xref: /openbmc/linux/sound/soc/sh/ssi.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Serial Sound Interface (I2S) support for SH7760/SH7780
4 //
5 // Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
6 //
7 // dont forget to set IPSEL/OMSEL register bits (in your board code) to
8 // enable SSI output pins!
9 
10 /*
11  * LIMITATIONS:
12  *	The SSI unit has only one physical data line, so full duplex is
13  *	impossible.  This can be remedied  on the  SH7760 by  using the
14  *	other SSI unit for recording; however the SH7780 has only 1 SSI
15  *	unit, and its pins are shared with the AC97 unit,  among others.
16  *
17  * FEATURES:
18  *	The SSI features "compressed mode": in this mode it continuously
19  *	streams PCM data over the I2S lines and uses LRCK as a handshake
20  *	signal.  Can be used to send compressed data (AC3/DTS) to a DSP.
21  *	The number of bits sent over the wire in a frame can be adjusted
22  *	and can be independent from the actual sample bit depth. This is
23  *	useful to support TDM mode codecs like the AD1939 which have a
24  *	fixed TDM slot size, regardless of sample resolution.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/initval.h>
33 #include <sound/soc.h>
34 #include <asm/io.h>
35 
36 #define SSICR	0x00
37 #define SSISR	0x04
38 
39 #define CR_DMAEN	(1 << 28)
40 #define CR_CHNL_SHIFT	22
41 #define CR_CHNL_MASK	(3 << CR_CHNL_SHIFT)
42 #define CR_DWL_SHIFT	19
43 #define CR_DWL_MASK	(7 << CR_DWL_SHIFT)
44 #define CR_SWL_SHIFT	16
45 #define CR_SWL_MASK	(7 << CR_SWL_SHIFT)
46 #define CR_SCK_MASTER	(1 << 15)	/* bitclock master bit */
47 #define CR_SWS_MASTER	(1 << 14)	/* wordselect master bit */
48 #define CR_SCKP		(1 << 13)	/* I2Sclock polarity */
49 #define CR_SWSP		(1 << 12)	/* LRCK polarity */
50 #define CR_SPDP		(1 << 11)
51 #define CR_SDTA		(1 << 10)	/* i2s alignment (msb/lsb) */
52 #define CR_PDTA		(1 << 9)	/* fifo data alignment */
53 #define CR_DEL		(1 << 8)	/* delay data by 1 i2sclk */
54 #define CR_BREN		(1 << 7)	/* clock gating in burst mode */
55 #define CR_CKDIV_SHIFT	4
56 #define CR_CKDIV_MASK	(7 << CR_CKDIV_SHIFT)	/* bitclock divider */
57 #define CR_MUTE		(1 << 3)	/* SSI mute */
58 #define CR_CPEN		(1 << 2)	/* compressed mode */
59 #define CR_TRMD		(1 << 1)	/* transmit/receive select */
60 #define CR_EN		(1 << 0)	/* enable SSI */
61 
62 #define SSIREG(reg)	(*(unsigned long *)(ssi->mmio + (reg)))
63 
64 struct ssi_priv {
65 	unsigned long mmio;
66 	unsigned long sysclk;
67 	int inuse;
68 } ssi_cpu_data[] = {
69 #if defined(CONFIG_CPU_SUBTYPE_SH7760)
70 	{
71 		.mmio	= 0xFE680000,
72 	},
73 	{
74 		.mmio	= 0xFE690000,
75 	},
76 #elif defined(CONFIG_CPU_SUBTYPE_SH7780)
77 	{
78 		.mmio	= 0xFFE70000,
79 	},
80 #else
81 #error "Unsupported SuperH SoC"
82 #endif
83 };
84 
85 /*
86  * track usage of the SSI; it is simplex-only so prevent attempts of
87  * concurrent playback + capture. FIXME: any locking required?
88  */
89 static int ssi_startup(struct snd_pcm_substream *substream,
90 		       struct snd_soc_dai *dai)
91 {
92 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
93 	if (ssi->inuse) {
94 		pr_debug("ssi: already in use!\n");
95 		return -EBUSY;
96 	} else
97 		ssi->inuse = 1;
98 	return 0;
99 }
100 
101 static void ssi_shutdown(struct snd_pcm_substream *substream,
102 			 struct snd_soc_dai *dai)
103 {
104 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
105 
106 	ssi->inuse = 0;
107 }
108 
109 static int ssi_trigger(struct snd_pcm_substream *substream, int cmd,
110 		       struct snd_soc_dai *dai)
111 {
112 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
113 
114 	switch (cmd) {
115 	case SNDRV_PCM_TRIGGER_START:
116 		SSIREG(SSICR) |= CR_DMAEN | CR_EN;
117 		break;
118 	case SNDRV_PCM_TRIGGER_STOP:
119 		SSIREG(SSICR) &= ~(CR_DMAEN | CR_EN);
120 		break;
121 	default:
122 		return -EINVAL;
123 	}
124 
125 	return 0;
126 }
127 
128 static int ssi_hw_params(struct snd_pcm_substream *substream,
129 			 struct snd_pcm_hw_params *params,
130 			 struct snd_soc_dai *dai)
131 {
132 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
133 	unsigned long ssicr = SSIREG(SSICR);
134 	unsigned int bits, channels, swl, recv, i;
135 
136 	channels = params_channels(params);
137 	bits = params->msbits;
138 	recv = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 0 : 1;
139 
140 	pr_debug("ssi_hw_params() enter\nssicr was    %08lx\n", ssicr);
141 	pr_debug("bits: %u channels: %u\n", bits, channels);
142 
143 	ssicr &= ~(CR_TRMD | CR_CHNL_MASK | CR_DWL_MASK | CR_PDTA |
144 		   CR_SWL_MASK);
145 
146 	/* direction (send/receive) */
147 	if (!recv)
148 		ssicr |= CR_TRMD;	/* transmit */
149 
150 	/* channels */
151 	if ((channels < 2) || (channels > 8) || (channels & 1)) {
152 		pr_debug("ssi: invalid number of channels\n");
153 		return -EINVAL;
154 	}
155 	ssicr |= ((channels >> 1) - 1) << CR_CHNL_SHIFT;
156 
157 	/* DATA WORD LENGTH (DWL): databits in audio sample */
158 	i = 0;
159 	switch (bits) {
160 	case 32: ++i;
161 	case 24: ++i;
162 	case 22: ++i;
163 	case 20: ++i;
164 	case 18: ++i;
165 	case 16: ++i;
166 		 ssicr |= i << CR_DWL_SHIFT;
167 	case 8:	 break;
168 	default:
169 		pr_debug("ssi: invalid sample width\n");
170 		return -EINVAL;
171 	}
172 
173 	/*
174 	 * SYSTEM WORD LENGTH: size in bits of half a frame over the I2S
175 	 * wires. This is usually bits_per_sample x channels/2;  i.e. in
176 	 * Stereo mode  the SWL equals DWL.  SWL can  be bigger than the
177 	 * product of (channels_per_slot x samplebits), e.g.  for codecs
178 	 * like the AD1939 which  only accept 32bit wide TDM slots.  For
179 	 * "standard" I2S operation we set SWL = chans / 2 * DWL here.
180 	 * Waiting for ASoC to get TDM support ;-)
181 	 */
182 	if ((bits > 16) && (bits <= 24)) {
183 		bits = 24;	/* these are padded by the SSI */
184 		/*ssicr |= CR_PDTA;*/ /* cpu/data endianness ? */
185 	}
186 	i = 0;
187 	swl = (bits * channels) / 2;
188 	switch (swl) {
189 	case 256: ++i;
190 	case 128: ++i;
191 	case 64:  ++i;
192 	case 48:  ++i;
193 	case 32:  ++i;
194 	case 16:  ++i;
195 		  ssicr |= i << CR_SWL_SHIFT;
196 	case 8:   break;
197 	default:
198 		pr_debug("ssi: invalid system word length computed\n");
199 		return -EINVAL;
200 	}
201 
202 	SSIREG(SSICR) = ssicr;
203 
204 	pr_debug("ssi_hw_params() leave\nssicr is now %08lx\n", ssicr);
205 	return 0;
206 }
207 
208 static int ssi_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id,
209 			  unsigned int freq, int dir)
210 {
211 	struct ssi_priv *ssi = &ssi_cpu_data[cpu_dai->id];
212 
213 	ssi->sysclk = freq;
214 
215 	return 0;
216 }
217 
218 /*
219  * This divider is used to generate the SSI_SCK (I2S bitclock) from the
220  * clock at the HAC_BIT_CLK ("oversampling clock") pin.
221  */
222 static int ssi_set_clkdiv(struct snd_soc_dai *dai, int did, int div)
223 {
224 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
225 	unsigned long ssicr;
226 	int i;
227 
228 	i = 0;
229 	ssicr = SSIREG(SSICR) & ~CR_CKDIV_MASK;
230 	switch (div) {
231 	case 16: ++i;
232 	case 8:  ++i;
233 	case 4:  ++i;
234 	case 2:  ++i;
235 		 SSIREG(SSICR) = ssicr | (i << CR_CKDIV_SHIFT);
236 	case 1:  break;
237 	default:
238 		pr_debug("ssi: invalid sck divider %d\n", div);
239 		return -EINVAL;
240 	}
241 
242 	return 0;
243 }
244 
245 static int ssi_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
246 {
247 	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
248 	unsigned long ssicr = SSIREG(SSICR);
249 
250 	pr_debug("ssi_set_fmt()\nssicr was    0x%08lx\n", ssicr);
251 
252 	ssicr &= ~(CR_DEL | CR_PDTA | CR_BREN | CR_SWSP | CR_SCKP |
253 		   CR_SWS_MASTER | CR_SCK_MASTER);
254 
255 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
256 	case SND_SOC_DAIFMT_I2S:
257 		break;
258 	case SND_SOC_DAIFMT_RIGHT_J:
259 		ssicr |= CR_DEL | CR_PDTA;
260 		break;
261 	case SND_SOC_DAIFMT_LEFT_J:
262 		ssicr |= CR_DEL;
263 		break;
264 	default:
265 		pr_debug("ssi: unsupported format\n");
266 		return -EINVAL;
267 	}
268 
269 	switch (fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
270 	case SND_SOC_DAIFMT_CONT:
271 		break;
272 	case SND_SOC_DAIFMT_GATED:
273 		ssicr |= CR_BREN;
274 		break;
275 	}
276 
277 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
278 	case SND_SOC_DAIFMT_NB_NF:
279 		ssicr |= CR_SCKP;	/* sample data at low clkedge */
280 		break;
281 	case SND_SOC_DAIFMT_NB_IF:
282 		ssicr |= CR_SCKP | CR_SWSP;
283 		break;
284 	case SND_SOC_DAIFMT_IB_NF:
285 		break;
286 	case SND_SOC_DAIFMT_IB_IF:
287 		ssicr |= CR_SWSP;	/* word select starts low */
288 		break;
289 	default:
290 		pr_debug("ssi: invalid inversion\n");
291 		return -EINVAL;
292 	}
293 
294 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
295 	case SND_SOC_DAIFMT_CBM_CFM:
296 		break;
297 	case SND_SOC_DAIFMT_CBS_CFM:
298 		ssicr |= CR_SCK_MASTER;
299 		break;
300 	case SND_SOC_DAIFMT_CBM_CFS:
301 		ssicr |= CR_SWS_MASTER;
302 		break;
303 	case SND_SOC_DAIFMT_CBS_CFS:
304 		ssicr |= CR_SWS_MASTER | CR_SCK_MASTER;
305 		break;
306 	default:
307 		pr_debug("ssi: invalid master/slave configuration\n");
308 		return -EINVAL;
309 	}
310 
311 	SSIREG(SSICR) = ssicr;
312 	pr_debug("ssi_set_fmt() leave\nssicr is now 0x%08lx\n", ssicr);
313 
314 	return 0;
315 }
316 
317 /* the SSI depends on an external clocksource (at HAC_BIT_CLK) even in
318  * Master mode,  so really this is board specific;  the SSI can do any
319  * rate with the right bitclk and divider settings.
320  */
321 #define SSI_RATES	\
322 	SNDRV_PCM_RATE_8000_192000
323 
324 /* the SSI can do 8-32 bit samples, with 8 possible channels */
325 #define SSI_FMTS	\
326 	(SNDRV_PCM_FMTBIT_S8      | SNDRV_PCM_FMTBIT_U8      |	\
327 	 SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_U16_LE  |	\
328 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_U20_3LE |	\
329 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3LE |	\
330 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_U32_LE)
331 
332 static const struct snd_soc_dai_ops ssi_dai_ops = {
333 	.startup	= ssi_startup,
334 	.shutdown	= ssi_shutdown,
335 	.trigger	= ssi_trigger,
336 	.hw_params	= ssi_hw_params,
337 	.set_sysclk	= ssi_set_sysclk,
338 	.set_clkdiv	= ssi_set_clkdiv,
339 	.set_fmt	= ssi_set_fmt,
340 };
341 
342 static struct snd_soc_dai_driver sh4_ssi_dai[] = {
343 {
344 	.name			= "ssi-dai.0",
345 	.playback = {
346 		.rates		= SSI_RATES,
347 		.formats	= SSI_FMTS,
348 		.channels_min	= 2,
349 		.channels_max	= 8,
350 	},
351 	.capture = {
352 		.rates		= SSI_RATES,
353 		.formats	= SSI_FMTS,
354 		.channels_min	= 2,
355 		.channels_max	= 8,
356 	},
357 	.ops = &ssi_dai_ops,
358 },
359 #ifdef CONFIG_CPU_SUBTYPE_SH7760
360 {
361 	.name			= "ssi-dai.1",
362 	.playback = {
363 		.rates		= SSI_RATES,
364 		.formats	= SSI_FMTS,
365 		.channels_min	= 2,
366 		.channels_max	= 8,
367 	},
368 	.capture = {
369 		.rates		= SSI_RATES,
370 		.formats	= SSI_FMTS,
371 		.channels_min	= 2,
372 		.channels_max	= 8,
373 	},
374 	.ops = &ssi_dai_ops,
375 },
376 #endif
377 };
378 
379 static const struct snd_soc_component_driver sh4_ssi_component = {
380 	.name		= "sh4-ssi",
381 };
382 
383 static int sh4_soc_dai_probe(struct platform_device *pdev)
384 {
385 	return devm_snd_soc_register_component(&pdev->dev, &sh4_ssi_component,
386 					       sh4_ssi_dai,
387 					       ARRAY_SIZE(sh4_ssi_dai));
388 }
389 
390 static struct platform_driver sh4_ssi_driver = {
391 	.driver = {
392 			.name = "sh4-ssi-dai",
393 	},
394 
395 	.probe = sh4_soc_dai_probe,
396 };
397 
398 module_platform_driver(sh4_ssi_driver);
399 
400 MODULE_LICENSE("GPL v2");
401 MODULE_DESCRIPTION("SuperH onchip SSI (I2S) audio driver");
402 MODULE_AUTHOR("Manuel Lauss <mano@roarinelk.homelinux.net>");
403