xref: /openbmc/linux/sound/soc/soc-component.c (revision 34facb04)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // soc-component.c
4 //
5 // Copyright 2009-2011 Wolfson Microelectronics PLC.
6 // Copyright (C) 2019 Renesas Electronics Corp.
7 //
8 // Mark Brown <broonie@opensource.wolfsonmicro.com>
9 // Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
10 //
11 #include <linux/module.h>
12 #include <sound/soc.h>
13 
14 #define soc_component_ret(dai, ret) _soc_component_ret(dai, __func__, ret)
15 static inline int _soc_component_ret(struct snd_soc_component *component,
16 				     const char *func, int ret)
17 {
18 	/* Positive/Zero values are not errors */
19 	if (ret >= 0)
20 		return ret;
21 
22 	/* Negative values might be errors */
23 	switch (ret) {
24 	case -EPROBE_DEFER:
25 	case -ENOTSUPP:
26 		break;
27 	default:
28 		dev_err(component->dev,
29 			"ASoC: error at %s on %s: %d\n",
30 			func, component->name, ret);
31 	}
32 
33 	return ret;
34 }
35 
36 int snd_soc_component_initialize(struct snd_soc_component *component,
37 				 const struct snd_soc_component_driver *driver,
38 				 struct device *dev, const char *name)
39 {
40 	INIT_LIST_HEAD(&component->dai_list);
41 	INIT_LIST_HEAD(&component->dobj_list);
42 	INIT_LIST_HEAD(&component->card_list);
43 	mutex_init(&component->io_mutex);
44 
45 	component->name		= name;
46 	component->dev		= dev;
47 	component->driver	= driver;
48 
49 	return 0;
50 }
51 
52 void snd_soc_component_set_aux(struct snd_soc_component *component,
53 			       struct snd_soc_aux_dev *aux)
54 {
55 	component->init = (aux) ? aux->init : NULL;
56 }
57 
58 int snd_soc_component_init(struct snd_soc_component *component)
59 {
60 	int ret = 0;
61 
62 	if (component->init)
63 		ret = component->init(component);
64 
65 	return soc_component_ret(component, ret);
66 }
67 
68 /**
69  * snd_soc_component_set_sysclk - configure COMPONENT system or master clock.
70  * @component: COMPONENT
71  * @clk_id: DAI specific clock ID
72  * @source: Source for the clock
73  * @freq: new clock frequency in Hz
74  * @dir: new clock direction - input/output.
75  *
76  * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
77  */
78 int snd_soc_component_set_sysclk(struct snd_soc_component *component,
79 				 int clk_id, int source, unsigned int freq,
80 				 int dir)
81 {
82 	int ret = -ENOTSUPP;
83 
84 	if (component->driver->set_sysclk)
85 		ret = component->driver->set_sysclk(component, clk_id, source,
86 						     freq, dir);
87 
88 	return soc_component_ret(component, ret);
89 }
90 EXPORT_SYMBOL_GPL(snd_soc_component_set_sysclk);
91 
92 /*
93  * snd_soc_component_set_pll - configure component PLL.
94  * @component: COMPONENT
95  * @pll_id: DAI specific PLL ID
96  * @source: DAI specific source for the PLL
97  * @freq_in: PLL input clock frequency in Hz
98  * @freq_out: requested PLL output clock frequency in Hz
99  *
100  * Configures and enables PLL to generate output clock based on input clock.
101  */
102 int snd_soc_component_set_pll(struct snd_soc_component *component, int pll_id,
103 			      int source, unsigned int freq_in,
104 			      unsigned int freq_out)
105 {
106 	int ret = -EINVAL;
107 
108 	if (component->driver->set_pll)
109 		ret = component->driver->set_pll(component, pll_id, source,
110 						  freq_in, freq_out);
111 
112 	return soc_component_ret(component, ret);
113 }
114 EXPORT_SYMBOL_GPL(snd_soc_component_set_pll);
115 
116 void snd_soc_component_seq_notifier(struct snd_soc_component *component,
117 				    enum snd_soc_dapm_type type, int subseq)
118 {
119 	if (component->driver->seq_notifier)
120 		component->driver->seq_notifier(component, type, subseq);
121 }
122 
123 int snd_soc_component_stream_event(struct snd_soc_component *component,
124 				   int event)
125 {
126 	int ret = 0;
127 
128 	if (component->driver->stream_event)
129 		ret = component->driver->stream_event(component, event);
130 
131 	return soc_component_ret(component, ret);
132 }
133 
134 int snd_soc_component_set_bias_level(struct snd_soc_component *component,
135 				     enum snd_soc_bias_level level)
136 {
137 	int ret = 0;
138 
139 	if (component->driver->set_bias_level)
140 		ret = component->driver->set_bias_level(component, level);
141 
142 	return soc_component_ret(component, ret);
143 }
144 
145 static int soc_component_pin(struct snd_soc_component *component,
146 			     const char *pin,
147 			     int (*pin_func)(struct snd_soc_dapm_context *dapm,
148 					     const char *pin))
149 {
150 	struct snd_soc_dapm_context *dapm =
151 		snd_soc_component_get_dapm(component);
152 	char *full_name;
153 	int ret;
154 
155 	if (!component->name_prefix) {
156 		ret = pin_func(dapm, pin);
157 		goto end;
158 	}
159 
160 	full_name = kasprintf(GFP_KERNEL, "%s %s", component->name_prefix, pin);
161 	if (!full_name) {
162 		ret = -ENOMEM;
163 		goto end;
164 	}
165 
166 	ret = pin_func(dapm, full_name);
167 	kfree(full_name);
168 end:
169 	return soc_component_ret(component, ret);
170 }
171 
172 int snd_soc_component_enable_pin(struct snd_soc_component *component,
173 				 const char *pin)
174 {
175 	return soc_component_pin(component, pin, snd_soc_dapm_enable_pin);
176 }
177 EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin);
178 
179 int snd_soc_component_enable_pin_unlocked(struct snd_soc_component *component,
180 					  const char *pin)
181 {
182 	return soc_component_pin(component, pin, snd_soc_dapm_enable_pin_unlocked);
183 }
184 EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin_unlocked);
185 
186 int snd_soc_component_disable_pin(struct snd_soc_component *component,
187 				  const char *pin)
188 {
189 	return soc_component_pin(component, pin, snd_soc_dapm_disable_pin);
190 }
191 EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin);
192 
193 int snd_soc_component_disable_pin_unlocked(struct snd_soc_component *component,
194 					   const char *pin)
195 {
196 	return soc_component_pin(component, pin, snd_soc_dapm_disable_pin_unlocked);
197 }
198 EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin_unlocked);
199 
200 int snd_soc_component_nc_pin(struct snd_soc_component *component,
201 			     const char *pin)
202 {
203 	return soc_component_pin(component, pin, snd_soc_dapm_nc_pin);
204 }
205 EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin);
206 
207 int snd_soc_component_nc_pin_unlocked(struct snd_soc_component *component,
208 				      const char *pin)
209 {
210 	return soc_component_pin(component, pin, snd_soc_dapm_nc_pin_unlocked);
211 }
212 EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin_unlocked);
213 
214 int snd_soc_component_get_pin_status(struct snd_soc_component *component,
215 				     const char *pin)
216 {
217 	return soc_component_pin(component, pin, snd_soc_dapm_get_pin_status);
218 }
219 EXPORT_SYMBOL_GPL(snd_soc_component_get_pin_status);
220 
221 int snd_soc_component_force_enable_pin(struct snd_soc_component *component,
222 				       const char *pin)
223 {
224 	return soc_component_pin(component, pin, snd_soc_dapm_force_enable_pin);
225 }
226 EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin);
227 
228 int snd_soc_component_force_enable_pin_unlocked(
229 	struct snd_soc_component *component,
230 	const char *pin)
231 {
232 	return soc_component_pin(component, pin, snd_soc_dapm_force_enable_pin_unlocked);
233 }
234 EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin_unlocked);
235 
236 /**
237  * snd_soc_component_set_jack - configure component jack.
238  * @component: COMPONENTs
239  * @jack: structure to use for the jack
240  * @data: can be used if codec driver need extra data for configuring jack
241  *
242  * Configures and enables jack detection function.
243  */
244 int snd_soc_component_set_jack(struct snd_soc_component *component,
245 			       struct snd_soc_jack *jack, void *data)
246 {
247 	int ret = -ENOTSUPP;
248 
249 	if (component->driver->set_jack)
250 		ret = component->driver->set_jack(component, jack, data);
251 
252 	return soc_component_ret(component, ret);
253 }
254 EXPORT_SYMBOL_GPL(snd_soc_component_set_jack);
255 
256 int snd_soc_component_module_get(struct snd_soc_component *component,
257 				 int upon_open)
258 {
259 	int ret = 0;
260 
261 	if (component->driver->module_get_upon_open == !!upon_open &&
262 	    !try_module_get(component->dev->driver->owner))
263 		ret = -ENODEV;
264 
265 	return soc_component_ret(component, ret);
266 }
267 
268 void snd_soc_component_module_put(struct snd_soc_component *component,
269 				  int upon_open)
270 {
271 	if (component->driver->module_get_upon_open == !!upon_open)
272 		module_put(component->dev->driver->owner);
273 }
274 
275 int snd_soc_component_open(struct snd_soc_component *component,
276 			   struct snd_pcm_substream *substream)
277 {
278 	int ret = 0;
279 
280 	if (component->driver->open)
281 		ret = component->driver->open(component, substream);
282 
283 	return soc_component_ret(component, ret);
284 }
285 
286 int snd_soc_component_close(struct snd_soc_component *component,
287 			    struct snd_pcm_substream *substream)
288 {
289 	int ret = 0;
290 
291 	if (component->driver->close)
292 		ret = component->driver->close(component, substream);
293 
294 	return soc_component_ret(component, ret);
295 }
296 
297 void snd_soc_component_suspend(struct snd_soc_component *component)
298 {
299 	if (component->driver->suspend)
300 		component->driver->suspend(component);
301 	component->suspended = 1;
302 }
303 
304 void snd_soc_component_resume(struct snd_soc_component *component)
305 {
306 	if (component->driver->resume)
307 		component->driver->resume(component);
308 	component->suspended = 0;
309 }
310 
311 int snd_soc_component_is_suspended(struct snd_soc_component *component)
312 {
313 	return component->suspended;
314 }
315 
316 int snd_soc_component_probe(struct snd_soc_component *component)
317 {
318 	int ret = 0;
319 
320 	if (component->driver->probe)
321 		ret = component->driver->probe(component);
322 
323 	return soc_component_ret(component, ret);
324 }
325 
326 void snd_soc_component_remove(struct snd_soc_component *component)
327 {
328 	if (component->driver->remove)
329 		component->driver->remove(component);
330 }
331 
332 int snd_soc_component_of_xlate_dai_id(struct snd_soc_component *component,
333 				      struct device_node *ep)
334 {
335 	int ret = -ENOTSUPP;
336 
337 	if (component->driver->of_xlate_dai_id)
338 		ret = component->driver->of_xlate_dai_id(component, ep);
339 
340 	return soc_component_ret(component, ret);
341 }
342 
343 int snd_soc_component_of_xlate_dai_name(struct snd_soc_component *component,
344 					struct of_phandle_args *args,
345 					const char **dai_name)
346 {
347 	if (component->driver->of_xlate_dai_name)
348 		return component->driver->of_xlate_dai_name(component,
349 							    args, dai_name);
350 	/*
351 	 * Don't use soc_component_ret here because we may not want to report
352 	 * the error just yet. If a device has more than one component, the
353 	 * first may not match and we don't want spam the log with this.
354 	 */
355 	return -ENOTSUPP;
356 }
357 
358 void snd_soc_component_setup_regmap(struct snd_soc_component *component)
359 {
360 	int val_bytes = regmap_get_val_bytes(component->regmap);
361 
362 	/* Errors are legitimate for non-integer byte multiples */
363 	if (val_bytes > 0)
364 		component->val_bytes = val_bytes;
365 }
366 
367 #ifdef CONFIG_REGMAP
368 
369 /**
370  * snd_soc_component_init_regmap() - Initialize regmap instance for the
371  *                                   component
372  * @component: The component for which to initialize the regmap instance
373  * @regmap: The regmap instance that should be used by the component
374  *
375  * This function allows deferred assignment of the regmap instance that is
376  * associated with the component. Only use this if the regmap instance is not
377  * yet ready when the component is registered. The function must also be called
378  * before the first IO attempt of the component.
379  */
380 void snd_soc_component_init_regmap(struct snd_soc_component *component,
381 				   struct regmap *regmap)
382 {
383 	component->regmap = regmap;
384 	snd_soc_component_setup_regmap(component);
385 }
386 EXPORT_SYMBOL_GPL(snd_soc_component_init_regmap);
387 
388 /**
389  * snd_soc_component_exit_regmap() - De-initialize regmap instance for the
390  *                                   component
391  * @component: The component for which to de-initialize the regmap instance
392  *
393  * Calls regmap_exit() on the regmap instance associated to the component and
394  * removes the regmap instance from the component.
395  *
396  * This function should only be used if snd_soc_component_init_regmap() was used
397  * to initialize the regmap instance.
398  */
399 void snd_soc_component_exit_regmap(struct snd_soc_component *component)
400 {
401 	regmap_exit(component->regmap);
402 	component->regmap = NULL;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_component_exit_regmap);
405 
406 #endif
407 
408 static unsigned int soc_component_read_no_lock(
409 	struct snd_soc_component *component,
410 	unsigned int reg)
411 {
412 	int ret;
413 	unsigned int val = 0;
414 
415 	if (component->regmap)
416 		ret = regmap_read(component->regmap, reg, &val);
417 	else if (component->driver->read) {
418 		ret = 0;
419 		val = component->driver->read(component, reg);
420 	}
421 	else
422 		ret = -EIO;
423 
424 	if (ret < 0)
425 		soc_component_ret(component, ret);
426 
427 	return val;
428 }
429 
430 /**
431  * snd_soc_component_read() - Read register value
432  * @component: Component to read from
433  * @reg: Register to read
434  *
435  * Return: read value
436  */
437 unsigned int snd_soc_component_read(struct snd_soc_component *component,
438 				    unsigned int reg)
439 {
440 	unsigned int val;
441 
442 	mutex_lock(&component->io_mutex);
443 	val = soc_component_read_no_lock(component, reg);
444 	mutex_unlock(&component->io_mutex);
445 
446 	return val;
447 }
448 EXPORT_SYMBOL_GPL(snd_soc_component_read);
449 
450 static int soc_component_write_no_lock(
451 	struct snd_soc_component *component,
452 	unsigned int reg, unsigned int val)
453 {
454 	int ret = -EIO;
455 
456 	if (component->regmap)
457 		ret = regmap_write(component->regmap, reg, val);
458 	else if (component->driver->write)
459 		ret = component->driver->write(component, reg, val);
460 
461 	return soc_component_ret(component, ret);
462 }
463 
464 /**
465  * snd_soc_component_write() - Write register value
466  * @component: Component to write to
467  * @reg: Register to write
468  * @val: Value to write to the register
469  *
470  * Return: 0 on success, a negative error code otherwise.
471  */
472 int snd_soc_component_write(struct snd_soc_component *component,
473 			    unsigned int reg, unsigned int val)
474 {
475 	int ret;
476 
477 	mutex_lock(&component->io_mutex);
478 	ret = soc_component_write_no_lock(component, reg, val);
479 	mutex_unlock(&component->io_mutex);
480 
481 	return ret;
482 }
483 EXPORT_SYMBOL_GPL(snd_soc_component_write);
484 
485 static int snd_soc_component_update_bits_legacy(
486 	struct snd_soc_component *component, unsigned int reg,
487 	unsigned int mask, unsigned int val, bool *change)
488 {
489 	unsigned int old, new;
490 	int ret = 0;
491 
492 	mutex_lock(&component->io_mutex);
493 
494 	old = soc_component_read_no_lock(component, reg);
495 
496 	new = (old & ~mask) | (val & mask);
497 	*change = old != new;
498 	if (*change)
499 		ret = soc_component_write_no_lock(component, reg, new);
500 
501 	mutex_unlock(&component->io_mutex);
502 
503 	return soc_component_ret(component, ret);
504 }
505 
506 /**
507  * snd_soc_component_update_bits() - Perform read/modify/write cycle
508  * @component: Component to update
509  * @reg: Register to update
510  * @mask: Mask that specifies which bits to update
511  * @val: New value for the bits specified by mask
512  *
513  * Return: 1 if the operation was successful and the value of the register
514  * changed, 0 if the operation was successful, but the value did not change.
515  * Returns a negative error code otherwise.
516  */
517 int snd_soc_component_update_bits(struct snd_soc_component *component,
518 				  unsigned int reg, unsigned int mask, unsigned int val)
519 {
520 	bool change;
521 	int ret;
522 
523 	if (component->regmap)
524 		ret = regmap_update_bits_check(component->regmap, reg, mask,
525 					       val, &change);
526 	else
527 		ret = snd_soc_component_update_bits_legacy(component, reg,
528 							   mask, val, &change);
529 
530 	if (ret < 0)
531 		return soc_component_ret(component, ret);
532 	return change;
533 }
534 EXPORT_SYMBOL_GPL(snd_soc_component_update_bits);
535 
536 /**
537  * snd_soc_component_update_bits_async() - Perform asynchronous
538  *  read/modify/write cycle
539  * @component: Component to update
540  * @reg: Register to update
541  * @mask: Mask that specifies which bits to update
542  * @val: New value for the bits specified by mask
543  *
544  * This function is similar to snd_soc_component_update_bits(), but the update
545  * operation is scheduled asynchronously. This means it may not be completed
546  * when the function returns. To make sure that all scheduled updates have been
547  * completed snd_soc_component_async_complete() must be called.
548  *
549  * Return: 1 if the operation was successful and the value of the register
550  * changed, 0 if the operation was successful, but the value did not change.
551  * Returns a negative error code otherwise.
552  */
553 int snd_soc_component_update_bits_async(struct snd_soc_component *component,
554 					unsigned int reg, unsigned int mask, unsigned int val)
555 {
556 	bool change;
557 	int ret;
558 
559 	if (component->regmap)
560 		ret = regmap_update_bits_check_async(component->regmap, reg,
561 						     mask, val, &change);
562 	else
563 		ret = snd_soc_component_update_bits_legacy(component, reg,
564 							   mask, val, &change);
565 
566 	if (ret < 0)
567 		return soc_component_ret(component, ret);
568 	return change;
569 }
570 EXPORT_SYMBOL_GPL(snd_soc_component_update_bits_async);
571 
572 /**
573  * snd_soc_component_async_complete() - Ensure asynchronous I/O has completed
574  * @component: Component for which to wait
575  *
576  * This function blocks until all asynchronous I/O which has previously been
577  * scheduled using snd_soc_component_update_bits_async() has completed.
578  */
579 void snd_soc_component_async_complete(struct snd_soc_component *component)
580 {
581 	if (component->regmap)
582 		regmap_async_complete(component->regmap);
583 }
584 EXPORT_SYMBOL_GPL(snd_soc_component_async_complete);
585 
586 /**
587  * snd_soc_component_test_bits - Test register for change
588  * @component: component
589  * @reg: Register to test
590  * @mask: Mask that specifies which bits to test
591  * @value: Value to test against
592  *
593  * Tests a register with a new value and checks if the new value is
594  * different from the old value.
595  *
596  * Return: 1 for change, otherwise 0.
597  */
598 int snd_soc_component_test_bits(struct snd_soc_component *component,
599 				unsigned int reg, unsigned int mask, unsigned int value)
600 {
601 	unsigned int old, new;
602 
603 	old = snd_soc_component_read(component, reg);
604 	new = (old & ~mask) | value;
605 	return old != new;
606 }
607 EXPORT_SYMBOL_GPL(snd_soc_component_test_bits);
608 
609 int snd_soc_pcm_component_pointer(struct snd_pcm_substream *substream)
610 {
611 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
612 	struct snd_soc_component *component;
613 	int i;
614 
615 	/* FIXME: use 1st pointer */
616 	for_each_rtd_components(rtd, i, component)
617 		if (component->driver->pointer)
618 			return component->driver->pointer(component, substream);
619 
620 	return 0;
621 }
622 
623 int snd_soc_pcm_component_ioctl(struct snd_pcm_substream *substream,
624 				unsigned int cmd, void *arg)
625 {
626 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
627 	struct snd_soc_component *component;
628 	int i;
629 
630 	/* FIXME: use 1st ioctl */
631 	for_each_rtd_components(rtd, i, component)
632 		if (component->driver->ioctl)
633 			return soc_component_ret(
634 				component,
635 				component->driver->ioctl(component,
636 							 substream, cmd, arg));
637 
638 	return snd_pcm_lib_ioctl(substream, cmd, arg);
639 }
640 
641 int snd_soc_pcm_component_sync_stop(struct snd_pcm_substream *substream)
642 {
643 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
644 	struct snd_soc_component *component;
645 	int i, ret;
646 
647 	for_each_rtd_components(rtd, i, component) {
648 		if (component->driver->sync_stop) {
649 			ret = component->driver->sync_stop(component,
650 							   substream);
651 			if (ret < 0)
652 				return soc_component_ret(component, ret);
653 		}
654 	}
655 
656 	return 0;
657 }
658 
659 int snd_soc_pcm_component_copy_user(struct snd_pcm_substream *substream,
660 				    int channel, unsigned long pos,
661 				    void __user *buf, unsigned long bytes)
662 {
663 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
664 	struct snd_soc_component *component;
665 	int i;
666 
667 	/* FIXME. it returns 1st copy now */
668 	for_each_rtd_components(rtd, i, component)
669 		if (component->driver->copy_user)
670 			return soc_component_ret(
671 				component,
672 				component->driver->copy_user(
673 					component, substream, channel,
674 					pos, buf, bytes));
675 
676 	return -EINVAL;
677 }
678 
679 struct page *snd_soc_pcm_component_page(struct snd_pcm_substream *substream,
680 					unsigned long offset)
681 {
682 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
683 	struct snd_soc_component *component;
684 	struct page *page;
685 	int i;
686 
687 	/* FIXME. it returns 1st page now */
688 	for_each_rtd_components(rtd, i, component) {
689 		if (component->driver->page) {
690 			page = component->driver->page(component,
691 						       substream, offset);
692 			if (page)
693 				return page;
694 		}
695 	}
696 
697 	return NULL;
698 }
699 
700 int snd_soc_pcm_component_mmap(struct snd_pcm_substream *substream,
701 			       struct vm_area_struct *vma)
702 {
703 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
704 	struct snd_soc_component *component;
705 	int i;
706 
707 	/* FIXME. it returns 1st mmap now */
708 	for_each_rtd_components(rtd, i, component)
709 		if (component->driver->mmap)
710 			return soc_component_ret(
711 				component,
712 				component->driver->mmap(component,
713 							substream, vma));
714 
715 	return -EINVAL;
716 }
717 
718 int snd_soc_pcm_component_new(struct snd_soc_pcm_runtime *rtd)
719 {
720 	struct snd_soc_component *component;
721 	int ret;
722 	int i;
723 
724 	for_each_rtd_components(rtd, i, component) {
725 		if (component->driver->pcm_construct) {
726 			ret = component->driver->pcm_construct(component, rtd);
727 			if (ret < 0)
728 				return soc_component_ret(component, ret);
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 void snd_soc_pcm_component_free(struct snd_soc_pcm_runtime *rtd)
736 {
737 	struct snd_soc_component *component;
738 	int i;
739 
740 	if (!rtd->pcm)
741 		return;
742 
743 	for_each_rtd_components(rtd, i, component)
744 		if (component->driver->pcm_destruct)
745 			component->driver->pcm_destruct(component, rtd->pcm);
746 }
747 
748 int snd_soc_pcm_component_prepare(struct snd_pcm_substream *substream)
749 {
750 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
751 	struct snd_soc_component *component;
752 	int i, ret;
753 
754 	for_each_rtd_components(rtd, i, component) {
755 		if (component->driver->prepare) {
756 			ret = component->driver->prepare(component, substream);
757 			if (ret < 0)
758 				return soc_component_ret(component, ret);
759 		}
760 	}
761 
762 	return 0;
763 }
764 
765 int snd_soc_pcm_component_hw_params(struct snd_pcm_substream *substream,
766 				    struct snd_pcm_hw_params *params,
767 				    struct snd_soc_component **last)
768 {
769 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
770 	struct snd_soc_component *component;
771 	int i, ret;
772 
773 	for_each_rtd_components(rtd, i, component) {
774 		if (component->driver->hw_params) {
775 			ret = component->driver->hw_params(component,
776 							   substream, params);
777 			if (ret < 0) {
778 				*last = component;
779 				return soc_component_ret(component, ret);
780 			}
781 		}
782 	}
783 
784 	*last = NULL;
785 	return 0;
786 }
787 
788 void snd_soc_pcm_component_hw_free(struct snd_pcm_substream *substream,
789 				   struct snd_soc_component *last)
790 {
791 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
792 	struct snd_soc_component *component;
793 	int i, ret;
794 
795 	for_each_rtd_components(rtd, i, component) {
796 		if (component == last)
797 			break;
798 
799 		if (component->driver->hw_free) {
800 			ret = component->driver->hw_free(component, substream);
801 			if (ret < 0)
802 				soc_component_ret(component, ret);
803 		}
804 	}
805 }
806 
807 int snd_soc_pcm_component_trigger(struct snd_pcm_substream *substream,
808 				  int cmd)
809 {
810 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
811 	struct snd_soc_component *component;
812 	int i, ret;
813 
814 	for_each_rtd_components(rtd, i, component) {
815 		if (component->driver->trigger) {
816 			ret = component->driver->trigger(component, substream, cmd);
817 			if (ret < 0)
818 				return soc_component_ret(component, ret);
819 		}
820 	}
821 
822 	return 0;
823 }
824