xref: /openbmc/linux/sound/soc/pxa/pxa-ssp.c (revision de3a9980)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pxa-ssp.c  --  ALSA Soc Audio Layer
4  *
5  * Copyright 2005,2008 Wolfson Microelectronics PLC.
6  * Author: Liam Girdwood
7  *         Mark Brown <broonie@opensource.wolfsonmicro.com>
8  *
9  * TODO:
10  *  o Test network mode for > 16bit sample size
11  */
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/io.h>
19 #include <linux/pxa2xx_ssp.h>
20 #include <linux/of.h>
21 #include <linux/dmaengine.h>
22 
23 #include <asm/irq.h>
24 
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/initval.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/pxa2xx-lib.h>
31 #include <sound/dmaengine_pcm.h>
32 
33 #include "pxa-ssp.h"
34 
35 /*
36  * SSP audio private data
37  */
38 struct ssp_priv {
39 	struct ssp_device *ssp;
40 	struct clk *extclk;
41 	unsigned long ssp_clk;
42 	unsigned int sysclk;
43 	unsigned int dai_fmt;
44 	unsigned int configured_dai_fmt;
45 #ifdef CONFIG_PM
46 	uint32_t	cr0;
47 	uint32_t	cr1;
48 	uint32_t	to;
49 	uint32_t	psp;
50 #endif
51 };
52 
53 static void dump_registers(struct ssp_device *ssp)
54 {
55 	dev_dbg(ssp->dev, "SSCR0 0x%08x SSCR1 0x%08x SSTO 0x%08x\n",
56 		 pxa_ssp_read_reg(ssp, SSCR0), pxa_ssp_read_reg(ssp, SSCR1),
57 		 pxa_ssp_read_reg(ssp, SSTO));
58 
59 	dev_dbg(ssp->dev, "SSPSP 0x%08x SSSR 0x%08x SSACD 0x%08x\n",
60 		 pxa_ssp_read_reg(ssp, SSPSP), pxa_ssp_read_reg(ssp, SSSR),
61 		 pxa_ssp_read_reg(ssp, SSACD));
62 }
63 
64 static void pxa_ssp_enable(struct ssp_device *ssp)
65 {
66 	uint32_t sscr0;
67 
68 	sscr0 = __raw_readl(ssp->mmio_base + SSCR0) | SSCR0_SSE;
69 	__raw_writel(sscr0, ssp->mmio_base + SSCR0);
70 }
71 
72 static void pxa_ssp_disable(struct ssp_device *ssp)
73 {
74 	uint32_t sscr0;
75 
76 	sscr0 = __raw_readl(ssp->mmio_base + SSCR0) & ~SSCR0_SSE;
77 	__raw_writel(sscr0, ssp->mmio_base + SSCR0);
78 }
79 
80 static void pxa_ssp_set_dma_params(struct ssp_device *ssp, int width4,
81 			int out, struct snd_dmaengine_dai_dma_data *dma)
82 {
83 	dma->addr_width = width4 ? DMA_SLAVE_BUSWIDTH_4_BYTES :
84 				   DMA_SLAVE_BUSWIDTH_2_BYTES;
85 	dma->maxburst = 16;
86 	dma->addr = ssp->phys_base + SSDR;
87 }
88 
89 static int pxa_ssp_startup(struct snd_pcm_substream *substream,
90 			   struct snd_soc_dai *cpu_dai)
91 {
92 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
93 	struct ssp_device *ssp = priv->ssp;
94 	struct snd_dmaengine_dai_dma_data *dma;
95 	int ret = 0;
96 
97 	if (!snd_soc_dai_active(cpu_dai)) {
98 		clk_prepare_enable(ssp->clk);
99 		pxa_ssp_disable(ssp);
100 	}
101 
102 	clk_prepare_enable(priv->extclk);
103 
104 	dma = kzalloc(sizeof(struct snd_dmaengine_dai_dma_data), GFP_KERNEL);
105 	if (!dma)
106 		return -ENOMEM;
107 	dma->chan_name = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
108 		"tx" : "rx";
109 
110 	snd_soc_dai_set_dma_data(cpu_dai, substream, dma);
111 
112 	return ret;
113 }
114 
115 static void pxa_ssp_shutdown(struct snd_pcm_substream *substream,
116 			     struct snd_soc_dai *cpu_dai)
117 {
118 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
119 	struct ssp_device *ssp = priv->ssp;
120 
121 	if (!snd_soc_dai_active(cpu_dai)) {
122 		pxa_ssp_disable(ssp);
123 		clk_disable_unprepare(ssp->clk);
124 	}
125 
126 	clk_disable_unprepare(priv->extclk);
127 
128 	kfree(snd_soc_dai_get_dma_data(cpu_dai, substream));
129 	snd_soc_dai_set_dma_data(cpu_dai, substream, NULL);
130 }
131 
132 #ifdef CONFIG_PM
133 
134 static int pxa_ssp_suspend(struct snd_soc_component *component)
135 {
136 	struct ssp_priv *priv = snd_soc_component_get_drvdata(component);
137 	struct ssp_device *ssp = priv->ssp;
138 
139 	if (!snd_soc_component_active(component))
140 		clk_prepare_enable(ssp->clk);
141 
142 	priv->cr0 = __raw_readl(ssp->mmio_base + SSCR0);
143 	priv->cr1 = __raw_readl(ssp->mmio_base + SSCR1);
144 	priv->to  = __raw_readl(ssp->mmio_base + SSTO);
145 	priv->psp = __raw_readl(ssp->mmio_base + SSPSP);
146 
147 	pxa_ssp_disable(ssp);
148 	clk_disable_unprepare(ssp->clk);
149 	return 0;
150 }
151 
152 static int pxa_ssp_resume(struct snd_soc_component *component)
153 {
154 	struct ssp_priv *priv = snd_soc_component_get_drvdata(component);
155 	struct ssp_device *ssp = priv->ssp;
156 	uint32_t sssr = SSSR_ROR | SSSR_TUR | SSSR_BCE;
157 
158 	clk_prepare_enable(ssp->clk);
159 
160 	__raw_writel(sssr, ssp->mmio_base + SSSR);
161 	__raw_writel(priv->cr0 & ~SSCR0_SSE, ssp->mmio_base + SSCR0);
162 	__raw_writel(priv->cr1, ssp->mmio_base + SSCR1);
163 	__raw_writel(priv->to,  ssp->mmio_base + SSTO);
164 	__raw_writel(priv->psp, ssp->mmio_base + SSPSP);
165 
166 	if (snd_soc_component_active(component))
167 		pxa_ssp_enable(ssp);
168 	else
169 		clk_disable_unprepare(ssp->clk);
170 
171 	return 0;
172 }
173 
174 #else
175 #define pxa_ssp_suspend	NULL
176 #define pxa_ssp_resume	NULL
177 #endif
178 
179 /*
180  * ssp_set_clkdiv - set SSP clock divider
181  * @div: serial clock rate divider
182  */
183 static void pxa_ssp_set_scr(struct ssp_device *ssp, u32 div)
184 {
185 	u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
186 
187 	if (ssp->type == PXA25x_SSP) {
188 		sscr0 &= ~0x0000ff00;
189 		sscr0 |= ((div - 2)/2) << 8; /* 2..512 */
190 	} else {
191 		sscr0 &= ~0x000fff00;
192 		sscr0 |= (div - 1) << 8;     /* 1..4096 */
193 	}
194 	pxa_ssp_write_reg(ssp, SSCR0, sscr0);
195 }
196 
197 /*
198  * Set the SSP ports SYSCLK.
199  */
200 static int pxa_ssp_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
201 	int clk_id, unsigned int freq, int dir)
202 {
203 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
204 	struct ssp_device *ssp = priv->ssp;
205 
206 	u32 sscr0 = pxa_ssp_read_reg(ssp, SSCR0) &
207 		~(SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS);
208 
209 	if (priv->extclk) {
210 		int ret;
211 
212 		/*
213 		 * For DT based boards, if an extclk is given, use it
214 		 * here and configure PXA_SSP_CLK_EXT.
215 		 */
216 
217 		ret = clk_set_rate(priv->extclk, freq);
218 		if (ret < 0)
219 			return ret;
220 
221 		clk_id = PXA_SSP_CLK_EXT;
222 	}
223 
224 	dev_dbg(ssp->dev,
225 		"pxa_ssp_set_dai_sysclk id: %d, clk_id %d, freq %u\n",
226 		cpu_dai->id, clk_id, freq);
227 
228 	switch (clk_id) {
229 	case PXA_SSP_CLK_NET_PLL:
230 		sscr0 |= SSCR0_MOD;
231 		break;
232 	case PXA_SSP_CLK_PLL:
233 		/* Internal PLL is fixed */
234 		if (ssp->type == PXA25x_SSP)
235 			priv->sysclk = 1843200;
236 		else
237 			priv->sysclk = 13000000;
238 		break;
239 	case PXA_SSP_CLK_EXT:
240 		priv->sysclk = freq;
241 		sscr0 |= SSCR0_ECS;
242 		break;
243 	case PXA_SSP_CLK_NET:
244 		priv->sysclk = freq;
245 		sscr0 |= SSCR0_NCS | SSCR0_MOD;
246 		break;
247 	case PXA_SSP_CLK_AUDIO:
248 		priv->sysclk = 0;
249 		pxa_ssp_set_scr(ssp, 1);
250 		sscr0 |= SSCR0_ACS;
251 		break;
252 	default:
253 		return -ENODEV;
254 	}
255 
256 	/* The SSP clock must be disabled when changing SSP clock mode
257 	 * on PXA2xx.  On PXA3xx it must be enabled when doing so. */
258 	if (ssp->type != PXA3xx_SSP)
259 		clk_disable_unprepare(ssp->clk);
260 	pxa_ssp_write_reg(ssp, SSCR0, sscr0);
261 	if (ssp->type != PXA3xx_SSP)
262 		clk_prepare_enable(ssp->clk);
263 
264 	return 0;
265 }
266 
267 /*
268  * Configure the PLL frequency pxa27x and (afaik - pxa320 only)
269  */
270 static int pxa_ssp_set_pll(struct ssp_priv *priv, unsigned int freq)
271 {
272 	struct ssp_device *ssp = priv->ssp;
273 	u32 ssacd = pxa_ssp_read_reg(ssp, SSACD) & ~0x70;
274 
275 	if (ssp->type == PXA3xx_SSP)
276 		pxa_ssp_write_reg(ssp, SSACDD, 0);
277 
278 	switch (freq) {
279 	case 5622000:
280 		break;
281 	case 11345000:
282 		ssacd |= (0x1 << 4);
283 		break;
284 	case 12235000:
285 		ssacd |= (0x2 << 4);
286 		break;
287 	case 14857000:
288 		ssacd |= (0x3 << 4);
289 		break;
290 	case 32842000:
291 		ssacd |= (0x4 << 4);
292 		break;
293 	case 48000000:
294 		ssacd |= (0x5 << 4);
295 		break;
296 	case 0:
297 		/* Disable */
298 		break;
299 
300 	default:
301 		/* PXA3xx has a clock ditherer which can be used to generate
302 		 * a wider range of frequencies - calculate a value for it.
303 		 */
304 		if (ssp->type == PXA3xx_SSP) {
305 			u32 val;
306 			u64 tmp = 19968;
307 
308 			tmp *= 1000000;
309 			do_div(tmp, freq);
310 			val = tmp;
311 
312 			val = (val << 16) | 64;
313 			pxa_ssp_write_reg(ssp, SSACDD, val);
314 
315 			ssacd |= (0x6 << 4);
316 
317 			dev_dbg(ssp->dev,
318 				"Using SSACDD %x to supply %uHz\n",
319 				val, freq);
320 			break;
321 		}
322 
323 		return -EINVAL;
324 	}
325 
326 	pxa_ssp_write_reg(ssp, SSACD, ssacd);
327 
328 	return 0;
329 }
330 
331 /*
332  * Set the active slots in TDM/Network mode
333  */
334 static int pxa_ssp_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai,
335 	unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
336 {
337 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
338 	struct ssp_device *ssp = priv->ssp;
339 	u32 sscr0;
340 
341 	sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
342 	sscr0 &= ~(SSCR0_MOD | SSCR0_SlotsPerFrm(8) | SSCR0_EDSS | SSCR0_DSS);
343 
344 	/* set slot width */
345 	if (slot_width > 16)
346 		sscr0 |= SSCR0_EDSS | SSCR0_DataSize(slot_width - 16);
347 	else
348 		sscr0 |= SSCR0_DataSize(slot_width);
349 
350 	if (slots > 1) {
351 		/* enable network mode */
352 		sscr0 |= SSCR0_MOD;
353 
354 		/* set number of active slots */
355 		sscr0 |= SSCR0_SlotsPerFrm(slots);
356 
357 		/* set active slot mask */
358 		pxa_ssp_write_reg(ssp, SSTSA, tx_mask);
359 		pxa_ssp_write_reg(ssp, SSRSA, rx_mask);
360 	}
361 	pxa_ssp_write_reg(ssp, SSCR0, sscr0);
362 
363 	return 0;
364 }
365 
366 /*
367  * Tristate the SSP DAI lines
368  */
369 static int pxa_ssp_set_dai_tristate(struct snd_soc_dai *cpu_dai,
370 	int tristate)
371 {
372 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
373 	struct ssp_device *ssp = priv->ssp;
374 	u32 sscr1;
375 
376 	sscr1 = pxa_ssp_read_reg(ssp, SSCR1);
377 	if (tristate)
378 		sscr1 &= ~SSCR1_TTE;
379 	else
380 		sscr1 |= SSCR1_TTE;
381 	pxa_ssp_write_reg(ssp, SSCR1, sscr1);
382 
383 	return 0;
384 }
385 
386 static int pxa_ssp_set_dai_fmt(struct snd_soc_dai *cpu_dai,
387 			       unsigned int fmt)
388 {
389 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
390 
391 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
392 	case SND_SOC_DAIFMT_CBM_CFM:
393 	case SND_SOC_DAIFMT_CBM_CFS:
394 	case SND_SOC_DAIFMT_CBS_CFS:
395 		break;
396 	default:
397 		return -EINVAL;
398 	}
399 
400 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
401 	case SND_SOC_DAIFMT_NB_NF:
402 	case SND_SOC_DAIFMT_NB_IF:
403 	case SND_SOC_DAIFMT_IB_IF:
404 	case SND_SOC_DAIFMT_IB_NF:
405 		break;
406 	default:
407 		return -EINVAL;
408 	}
409 
410 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
411 	case SND_SOC_DAIFMT_I2S:
412 	case SND_SOC_DAIFMT_DSP_A:
413 	case SND_SOC_DAIFMT_DSP_B:
414 		break;
415 
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	/* Settings will be applied in hw_params() */
421 	priv->dai_fmt = fmt;
422 
423 	return 0;
424 }
425 
426 /*
427  * Set up the SSP DAI format.
428  * The SSP Port must be inactive before calling this function as the
429  * physical interface format is changed.
430  */
431 static int pxa_ssp_configure_dai_fmt(struct ssp_priv *priv)
432 {
433 	struct ssp_device *ssp = priv->ssp;
434 	u32 sscr0, sscr1, sspsp, scfr;
435 
436 	/* check if we need to change anything at all */
437 	if (priv->configured_dai_fmt == priv->dai_fmt)
438 		return 0;
439 
440 	/* reset port settings */
441 	sscr0 = pxa_ssp_read_reg(ssp, SSCR0) &
442 		~(SSCR0_PSP | SSCR0_MOD);
443 	sscr1 = pxa_ssp_read_reg(ssp, SSCR1) &
444 		~(SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR |
445 		  SSCR1_RWOT | SSCR1_TRAIL | SSCR1_TFT | SSCR1_RFT);
446 	sspsp = pxa_ssp_read_reg(ssp, SSPSP) &
447 		~(SSPSP_SFRMP | SSPSP_SCMODE(3));
448 
449 	sscr1 |= SSCR1_RxTresh(8) | SSCR1_TxTresh(7);
450 
451 	switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) {
452 	case SND_SOC_DAIFMT_CBM_CFM:
453 		sscr1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_SCFR;
454 		break;
455 	case SND_SOC_DAIFMT_CBM_CFS:
456 		sscr1 |= SSCR1_SCLKDIR | SSCR1_SCFR;
457 		break;
458 	case SND_SOC_DAIFMT_CBS_CFS:
459 		break;
460 	default:
461 		return -EINVAL;
462 	}
463 
464 	switch (priv->dai_fmt & SND_SOC_DAIFMT_INV_MASK) {
465 	case SND_SOC_DAIFMT_NB_NF:
466 		sspsp |= SSPSP_SFRMP;
467 		break;
468 	case SND_SOC_DAIFMT_NB_IF:
469 		break;
470 	case SND_SOC_DAIFMT_IB_IF:
471 		sspsp |= SSPSP_SCMODE(2);
472 		break;
473 	case SND_SOC_DAIFMT_IB_NF:
474 		sspsp |= SSPSP_SCMODE(2) | SSPSP_SFRMP;
475 		break;
476 	default:
477 		return -EINVAL;
478 	}
479 
480 	switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
481 	case SND_SOC_DAIFMT_I2S:
482 		sscr0 |= SSCR0_PSP;
483 		sscr1 |= SSCR1_RWOT | SSCR1_TRAIL;
484 		/* See hw_params() */
485 		break;
486 
487 	case SND_SOC_DAIFMT_DSP_A:
488 		sspsp |= SSPSP_FSRT;
489 		fallthrough;
490 	case SND_SOC_DAIFMT_DSP_B:
491 		sscr0 |= SSCR0_MOD | SSCR0_PSP;
492 		sscr1 |= SSCR1_TRAIL | SSCR1_RWOT;
493 		break;
494 
495 	default:
496 		return -EINVAL;
497 	}
498 
499 	pxa_ssp_write_reg(ssp, SSCR0, sscr0);
500 	pxa_ssp_write_reg(ssp, SSCR1, sscr1);
501 	pxa_ssp_write_reg(ssp, SSPSP, sspsp);
502 
503 	switch (priv->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) {
504 	case SND_SOC_DAIFMT_CBM_CFM:
505 	case SND_SOC_DAIFMT_CBM_CFS:
506 		scfr = pxa_ssp_read_reg(ssp, SSCR1) | SSCR1_SCFR;
507 		pxa_ssp_write_reg(ssp, SSCR1, scfr);
508 
509 		while (pxa_ssp_read_reg(ssp, SSSR) & SSSR_BSY)
510 			cpu_relax();
511 		break;
512 	}
513 
514 	dump_registers(ssp);
515 
516 	/* Since we are configuring the timings for the format by hand
517 	 * we have to defer some things until hw_params() where we
518 	 * know parameters like the sample size.
519 	 */
520 	priv->configured_dai_fmt = priv->dai_fmt;
521 
522 	return 0;
523 }
524 
525 struct pxa_ssp_clock_mode {
526 	int rate;
527 	int pll;
528 	u8 acds;
529 	u8 scdb;
530 };
531 
532 static const struct pxa_ssp_clock_mode pxa_ssp_clock_modes[] = {
533 	{ .rate =  8000, .pll = 32842000, .acds = SSACD_ACDS_32, .scdb = SSACD_SCDB_4X },
534 	{ .rate = 11025, .pll =  5622000, .acds = SSACD_ACDS_4,  .scdb = SSACD_SCDB_4X },
535 	{ .rate = 16000, .pll = 32842000, .acds = SSACD_ACDS_16, .scdb = SSACD_SCDB_4X },
536 	{ .rate = 22050, .pll =  5622000, .acds = SSACD_ACDS_2,  .scdb = SSACD_SCDB_4X },
537 	{ .rate = 44100, .pll = 11345000, .acds = SSACD_ACDS_2,  .scdb = SSACD_SCDB_4X },
538 	{ .rate = 48000, .pll = 12235000, .acds = SSACD_ACDS_2,  .scdb = SSACD_SCDB_4X },
539 	{ .rate = 96000, .pll = 12235000, .acds = SSACD_ACDS_4,  .scdb = SSACD_SCDB_1X },
540 	{}
541 };
542 
543 /*
544  * Set the SSP audio DMA parameters and sample size.
545  * Can be called multiple times by oss emulation.
546  */
547 static int pxa_ssp_hw_params(struct snd_pcm_substream *substream,
548 				struct snd_pcm_hw_params *params,
549 				struct snd_soc_dai *cpu_dai)
550 {
551 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
552 	struct ssp_device *ssp = priv->ssp;
553 	int chn = params_channels(params);
554 	u32 sscr0, sspsp;
555 	int width = snd_pcm_format_physical_width(params_format(params));
556 	int ttsa = pxa_ssp_read_reg(ssp, SSTSA) & 0xf;
557 	struct snd_dmaengine_dai_dma_data *dma_data;
558 	int rate = params_rate(params);
559 	int bclk = rate * chn * (width / 8);
560 	int ret;
561 
562 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
563 
564 	/* Network mode with one active slot (ttsa == 1) can be used
565 	 * to force 16-bit frame width on the wire (for S16_LE), even
566 	 * with two channels. Use 16-bit DMA transfers for this case.
567 	 */
568 	pxa_ssp_set_dma_params(ssp,
569 		((chn == 2) && (ttsa != 1)) || (width == 32),
570 		substream->stream == SNDRV_PCM_STREAM_PLAYBACK, dma_data);
571 
572 	/* we can only change the settings if the port is not in use */
573 	if (pxa_ssp_read_reg(ssp, SSCR0) & SSCR0_SSE)
574 		return 0;
575 
576 	ret = pxa_ssp_configure_dai_fmt(priv);
577 	if (ret < 0)
578 		return ret;
579 
580 	/* clear selected SSP bits */
581 	sscr0 = pxa_ssp_read_reg(ssp, SSCR0) & ~(SSCR0_DSS | SSCR0_EDSS);
582 
583 	/* bit size */
584 	switch (params_format(params)) {
585 	case SNDRV_PCM_FORMAT_S16_LE:
586 		if (ssp->type == PXA3xx_SSP)
587 			sscr0 |= SSCR0_FPCKE;
588 		sscr0 |= SSCR0_DataSize(16);
589 		break;
590 	case SNDRV_PCM_FORMAT_S24_LE:
591 		sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(8));
592 		break;
593 	case SNDRV_PCM_FORMAT_S32_LE:
594 		sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(16));
595 		break;
596 	}
597 	pxa_ssp_write_reg(ssp, SSCR0, sscr0);
598 
599 	if (sscr0 & SSCR0_ACS) {
600 		ret = pxa_ssp_set_pll(priv, bclk);
601 
602 		/*
603 		 * If we were able to generate the bclk directly,
604 		 * all is fine. Otherwise, look up the closest rate
605 		 * from the table and also set the dividers.
606 		 */
607 
608 		if (ret < 0) {
609 			const struct pxa_ssp_clock_mode *m;
610 			int ssacd, acds;
611 
612 			for (m = pxa_ssp_clock_modes; m->rate; m++) {
613 				if (m->rate == rate)
614 					break;
615 			}
616 
617 			if (!m->rate)
618 				return -EINVAL;
619 
620 			acds = m->acds;
621 
622 			/* The values in the table are for 16 bits */
623 			if (width == 32)
624 				acds--;
625 
626 			ret = pxa_ssp_set_pll(priv, bclk);
627 			if (ret < 0)
628 				return ret;
629 
630 			ssacd = pxa_ssp_read_reg(ssp, SSACD);
631 			ssacd &= ~(SSACD_ACDS(7) | SSACD_SCDB_1X);
632 			ssacd |= SSACD_ACDS(m->acds);
633 			ssacd |= m->scdb;
634 			pxa_ssp_write_reg(ssp, SSACD, ssacd);
635 		}
636 	} else if (sscr0 & SSCR0_ECS) {
637 		/*
638 		 * For setups with external clocking, the PLL and its diviers
639 		 * are not active. Instead, the SCR bits in SSCR0 can be used
640 		 * to divide the clock.
641 		 */
642 		pxa_ssp_set_scr(ssp, bclk / rate);
643 	}
644 
645 	switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
646 	case SND_SOC_DAIFMT_I2S:
647 	       sspsp = pxa_ssp_read_reg(ssp, SSPSP);
648 
649 		if (((priv->sysclk / bclk) == 64) && (width == 16)) {
650 			/* This is a special case where the bitclk is 64fs
651 			 * and we're not dealing with 2*32 bits of audio
652 			 * samples.
653 			 *
654 			 * The SSP values used for that are all found out by
655 			 * trying and failing a lot; some of the registers
656 			 * needed for that mode are only available on PXA3xx.
657 			 */
658 			if (ssp->type != PXA3xx_SSP)
659 				return -EINVAL;
660 
661 			sspsp |= SSPSP_SFRMWDTH(width * 2);
662 			sspsp |= SSPSP_SFRMDLY(width * 4);
663 			sspsp |= SSPSP_EDMYSTOP(3);
664 			sspsp |= SSPSP_DMYSTOP(3);
665 			sspsp |= SSPSP_DMYSTRT(1);
666 		} else {
667 			/* The frame width is the width the LRCLK is
668 			 * asserted for; the delay is expressed in
669 			 * half cycle units.  We need the extra cycle
670 			 * because the data starts clocking out one BCLK
671 			 * after LRCLK changes polarity.
672 			 */
673 			sspsp |= SSPSP_SFRMWDTH(width + 1);
674 			sspsp |= SSPSP_SFRMDLY((width + 1) * 2);
675 			sspsp |= SSPSP_DMYSTRT(1);
676 		}
677 
678 		pxa_ssp_write_reg(ssp, SSPSP, sspsp);
679 		break;
680 	default:
681 		break;
682 	}
683 
684 	/* When we use a network mode, we always require TDM slots
685 	 * - complain loudly and fail if they've not been set up yet.
686 	 */
687 	if ((sscr0 & SSCR0_MOD) && !ttsa) {
688 		dev_err(ssp->dev, "No TDM timeslot configured\n");
689 		return -EINVAL;
690 	}
691 
692 	dump_registers(ssp);
693 
694 	return 0;
695 }
696 
697 static void pxa_ssp_set_running_bit(struct snd_pcm_substream *substream,
698 				    struct ssp_device *ssp, int value)
699 {
700 	uint32_t sscr0 = pxa_ssp_read_reg(ssp, SSCR0);
701 	uint32_t sscr1 = pxa_ssp_read_reg(ssp, SSCR1);
702 	uint32_t sspsp = pxa_ssp_read_reg(ssp, SSPSP);
703 	uint32_t sssr = pxa_ssp_read_reg(ssp, SSSR);
704 
705 	if (value && (sscr0 & SSCR0_SSE))
706 		pxa_ssp_write_reg(ssp, SSCR0, sscr0 & ~SSCR0_SSE);
707 
708 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
709 		if (value)
710 			sscr1 |= SSCR1_TSRE;
711 		else
712 			sscr1 &= ~SSCR1_TSRE;
713 	} else {
714 		if (value)
715 			sscr1 |= SSCR1_RSRE;
716 		else
717 			sscr1 &= ~SSCR1_RSRE;
718 	}
719 
720 	pxa_ssp_write_reg(ssp, SSCR1, sscr1);
721 
722 	if (value) {
723 		pxa_ssp_write_reg(ssp, SSSR, sssr);
724 		pxa_ssp_write_reg(ssp, SSPSP, sspsp);
725 		pxa_ssp_write_reg(ssp, SSCR0, sscr0 | SSCR0_SSE);
726 	}
727 }
728 
729 static int pxa_ssp_trigger(struct snd_pcm_substream *substream, int cmd,
730 			   struct snd_soc_dai *cpu_dai)
731 {
732 	int ret = 0;
733 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(cpu_dai);
734 	struct ssp_device *ssp = priv->ssp;
735 	int val;
736 
737 	switch (cmd) {
738 	case SNDRV_PCM_TRIGGER_RESUME:
739 		pxa_ssp_enable(ssp);
740 		break;
741 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
742 		pxa_ssp_set_running_bit(substream, ssp, 1);
743 		val = pxa_ssp_read_reg(ssp, SSSR);
744 		pxa_ssp_write_reg(ssp, SSSR, val);
745 		break;
746 	case SNDRV_PCM_TRIGGER_START:
747 		pxa_ssp_set_running_bit(substream, ssp, 1);
748 		break;
749 	case SNDRV_PCM_TRIGGER_STOP:
750 		pxa_ssp_set_running_bit(substream, ssp, 0);
751 		break;
752 	case SNDRV_PCM_TRIGGER_SUSPEND:
753 		pxa_ssp_disable(ssp);
754 		break;
755 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
756 		pxa_ssp_set_running_bit(substream, ssp, 0);
757 		break;
758 
759 	default:
760 		ret = -EINVAL;
761 	}
762 
763 	dump_registers(ssp);
764 
765 	return ret;
766 }
767 
768 static int pxa_ssp_probe(struct snd_soc_dai *dai)
769 {
770 	struct device *dev = dai->dev;
771 	struct ssp_priv *priv;
772 	int ret;
773 
774 	priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL);
775 	if (!priv)
776 		return -ENOMEM;
777 
778 	if (dev->of_node) {
779 		struct device_node *ssp_handle;
780 
781 		ssp_handle = of_parse_phandle(dev->of_node, "port", 0);
782 		if (!ssp_handle) {
783 			dev_err(dev, "unable to get 'port' phandle\n");
784 			ret = -ENODEV;
785 			goto err_priv;
786 		}
787 
788 		priv->ssp = pxa_ssp_request_of(ssp_handle, "SoC audio");
789 		if (priv->ssp == NULL) {
790 			ret = -ENODEV;
791 			goto err_priv;
792 		}
793 
794 		priv->extclk = devm_clk_get(dev, "extclk");
795 		if (IS_ERR(priv->extclk)) {
796 			ret = PTR_ERR(priv->extclk);
797 			if (ret == -EPROBE_DEFER)
798 				return ret;
799 
800 			priv->extclk = NULL;
801 		}
802 	} else {
803 		priv->ssp = pxa_ssp_request(dai->id + 1, "SoC audio");
804 		if (priv->ssp == NULL) {
805 			ret = -ENODEV;
806 			goto err_priv;
807 		}
808 	}
809 
810 	priv->dai_fmt = (unsigned int) -1;
811 	snd_soc_dai_set_drvdata(dai, priv);
812 
813 	return 0;
814 
815 err_priv:
816 	kfree(priv);
817 	return ret;
818 }
819 
820 static int pxa_ssp_remove(struct snd_soc_dai *dai)
821 {
822 	struct ssp_priv *priv = snd_soc_dai_get_drvdata(dai);
823 
824 	pxa_ssp_free(priv->ssp);
825 	kfree(priv);
826 	return 0;
827 }
828 
829 #define PXA_SSP_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\
830 			  SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 |	\
831 			  SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |	\
832 			  SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 |	\
833 			  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
834 
835 #define PXA_SSP_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE)
836 
837 static const struct snd_soc_dai_ops pxa_ssp_dai_ops = {
838 	.startup	= pxa_ssp_startup,
839 	.shutdown	= pxa_ssp_shutdown,
840 	.trigger	= pxa_ssp_trigger,
841 	.hw_params	= pxa_ssp_hw_params,
842 	.set_sysclk	= pxa_ssp_set_dai_sysclk,
843 	.set_fmt	= pxa_ssp_set_dai_fmt,
844 	.set_tdm_slot	= pxa_ssp_set_dai_tdm_slot,
845 	.set_tristate	= pxa_ssp_set_dai_tristate,
846 };
847 
848 static struct snd_soc_dai_driver pxa_ssp_dai = {
849 		.probe = pxa_ssp_probe,
850 		.remove = pxa_ssp_remove,
851 		.playback = {
852 			.channels_min = 1,
853 			.channels_max = 8,
854 			.rates = PXA_SSP_RATES,
855 			.formats = PXA_SSP_FORMATS,
856 		},
857 		.capture = {
858 			 .channels_min = 1,
859 			 .channels_max = 8,
860 			.rates = PXA_SSP_RATES,
861 			.formats = PXA_SSP_FORMATS,
862 		 },
863 		.ops = &pxa_ssp_dai_ops,
864 };
865 
866 static const struct snd_soc_component_driver pxa_ssp_component = {
867 	.name		= "pxa-ssp",
868 	.pcm_construct	= pxa2xx_soc_pcm_new,
869 	.pcm_destruct	= pxa2xx_soc_pcm_free,
870 	.open		= pxa2xx_soc_pcm_open,
871 	.close		= pxa2xx_soc_pcm_close,
872 	.hw_params	= pxa2xx_soc_pcm_hw_params,
873 	.hw_free	= pxa2xx_soc_pcm_hw_free,
874 	.prepare	= pxa2xx_soc_pcm_prepare,
875 	.trigger	= pxa2xx_soc_pcm_trigger,
876 	.pointer	= pxa2xx_soc_pcm_pointer,
877 	.mmap		= pxa2xx_soc_pcm_mmap,
878 	.suspend	= pxa_ssp_suspend,
879 	.resume		= pxa_ssp_resume,
880 };
881 
882 #ifdef CONFIG_OF
883 static const struct of_device_id pxa_ssp_of_ids[] = {
884 	{ .compatible = "mrvl,pxa-ssp-dai" },
885 	{}
886 };
887 MODULE_DEVICE_TABLE(of, pxa_ssp_of_ids);
888 #endif
889 
890 static int asoc_ssp_probe(struct platform_device *pdev)
891 {
892 	return devm_snd_soc_register_component(&pdev->dev, &pxa_ssp_component,
893 					       &pxa_ssp_dai, 1);
894 }
895 
896 static struct platform_driver asoc_ssp_driver = {
897 	.driver = {
898 		.name = "pxa-ssp-dai",
899 		.of_match_table = of_match_ptr(pxa_ssp_of_ids),
900 	},
901 
902 	.probe = asoc_ssp_probe,
903 };
904 
905 module_platform_driver(asoc_ssp_driver);
906 
907 /* Module information */
908 MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
909 MODULE_DESCRIPTION("PXA SSP/PCM SoC Interface");
910 MODULE_LICENSE("GPL");
911 MODULE_ALIAS("platform:pxa-ssp-dai");
912