xref: /openbmc/linux/sound/soc/soc-core.c (revision 384740dc)
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  *
7  * Author: Liam Girdwood
8  *         liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
9  *         with code, comments and ideas from :-
10  *         Richard Purdie <richard@openedhand.com>
11  *
12  *  This program is free software; you can redistribute  it and/or modify it
13  *  under  the terms of  the GNU General  Public License as published by the
14  *  Free Software Foundation;  either version 2 of the  License, or (at your
15  *  option) any later version.
16  *
17  *  TODO:
18  *   o Add hw rules to enforce rates, etc.
19  *   o More testing with other codecs/machines.
20  *   o Add more codecs and platforms to ensure good API coverage.
21  *   o Support TDM on PCM and I2S
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/pm.h>
29 #include <linux/bitops.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 
38 /* debug */
39 #define SOC_DEBUG 0
40 #if SOC_DEBUG
41 #define dbg(format, arg...) printk(format, ## arg)
42 #else
43 #define dbg(format, arg...)
44 #endif
45 
46 static DEFINE_MUTEX(pcm_mutex);
47 static DEFINE_MUTEX(io_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49 
50 /*
51  * This is a timeout to do a DAPM powerdown after a stream is closed().
52  * It can be used to eliminate pops between different playback streams, e.g.
53  * between two audio tracks.
54  */
55 static int pmdown_time = 5000;
56 module_param(pmdown_time, int, 0);
57 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
58 
59 /*
60  * This function forces any delayed work to be queued and run.
61  */
62 static int run_delayed_work(struct delayed_work *dwork)
63 {
64 	int ret;
65 
66 	/* cancel any work waiting to be queued. */
67 	ret = cancel_delayed_work(dwork);
68 
69 	/* if there was any work waiting then we run it now and
70 	 * wait for it's completion */
71 	if (ret) {
72 		schedule_delayed_work(dwork, 0);
73 		flush_scheduled_work();
74 	}
75 	return ret;
76 }
77 
78 #ifdef CONFIG_SND_SOC_AC97_BUS
79 /* unregister ac97 codec */
80 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
81 {
82 	if (codec->ac97->dev.bus)
83 		device_unregister(&codec->ac97->dev);
84 	return 0;
85 }
86 
87 /* stop no dev release warning */
88 static void soc_ac97_device_release(struct device *dev){}
89 
90 /* register ac97 codec to bus */
91 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
92 {
93 	int err;
94 
95 	codec->ac97->dev.bus = &ac97_bus_type;
96 	codec->ac97->dev.parent = NULL;
97 	codec->ac97->dev.release = soc_ac97_device_release;
98 
99 	snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
100 		 codec->card->number, 0, codec->name);
101 	err = device_register(&codec->ac97->dev);
102 	if (err < 0) {
103 		snd_printk(KERN_ERR "Can't register ac97 bus\n");
104 		codec->ac97->dev.bus = NULL;
105 		return err;
106 	}
107 	return 0;
108 }
109 #endif
110 
111 static inline const char *get_dai_name(int type)
112 {
113 	switch (type) {
114 	case SND_SOC_DAI_AC97_BUS:
115 	case SND_SOC_DAI_AC97:
116 		return "AC97";
117 	case SND_SOC_DAI_I2S:
118 		return "I2S";
119 	case SND_SOC_DAI_PCM:
120 		return "PCM";
121 	}
122 	return NULL;
123 }
124 
125 /*
126  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
127  * then initialized and any private data can be allocated. This also calls
128  * startup for the cpu DAI, platform, machine and codec DAI.
129  */
130 static int soc_pcm_open(struct snd_pcm_substream *substream)
131 {
132 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
133 	struct snd_soc_device *socdev = rtd->socdev;
134 	struct snd_pcm_runtime *runtime = substream->runtime;
135 	struct snd_soc_dai_link *machine = rtd->dai;
136 	struct snd_soc_platform *platform = socdev->platform;
137 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
138 	struct snd_soc_dai *codec_dai = machine->codec_dai;
139 	int ret = 0;
140 
141 	mutex_lock(&pcm_mutex);
142 
143 	/* startup the audio subsystem */
144 	if (cpu_dai->ops.startup) {
145 		ret = cpu_dai->ops.startup(substream);
146 		if (ret < 0) {
147 			printk(KERN_ERR "asoc: can't open interface %s\n",
148 				cpu_dai->name);
149 			goto out;
150 		}
151 	}
152 
153 	if (platform->pcm_ops->open) {
154 		ret = platform->pcm_ops->open(substream);
155 		if (ret < 0) {
156 			printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
157 			goto platform_err;
158 		}
159 	}
160 
161 	if (codec_dai->ops.startup) {
162 		ret = codec_dai->ops.startup(substream);
163 		if (ret < 0) {
164 			printk(KERN_ERR "asoc: can't open codec %s\n",
165 				codec_dai->name);
166 			goto codec_dai_err;
167 		}
168 	}
169 
170 	if (machine->ops && machine->ops->startup) {
171 		ret = machine->ops->startup(substream);
172 		if (ret < 0) {
173 			printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
174 			goto machine_err;
175 		}
176 	}
177 
178 	/* Check that the codec and cpu DAI's are compatible */
179 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
180 		runtime->hw.rate_min =
181 			max(codec_dai->playback.rate_min,
182 			    cpu_dai->playback.rate_min);
183 		runtime->hw.rate_max =
184 			min(codec_dai->playback.rate_max,
185 			    cpu_dai->playback.rate_max);
186 		runtime->hw.channels_min =
187 			max(codec_dai->playback.channels_min,
188 				cpu_dai->playback.channels_min);
189 		runtime->hw.channels_max =
190 			min(codec_dai->playback.channels_max,
191 				cpu_dai->playback.channels_max);
192 		runtime->hw.formats =
193 			codec_dai->playback.formats & cpu_dai->playback.formats;
194 		runtime->hw.rates =
195 			codec_dai->playback.rates & cpu_dai->playback.rates;
196 	} else {
197 		runtime->hw.rate_min =
198 			max(codec_dai->capture.rate_min,
199 			    cpu_dai->capture.rate_min);
200 		runtime->hw.rate_max =
201 			min(codec_dai->capture.rate_max,
202 			    cpu_dai->capture.rate_max);
203 		runtime->hw.channels_min =
204 			max(codec_dai->capture.channels_min,
205 				cpu_dai->capture.channels_min);
206 		runtime->hw.channels_max =
207 			min(codec_dai->capture.channels_max,
208 				cpu_dai->capture.channels_max);
209 		runtime->hw.formats =
210 			codec_dai->capture.formats & cpu_dai->capture.formats;
211 		runtime->hw.rates =
212 			codec_dai->capture.rates & cpu_dai->capture.rates;
213 	}
214 
215 	snd_pcm_limit_hw_rates(runtime);
216 	if (!runtime->hw.rates) {
217 		printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
218 			codec_dai->name, cpu_dai->name);
219 		goto machine_err;
220 	}
221 	if (!runtime->hw.formats) {
222 		printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
223 			codec_dai->name, cpu_dai->name);
224 		goto machine_err;
225 	}
226 	if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
227 		printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
228 			codec_dai->name, cpu_dai->name);
229 		goto machine_err;
230 	}
231 
232 	dbg("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
233 	dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
234 	dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
235 		runtime->hw.channels_max);
236 	dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
237 		runtime->hw.rate_max);
238 
239 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
240 		cpu_dai->playback.active = codec_dai->playback.active = 1;
241 	else
242 		cpu_dai->capture.active = codec_dai->capture.active = 1;
243 	cpu_dai->active = codec_dai->active = 1;
244 	cpu_dai->runtime = runtime;
245 	socdev->codec->active++;
246 	mutex_unlock(&pcm_mutex);
247 	return 0;
248 
249 machine_err:
250 	if (machine->ops && machine->ops->shutdown)
251 		machine->ops->shutdown(substream);
252 
253 codec_dai_err:
254 	if (platform->pcm_ops->close)
255 		platform->pcm_ops->close(substream);
256 
257 platform_err:
258 	if (cpu_dai->ops.shutdown)
259 		cpu_dai->ops.shutdown(substream);
260 out:
261 	mutex_unlock(&pcm_mutex);
262 	return ret;
263 }
264 
265 /*
266  * Power down the audio subsystem pmdown_time msecs after close is called.
267  * This is to ensure there are no pops or clicks in between any music tracks
268  * due to DAPM power cycling.
269  */
270 static void close_delayed_work(struct work_struct *work)
271 {
272 	struct snd_soc_device *socdev =
273 		container_of(work, struct snd_soc_device, delayed_work.work);
274 	struct snd_soc_codec *codec = socdev->codec;
275 	struct snd_soc_dai *codec_dai;
276 	int i;
277 
278 	mutex_lock(&pcm_mutex);
279 	for (i = 0; i < codec->num_dai; i++) {
280 		codec_dai = &codec->dai[i];
281 
282 		dbg("pop wq checking: %s status: %s waiting: %s\n",
283 			codec_dai->playback.stream_name,
284 			codec_dai->playback.active ? "active" : "inactive",
285 			codec_dai->pop_wait ? "yes" : "no");
286 
287 		/* are we waiting on this codec DAI stream */
288 		if (codec_dai->pop_wait == 1) {
289 
290 			/* Reduce power if no longer active */
291 			if (codec->active == 0) {
292 				dbg("pop wq D1 %s %s\n", codec->name,
293 					codec_dai->playback.stream_name);
294 				snd_soc_dapm_set_bias_level(socdev,
295 					SND_SOC_BIAS_PREPARE);
296 			}
297 
298 			codec_dai->pop_wait = 0;
299 			snd_soc_dapm_stream_event(codec,
300 				codec_dai->playback.stream_name,
301 				SND_SOC_DAPM_STREAM_STOP);
302 
303 			/* Fall into standby if no longer active */
304 			if (codec->active == 0) {
305 				dbg("pop wq D3 %s %s\n", codec->name,
306 					codec_dai->playback.stream_name);
307 				snd_soc_dapm_set_bias_level(socdev,
308 					SND_SOC_BIAS_STANDBY);
309 			}
310 		}
311 	}
312 	mutex_unlock(&pcm_mutex);
313 }
314 
315 /*
316  * Called by ALSA when a PCM substream is closed. Private data can be
317  * freed here. The cpu DAI, codec DAI, machine and platform are also
318  * shutdown.
319  */
320 static int soc_codec_close(struct snd_pcm_substream *substream)
321 {
322 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
323 	struct snd_soc_device *socdev = rtd->socdev;
324 	struct snd_soc_dai_link *machine = rtd->dai;
325 	struct snd_soc_platform *platform = socdev->platform;
326 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
327 	struct snd_soc_dai *codec_dai = machine->codec_dai;
328 	struct snd_soc_codec *codec = socdev->codec;
329 
330 	mutex_lock(&pcm_mutex);
331 
332 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
333 		cpu_dai->playback.active = codec_dai->playback.active = 0;
334 	else
335 		cpu_dai->capture.active = codec_dai->capture.active = 0;
336 
337 	if (codec_dai->playback.active == 0 &&
338 		codec_dai->capture.active == 0) {
339 		cpu_dai->active = codec_dai->active = 0;
340 	}
341 	codec->active--;
342 
343 	if (cpu_dai->ops.shutdown)
344 		cpu_dai->ops.shutdown(substream);
345 
346 	if (codec_dai->ops.shutdown)
347 		codec_dai->ops.shutdown(substream);
348 
349 	if (machine->ops && machine->ops->shutdown)
350 		machine->ops->shutdown(substream);
351 
352 	if (platform->pcm_ops->close)
353 		platform->pcm_ops->close(substream);
354 	cpu_dai->runtime = NULL;
355 
356 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 		/* start delayed pop wq here for playback streams */
358 		codec_dai->pop_wait = 1;
359 		schedule_delayed_work(&socdev->delayed_work,
360 			msecs_to_jiffies(pmdown_time));
361 	} else {
362 		/* capture streams can be powered down now */
363 		snd_soc_dapm_stream_event(codec,
364 			codec_dai->capture.stream_name,
365 			SND_SOC_DAPM_STREAM_STOP);
366 
367 		if (codec->active == 0 && codec_dai->pop_wait == 0)
368 			snd_soc_dapm_set_bias_level(socdev,
369 						SND_SOC_BIAS_STANDBY);
370 	}
371 
372 	mutex_unlock(&pcm_mutex);
373 	return 0;
374 }
375 
376 /*
377  * Called by ALSA when the PCM substream is prepared, can set format, sample
378  * rate, etc.  This function is non atomic and can be called multiple times,
379  * it can refer to the runtime info.
380  */
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
382 {
383 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 	struct snd_soc_device *socdev = rtd->socdev;
385 	struct snd_soc_dai_link *machine = rtd->dai;
386 	struct snd_soc_platform *platform = socdev->platform;
387 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
388 	struct snd_soc_dai *codec_dai = machine->codec_dai;
389 	struct snd_soc_codec *codec = socdev->codec;
390 	int ret = 0;
391 
392 	mutex_lock(&pcm_mutex);
393 
394 	if (machine->ops && machine->ops->prepare) {
395 		ret = machine->ops->prepare(substream);
396 		if (ret < 0) {
397 			printk(KERN_ERR "asoc: machine prepare error\n");
398 			goto out;
399 		}
400 	}
401 
402 	if (platform->pcm_ops->prepare) {
403 		ret = platform->pcm_ops->prepare(substream);
404 		if (ret < 0) {
405 			printk(KERN_ERR "asoc: platform prepare error\n");
406 			goto out;
407 		}
408 	}
409 
410 	if (codec_dai->ops.prepare) {
411 		ret = codec_dai->ops.prepare(substream);
412 		if (ret < 0) {
413 			printk(KERN_ERR "asoc: codec DAI prepare error\n");
414 			goto out;
415 		}
416 	}
417 
418 	if (cpu_dai->ops.prepare) {
419 		ret = cpu_dai->ops.prepare(substream);
420 		if (ret < 0) {
421 			printk(KERN_ERR "asoc: cpu DAI prepare error\n");
422 			goto out;
423 		}
424 	}
425 
426 	/* we only want to start a DAPM playback stream if we are not waiting
427 	 * on an existing one stopping */
428 	if (codec_dai->pop_wait) {
429 		/* we are waiting for the delayed work to start */
430 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
431 				snd_soc_dapm_stream_event(socdev->codec,
432 					codec_dai->capture.stream_name,
433 					SND_SOC_DAPM_STREAM_START);
434 		else {
435 			codec_dai->pop_wait = 0;
436 			cancel_delayed_work(&socdev->delayed_work);
437 			snd_soc_dai_digital_mute(codec_dai, 0);
438 		}
439 	} else {
440 		/* no delayed work - do we need to power up codec */
441 		if (codec->bias_level != SND_SOC_BIAS_ON) {
442 
443 			snd_soc_dapm_set_bias_level(socdev,
444 						    SND_SOC_BIAS_PREPARE);
445 
446 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
447 				snd_soc_dapm_stream_event(codec,
448 					codec_dai->playback.stream_name,
449 					SND_SOC_DAPM_STREAM_START);
450 			else
451 				snd_soc_dapm_stream_event(codec,
452 					codec_dai->capture.stream_name,
453 					SND_SOC_DAPM_STREAM_START);
454 
455 			snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
456 			snd_soc_dai_digital_mute(codec_dai, 0);
457 
458 		} else {
459 			/* codec already powered - power on widgets */
460 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
461 				snd_soc_dapm_stream_event(codec,
462 					codec_dai->playback.stream_name,
463 					SND_SOC_DAPM_STREAM_START);
464 			else
465 				snd_soc_dapm_stream_event(codec,
466 					codec_dai->capture.stream_name,
467 					SND_SOC_DAPM_STREAM_START);
468 
469 			snd_soc_dai_digital_mute(codec_dai, 0);
470 		}
471 	}
472 
473 out:
474 	mutex_unlock(&pcm_mutex);
475 	return ret;
476 }
477 
478 /*
479  * Called by ALSA when the hardware params are set by application. This
480  * function can also be called multiple times and can allocate buffers
481  * (using snd_pcm_lib_* ). It's non-atomic.
482  */
483 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
484 				struct snd_pcm_hw_params *params)
485 {
486 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
487 	struct snd_soc_device *socdev = rtd->socdev;
488 	struct snd_soc_dai_link *machine = rtd->dai;
489 	struct snd_soc_platform *platform = socdev->platform;
490 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
491 	struct snd_soc_dai *codec_dai = machine->codec_dai;
492 	int ret = 0;
493 
494 	mutex_lock(&pcm_mutex);
495 
496 	if (machine->ops && machine->ops->hw_params) {
497 		ret = machine->ops->hw_params(substream, params);
498 		if (ret < 0) {
499 			printk(KERN_ERR "asoc: machine hw_params failed\n");
500 			goto out;
501 		}
502 	}
503 
504 	if (codec_dai->ops.hw_params) {
505 		ret = codec_dai->ops.hw_params(substream, params);
506 		if (ret < 0) {
507 			printk(KERN_ERR "asoc: can't set codec %s hw params\n",
508 				codec_dai->name);
509 			goto codec_err;
510 		}
511 	}
512 
513 	if (cpu_dai->ops.hw_params) {
514 		ret = cpu_dai->ops.hw_params(substream, params);
515 		if (ret < 0) {
516 			printk(KERN_ERR "asoc: interface %s hw params failed\n",
517 				cpu_dai->name);
518 			goto interface_err;
519 		}
520 	}
521 
522 	if (platform->pcm_ops->hw_params) {
523 		ret = platform->pcm_ops->hw_params(substream, params);
524 		if (ret < 0) {
525 			printk(KERN_ERR "asoc: platform %s hw params failed\n",
526 				platform->name);
527 			goto platform_err;
528 		}
529 	}
530 
531 out:
532 	mutex_unlock(&pcm_mutex);
533 	return ret;
534 
535 platform_err:
536 	if (cpu_dai->ops.hw_free)
537 		cpu_dai->ops.hw_free(substream);
538 
539 interface_err:
540 	if (codec_dai->ops.hw_free)
541 		codec_dai->ops.hw_free(substream);
542 
543 codec_err:
544 	if (machine->ops && machine->ops->hw_free)
545 		machine->ops->hw_free(substream);
546 
547 	mutex_unlock(&pcm_mutex);
548 	return ret;
549 }
550 
551 /*
552  * Free's resources allocated by hw_params, can be called multiple times
553  */
554 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
555 {
556 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
557 	struct snd_soc_device *socdev = rtd->socdev;
558 	struct snd_soc_dai_link *machine = rtd->dai;
559 	struct snd_soc_platform *platform = socdev->platform;
560 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
561 	struct snd_soc_dai *codec_dai = machine->codec_dai;
562 	struct snd_soc_codec *codec = socdev->codec;
563 
564 	mutex_lock(&pcm_mutex);
565 
566 	/* apply codec digital mute */
567 	if (!codec->active)
568 		snd_soc_dai_digital_mute(codec_dai, 1);
569 
570 	/* free any machine hw params */
571 	if (machine->ops && machine->ops->hw_free)
572 		machine->ops->hw_free(substream);
573 
574 	/* free any DMA resources */
575 	if (platform->pcm_ops->hw_free)
576 		platform->pcm_ops->hw_free(substream);
577 
578 	/* now free hw params for the DAI's  */
579 	if (codec_dai->ops.hw_free)
580 		codec_dai->ops.hw_free(substream);
581 
582 	if (cpu_dai->ops.hw_free)
583 		cpu_dai->ops.hw_free(substream);
584 
585 	mutex_unlock(&pcm_mutex);
586 	return 0;
587 }
588 
589 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
590 {
591 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
592 	struct snd_soc_device *socdev = rtd->socdev;
593 	struct snd_soc_dai_link *machine = rtd->dai;
594 	struct snd_soc_platform *platform = socdev->platform;
595 	struct snd_soc_dai *cpu_dai = machine->cpu_dai;
596 	struct snd_soc_dai *codec_dai = machine->codec_dai;
597 	int ret;
598 
599 	if (codec_dai->ops.trigger) {
600 		ret = codec_dai->ops.trigger(substream, cmd);
601 		if (ret < 0)
602 			return ret;
603 	}
604 
605 	if (platform->pcm_ops->trigger) {
606 		ret = platform->pcm_ops->trigger(substream, cmd);
607 		if (ret < 0)
608 			return ret;
609 	}
610 
611 	if (cpu_dai->ops.trigger) {
612 		ret = cpu_dai->ops.trigger(substream, cmd);
613 		if (ret < 0)
614 			return ret;
615 	}
616 	return 0;
617 }
618 
619 /* ASoC PCM operations */
620 static struct snd_pcm_ops soc_pcm_ops = {
621 	.open		= soc_pcm_open,
622 	.close		= soc_codec_close,
623 	.hw_params	= soc_pcm_hw_params,
624 	.hw_free	= soc_pcm_hw_free,
625 	.prepare	= soc_pcm_prepare,
626 	.trigger	= soc_pcm_trigger,
627 };
628 
629 #ifdef CONFIG_PM
630 /* powers down audio subsystem for suspend */
631 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
632 {
633 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
634 	struct snd_soc_machine *machine = socdev->machine;
635 	struct snd_soc_platform *platform = socdev->platform;
636 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
637 	struct snd_soc_codec *codec = socdev->codec;
638 	int i;
639 
640 	/* Due to the resume being scheduled into a workqueue we could
641 	* suspend before that's finished - wait for it to complete.
642 	 */
643 	snd_power_lock(codec->card);
644 	snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
645 	snd_power_unlock(codec->card);
646 
647 	/* we're going to block userspace touching us until resume completes */
648 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
649 
650 	/* mute any active DAC's */
651 	for (i = 0; i < machine->num_links; i++) {
652 		struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
653 		if (dai->dai_ops.digital_mute && dai->playback.active)
654 			dai->dai_ops.digital_mute(dai, 1);
655 	}
656 
657 	/* suspend all pcms */
658 	for (i = 0; i < machine->num_links; i++)
659 		snd_pcm_suspend_all(machine->dai_link[i].pcm);
660 
661 	if (machine->suspend_pre)
662 		machine->suspend_pre(pdev, state);
663 
664 	for (i = 0; i < machine->num_links; i++) {
665 		struct snd_soc_dai  *cpu_dai = machine->dai_link[i].cpu_dai;
666 		if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
667 			cpu_dai->suspend(pdev, cpu_dai);
668 		if (platform->suspend)
669 			platform->suspend(pdev, cpu_dai);
670 	}
671 
672 	/* close any waiting streams and save state */
673 	run_delayed_work(&socdev->delayed_work);
674 	codec->suspend_bias_level = codec->bias_level;
675 
676 	for (i = 0; i < codec->num_dai; i++) {
677 		char *stream = codec->dai[i].playback.stream_name;
678 		if (stream != NULL)
679 			snd_soc_dapm_stream_event(codec, stream,
680 				SND_SOC_DAPM_STREAM_SUSPEND);
681 		stream = codec->dai[i].capture.stream_name;
682 		if (stream != NULL)
683 			snd_soc_dapm_stream_event(codec, stream,
684 				SND_SOC_DAPM_STREAM_SUSPEND);
685 	}
686 
687 	if (codec_dev->suspend)
688 		codec_dev->suspend(pdev, state);
689 
690 	for (i = 0; i < machine->num_links; i++) {
691 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
692 		if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
693 			cpu_dai->suspend(pdev, cpu_dai);
694 	}
695 
696 	if (machine->suspend_post)
697 		machine->suspend_post(pdev, state);
698 
699 	return 0;
700 }
701 
702 /* deferred resume work, so resume can complete before we finished
703  * setting our codec back up, which can be very slow on I2C
704  */
705 static void soc_resume_deferred(struct work_struct *work)
706 {
707 	struct snd_soc_device *socdev = container_of(work,
708 						     struct snd_soc_device,
709 						     deferred_resume_work);
710 	struct snd_soc_machine *machine = socdev->machine;
711 	struct snd_soc_platform *platform = socdev->platform;
712 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
713 	struct snd_soc_codec *codec = socdev->codec;
714 	struct platform_device *pdev = to_platform_device(socdev->dev);
715 	int i;
716 
717 	/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
718 	 * so userspace apps are blocked from touching us
719 	 */
720 
721 	dev_info(socdev->dev, "starting resume work\n");
722 
723 	if (machine->resume_pre)
724 		machine->resume_pre(pdev);
725 
726 	for (i = 0; i < machine->num_links; i++) {
727 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
728 		if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
729 			cpu_dai->resume(pdev, cpu_dai);
730 	}
731 
732 	if (codec_dev->resume)
733 		codec_dev->resume(pdev);
734 
735 	for (i = 0; i < codec->num_dai; i++) {
736 		char *stream = codec->dai[i].playback.stream_name;
737 		if (stream != NULL)
738 			snd_soc_dapm_stream_event(codec, stream,
739 				SND_SOC_DAPM_STREAM_RESUME);
740 		stream = codec->dai[i].capture.stream_name;
741 		if (stream != NULL)
742 			snd_soc_dapm_stream_event(codec, stream,
743 				SND_SOC_DAPM_STREAM_RESUME);
744 	}
745 
746 	/* unmute any active DACs */
747 	for (i = 0; i < machine->num_links; i++) {
748 		struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
749 		if (dai->dai_ops.digital_mute && dai->playback.active)
750 			dai->dai_ops.digital_mute(dai, 0);
751 	}
752 
753 	for (i = 0; i < machine->num_links; i++) {
754 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
755 		if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
756 			cpu_dai->resume(pdev, cpu_dai);
757 		if (platform->resume)
758 			platform->resume(pdev, cpu_dai);
759 	}
760 
761 	if (machine->resume_post)
762 		machine->resume_post(pdev);
763 
764 	dev_info(socdev->dev, "resume work completed\n");
765 
766 	/* userspace can access us now we are back as we were before */
767 	snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
768 }
769 
770 /* powers up audio subsystem after a suspend */
771 static int soc_resume(struct platform_device *pdev)
772 {
773 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
774 
775 	dev_info(socdev->dev, "scheduling resume work\n");
776 
777 	if (!schedule_work(&socdev->deferred_resume_work))
778 		dev_err(socdev->dev, "work item may be lost\n");
779 
780 	return 0;
781 }
782 
783 #else
784 #define soc_suspend	NULL
785 #define soc_resume	NULL
786 #endif
787 
788 /* probes a new socdev */
789 static int soc_probe(struct platform_device *pdev)
790 {
791 	int ret = 0, i;
792 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
793 	struct snd_soc_machine *machine = socdev->machine;
794 	struct snd_soc_platform *platform = socdev->platform;
795 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
796 
797 	if (machine->probe) {
798 		ret = machine->probe(pdev);
799 		if (ret < 0)
800 			return ret;
801 	}
802 
803 	for (i = 0; i < machine->num_links; i++) {
804 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
805 		if (cpu_dai->probe) {
806 			ret = cpu_dai->probe(pdev, cpu_dai);
807 			if (ret < 0)
808 				goto cpu_dai_err;
809 		}
810 	}
811 
812 	if (codec_dev->probe) {
813 		ret = codec_dev->probe(pdev);
814 		if (ret < 0)
815 			goto cpu_dai_err;
816 	}
817 
818 	if (platform->probe) {
819 		ret = platform->probe(pdev);
820 		if (ret < 0)
821 			goto platform_err;
822 	}
823 
824 	/* DAPM stream work */
825 	INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
826 #ifdef CONFIG_PM
827 	/* deferred resume work */
828 	INIT_WORK(&socdev->deferred_resume_work, soc_resume_deferred);
829 #endif
830 
831 	return 0;
832 
833 platform_err:
834 	if (codec_dev->remove)
835 		codec_dev->remove(pdev);
836 
837 cpu_dai_err:
838 	for (i--; i >= 0; i--) {
839 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
840 		if (cpu_dai->remove)
841 			cpu_dai->remove(pdev, cpu_dai);
842 	}
843 
844 	if (machine->remove)
845 		machine->remove(pdev);
846 
847 	return ret;
848 }
849 
850 /* removes a socdev */
851 static int soc_remove(struct platform_device *pdev)
852 {
853 	int i;
854 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
855 	struct snd_soc_machine *machine = socdev->machine;
856 	struct snd_soc_platform *platform = socdev->platform;
857 	struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
858 
859 	run_delayed_work(&socdev->delayed_work);
860 
861 	if (platform->remove)
862 		platform->remove(pdev);
863 
864 	if (codec_dev->remove)
865 		codec_dev->remove(pdev);
866 
867 	for (i = 0; i < machine->num_links; i++) {
868 		struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
869 		if (cpu_dai->remove)
870 			cpu_dai->remove(pdev, cpu_dai);
871 	}
872 
873 	if (machine->remove)
874 		machine->remove(pdev);
875 
876 	return 0;
877 }
878 
879 /* ASoC platform driver */
880 static struct platform_driver soc_driver = {
881 	.driver		= {
882 		.name		= "soc-audio",
883 		.owner		= THIS_MODULE,
884 	},
885 	.probe		= soc_probe,
886 	.remove		= soc_remove,
887 	.suspend	= soc_suspend,
888 	.resume		= soc_resume,
889 };
890 
891 /* create a new pcm */
892 static int soc_new_pcm(struct snd_soc_device *socdev,
893 	struct snd_soc_dai_link *dai_link, int num)
894 {
895 	struct snd_soc_codec *codec = socdev->codec;
896 	struct snd_soc_dai *codec_dai = dai_link->codec_dai;
897 	struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
898 	struct snd_soc_pcm_runtime *rtd;
899 	struct snd_pcm *pcm;
900 	char new_name[64];
901 	int ret = 0, playback = 0, capture = 0;
902 
903 	rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
904 	if (rtd == NULL)
905 		return -ENOMEM;
906 
907 	rtd->dai = dai_link;
908 	rtd->socdev = socdev;
909 	codec_dai->codec = socdev->codec;
910 
911 	/* check client and interface hw capabilities */
912 	sprintf(new_name, "%s %s-%s-%d", dai_link->stream_name, codec_dai->name,
913 		get_dai_name(cpu_dai->type), num);
914 
915 	if (codec_dai->playback.channels_min)
916 		playback = 1;
917 	if (codec_dai->capture.channels_min)
918 		capture = 1;
919 
920 	ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
921 		capture, &pcm);
922 	if (ret < 0) {
923 		printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
924 			codec->name);
925 		kfree(rtd);
926 		return ret;
927 	}
928 
929 	dai_link->pcm = pcm;
930 	pcm->private_data = rtd;
931 	soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
932 	soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
933 	soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
934 	soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
935 	soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
936 	soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
937 	soc_pcm_ops.page = socdev->platform->pcm_ops->page;
938 
939 	if (playback)
940 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
941 
942 	if (capture)
943 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
944 
945 	ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
946 	if (ret < 0) {
947 		printk(KERN_ERR "asoc: platform pcm constructor failed\n");
948 		kfree(rtd);
949 		return ret;
950 	}
951 
952 	pcm->private_free = socdev->platform->pcm_free;
953 	printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
954 		cpu_dai->name);
955 	return ret;
956 }
957 
958 /* codec register dump */
959 static ssize_t codec_reg_show(struct device *dev,
960 	struct device_attribute *attr, char *buf)
961 {
962 	struct snd_soc_device *devdata = dev_get_drvdata(dev);
963 	struct snd_soc_codec *codec = devdata->codec;
964 	int i, step = 1, count = 0;
965 
966 	if (!codec->reg_cache_size)
967 		return 0;
968 
969 	if (codec->reg_cache_step)
970 		step = codec->reg_cache_step;
971 
972 	count += sprintf(buf, "%s registers\n", codec->name);
973 	for (i = 0; i < codec->reg_cache_size; i += step)
974 		count += sprintf(buf + count, "%2x: %4x\n", i,
975 			codec->read(codec, i));
976 
977 	return count;
978 }
979 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
980 
981 /**
982  * snd_soc_new_ac97_codec - initailise AC97 device
983  * @codec: audio codec
984  * @ops: AC97 bus operations
985  * @num: AC97 codec number
986  *
987  * Initialises AC97 codec resources for use by ad-hoc devices only.
988  */
989 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
990 	struct snd_ac97_bus_ops *ops, int num)
991 {
992 	mutex_lock(&codec->mutex);
993 
994 	codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
995 	if (codec->ac97 == NULL) {
996 		mutex_unlock(&codec->mutex);
997 		return -ENOMEM;
998 	}
999 
1000 	codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1001 	if (codec->ac97->bus == NULL) {
1002 		kfree(codec->ac97);
1003 		codec->ac97 = NULL;
1004 		mutex_unlock(&codec->mutex);
1005 		return -ENOMEM;
1006 	}
1007 
1008 	codec->ac97->bus->ops = ops;
1009 	codec->ac97->num = num;
1010 	mutex_unlock(&codec->mutex);
1011 	return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1014 
1015 /**
1016  * snd_soc_free_ac97_codec - free AC97 codec device
1017  * @codec: audio codec
1018  *
1019  * Frees AC97 codec device resources.
1020  */
1021 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1022 {
1023 	mutex_lock(&codec->mutex);
1024 	kfree(codec->ac97->bus);
1025 	kfree(codec->ac97);
1026 	codec->ac97 = NULL;
1027 	mutex_unlock(&codec->mutex);
1028 }
1029 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1030 
1031 /**
1032  * snd_soc_update_bits - update codec register bits
1033  * @codec: audio codec
1034  * @reg: codec register
1035  * @mask: register mask
1036  * @value: new value
1037  *
1038  * Writes new register value.
1039  *
1040  * Returns 1 for change else 0.
1041  */
1042 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1043 				unsigned short mask, unsigned short value)
1044 {
1045 	int change;
1046 	unsigned short old, new;
1047 
1048 	mutex_lock(&io_mutex);
1049 	old = snd_soc_read(codec, reg);
1050 	new = (old & ~mask) | value;
1051 	change = old != new;
1052 	if (change)
1053 		snd_soc_write(codec, reg, new);
1054 
1055 	mutex_unlock(&io_mutex);
1056 	return change;
1057 }
1058 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1059 
1060 /**
1061  * snd_soc_test_bits - test register for change
1062  * @codec: audio codec
1063  * @reg: codec register
1064  * @mask: register mask
1065  * @value: new value
1066  *
1067  * Tests a register with a new value and checks if the new value is
1068  * different from the old value.
1069  *
1070  * Returns 1 for change else 0.
1071  */
1072 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1073 				unsigned short mask, unsigned short value)
1074 {
1075 	int change;
1076 	unsigned short old, new;
1077 
1078 	mutex_lock(&io_mutex);
1079 	old = snd_soc_read(codec, reg);
1080 	new = (old & ~mask) | value;
1081 	change = old != new;
1082 	mutex_unlock(&io_mutex);
1083 
1084 	return change;
1085 }
1086 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1087 
1088 /**
1089  * snd_soc_new_pcms - create new sound card and pcms
1090  * @socdev: the SoC audio device
1091  *
1092  * Create a new sound card based upon the codec and interface pcms.
1093  *
1094  * Returns 0 for success, else error.
1095  */
1096 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1097 {
1098 	struct snd_soc_codec *codec = socdev->codec;
1099 	struct snd_soc_machine *machine = socdev->machine;
1100 	int ret = 0, i;
1101 
1102 	mutex_lock(&codec->mutex);
1103 
1104 	/* register a sound card */
1105 	codec->card = snd_card_new(idx, xid, codec->owner, 0);
1106 	if (!codec->card) {
1107 		printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1108 			codec->name);
1109 		mutex_unlock(&codec->mutex);
1110 		return -ENODEV;
1111 	}
1112 
1113 	codec->card->dev = socdev->dev;
1114 	codec->card->private_data = codec;
1115 	strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1116 
1117 	/* create the pcms */
1118 	for (i = 0; i < machine->num_links; i++) {
1119 		ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1120 		if (ret < 0) {
1121 			printk(KERN_ERR "asoc: can't create pcm %s\n",
1122 				machine->dai_link[i].stream_name);
1123 			mutex_unlock(&codec->mutex);
1124 			return ret;
1125 		}
1126 	}
1127 
1128 	mutex_unlock(&codec->mutex);
1129 	return ret;
1130 }
1131 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1132 
1133 /**
1134  * snd_soc_register_card - register sound card
1135  * @socdev: the SoC audio device
1136  *
1137  * Register a SoC sound card. Also registers an AC97 device if the
1138  * codec is AC97 for ad hoc devices.
1139  *
1140  * Returns 0 for success, else error.
1141  */
1142 int snd_soc_register_card(struct snd_soc_device *socdev)
1143 {
1144 	struct snd_soc_codec *codec = socdev->codec;
1145 	struct snd_soc_machine *machine = socdev->machine;
1146 	int ret = 0, i, ac97 = 0, err = 0;
1147 
1148 	for (i = 0; i < machine->num_links; i++) {
1149 		if (socdev->machine->dai_link[i].init) {
1150 			err = socdev->machine->dai_link[i].init(codec);
1151 			if (err < 0) {
1152 				printk(KERN_ERR "asoc: failed to init %s\n",
1153 					socdev->machine->dai_link[i].stream_name);
1154 				continue;
1155 			}
1156 		}
1157 		if (socdev->machine->dai_link[i].codec_dai->type ==
1158 			SND_SOC_DAI_AC97_BUS)
1159 			ac97 = 1;
1160 	}
1161 	snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1162 		 "%s", machine->name);
1163 	snprintf(codec->card->longname, sizeof(codec->card->longname),
1164 		 "%s (%s)", machine->name, codec->name);
1165 
1166 	ret = snd_card_register(codec->card);
1167 	if (ret < 0) {
1168 		printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1169 				codec->name);
1170 		goto out;
1171 	}
1172 
1173 	mutex_lock(&codec->mutex);
1174 #ifdef CONFIG_SND_SOC_AC97_BUS
1175 	if (ac97) {
1176 		ret = soc_ac97_dev_register(codec);
1177 		if (ret < 0) {
1178 			printk(KERN_ERR "asoc: AC97 device register failed\n");
1179 			snd_card_free(codec->card);
1180 			mutex_unlock(&codec->mutex);
1181 			goto out;
1182 		}
1183 	}
1184 #endif
1185 
1186 	err = snd_soc_dapm_sys_add(socdev->dev);
1187 	if (err < 0)
1188 		printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1189 
1190 	err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1191 	if (err < 0)
1192 		printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1193 
1194 	mutex_unlock(&codec->mutex);
1195 
1196 out:
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL_GPL(snd_soc_register_card);
1200 
1201 /**
1202  * snd_soc_free_pcms - free sound card and pcms
1203  * @socdev: the SoC audio device
1204  *
1205  * Frees sound card and pcms associated with the socdev.
1206  * Also unregister the codec if it is an AC97 device.
1207  */
1208 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1209 {
1210 	struct snd_soc_codec *codec = socdev->codec;
1211 #ifdef CONFIG_SND_SOC_AC97_BUS
1212 	struct snd_soc_dai *codec_dai;
1213 	int i;
1214 #endif
1215 
1216 	mutex_lock(&codec->mutex);
1217 #ifdef CONFIG_SND_SOC_AC97_BUS
1218 	for (i = 0; i < codec->num_dai; i++) {
1219 		codec_dai = &codec->dai[i];
1220 		if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
1221 			soc_ac97_dev_unregister(codec);
1222 			goto free_card;
1223 		}
1224 	}
1225 free_card:
1226 #endif
1227 
1228 	if (codec->card)
1229 		snd_card_free(codec->card);
1230 	device_remove_file(socdev->dev, &dev_attr_codec_reg);
1231 	mutex_unlock(&codec->mutex);
1232 }
1233 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1234 
1235 /**
1236  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1237  * @substream: the pcm substream
1238  * @hw: the hardware parameters
1239  *
1240  * Sets the substream runtime hardware parameters.
1241  */
1242 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1243 	const struct snd_pcm_hardware *hw)
1244 {
1245 	struct snd_pcm_runtime *runtime = substream->runtime;
1246 	runtime->hw.info = hw->info;
1247 	runtime->hw.formats = hw->formats;
1248 	runtime->hw.period_bytes_min = hw->period_bytes_min;
1249 	runtime->hw.period_bytes_max = hw->period_bytes_max;
1250 	runtime->hw.periods_min = hw->periods_min;
1251 	runtime->hw.periods_max = hw->periods_max;
1252 	runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1253 	runtime->hw.fifo_size = hw->fifo_size;
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1257 
1258 /**
1259  * snd_soc_cnew - create new control
1260  * @_template: control template
1261  * @data: control private data
1262  * @lnng_name: control long name
1263  *
1264  * Create a new mixer control from a template control.
1265  *
1266  * Returns 0 for success, else error.
1267  */
1268 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1269 	void *data, char *long_name)
1270 {
1271 	struct snd_kcontrol_new template;
1272 
1273 	memcpy(&template, _template, sizeof(template));
1274 	if (long_name)
1275 		template.name = long_name;
1276 	template.index = 0;
1277 
1278 	return snd_ctl_new1(&template, data);
1279 }
1280 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1281 
1282 /**
1283  * snd_soc_info_enum_double - enumerated double mixer info callback
1284  * @kcontrol: mixer control
1285  * @uinfo: control element information
1286  *
1287  * Callback to provide information about a double enumerated
1288  * mixer control.
1289  *
1290  * Returns 0 for success.
1291  */
1292 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1293 	struct snd_ctl_elem_info *uinfo)
1294 {
1295 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1296 
1297 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1298 	uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1299 	uinfo->value.enumerated.items = e->mask;
1300 
1301 	if (uinfo->value.enumerated.item > e->mask - 1)
1302 		uinfo->value.enumerated.item = e->mask - 1;
1303 	strcpy(uinfo->value.enumerated.name,
1304 		e->texts[uinfo->value.enumerated.item]);
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1308 
1309 /**
1310  * snd_soc_get_enum_double - enumerated double mixer get callback
1311  * @kcontrol: mixer control
1312  * @uinfo: control element information
1313  *
1314  * Callback to get the value of a double enumerated mixer.
1315  *
1316  * Returns 0 for success.
1317  */
1318 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1319 	struct snd_ctl_elem_value *ucontrol)
1320 {
1321 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1322 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1323 	unsigned short val, bitmask;
1324 
1325 	for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1326 		;
1327 	val = snd_soc_read(codec, e->reg);
1328 	ucontrol->value.enumerated.item[0]
1329 		= (val >> e->shift_l) & (bitmask - 1);
1330 	if (e->shift_l != e->shift_r)
1331 		ucontrol->value.enumerated.item[1] =
1332 			(val >> e->shift_r) & (bitmask - 1);
1333 
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1337 
1338 /**
1339  * snd_soc_put_enum_double - enumerated double mixer put callback
1340  * @kcontrol: mixer control
1341  * @uinfo: control element information
1342  *
1343  * Callback to set the value of a double enumerated mixer.
1344  *
1345  * Returns 0 for success.
1346  */
1347 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1348 	struct snd_ctl_elem_value *ucontrol)
1349 {
1350 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1351 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1352 	unsigned short val;
1353 	unsigned short mask, bitmask;
1354 
1355 	for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1356 		;
1357 	if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1358 		return -EINVAL;
1359 	val = ucontrol->value.enumerated.item[0] << e->shift_l;
1360 	mask = (bitmask - 1) << e->shift_l;
1361 	if (e->shift_l != e->shift_r) {
1362 		if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1363 			return -EINVAL;
1364 		val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1365 		mask |= (bitmask - 1) << e->shift_r;
1366 	}
1367 
1368 	return snd_soc_update_bits(codec, e->reg, mask, val);
1369 }
1370 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1371 
1372 /**
1373  * snd_soc_info_enum_ext - external enumerated single mixer info callback
1374  * @kcontrol: mixer control
1375  * @uinfo: control element information
1376  *
1377  * Callback to provide information about an external enumerated
1378  * single mixer.
1379  *
1380  * Returns 0 for success.
1381  */
1382 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1383 	struct snd_ctl_elem_info *uinfo)
1384 {
1385 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1386 
1387 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1388 	uinfo->count = 1;
1389 	uinfo->value.enumerated.items = e->mask;
1390 
1391 	if (uinfo->value.enumerated.item > e->mask - 1)
1392 		uinfo->value.enumerated.item = e->mask - 1;
1393 	strcpy(uinfo->value.enumerated.name,
1394 		e->texts[uinfo->value.enumerated.item]);
1395 	return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1398 
1399 /**
1400  * snd_soc_info_volsw_ext - external single mixer info callback
1401  * @kcontrol: mixer control
1402  * @uinfo: control element information
1403  *
1404  * Callback to provide information about a single external mixer control.
1405  *
1406  * Returns 0 for success.
1407  */
1408 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1409 	struct snd_ctl_elem_info *uinfo)
1410 {
1411 	int max = kcontrol->private_value;
1412 
1413 	if (max == 1)
1414 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1415 	else
1416 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1417 
1418 	uinfo->count = 1;
1419 	uinfo->value.integer.min = 0;
1420 	uinfo->value.integer.max = max;
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1424 
1425 /**
1426  * snd_soc_info_volsw - single mixer info callback
1427  * @kcontrol: mixer control
1428  * @uinfo: control element information
1429  *
1430  * Callback to provide information about a single mixer control.
1431  *
1432  * Returns 0 for success.
1433  */
1434 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1435 	struct snd_ctl_elem_info *uinfo)
1436 {
1437 	int max = (kcontrol->private_value >> 16) & 0xff;
1438 	int shift = (kcontrol->private_value >> 8) & 0x0f;
1439 	int rshift = (kcontrol->private_value >> 12) & 0x0f;
1440 
1441 	if (max == 1)
1442 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1443 	else
1444 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1445 
1446 	uinfo->count = shift == rshift ? 1 : 2;
1447 	uinfo->value.integer.min = 0;
1448 	uinfo->value.integer.max = max;
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1452 
1453 /**
1454  * snd_soc_get_volsw - single mixer get callback
1455  * @kcontrol: mixer control
1456  * @uinfo: control element information
1457  *
1458  * Callback to get the value of a single mixer control.
1459  *
1460  * Returns 0 for success.
1461  */
1462 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1463 	struct snd_ctl_elem_value *ucontrol)
1464 {
1465 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1466 	int reg = kcontrol->private_value & 0xff;
1467 	int shift = (kcontrol->private_value >> 8) & 0x0f;
1468 	int rshift = (kcontrol->private_value >> 12) & 0x0f;
1469 	int max = (kcontrol->private_value >> 16) & 0xff;
1470 	int mask = (1 << fls(max)) - 1;
1471 	int invert = (kcontrol->private_value >> 24) & 0x01;
1472 
1473 	ucontrol->value.integer.value[0] =
1474 		(snd_soc_read(codec, reg) >> shift) & mask;
1475 	if (shift != rshift)
1476 		ucontrol->value.integer.value[1] =
1477 			(snd_soc_read(codec, reg) >> rshift) & mask;
1478 	if (invert) {
1479 		ucontrol->value.integer.value[0] =
1480 			max - ucontrol->value.integer.value[0];
1481 		if (shift != rshift)
1482 			ucontrol->value.integer.value[1] =
1483 				max - ucontrol->value.integer.value[1];
1484 	}
1485 
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1489 
1490 /**
1491  * snd_soc_put_volsw - single mixer put callback
1492  * @kcontrol: mixer control
1493  * @uinfo: control element information
1494  *
1495  * Callback to set the value of a single mixer control.
1496  *
1497  * Returns 0 for success.
1498  */
1499 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1500 	struct snd_ctl_elem_value *ucontrol)
1501 {
1502 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1503 	int reg = kcontrol->private_value & 0xff;
1504 	int shift = (kcontrol->private_value >> 8) & 0x0f;
1505 	int rshift = (kcontrol->private_value >> 12) & 0x0f;
1506 	int max = (kcontrol->private_value >> 16) & 0xff;
1507 	int mask = (1 << fls(max)) - 1;
1508 	int invert = (kcontrol->private_value >> 24) & 0x01;
1509 	unsigned short val, val2, val_mask;
1510 
1511 	val = (ucontrol->value.integer.value[0] & mask);
1512 	if (invert)
1513 		val = max - val;
1514 	val_mask = mask << shift;
1515 	val = val << shift;
1516 	if (shift != rshift) {
1517 		val2 = (ucontrol->value.integer.value[1] & mask);
1518 		if (invert)
1519 			val2 = max - val2;
1520 		val_mask |= mask << rshift;
1521 		val |= val2 << rshift;
1522 	}
1523 	return snd_soc_update_bits(codec, reg, val_mask, val);
1524 }
1525 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1526 
1527 /**
1528  * snd_soc_info_volsw_2r - double mixer info callback
1529  * @kcontrol: mixer control
1530  * @uinfo: control element information
1531  *
1532  * Callback to provide information about a double mixer control that
1533  * spans 2 codec registers.
1534  *
1535  * Returns 0 for success.
1536  */
1537 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1538 	struct snd_ctl_elem_info *uinfo)
1539 {
1540 	int max = (kcontrol->private_value >> 12) & 0xff;
1541 
1542 	if (max == 1)
1543 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1544 	else
1545 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1546 
1547 	uinfo->count = 2;
1548 	uinfo->value.integer.min = 0;
1549 	uinfo->value.integer.max = max;
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1553 
1554 /**
1555  * snd_soc_get_volsw_2r - double mixer get callback
1556  * @kcontrol: mixer control
1557  * @uinfo: control element information
1558  *
1559  * Callback to get the value of a double mixer control that spans 2 registers.
1560  *
1561  * Returns 0 for success.
1562  */
1563 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1564 	struct snd_ctl_elem_value *ucontrol)
1565 {
1566 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1567 	int reg = kcontrol->private_value & 0xff;
1568 	int reg2 = (kcontrol->private_value >> 24) & 0xff;
1569 	int shift = (kcontrol->private_value >> 8) & 0x0f;
1570 	int max = (kcontrol->private_value >> 12) & 0xff;
1571 	int mask = (1<<fls(max))-1;
1572 	int invert = (kcontrol->private_value >> 20) & 0x01;
1573 
1574 	ucontrol->value.integer.value[0] =
1575 		(snd_soc_read(codec, reg) >> shift) & mask;
1576 	ucontrol->value.integer.value[1] =
1577 		(snd_soc_read(codec, reg2) >> shift) & mask;
1578 	if (invert) {
1579 		ucontrol->value.integer.value[0] =
1580 			max - ucontrol->value.integer.value[0];
1581 		ucontrol->value.integer.value[1] =
1582 			max - ucontrol->value.integer.value[1];
1583 	}
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1588 
1589 /**
1590  * snd_soc_put_volsw_2r - double mixer set callback
1591  * @kcontrol: mixer control
1592  * @uinfo: control element information
1593  *
1594  * Callback to set the value of a double mixer control that spans 2 registers.
1595  *
1596  * Returns 0 for success.
1597  */
1598 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1599 	struct snd_ctl_elem_value *ucontrol)
1600 {
1601 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1602 	int reg = kcontrol->private_value & 0xff;
1603 	int reg2 = (kcontrol->private_value >> 24) & 0xff;
1604 	int shift = (kcontrol->private_value >> 8) & 0x0f;
1605 	int max = (kcontrol->private_value >> 12) & 0xff;
1606 	int mask = (1 << fls(max)) - 1;
1607 	int invert = (kcontrol->private_value >> 20) & 0x01;
1608 	int err;
1609 	unsigned short val, val2, val_mask;
1610 
1611 	val_mask = mask << shift;
1612 	val = (ucontrol->value.integer.value[0] & mask);
1613 	val2 = (ucontrol->value.integer.value[1] & mask);
1614 
1615 	if (invert) {
1616 		val = max - val;
1617 		val2 = max - val2;
1618 	}
1619 
1620 	val = val << shift;
1621 	val2 = val2 << shift;
1622 
1623 	err = snd_soc_update_bits(codec, reg, val_mask, val);
1624 	if (err < 0)
1625 		return err;
1626 
1627 	err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1628 	return err;
1629 }
1630 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1631 
1632 /**
1633  * snd_soc_info_volsw_s8 - signed mixer info callback
1634  * @kcontrol: mixer control
1635  * @uinfo: control element information
1636  *
1637  * Callback to provide information about a signed mixer control.
1638  *
1639  * Returns 0 for success.
1640  */
1641 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1642 	struct snd_ctl_elem_info *uinfo)
1643 {
1644 	int max = (signed char)((kcontrol->private_value >> 16) & 0xff);
1645 	int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1646 
1647 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1648 	uinfo->count = 2;
1649 	uinfo->value.integer.min = 0;
1650 	uinfo->value.integer.max = max-min;
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1654 
1655 /**
1656  * snd_soc_get_volsw_s8 - signed mixer get callback
1657  * @kcontrol: mixer control
1658  * @uinfo: control element information
1659  *
1660  * Callback to get the value of a signed mixer control.
1661  *
1662  * Returns 0 for success.
1663  */
1664 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1665 	struct snd_ctl_elem_value *ucontrol)
1666 {
1667 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1668 	int reg = kcontrol->private_value & 0xff;
1669 	int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1670 	int val = snd_soc_read(codec, reg);
1671 
1672 	ucontrol->value.integer.value[0] =
1673 		((signed char)(val & 0xff))-min;
1674 	ucontrol->value.integer.value[1] =
1675 		((signed char)((val >> 8) & 0xff))-min;
1676 	return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1679 
1680 /**
1681  * snd_soc_put_volsw_sgn - signed mixer put callback
1682  * @kcontrol: mixer control
1683  * @uinfo: control element information
1684  *
1685  * Callback to set the value of a signed mixer control.
1686  *
1687  * Returns 0 for success.
1688  */
1689 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1690 	struct snd_ctl_elem_value *ucontrol)
1691 {
1692 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1693 	int reg = kcontrol->private_value & 0xff;
1694 	int min = (signed char)((kcontrol->private_value >> 24) & 0xff);
1695 	unsigned short val;
1696 
1697 	val = (ucontrol->value.integer.value[0]+min) & 0xff;
1698 	val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
1699 
1700 	return snd_soc_update_bits(codec, reg, 0xffff, val);
1701 }
1702 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
1703 
1704 /**
1705  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1706  * @dai: DAI
1707  * @clk_id: DAI specific clock ID
1708  * @freq: new clock frequency in Hz
1709  * @dir: new clock direction - input/output.
1710  *
1711  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1712  */
1713 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
1714 	unsigned int freq, int dir)
1715 {
1716 	if (dai->dai_ops.set_sysclk)
1717 		return dai->dai_ops.set_sysclk(dai, clk_id, freq, dir);
1718 	else
1719 		return -EINVAL;
1720 }
1721 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
1722 
1723 /**
1724  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1725  * @dai: DAI
1726  * @clk_id: DAI specific clock divider ID
1727  * @div: new clock divisor.
1728  *
1729  * Configures the clock dividers. This is used to derive the best DAI bit and
1730  * frame clocks from the system or master clock. It's best to set the DAI bit
1731  * and frame clocks as low as possible to save system power.
1732  */
1733 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
1734 	int div_id, int div)
1735 {
1736 	if (dai->dai_ops.set_clkdiv)
1737 		return dai->dai_ops.set_clkdiv(dai, div_id, div);
1738 	else
1739 		return -EINVAL;
1740 }
1741 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
1742 
1743 /**
1744  * snd_soc_dai_set_pll - configure DAI PLL.
1745  * @dai: DAI
1746  * @pll_id: DAI specific PLL ID
1747  * @freq_in: PLL input clock frequency in Hz
1748  * @freq_out: requested PLL output clock frequency in Hz
1749  *
1750  * Configures and enables PLL to generate output clock based on input clock.
1751  */
1752 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
1753 	int pll_id, unsigned int freq_in, unsigned int freq_out)
1754 {
1755 	if (dai->dai_ops.set_pll)
1756 		return dai->dai_ops.set_pll(dai, pll_id, freq_in, freq_out);
1757 	else
1758 		return -EINVAL;
1759 }
1760 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
1761 
1762 /**
1763  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1764  * @dai: DAI
1765  * @clk_id: DAI specific clock ID
1766  * @fmt: SND_SOC_DAIFMT_ format value.
1767  *
1768  * Configures the DAI hardware format and clocking.
1769  */
1770 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1771 {
1772 	if (dai->dai_ops.set_fmt)
1773 		return dai->dai_ops.set_fmt(dai, fmt);
1774 	else
1775 		return -EINVAL;
1776 }
1777 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
1778 
1779 /**
1780  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1781  * @dai: DAI
1782  * @mask: DAI specific mask representing used slots.
1783  * @slots: Number of slots in use.
1784  *
1785  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1786  * specific.
1787  */
1788 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
1789 	unsigned int mask, int slots)
1790 {
1791 	if (dai->dai_ops.set_sysclk)
1792 		return dai->dai_ops.set_tdm_slot(dai, mask, slots);
1793 	else
1794 		return -EINVAL;
1795 }
1796 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
1797 
1798 /**
1799  * snd_soc_dai_set_tristate - configure DAI system or master clock.
1800  * @dai: DAI
1801  * @tristate: tristate enable
1802  *
1803  * Tristates the DAI so that others can use it.
1804  */
1805 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
1806 {
1807 	if (dai->dai_ops.set_sysclk)
1808 		return dai->dai_ops.set_tristate(dai, tristate);
1809 	else
1810 		return -EINVAL;
1811 }
1812 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
1813 
1814 /**
1815  * snd_soc_dai_digital_mute - configure DAI system or master clock.
1816  * @dai: DAI
1817  * @mute: mute enable
1818  *
1819  * Mutes the DAI DAC.
1820  */
1821 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
1822 {
1823 	if (dai->dai_ops.digital_mute)
1824 		return dai->dai_ops.digital_mute(dai, mute);
1825 	else
1826 		return -EINVAL;
1827 }
1828 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
1829 
1830 static int __devinit snd_soc_init(void)
1831 {
1832 	printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1833 	return platform_driver_register(&soc_driver);
1834 }
1835 
1836 static void snd_soc_exit(void)
1837 {
1838 	platform_driver_unregister(&soc_driver);
1839 }
1840 
1841 module_init(snd_soc_init);
1842 module_exit(snd_soc_exit);
1843 
1844 /* Module information */
1845 MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1846 MODULE_DESCRIPTION("ALSA SoC Core");
1847 MODULE_LICENSE("GPL");
1848 MODULE_ALIAS("platform:soc-audio");
1849