1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver 4 // 5 // Copyright (C) 2021 Renesas Electronics Corp. 6 // Copyright (C) 2019 Chris Brandt. 7 // 8 9 #include <linux/clk.h> 10 #include <linux/dmaengine.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/of_device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/reset.h> 16 #include <sound/soc.h> 17 18 /* REGISTER OFFSET */ 19 #define SSICR 0x000 20 #define SSISR 0x004 21 #define SSIFCR 0x010 22 #define SSIFSR 0x014 23 #define SSIFTDR 0x018 24 #define SSIFRDR 0x01c 25 #define SSIOFR 0x020 26 #define SSISCR 0x024 27 28 /* SSI REGISTER BITS */ 29 #define SSICR_DWL(x) (((x) & 0x7) << 19) 30 #define SSICR_SWL(x) (((x) & 0x7) << 16) 31 32 #define SSICR_CKS BIT(30) 33 #define SSICR_TUIEN BIT(29) 34 #define SSICR_TOIEN BIT(28) 35 #define SSICR_RUIEN BIT(27) 36 #define SSICR_ROIEN BIT(26) 37 #define SSICR_MST BIT(14) 38 #define SSICR_BCKP BIT(13) 39 #define SSICR_LRCKP BIT(12) 40 #define SSICR_CKDV(x) (((x) & 0xf) << 4) 41 #define SSICR_TEN BIT(1) 42 #define SSICR_REN BIT(0) 43 44 #define SSISR_TUIRQ BIT(29) 45 #define SSISR_TOIRQ BIT(28) 46 #define SSISR_RUIRQ BIT(27) 47 #define SSISR_ROIRQ BIT(26) 48 #define SSISR_IIRQ BIT(25) 49 50 #define SSIFCR_AUCKE BIT(31) 51 #define SSIFCR_SSIRST BIT(16) 52 #define SSIFCR_TIE BIT(3) 53 #define SSIFCR_RIE BIT(2) 54 #define SSIFCR_TFRST BIT(1) 55 #define SSIFCR_RFRST BIT(0) 56 57 #define SSIFSR_TDC_MASK 0x3f 58 #define SSIFSR_TDC_SHIFT 24 59 #define SSIFSR_RDC_MASK 0x3f 60 #define SSIFSR_RDC_SHIFT 8 61 62 #define SSIFSR_TDE BIT(16) 63 #define SSIFSR_RDF BIT(0) 64 65 #define SSIOFR_LRCONT BIT(8) 66 67 #define SSISCR_TDES(x) (((x) & 0x1f) << 8) 68 #define SSISCR_RDFS(x) (((x) & 0x1f) << 0) 69 70 /* Pre allocated buffers sizes */ 71 #define PREALLOC_BUFFER (SZ_32K) 72 #define PREALLOC_BUFFER_MAX (SZ_32K) 73 74 #define SSI_RATES SNDRV_PCM_RATE_8000_48000 /* 8k-44.1kHz */ 75 #define SSI_FMTS SNDRV_PCM_FMTBIT_S16_LE 76 #define SSI_CHAN_MIN 2 77 #define SSI_CHAN_MAX 2 78 #define SSI_FIFO_DEPTH 32 79 80 struct rz_ssi_priv; 81 82 struct rz_ssi_stream { 83 struct rz_ssi_priv *priv; 84 struct snd_pcm_substream *substream; 85 int fifo_sample_size; /* sample capacity of SSI FIFO */ 86 int dma_buffer_pos; /* The address for the next DMA descriptor */ 87 int period_counter; /* for keeping track of periods transferred */ 88 int sample_width; 89 int buffer_pos; /* current frame position in the buffer */ 90 int running; /* 0=stopped, 1=running */ 91 92 int uerr_num; 93 int oerr_num; 94 95 struct dma_chan *dma_ch; 96 97 int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm); 98 }; 99 100 struct rz_ssi_priv { 101 void __iomem *base; 102 struct platform_device *pdev; 103 struct reset_control *rstc; 104 struct device *dev; 105 struct clk *sfr_clk; 106 struct clk *clk; 107 108 phys_addr_t phys; 109 int irq_int; 110 int irq_tx; 111 int irq_rx; 112 int irq_rt; 113 114 spinlock_t lock; 115 116 /* 117 * The SSI supports full-duplex transmission and reception. 118 * However, if an error occurs, channel reset (both transmission 119 * and reception reset) is required. 120 * So it is better to use as half-duplex (playing and recording 121 * should be done on separate channels). 122 */ 123 struct rz_ssi_stream playback; 124 struct rz_ssi_stream capture; 125 126 /* clock */ 127 unsigned long audio_mck; 128 unsigned long audio_clk_1; 129 unsigned long audio_clk_2; 130 131 bool lrckp_fsync_fall; /* LR clock polarity (SSICR.LRCKP) */ 132 bool bckp_rise; /* Bit clock polarity (SSICR.BCKP) */ 133 bool dma_rt; 134 }; 135 136 static void rz_ssi_dma_complete(void *data); 137 138 static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data) 139 { 140 writel(data, (priv->base + reg)); 141 } 142 143 static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg) 144 { 145 return readl(priv->base + reg); 146 } 147 148 static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg, 149 u32 bclr, u32 bset) 150 { 151 u32 val; 152 153 val = readl(priv->base + reg); 154 val = (val & ~bclr) | bset; 155 writel(val, (priv->base + reg)); 156 } 157 158 static inline struct snd_soc_dai * 159 rz_ssi_get_dai(struct snd_pcm_substream *substream) 160 { 161 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream); 162 163 return asoc_rtd_to_cpu(rtd, 0); 164 } 165 166 static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi, 167 struct snd_pcm_substream *substream) 168 { 169 return substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 170 } 171 172 static inline struct rz_ssi_stream * 173 rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream) 174 { 175 struct rz_ssi_stream *stream = &ssi->playback; 176 177 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 178 stream = &ssi->capture; 179 180 return stream; 181 } 182 183 static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi) 184 { 185 return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch)); 186 } 187 188 static void rz_ssi_set_substream(struct rz_ssi_stream *strm, 189 struct snd_pcm_substream *substream) 190 { 191 struct rz_ssi_priv *ssi = strm->priv; 192 unsigned long flags; 193 194 spin_lock_irqsave(&ssi->lock, flags); 195 strm->substream = substream; 196 spin_unlock_irqrestore(&ssi->lock, flags); 197 } 198 199 static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi, 200 struct rz_ssi_stream *strm) 201 { 202 unsigned long flags; 203 bool ret; 204 205 spin_lock_irqsave(&ssi->lock, flags); 206 ret = strm->substream && strm->substream->runtime; 207 spin_unlock_irqrestore(&ssi->lock, flags); 208 209 return ret; 210 } 211 212 static void rz_ssi_stream_init(struct rz_ssi_stream *strm, 213 struct snd_pcm_substream *substream) 214 { 215 struct snd_pcm_runtime *runtime = substream->runtime; 216 217 rz_ssi_set_substream(strm, substream); 218 strm->sample_width = samples_to_bytes(runtime, 1); 219 strm->dma_buffer_pos = 0; 220 strm->period_counter = 0; 221 strm->buffer_pos = 0; 222 223 strm->oerr_num = 0; 224 strm->uerr_num = 0; 225 strm->running = 0; 226 227 /* fifo init */ 228 strm->fifo_sample_size = SSI_FIFO_DEPTH; 229 } 230 231 static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi, 232 struct rz_ssi_stream *strm) 233 { 234 struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream); 235 236 rz_ssi_set_substream(strm, NULL); 237 238 if (strm->oerr_num > 0) 239 dev_info(dai->dev, "overrun = %d\n", strm->oerr_num); 240 241 if (strm->uerr_num > 0) 242 dev_info(dai->dev, "underrun = %d\n", strm->uerr_num); 243 } 244 245 static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate, 246 unsigned int channels) 247 { 248 static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128, 249 6, 12, 24, 48, 96, -1, -1, -1 }; 250 unsigned int channel_bits = 32; /* System Word Length */ 251 unsigned long bclk_rate = rate * channels * channel_bits; 252 unsigned int div; 253 unsigned int i; 254 u32 ssicr = 0; 255 u32 clk_ckdv; 256 257 /* Clear AUCKE so we can set MST */ 258 rz_ssi_reg_writel(ssi, SSIFCR, 0); 259 260 /* Continue to output LRCK pin even when idle */ 261 rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT); 262 if (ssi->audio_clk_1 && ssi->audio_clk_2) { 263 if (ssi->audio_clk_1 % bclk_rate) 264 ssi->audio_mck = ssi->audio_clk_2; 265 else 266 ssi->audio_mck = ssi->audio_clk_1; 267 } 268 269 /* Clock setting */ 270 ssicr |= SSICR_MST; 271 if (ssi->audio_mck == ssi->audio_clk_1) 272 ssicr |= SSICR_CKS; 273 if (ssi->bckp_rise) 274 ssicr |= SSICR_BCKP; 275 if (ssi->lrckp_fsync_fall) 276 ssicr |= SSICR_LRCKP; 277 278 /* Determine the clock divider */ 279 clk_ckdv = 0; 280 div = ssi->audio_mck / bclk_rate; 281 /* try to find an match */ 282 for (i = 0; i < ARRAY_SIZE(ckdv); i++) { 283 if (ckdv[i] == div) { 284 clk_ckdv = i; 285 break; 286 } 287 } 288 289 if (i == ARRAY_SIZE(ckdv)) { 290 dev_err(ssi->dev, "Rate not divisible by audio clock source\n"); 291 return -EINVAL; 292 } 293 294 /* 295 * DWL: Data Word Length = 16 bits 296 * SWL: System Word Length = 32 bits 297 */ 298 ssicr |= SSICR_CKDV(clk_ckdv); 299 ssicr |= SSICR_DWL(1) | SSICR_SWL(3); 300 rz_ssi_reg_writel(ssi, SSICR, ssicr); 301 rz_ssi_reg_writel(ssi, SSIFCR, 302 (SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST)); 303 304 return 0; 305 } 306 307 static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) 308 { 309 bool is_play = rz_ssi_stream_is_play(ssi, strm->substream); 310 u32 ssicr, ssifcr; 311 312 ssicr = rz_ssi_reg_readl(ssi, SSICR); 313 ssifcr = rz_ssi_reg_readl(ssi, SSIFCR) & ~0xF; 314 315 /* FIFO interrupt thresholds */ 316 if (rz_ssi_is_dma_enabled(ssi)) 317 rz_ssi_reg_writel(ssi, SSISCR, 0); 318 else 319 rz_ssi_reg_writel(ssi, SSISCR, 320 SSISCR_TDES(strm->fifo_sample_size / 2 - 1) | 321 SSISCR_RDFS(0)); 322 323 /* enable IRQ */ 324 if (is_play) { 325 ssicr |= SSICR_TUIEN | SSICR_TOIEN; 326 ssifcr |= SSIFCR_TIE | SSIFCR_RFRST; 327 } else { 328 ssicr |= SSICR_RUIEN | SSICR_ROIEN; 329 ssifcr |= SSIFCR_RIE | SSIFCR_TFRST; 330 } 331 332 rz_ssi_reg_writel(ssi, SSICR, ssicr); 333 rz_ssi_reg_writel(ssi, SSIFCR, ssifcr); 334 335 /* Clear all error flags */ 336 rz_ssi_reg_mask_setl(ssi, SSISR, 337 (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | 338 SSISR_RUIRQ), 0); 339 340 strm->running = 1; 341 ssicr |= is_play ? SSICR_TEN : SSICR_REN; 342 rz_ssi_reg_writel(ssi, SSICR, ssicr); 343 344 return 0; 345 } 346 347 static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) 348 { 349 int timeout; 350 351 strm->running = 0; 352 353 /* Disable TX/RX */ 354 rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0); 355 356 /* Cancel all remaining DMA transactions */ 357 if (rz_ssi_is_dma_enabled(ssi)) 358 dmaengine_terminate_async(strm->dma_ch); 359 360 /* Disable irqs */ 361 rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN | 362 SSICR_RUIEN | SSICR_ROIEN, 0); 363 rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0); 364 365 /* Clear all error flags */ 366 rz_ssi_reg_mask_setl(ssi, SSISR, 367 (SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ | 368 SSISR_RUIRQ), 0); 369 370 /* Wait for idle */ 371 timeout = 100; 372 while (--timeout) { 373 if (rz_ssi_reg_readl(ssi, SSISR) & SSISR_IIRQ) 374 break; 375 udelay(1); 376 } 377 378 if (!timeout) 379 dev_info(ssi->dev, "timeout waiting for SSI idle\n"); 380 381 /* Hold FIFOs in reset */ 382 rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, 383 SSIFCR_TFRST | SSIFCR_RFRST); 384 385 return 0; 386 } 387 388 static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames) 389 { 390 struct snd_pcm_substream *substream = strm->substream; 391 struct snd_pcm_runtime *runtime; 392 int current_period; 393 394 if (!strm->running || !substream || !substream->runtime) 395 return; 396 397 runtime = substream->runtime; 398 strm->buffer_pos += frames; 399 WARN_ON(strm->buffer_pos > runtime->buffer_size); 400 401 /* ring buffer */ 402 if (strm->buffer_pos == runtime->buffer_size) 403 strm->buffer_pos = 0; 404 405 current_period = strm->buffer_pos / runtime->period_size; 406 if (strm->period_counter != current_period) { 407 snd_pcm_period_elapsed(strm->substream); 408 strm->period_counter = current_period; 409 } 410 } 411 412 static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) 413 { 414 struct snd_pcm_substream *substream = strm->substream; 415 struct snd_pcm_runtime *runtime; 416 u16 *buf; 417 int fifo_samples; 418 int frames_left; 419 int samples; 420 int i; 421 422 if (!rz_ssi_stream_is_valid(ssi, strm)) 423 return -EINVAL; 424 425 runtime = substream->runtime; 426 427 do { 428 /* frames left in this period */ 429 frames_left = runtime->period_size - 430 (strm->buffer_pos % runtime->period_size); 431 if (!frames_left) 432 frames_left = runtime->period_size; 433 434 /* Samples in RX FIFO */ 435 fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >> 436 SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK; 437 438 /* Only read full frames at a time */ 439 samples = 0; 440 while (frames_left && (fifo_samples >= runtime->channels)) { 441 samples += runtime->channels; 442 fifo_samples -= runtime->channels; 443 frames_left--; 444 } 445 446 /* not enough samples yet */ 447 if (!samples) 448 break; 449 450 /* calculate new buffer index */ 451 buf = (u16 *)runtime->dma_area; 452 buf += strm->buffer_pos * runtime->channels; 453 454 /* Note, only supports 16-bit samples */ 455 for (i = 0; i < samples; i++) 456 *buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16); 457 458 rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); 459 rz_ssi_pointer_update(strm, samples / runtime->channels); 460 } while (!frames_left && fifo_samples >= runtime->channels); 461 462 return 0; 463 } 464 465 static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm) 466 { 467 struct snd_pcm_substream *substream = strm->substream; 468 struct snd_pcm_runtime *runtime = substream->runtime; 469 int sample_space; 470 int samples = 0; 471 int frames_left; 472 int i; 473 u32 ssifsr; 474 u16 *buf; 475 476 if (!rz_ssi_stream_is_valid(ssi, strm)) 477 return -EINVAL; 478 479 /* frames left in this period */ 480 frames_left = runtime->period_size - (strm->buffer_pos % 481 runtime->period_size); 482 if (frames_left == 0) 483 frames_left = runtime->period_size; 484 485 sample_space = strm->fifo_sample_size; 486 ssifsr = rz_ssi_reg_readl(ssi, SSIFSR); 487 sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK; 488 489 /* Only add full frames at a time */ 490 while (frames_left && (sample_space >= runtime->channels)) { 491 samples += runtime->channels; 492 sample_space -= runtime->channels; 493 frames_left--; 494 } 495 496 /* no space to send anything right now */ 497 if (samples == 0) 498 return 0; 499 500 /* calculate new buffer index */ 501 buf = (u16 *)(runtime->dma_area); 502 buf += strm->buffer_pos * runtime->channels; 503 504 /* Note, only supports 16-bit samples */ 505 for (i = 0; i < samples; i++) 506 rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16)); 507 508 rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0); 509 rz_ssi_pointer_update(strm, samples / runtime->channels); 510 511 return 0; 512 } 513 514 static irqreturn_t rz_ssi_interrupt(int irq, void *data) 515 { 516 struct rz_ssi_stream *strm = NULL; 517 struct rz_ssi_priv *ssi = data; 518 u32 ssisr = rz_ssi_reg_readl(ssi, SSISR); 519 520 if (ssi->playback.substream) 521 strm = &ssi->playback; 522 else if (ssi->capture.substream) 523 strm = &ssi->capture; 524 else 525 return IRQ_HANDLED; /* Left over TX/RX interrupt */ 526 527 if (irq == ssi->irq_int) { /* error or idle */ 528 if (ssisr & SSISR_TUIRQ) 529 strm->uerr_num++; 530 if (ssisr & SSISR_TOIRQ) 531 strm->oerr_num++; 532 if (ssisr & SSISR_RUIRQ) 533 strm->uerr_num++; 534 if (ssisr & SSISR_ROIRQ) 535 strm->oerr_num++; 536 537 if (ssisr & (SSISR_TUIRQ | SSISR_TOIRQ | SSISR_RUIRQ | 538 SSISR_ROIRQ)) { 539 /* Error handling */ 540 /* You must reset (stop/restart) after each interrupt */ 541 rz_ssi_stop(ssi, strm); 542 543 /* Clear all flags */ 544 rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ | 545 SSISR_TUIRQ | SSISR_ROIRQ | 546 SSISR_RUIRQ, 0); 547 548 /* Add/remove more data */ 549 strm->transfer(ssi, strm); 550 551 /* Resume */ 552 rz_ssi_start(ssi, strm); 553 } 554 } 555 556 if (!strm->running) 557 return IRQ_HANDLED; 558 559 /* tx data empty */ 560 if (irq == ssi->irq_tx) 561 strm->transfer(ssi, &ssi->playback); 562 563 /* rx data full */ 564 if (irq == ssi->irq_rx) { 565 strm->transfer(ssi, &ssi->capture); 566 rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); 567 } 568 569 if (irq == ssi->irq_rt) { 570 struct snd_pcm_substream *substream = strm->substream; 571 572 if (rz_ssi_stream_is_play(ssi, substream)) { 573 strm->transfer(ssi, &ssi->playback); 574 } else { 575 strm->transfer(ssi, &ssi->capture); 576 rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0); 577 } 578 } 579 580 return IRQ_HANDLED; 581 } 582 583 static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi, 584 struct dma_chan *dma_ch, bool is_play) 585 { 586 struct dma_slave_config cfg; 587 588 memset(&cfg, 0, sizeof(cfg)); 589 590 cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; 591 cfg.dst_addr = ssi->phys + SSIFTDR; 592 cfg.src_addr = ssi->phys + SSIFRDR; 593 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 594 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 595 596 return dmaengine_slave_config(dma_ch, &cfg); 597 } 598 599 static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi, 600 struct rz_ssi_stream *strm) 601 { 602 struct snd_pcm_substream *substream = strm->substream; 603 struct dma_async_tx_descriptor *desc; 604 struct snd_pcm_runtime *runtime; 605 enum dma_transfer_direction dir; 606 u32 dma_paddr, dma_size; 607 int amount; 608 609 if (!rz_ssi_stream_is_valid(ssi, strm)) 610 return -EINVAL; 611 612 runtime = substream->runtime; 613 if (runtime->state == SNDRV_PCM_STATE_DRAINING) 614 /* 615 * Stream is ending, so do not queue up any more DMA 616 * transfers otherwise we play partial sound clips 617 * because we can't shut off the DMA quick enough. 618 */ 619 return 0; 620 621 dir = rz_ssi_stream_is_play(ssi, substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; 622 623 /* Always transfer 1 period */ 624 amount = runtime->period_size; 625 626 /* DMA physical address and size */ 627 dma_paddr = runtime->dma_addr + frames_to_bytes(runtime, 628 strm->dma_buffer_pos); 629 dma_size = frames_to_bytes(runtime, amount); 630 desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size, 631 dir, 632 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 633 if (!desc) { 634 dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n"); 635 return -ENOMEM; 636 } 637 638 desc->callback = rz_ssi_dma_complete; 639 desc->callback_param = strm; 640 641 if (dmaengine_submit(desc) < 0) { 642 dev_err(ssi->dev, "dmaengine_submit() fail\n"); 643 return -EIO; 644 } 645 646 /* Update DMA pointer */ 647 strm->dma_buffer_pos += amount; 648 if (strm->dma_buffer_pos >= runtime->buffer_size) 649 strm->dma_buffer_pos = 0; 650 651 /* Start DMA */ 652 dma_async_issue_pending(strm->dma_ch); 653 654 return 0; 655 } 656 657 static void rz_ssi_dma_complete(void *data) 658 { 659 struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data; 660 661 if (!strm->running || !strm->substream || !strm->substream->runtime) 662 return; 663 664 /* Note that next DMA transaction has probably already started */ 665 rz_ssi_pointer_update(strm, strm->substream->runtime->period_size); 666 667 /* Queue up another DMA transaction */ 668 rz_ssi_dma_transfer(strm->priv, strm); 669 } 670 671 static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi) 672 { 673 if (ssi->playback.dma_ch) { 674 dma_release_channel(ssi->playback.dma_ch); 675 ssi->playback.dma_ch = NULL; 676 if (ssi->dma_rt) 677 ssi->dma_rt = false; 678 } 679 680 if (ssi->capture.dma_ch) { 681 dma_release_channel(ssi->capture.dma_ch); 682 ssi->capture.dma_ch = NULL; 683 } 684 } 685 686 static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev) 687 { 688 ssi->playback.dma_ch = dma_request_chan(dev, "tx"); 689 if (IS_ERR(ssi->playback.dma_ch)) 690 ssi->playback.dma_ch = NULL; 691 692 ssi->capture.dma_ch = dma_request_chan(dev, "rx"); 693 if (IS_ERR(ssi->capture.dma_ch)) 694 ssi->capture.dma_ch = NULL; 695 696 if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) { 697 ssi->playback.dma_ch = dma_request_chan(dev, "rt"); 698 if (IS_ERR(ssi->playback.dma_ch)) { 699 ssi->playback.dma_ch = NULL; 700 goto no_dma; 701 } 702 703 ssi->dma_rt = true; 704 } 705 706 if (!rz_ssi_is_dma_enabled(ssi)) 707 goto no_dma; 708 709 if (ssi->playback.dma_ch && 710 (rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0)) 711 goto no_dma; 712 713 if (ssi->capture.dma_ch && 714 (rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0)) 715 goto no_dma; 716 717 return 0; 718 719 no_dma: 720 rz_ssi_release_dma_channels(ssi); 721 722 return -ENODEV; 723 } 724 725 static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd, 726 struct snd_soc_dai *dai) 727 { 728 struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); 729 struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream); 730 int ret = 0, i, num_transfer = 1; 731 732 switch (cmd) { 733 case SNDRV_PCM_TRIGGER_START: 734 /* Soft Reset */ 735 rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST); 736 rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0); 737 udelay(5); 738 739 rz_ssi_stream_init(strm, substream); 740 741 if (ssi->dma_rt) { 742 bool is_playback; 743 744 is_playback = rz_ssi_stream_is_play(ssi, substream); 745 ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, 746 is_playback); 747 /* Fallback to pio */ 748 if (ret < 0) { 749 ssi->playback.transfer = rz_ssi_pio_send; 750 ssi->capture.transfer = rz_ssi_pio_recv; 751 rz_ssi_release_dma_channels(ssi); 752 } 753 } 754 755 /* For DMA, queue up multiple DMA descriptors */ 756 if (rz_ssi_is_dma_enabled(ssi)) 757 num_transfer = 4; 758 759 for (i = 0; i < num_transfer; i++) { 760 ret = strm->transfer(ssi, strm); 761 if (ret) 762 goto done; 763 } 764 765 ret = rz_ssi_start(ssi, strm); 766 break; 767 case SNDRV_PCM_TRIGGER_STOP: 768 rz_ssi_stop(ssi, strm); 769 rz_ssi_stream_quit(ssi, strm); 770 break; 771 } 772 773 done: 774 return ret; 775 } 776 777 static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 778 { 779 struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); 780 781 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 782 case SND_SOC_DAIFMT_BP_FP: 783 break; 784 default: 785 dev_err(ssi->dev, "Codec should be clk and frame consumer\n"); 786 return -EINVAL; 787 } 788 789 /* 790 * set clock polarity 791 * 792 * "normal" BCLK = Signal is available at rising edge of BCLK 793 * "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge 794 */ 795 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 796 case SND_SOC_DAIFMT_NB_NF: 797 ssi->bckp_rise = false; 798 ssi->lrckp_fsync_fall = false; 799 break; 800 case SND_SOC_DAIFMT_NB_IF: 801 ssi->bckp_rise = false; 802 ssi->lrckp_fsync_fall = true; 803 break; 804 case SND_SOC_DAIFMT_IB_NF: 805 ssi->bckp_rise = true; 806 ssi->lrckp_fsync_fall = false; 807 break; 808 case SND_SOC_DAIFMT_IB_IF: 809 ssi->bckp_rise = true; 810 ssi->lrckp_fsync_fall = true; 811 break; 812 default: 813 return -EINVAL; 814 } 815 816 /* only i2s support */ 817 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 818 case SND_SOC_DAIFMT_I2S: 819 break; 820 default: 821 dev_err(ssi->dev, "Only I2S mode is supported.\n"); 822 return -EINVAL; 823 } 824 825 return 0; 826 } 827 828 static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream, 829 struct snd_pcm_hw_params *params, 830 struct snd_soc_dai *dai) 831 { 832 struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); 833 unsigned int sample_bits = hw_param_interval(params, 834 SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min; 835 unsigned int channels = params_channels(params); 836 837 if (sample_bits != 16) { 838 dev_err(ssi->dev, "Unsupported sample width: %d\n", 839 sample_bits); 840 return -EINVAL; 841 } 842 843 if (channels != 2) { 844 dev_err(ssi->dev, "Number of channels not matched: %d\n", 845 channels); 846 return -EINVAL; 847 } 848 849 return rz_ssi_clk_setup(ssi, params_rate(params), 850 params_channels(params)); 851 } 852 853 static const struct snd_soc_dai_ops rz_ssi_dai_ops = { 854 .trigger = rz_ssi_dai_trigger, 855 .set_fmt = rz_ssi_dai_set_fmt, 856 .hw_params = rz_ssi_dai_hw_params, 857 }; 858 859 static const struct snd_pcm_hardware rz_ssi_pcm_hardware = { 860 .info = SNDRV_PCM_INFO_INTERLEAVED | 861 SNDRV_PCM_INFO_MMAP | 862 SNDRV_PCM_INFO_MMAP_VALID, 863 .buffer_bytes_max = PREALLOC_BUFFER, 864 .period_bytes_min = 32, 865 .period_bytes_max = 8192, 866 .channels_min = SSI_CHAN_MIN, 867 .channels_max = SSI_CHAN_MAX, 868 .periods_min = 1, 869 .periods_max = 32, 870 .fifo_size = 32 * 2, 871 }; 872 873 static int rz_ssi_pcm_open(struct snd_soc_component *component, 874 struct snd_pcm_substream *substream) 875 { 876 snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware); 877 878 return snd_pcm_hw_constraint_integer(substream->runtime, 879 SNDRV_PCM_HW_PARAM_PERIODS); 880 } 881 882 static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component, 883 struct snd_pcm_substream *substream) 884 { 885 struct snd_soc_dai *dai = rz_ssi_get_dai(substream); 886 struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai); 887 struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream); 888 889 return strm->buffer_pos; 890 } 891 892 static int rz_ssi_pcm_new(struct snd_soc_component *component, 893 struct snd_soc_pcm_runtime *rtd) 894 { 895 snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV, 896 rtd->card->snd_card->dev, 897 PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); 898 return 0; 899 } 900 901 static struct snd_soc_dai_driver rz_ssi_soc_dai[] = { 902 { 903 .name = "rz-ssi-dai", 904 .playback = { 905 .rates = SSI_RATES, 906 .formats = SSI_FMTS, 907 .channels_min = SSI_CHAN_MIN, 908 .channels_max = SSI_CHAN_MAX, 909 }, 910 .capture = { 911 .rates = SSI_RATES, 912 .formats = SSI_FMTS, 913 .channels_min = SSI_CHAN_MIN, 914 .channels_max = SSI_CHAN_MAX, 915 }, 916 .ops = &rz_ssi_dai_ops, 917 }, 918 }; 919 920 static const struct snd_soc_component_driver rz_ssi_soc_component = { 921 .name = "rz-ssi", 922 .open = rz_ssi_pcm_open, 923 .pointer = rz_ssi_pcm_pointer, 924 .pcm_construct = rz_ssi_pcm_new, 925 .legacy_dai_naming = 1, 926 }; 927 928 static int rz_ssi_probe(struct platform_device *pdev) 929 { 930 struct rz_ssi_priv *ssi; 931 struct clk *audio_clk; 932 struct resource *res; 933 int ret; 934 935 ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi), GFP_KERNEL); 936 if (!ssi) 937 return -ENOMEM; 938 939 ssi->pdev = pdev; 940 ssi->dev = &pdev->dev; 941 ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 942 if (IS_ERR(ssi->base)) 943 return PTR_ERR(ssi->base); 944 945 ssi->phys = res->start; 946 ssi->clk = devm_clk_get(&pdev->dev, "ssi"); 947 if (IS_ERR(ssi->clk)) 948 return PTR_ERR(ssi->clk); 949 950 ssi->sfr_clk = devm_clk_get(&pdev->dev, "ssi_sfr"); 951 if (IS_ERR(ssi->sfr_clk)) 952 return PTR_ERR(ssi->sfr_clk); 953 954 audio_clk = devm_clk_get(&pdev->dev, "audio_clk1"); 955 if (IS_ERR(audio_clk)) 956 return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk), 957 "no audio clk1"); 958 959 ssi->audio_clk_1 = clk_get_rate(audio_clk); 960 audio_clk = devm_clk_get(&pdev->dev, "audio_clk2"); 961 if (IS_ERR(audio_clk)) 962 return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk), 963 "no audio clk2"); 964 965 ssi->audio_clk_2 = clk_get_rate(audio_clk); 966 if (!(ssi->audio_clk_1 || ssi->audio_clk_2)) 967 return dev_err_probe(&pdev->dev, -EINVAL, 968 "no audio clk1 or audio clk2"); 969 970 ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2; 971 972 /* Detect DMA support */ 973 ret = rz_ssi_dma_request(ssi, &pdev->dev); 974 if (ret < 0) { 975 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 976 ssi->playback.transfer = rz_ssi_pio_send; 977 ssi->capture.transfer = rz_ssi_pio_recv; 978 } else { 979 dev_info(&pdev->dev, "DMA enabled"); 980 ssi->playback.transfer = rz_ssi_dma_transfer; 981 ssi->capture.transfer = rz_ssi_dma_transfer; 982 } 983 984 ssi->playback.priv = ssi; 985 ssi->capture.priv = ssi; 986 987 spin_lock_init(&ssi->lock); 988 dev_set_drvdata(&pdev->dev, ssi); 989 990 /* Error Interrupt */ 991 ssi->irq_int = platform_get_irq_byname(pdev, "int_req"); 992 if (ssi->irq_int < 0) { 993 rz_ssi_release_dma_channels(ssi); 994 return ssi->irq_int; 995 } 996 997 ret = devm_request_irq(&pdev->dev, ssi->irq_int, &rz_ssi_interrupt, 998 0, dev_name(&pdev->dev), ssi); 999 if (ret < 0) { 1000 rz_ssi_release_dma_channels(ssi); 1001 return dev_err_probe(&pdev->dev, ret, 1002 "irq request error (int_req)\n"); 1003 } 1004 1005 if (!rz_ssi_is_dma_enabled(ssi)) { 1006 /* Tx and Rx interrupts (pio only) */ 1007 ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx"); 1008 ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx"); 1009 if (ssi->irq_tx == -ENXIO && ssi->irq_rx == -ENXIO) { 1010 ssi->irq_rt = platform_get_irq_byname(pdev, "dma_rt"); 1011 if (ssi->irq_rt < 0) 1012 return ssi->irq_rt; 1013 1014 ret = devm_request_irq(&pdev->dev, ssi->irq_rt, 1015 &rz_ssi_interrupt, 0, 1016 dev_name(&pdev->dev), ssi); 1017 if (ret < 0) 1018 return dev_err_probe(&pdev->dev, ret, 1019 "irq request error (dma_rt)\n"); 1020 } else { 1021 if (ssi->irq_tx < 0) 1022 return ssi->irq_tx; 1023 1024 if (ssi->irq_rx < 0) 1025 return ssi->irq_rx; 1026 1027 ret = devm_request_irq(&pdev->dev, ssi->irq_tx, 1028 &rz_ssi_interrupt, 0, 1029 dev_name(&pdev->dev), ssi); 1030 if (ret < 0) 1031 return dev_err_probe(&pdev->dev, ret, 1032 "irq request error (dma_tx)\n"); 1033 1034 ret = devm_request_irq(&pdev->dev, ssi->irq_rx, 1035 &rz_ssi_interrupt, 0, 1036 dev_name(&pdev->dev), ssi); 1037 if (ret < 0) 1038 return dev_err_probe(&pdev->dev, ret, 1039 "irq request error (dma_rx)\n"); 1040 } 1041 } 1042 1043 ssi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); 1044 if (IS_ERR(ssi->rstc)) { 1045 ret = PTR_ERR(ssi->rstc); 1046 goto err_reset; 1047 } 1048 1049 reset_control_deassert(ssi->rstc); 1050 pm_runtime_enable(&pdev->dev); 1051 ret = pm_runtime_resume_and_get(&pdev->dev); 1052 if (ret < 0) { 1053 dev_err(&pdev->dev, "pm_runtime_resume_and_get failed\n"); 1054 goto err_pm; 1055 } 1056 1057 ret = devm_snd_soc_register_component(&pdev->dev, &rz_ssi_soc_component, 1058 rz_ssi_soc_dai, 1059 ARRAY_SIZE(rz_ssi_soc_dai)); 1060 if (ret < 0) { 1061 dev_err(&pdev->dev, "failed to register snd component\n"); 1062 goto err_snd_soc; 1063 } 1064 1065 return 0; 1066 1067 err_snd_soc: 1068 pm_runtime_put(ssi->dev); 1069 err_pm: 1070 pm_runtime_disable(ssi->dev); 1071 reset_control_assert(ssi->rstc); 1072 err_reset: 1073 rz_ssi_release_dma_channels(ssi); 1074 1075 return ret; 1076 } 1077 1078 static void rz_ssi_remove(struct platform_device *pdev) 1079 { 1080 struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev); 1081 1082 rz_ssi_release_dma_channels(ssi); 1083 1084 pm_runtime_put(ssi->dev); 1085 pm_runtime_disable(ssi->dev); 1086 reset_control_assert(ssi->rstc); 1087 } 1088 1089 static const struct of_device_id rz_ssi_of_match[] = { 1090 { .compatible = "renesas,rz-ssi", }, 1091 {/* Sentinel */}, 1092 }; 1093 MODULE_DEVICE_TABLE(of, rz_ssi_of_match); 1094 1095 static struct platform_driver rz_ssi_driver = { 1096 .driver = { 1097 .name = "rz-ssi-pcm-audio", 1098 .of_match_table = rz_ssi_of_match, 1099 }, 1100 .probe = rz_ssi_probe, 1101 .remove_new = rz_ssi_remove, 1102 }; 1103 1104 module_platform_driver(rz_ssi_driver); 1105 1106 MODULE_LICENSE("GPL v2"); 1107 MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver"); 1108 MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>"); 1109