double mixer set callback
2892  * @kcontrol: mixer control
2893  * @ucontrol: control element information
2894  *
2895  * Callback to set the value of a double mixer control that spans 2 registers.
2896  *
2897  * Returns 0 for success.
2898  */
2899 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2900 	struct snd_ctl_elem_value *ucontrol)
2901 {
2902 	struct soc_mixer_control *mc =
2903 		(struct soc_mixer_control *)kcontrol->private_value;
2904 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2905 	unsigned int reg = mc->reg;
2906 	unsigned int reg2 = mc->rreg;
2907 	unsigned int shift = mc->shift;
2908 	int max = mc->max;
2909 	unsigned int mask = (1 << fls(max)) - 1;
2910 	unsigned int invert = mc->invert;
2911 	int err;
2912 	unsigned int val, val2, val_mask;
2913 
2914 	val_mask = mask << shift;
2915 	val = (ucontrol->value.integer.value[0] & mask);
2916 	val2 = (ucontrol->value.integer.value[1] & mask);
2917 
2918 	if (invert) {
2919 		val = max - val;
2920 		val2 = max - val2;
2921 	}
2922 
2923 	val = val << shift;
2924 	val2 = val2 << shift;
2925 
2926 	err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2927 	if (err < 0)
2928 		return err;
2929 
2930 	err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2931 	return err;
2932 }
2933 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2934 
2935 /**
2936  * snd_soc_info_volsw_s8 - signed mixer info callback
2937  * @kcontrol: mixer control
2938  * @uinfo: control element information
2939  *
2940  * Callback to provide information about a signed mixer control.
2941  *
2942  * Returns 0 for success.
2943  */
2944 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2945 	struct snd_ctl_elem_info *uinfo)
2946 {
2947 	struct soc_mixer_control *mc =
2948 		(struct soc_mixer_control *)kcontrol->private_value;
2949 	int platform_max;
2950 	int min = mc->min;
2951 
2952 	if (!mc->platform_max)
2953 		mc->platform_max = mc->max;
2954 	platform_max = mc->platform_max;
2955 
2956 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2957 	uinfo->count = 2;
2958 	uinfo->value.integer.min = 0;
2959 	uinfo->value.integer.max = platform_max - min;
2960 	return 0;
2961 }
2962 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2963 
2964 /**
2965  * snd_soc_get_volsw_s8 - signed mixer get callback
2966  * @kcontrol: mixer control
2967  * @ucontrol: control element information
2968  *
2969  * Callback to get the value of a signed mixer control.
2970  *
2971  * Returns 0 for success.
2972  */
2973 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2974 	struct snd_ctl_elem_value *ucontrol)
2975 {
2976 	struct soc_mixer_control *mc =
2977 		(struct soc_mixer_control *)kcontrol->private_value;
2978 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2979 	unsigned int reg = mc->reg;
2980 	int min = mc->min;
2981 	int val = snd_soc_read(codec, reg);
2982 
2983 	ucontrol->value.integer.value[0] =
2984 		((signed char)(val & 0xff))-min;
2985 	ucontrol->value.integer.value[1] =
2986 		((signed char)((val >> 8) & 0xff))-min;
2987 	return 0;
2988 }
2989 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2990 
2991 /**
2992  * snd_soc_put_volsw_sgn - signed mixer put callback
2993  * @kcontrol: mixer control
2994  * @ucontrol: control element information
2995  *
2996  * Callback to set the value of a signed mixer control.
2997  *
2998  * Returns 0 for success.
2999  */
3000 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
3001 	struct snd_ctl_elem_value *ucontrol)
3002 {
3003 	struct soc_mixer_control *mc =
3004 		(struct soc_mixer_control *)kcontrol->private_value;
3005 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3006 	unsigned int reg = mc->reg;
3007 	int min = mc->min;
3008 	unsigned int val;
3009 
3010 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
3011 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
3012 
3013 	return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
3014 }
3015 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
3016 
3017 /**
3018  * snd_soc_limit_volume - Set new limit to an existing volume control.
3019  *
3020  * @codec: where to look for the control
3021  * @name: Name of the control
3022  * @max: new maximum limit
3023  *
3024  * Return 0 for success, else error.
3025  */
3026 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3027 	const char *name, int max)
3028 {
3029 	struct snd_card *card = codec->card->snd_card;
3030 	struct snd_kcontrol *kctl;
3031 	struct soc_mixer_control *mc;
3032 	int found = 0;
3033 	int ret = -EINVAL;
3034 
3035 	/* Sanity check for name and max */
3036 	if (unlikely(!name || max <= 0))
3037 		return -EINVAL;
3038 
3039 	list_for_each_entry(kctl, &card->controls, list) {
3040 		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3041 			found = 1;
3042 			break;
3043 		}
3044 	}
3045 	if (found) {
3046 		mc = (struct soc_mixer_control *)kctl->private_value;
3047 		if (max <= mc->max) {
3048 			mc->platform_max = max;
3049 			ret = 0;
3050 		}
3051 	}
3052 	return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3055 
3056 /**
3057  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
3058  *  mixer info callback
3059  * @kcontrol: mixer control
3060  * @uinfo: control element information
3061  *
3062  * Returns 0 for success.
3063  */
3064 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3065 			struct snd_ctl_elem_info *uinfo)
3066 {
3067 	struct soc_mixer_control *mc =
3068 		(struct soc_mixer_control *)kcontrol->private_value;
3069 	int max = mc->max;
3070 	int min = mc->min;
3071 
3072 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3073 	uinfo->count = 2;
3074 	uinfo->value.integer.min = 0;
3075 	uinfo->value.integer.max = max-min;
3076 
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3080 
3081 /**
3082  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3083  *  mixer get callback
3084  * @kcontrol: mixer control
3085  * @uinfo: control element information
3086  *
3087  * Returns 0 for success.
3088  */
3089 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3090 			struct snd_ctl_elem_value *ucontrol)
3091 {
3092 	struct soc_mixer_control *mc =
3093 		(struct soc_mixer_control *)kcontrol->private_value;
3094 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3095 	unsigned int mask = (1<<mc->shift)-1;
3096 	int min = mc->min;
3097 	int val = snd_soc_read(codec, mc->reg) & mask;
3098 	int valr = snd_soc_read(codec, mc->rreg) & mask;
3099 
3100 	ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3101 	ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3105 
3106 /**
3107  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3108  *  mixer put callback
3109  * @kcontrol: mixer control
3110  * @uinfo: control element information
3111  *
3112  * Returns 0 for success.
3113  */
3114 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3115 			struct snd_ctl_elem_value *ucontrol)
3116 {
3117 	struct soc_mixer_control *mc =
3118 		(struct soc_mixer_control *)kcontrol->private_value;
3119 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3120 	unsigned int mask = (1<<mc->shift)-1;
3121 	int min = mc->min;
3122 	int ret;
3123 	unsigned int val, valr, oval, ovalr;
3124 
3125 	val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3126 	val &= mask;
3127 	valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3128 	valr &= mask;
3129 
3130 	oval = snd_soc_read(codec, mc->reg) & mask;
3131 	ovalr = snd_soc_read(codec, mc->rreg) & mask;
3132 
3133 	ret = 0;
3134 	if (oval != val) {
3135 		ret = snd_soc_write(codec, mc->reg, val);
3136 		if (ret < 0)
3137 			return ret;
3138 	}
3139 	if (ovalr != valr) {
3140 		ret = snd_soc_write(codec, mc->rreg, valr);
3141 		if (ret < 0)
3142 			return ret;
3143 	}
3144 
3145 	return 0;
3146 }
3147 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3148 
3149 /**
3150  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3151  * @dai: DAI
3152  * @clk_id: DAI specific clock ID
3153  * @freq: new clock frequency in Hz
3154  * @dir: new clock direction - input/output.
3155  *
3156  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3157  */
3158 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3159 	unsigned int freq, int dir)
3160 {
3161 	if (dai->driver && dai->driver->ops->set_sysclk)
3162 		return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3163 	else if (dai->codec && dai->codec->driver->set_sysclk)
3164 		return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3165 						      freq, dir);
3166 	else
3167 		return -EINVAL;
3168 }
3169 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3170 
3171 /**
3172  * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3173  * @codec: CODEC
3174  * @clk_id: DAI specific clock ID
3175  * @freq: new clock frequency in Hz
3176  * @dir: new clock direction - input/output.
3177  *
3178  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3179  */
3180 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3181 	unsigned int freq, int dir)
3182 {
3183 	if (codec->driver->set_sysclk)
3184 		return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3185 	else
3186 		return -EINVAL;
3187 }
3188 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3189 
3190 /**
3191  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3192  * @dai: DAI
3193  * @div_id: DAI specific clock divider ID
3194  * @div: new clock divisor.
3195  *
3196  * Configures the clock dividers. This is used to derive the best DAI bit and
3197  * frame clocks from the system or master clock. It's best to set the DAI bit
3198  * and frame clocks as low as possible to save system power.
3199  */
3200 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3201 	int div_id, int div)
3202 {
3203 	if (dai->driver && dai->driver->ops->set_clkdiv)
3204 		return dai->driver->ops->set_clkdiv(dai, div_id, div);
3205 	else
3206 		return -EINVAL;
3207 }
3208 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3209 
3210 /**
3211  * snd_soc_dai_set_pll - configure DAI PLL.
3212  * @dai: DAI
3213  * @pll_id: DAI specific PLL ID
3214  * @source: DAI specific source for the PLL
3215  * @freq_in: PLL input clock frequency in Hz
3216  * @freq_out: requested PLL output clock frequency in Hz
3217  *
3218  * Configures and enables PLL to generate output clock based on input clock.
3219  */
3220 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3221 	unsigned int freq_in, unsigned int freq_out)
3222 {
3223 	if (dai->driver && dai->driver->ops->set_pll)
3224 		return dai->driver->ops->set_pll(dai, pll_id, source,
3225 					 freq_in, freq_out);
3226 	else if (dai->codec && dai->codec->driver->set_pll)
3227 		return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3228 						   freq_in, freq_out);
3229 	else
3230 		return -EINVAL;
3231 }
3232 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3233 
3234 /*
3235  * snd_soc_codec_set_pll - configure codec PLL.
3236  * @codec: CODEC
3237  * @pll_id: DAI specific PLL ID
3238  * @source: DAI specific source for the PLL
3239  * @freq_in: PLL input clock frequency in Hz
3240  * @freq_out: requested PLL output clock frequency in Hz
3241  *
3242  * Configures and enables PLL to generate output clock based on input clock.
3243  */
3244 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3245 			  unsigned int freq_in, unsigned int freq_out)
3246 {
3247 	if (codec->driver->set_pll)
3248 		return codec->driver->set_pll(codec, pll_id, source,
3249 					      freq_in, freq_out);
3250 	else
3251 		return -EINVAL;
3252 }
3253 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3254 
3255 /**
3256  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3257  * @dai: DAI
3258  * @fmt: SND_SOC_DAIFMT_ format value.
3259  *
3260  * Configures the DAI hardware format and clocking.
3261  */
3262 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3263 {
3264 	if (dai->driver && dai->driver->ops->set_fmt)
3265 		return dai->driver->ops->set_fmt(dai, fmt);
3266 	else
3267 		return -EINVAL;
3268 }
3269 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3270 
3271 /**
3272  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3273  * @dai: DAI
3274  * @tx_mask: bitmask representing active TX slots.
3275  * @rx_mask: bitmask representing active RX slots.
3276  * @slots: Number of slots in use.
3277  * @slot_width: Width in bits for each slot.
3278  *
3279  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3280  * specific.
3281  */
3282 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3283 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3284 {
3285 	if (dai->driver && dai->driver->ops->set_tdm_slot)
3286 		return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3287 				slots, slot_width);
3288 	else
3289 		return -EINVAL;
3290 }
3291 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3292 
3293 /**
3294  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3295  * @dai: DAI
3296  * @tx_num: how many TX channels
3297  * @tx_slot: pointer to an array which imply the TX slot number channel
3298  *           0~num-1 uses
3299  * @rx_num: how many RX channels
3300  * @rx_slot: pointer to an array which imply the RX slot number channel
3301  *           0~num-1 uses
3302  *
3303  * configure the relationship between channel number and TDM slot number.
3304  */
3305 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3306 	unsigned int tx_num, unsigned int *tx_slot,
3307 	unsigned int rx_num, unsigned int *rx_slot)
3308 {
3309 	if (dai->driver && dai->driver->ops->set_channel_map)
3310 		return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3311 			rx_num, rx_slot);
3312 	else
3313 		return -EINVAL;
3314 }
3315 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3316 
3317 /**
3318  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3319  * @dai: DAI
3320  * @tristate: tristate enable
3321  *
3322  * Tristates the DAI so that others can use it.
3323  */
3324 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3325 {
3326 	if (dai->driver && dai->driver->ops->set_tristate)
3327 		return dai->driver->ops->set_tristate(dai, tristate);
3328 	else
3329 		return -EINVAL;
3330 }
3331 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3332 
3333 /**
3334  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3335  * @dai: DAI
3336  * @mute: mute enable
3337  *
3338  * Mutes the DAI DAC.
3339  */
3340 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3341 {
3342 	if (dai->driver && dai->driver->ops->digital_mute)
3343 		return dai->driver->ops->digital_mute(dai, mute);
3344 	else
3345 		return -EINVAL;
3346 }
3347 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3348 
3349 /**
3350  * snd_soc_register_card - Register a card with the ASoC core
3351  *
3352  * @card: Card to register
3353  *
3354  */
3355 int snd_soc_register_card(struct snd_soc_card *card)
3356 {
3357 	int i;
3358 
3359 	if (!card->name || !card->dev)
3360 		return -EINVAL;
3361 
3362 	dev_set_drvdata(card->dev, card);
3363 
3364 	snd_soc_initialize_card_lists(card);
3365 
3366 	soc_init_card_debugfs(card);
3367 
3368 	card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3369 			    (card->num_links + card->num_aux_devs),
3370 			    GFP_KERNEL);
3371 	if (card->rtd == NULL)
3372 		return -ENOMEM;
3373 	card->rtd_aux = &card->rtd[card->num_links];
3374 
3375 	for (i = 0; i < card->num_links; i++)
3376 		card->rtd[i].dai_link = &card->dai_link[i];
3377 
3378 	INIT_LIST_HEAD(&card->list);
3379 	card->instantiated = 0;
3380 	mutex_init(&card->mutex);
3381 
3382 	mutex_lock(&client_mutex);
3383 	list_add(&card->list, &card_list);
3384 	snd_soc_instantiate_cards();
3385 	mutex_unlock(&client_mutex);
3386 
3387 	dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3388 
3389 	return 0;
3390 }
3391 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3392 
3393 /**
3394  * snd_soc_unregister_card - Unregister a card with the ASoC core
3395  *
3396  * @card: Card to unregister
3397  *
3398  */
3399 int snd_soc_unregister_card(struct snd_soc_card *card)
3400 {
3401 	if (card->instantiated)
3402 		soc_cleanup_card_resources(card);
3403 	mutex_lock(&client_mutex);
3404 	list_del(&card->list);
3405 	mutex_unlock(&client_mutex);
3406 	dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3407 
3408 	return 0;
3409 }
3410 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3411 
3412 /*
3413  * Simplify DAI link configuration by removing ".-1" from device names
3414  * and sanitizing names.
3415  */
3416 static char *fmt_single_name(struct device *dev, int *id)
3417 {
3418 	char *found, name[NAME_SIZE];
3419 	int id1, id2;
3420 
3421 	if (dev_name(dev) == NULL)
3422 		return NULL;
3423 
3424 	strlcpy(name, dev_name(dev), NAME_SIZE);
3425 
3426 	/* are we a "%s.%d" name (platform and SPI components) */
3427 	found = strstr(name, dev->driver->name);
3428 	if (found) {
3429 		/* get ID */
3430 		if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3431 
3432 			/* discard ID from name if ID == -1 */
3433 			if (*id == -1)
3434 				found[strlen(dev->driver->name)] = '\0';
3435 		}
3436 
3437 	} else {
3438 		/* I2C component devices are named "bus-addr"  */
3439 		if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3440 			char tmp[NAME_SIZE];
3441 
3442 			/* create unique ID number from I2C addr and bus */
3443 			*id = ((id1 & 0xffff) << 16) + id2;
3444 
3445 			/* sanitize component name for DAI link creation */
3446 			snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3447 			strlcpy(name, tmp, NAME_SIZE);
3448 		} else
3449 			*id = 0;
3450 	}
3451 
3452 	return kstrdup(name, GFP_KERNEL);
3453 }
3454 
3455 /*
3456  * Simplify DAI link naming for single devices with multiple DAIs by removing
3457  * any ".-1" and using the DAI name (instead of device name).
3458  */
3459 static inline char *fmt_multiple_name(struct device *dev,
3460 		struct snd_soc_dai_driver *dai_drv)
3461 {
3462 	if (dai_drv->name == NULL) {
3463 		printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3464 				dev_name(dev));
3465 		return NULL;
3466 	}
3467 
3468 	return kstrdup(dai_drv->name, GFP_KERNEL);
3469 }
3470 
3471 /**
3472  * snd_soc_register_dai - Register a DAI with the ASoC core
3473  *
3474  * @dai: DAI to register
3475  */
3476 int snd_soc_register_dai(struct device *dev,
3477 		struct snd_soc_dai_driver *dai_drv)
3478 {
3479 	struct snd_soc_dai *dai;
3480 
3481 	dev_dbg(dev, "dai register %s\n", dev_name(dev));
3482 
3483 	dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3484 	if (dai == NULL)
3485 		return -ENOMEM;
3486 
3487 	/* create DAI component name */
3488 	dai->name = fmt_single_name(dev, &dai->id);
3489 	if (dai->name == NULL) {
3490 		kfree(dai);
3491 		return -ENOMEM;
3492 	}
3493 
3494 	dai->dev = dev;
3495 	dai->driver = dai_drv;
3496 	if (!dai->driver->ops)
3497 		dai->driver->ops = &null_dai_ops;
3498 
3499 	mutex_lock(&client_mutex);
3500 	list_add(&dai->list, &dai_list);
3501 	snd_soc_instantiate_cards();
3502 	mutex_unlock(&client_mutex);
3503 
3504 	pr_debug("Registered DAI '%s'\n", dai->name);
3505 
3506 	return 0;
3507 }
3508 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3509 
3510 /**
3511  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3512  *
3513  * @dai: DAI to unregister
3514  */
3515 void snd_soc_unregister_dai(struct device *dev)
3516 {
3517 	struct snd_soc_dai *dai;
3518 
3519 	list_for_each_entry(dai, &dai_list, list) {
3520 		if (dev == dai->dev)
3521 			goto found;
3522 	}
3523 	return;
3524 
3525 found:
3526 	mutex_lock(&client_mutex);
3527 	list_del(&dai->list);
3528 	mutex_unlock(&client_mutex);
3529 
3530 	pr_debug("Unregistered DAI '%s'\n", dai->name);
3531 	kfree(dai->name);
3532 	kfree(dai);
3533 }
3534 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3535 
3536 /**
3537  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3538  *
3539  * @dai: Array of DAIs to register
3540  * @count: Number of DAIs
3541  */
3542 int snd_soc_register_dais(struct device *dev,
3543 		struct snd_soc_dai_driver *dai_drv, size_t count)
3544 {
3545 	struct snd_soc_dai *dai;
3546 	int i, ret = 0;
3547 
3548 	dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3549 
3550 	for (i = 0; i < count; i++) {
3551 
3552 		dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3553 		if (dai == NULL) {
3554 			ret = -ENOMEM;
3555 			goto err;
3556 		}
3557 
3558 		/* create DAI component name */
3559 		dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3560 		if (dai->name == NULL) {
3561 			kfree(dai);
3562 			ret = -EINVAL;
3563 			goto err;
3564 		}
3565 
3566 		dai->dev = dev;
3567 		dai->driver = &dai_drv[i];
3568 		if (dai->driver->id)
3569 			dai->id = dai->driver->id;
3570 		else
3571 			dai->id = i;
3572 		if (!dai->driver->ops)
3573 			dai->driver->ops = &null_dai_ops;
3574 
3575 		mutex_lock(&client_mutex);
3576 		list_add(&dai->list, &dai_list);
3577 		mutex_unlock(&client_mutex);
3578 
3579 		pr_debug("Registered DAI '%s'\n", dai->name);
3580 	}
3581 
3582 	mutex_lock(&client_mutex);
3583 	snd_soc_instantiate_cards();
3584 	mutex_unlock(&client_mutex);
3585 	return 0;
3586 
3587 err:
3588 	for (i--; i >= 0; i--)
3589 		snd_soc_unregister_dai(dev);
3590 
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3594 
3595 /**
3596  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3597  *
3598  * @dai: Array of DAIs to unregister
3599  * @count: Number of DAIs
3600  */
3601 void snd_soc_unregister_dais(struct device *dev, size_t count)
3602 {
3603 	int i;
3604 
3605 	for (i = 0; i < count; i++)
3606 		snd_soc_unregister_dai(dev);
3607 }
3608 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3609 
3610 /**
3611  * snd_soc_register_platform - Register a platform with the ASoC core
3612  *
3613  * @platform: platform to register
3614  */
3615 int snd_soc_register_platform(struct device *dev,
3616 		struct snd_soc_platform_driver *platform_drv)
3617 {
3618 	struct snd_soc_platform *platform;
3619 
3620 	dev_dbg(dev, "platform register %s\n", dev_name(dev));
3621 
3622 	platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3623 	if (platform == NULL)
3624 		return -ENOMEM;
3625 
3626 	/* create platform component name */
3627 	platform->name = fmt_single_name(dev, &platform->id);
3628 	if (platform->name == NULL) {
3629 		kfree(platform);
3630 		return -ENOMEM;
3631 	}
3632 
3633 	platform->dev = dev;
3634 	platform->driver = platform_drv;
3635 
3636 	mutex_lock(&client_mutex);
3637 	list_add(&platform->list, &platform_list);
3638 	snd_soc_instantiate_cards();
3639 	mutex_unlock(&client_mutex);
3640 
3641 	pr_debug("Registered platform '%s'\n", platform->name);
3642 
3643 	return 0;
3644 }
3645 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3646 
3647 /**
3648  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3649  *
3650  * @platform: platform to unregister
3651  */
3652 void snd_soc_unregister_platform(struct device *dev)
3653 {
3654 	struct snd_soc_platform *platform;
3655 
3656 	list_for_each_entry(platform, &platform_list, list) {
3657 		if (dev == platform->dev)
3658 			goto found;
3659 	}
3660 	return;
3661 
3662 found:
3663 	mutex_lock(&client_mutex);
3664 	list_del(&platform->list);
3665 	mutex_unlock(&client_mutex);
3666 
3667 	pr_debug("Unregistered platform '%s'\n", platform->name);
3668 	kfree(platform->name);
3669 	kfree(platform);
3670 }
3671 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3672 
3673 static u64 codec_format_map[] = {
3674 	SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3675 	SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3676 	SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3677 	SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3678 	SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3679 	SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3680 	SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3681 	SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3682 	SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3683 	SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3684 	SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3685 	SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3686 	SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3687 	SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3688 	SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3689 	| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3690 };
3691 
3692 /* Fix up the DAI formats for endianness: codecs don't actually see
3693  * the endianness of the data but we're using the CPU format
3694  * definitions which do need to include endianness so we ensure that
3695  * codec DAIs always have both big and little endian variants set.
3696  */
3697 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3698 {
3699 	int i;
3700 
3701 	for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3702 		if (stream->formats & codec_format_map[i])
3703 			stream->formats |= codec_format_map[i];
3704 }
3705 
3706 /**
3707  * snd_soc_register_codec - Register a codec with the ASoC core
3708  *
3709  * @codec: codec to register
3710  */
3711 int snd_soc_register_codec(struct device *dev,
3712 			   const struct snd_soc_codec_driver *codec_drv,
3713 			   struct snd_soc_dai_driver *dai_drv,
3714 			   int num_dai)
3715 {
3716 	size_t reg_size;
3717 	struct snd_soc_codec *codec;
3718 	int ret, i;
3719 
3720 	dev_dbg(dev, "codec register %s\n", dev_name(dev));
3721 
3722 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3723 	if (codec == NULL)
3724 		return -ENOMEM;
3725 
3726 	/* create CODEC component name */
3727 	codec->name = fmt_single_name(dev, &codec->id);
3728 	if (codec->name == NULL) {
3729 		kfree(codec);
3730 		return -ENOMEM;
3731 	}
3732 
3733 	if (codec_drv->compress_type)
3734 		codec->compress_type = codec_drv->compress_type;
3735 	else
3736 		codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3737 
3738 	codec->write = codec_drv->write;
3739 	codec->read = codec_drv->read;
3740 	codec->volatile_register = codec_drv->volatile_register;
3741 	codec->readable_register = codec_drv->readable_register;
3742 	codec->writable_register = codec_drv->writable_register;
3743 	codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3744 	codec->dapm.dev = dev;
3745 	codec->dapm.codec = codec;
3746 	codec->dapm.seq_notifier = codec_drv->seq_notifier;
3747 	codec->dev = dev;
3748 	codec->driver = codec_drv;
3749 	codec->num_dai = num_dai;
3750 	mutex_init(&codec->mutex);
3751 
3752 	/* allocate CODEC register cache */
3753 	if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3754 		reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3755 		codec->reg_size = reg_size;
3756 		/* it is necessary to make a copy of the default register cache
3757 		 * because in the case of using a compression type that requires
3758 		 * the default register cache to be marked as __devinitconst the
3759 		 * kernel might have freed the array by the time we initialize
3760 		 * the cache.
3761 		 */
3762 		if (codec_drv->reg_cache_default) {
3763 			codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3764 						      reg_size, GFP_KERNEL);
3765 			if (!codec->reg_def_copy) {
3766 				ret = -ENOMEM;
3767 				goto fail;
3768 			}
3769 		}
3770 	}
3771 
3772 	if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3773 		if (!codec->volatile_register)
3774 			codec->volatile_register = snd_soc_default_volatile_register;
3775 		if (!codec->readable_register)
3776 			codec->readable_register = snd_soc_default_readable_register;
3777 		if (!codec->writable_register)
3778 			codec->writable_register = snd_soc_default_writable_register;
3779 	}
3780 
3781 	for (i = 0; i < num_dai; i++) {
3782 		fixup_codec_formats(&dai_drv[i].playback);
3783 		fixup_codec_formats(&dai_drv[i].capture);
3784 	}
3785 
3786 	/* register any DAIs */
3787 	if (num_dai) {
3788 		ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3789 		if (ret < 0)
3790 			goto fail;
3791 	}
3792 
3793 	mutex_lock(&client_mutex);
3794 	list_add(&codec->list, &codec_list);
3795 	snd_soc_instantiate_cards();
3796 	mutex_unlock(&client_mutex);
3797 
3798 	pr_debug("Registered codec '%s'\n", codec->name);
3799 	return 0;
3800 
3801 fail:
3802 	kfree(codec->reg_def_copy);
3803 	codec->reg_def_copy = NULL;
3804 	kfree(codec->name);
3805 	kfree(codec);
3806 	return ret;
3807 }
3808 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3809 
3810 /**
3811  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3812  *
3813  * @codec: codec to unregister
3814  */
3815 void snd_soc_unregister_codec(struct device *dev)
3816 {
3817 	struct snd_soc_codec *codec;
3818 	int i;
3819 
3820 	list_for_each_entry(codec, &codec_list, list) {
3821 		if (dev == codec->dev)
3822 			goto found;
3823 	}
3824 	return;
3825 
3826 found:
3827 	if (codec->num_dai)
3828 		for (i = 0; i < codec->num_dai; i++)
3829 			snd_soc_unregister_dai(dev);
3830 
3831 	mutex_lock(&client_mutex);
3832 	list_del(&codec->list);
3833 	mutex_unlock(&client_mutex);
3834 
3835 	pr_debug("Unregistered codec '%s'\n", codec->name);
3836 
3837 	snd_soc_cache_exit(codec);
3838 	kfree(codec->reg_def_copy);
3839 	kfree(codec->name);
3840 	kfree(codec);
3841 }
3842 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3843 
3844 static int __init snd_soc_init(void)
3845 {
3846 #ifdef CONFIG_DEBUG_FS
3847 	snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3848 	if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3849 		printk(KERN_WARNING
3850 		       "ASoC: Failed to create debugfs directory\n");
3851 		snd_soc_debugfs_root = NULL;
3852 	}
3853 
3854 	if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3855 				 &codec_list_fops))
3856 		pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3857 
3858 	if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3859 				 &dai_list_fops))
3860 		pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3861 
3862 	if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3863 				 &platform_list_fops))
3864 		pr_warn("ASoC: Failed to create platform list debugfs file\n");
3865 #endif
3866 
3867 	snd_soc_util_init();
3868 
3869 	return platform_driver_register(&soc_driver);
3870 }
3871 module_init(snd_soc_init);
3872 
3873 static void __exit snd_soc_exit(void)
3874 {
3875 	snd_soc_util_exit();
3876 
3877 #ifdef CONFIG_DEBUG_FS
3878 	debugfs_remove_recursive(snd_soc_debugfs_root);
3879 #endif
3880 	platform_driver_unregister(&soc_driver);
3881 }
3882 module_exit(snd_soc_exit);
3883 
3884 /* Module information */
3885 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3886 MODULE_DESCRIPTION("ALSA SoC Core");
3887 MODULE_LICENSE("GPL");
3888 MODULE_ALIAS("platform:soc-audio");
3889