xref: /openbmc/linux/sound/soc/intel/skylake/skl-topology.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  *  skl-topology.c - Implements Platform component ALSA controls/widget
3  *  handlers.
4  *
5  *  Copyright (C) 2014-2015 Intel Corp
6  *  Author: Jeeja KP <jeeja.kp@intel.com>
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <linux/firmware.h>
22 #include <sound/soc.h>
23 #include <sound/soc-topology.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl-topology.h"
27 #include "skl.h"
28 #include "skl-tplg-interface.h"
29 #include "../common/sst-dsp.h"
30 #include "../common/sst-dsp-priv.h"
31 
32 #define SKL_CH_FIXUP_MASK		(1 << 0)
33 #define SKL_RATE_FIXUP_MASK		(1 << 1)
34 #define SKL_FMT_FIXUP_MASK		(1 << 2)
35 
36 /*
37  * SKL DSP driver modelling uses only few DAPM widgets so for rest we will
38  * ignore. This helpers checks if the SKL driver handles this widget type
39  */
40 static int is_skl_dsp_widget_type(struct snd_soc_dapm_widget *w)
41 {
42 	switch (w->id) {
43 	case snd_soc_dapm_dai_link:
44 	case snd_soc_dapm_dai_in:
45 	case snd_soc_dapm_aif_in:
46 	case snd_soc_dapm_aif_out:
47 	case snd_soc_dapm_dai_out:
48 	case snd_soc_dapm_switch:
49 		return false;
50 	default:
51 		return true;
52 	}
53 }
54 
55 /*
56  * Each pipelines needs memory to be allocated. Check if we have free memory
57  * from available pool. Then only add this to pool
58  * This is freed when pipe is deleted
59  * Note: DSP does actual memory management we only keep track for complete
60  * pool
61  */
62 static bool skl_tplg_alloc_pipe_mem(struct skl *skl,
63 				struct skl_module_cfg *mconfig)
64 {
65 	struct skl_sst *ctx = skl->skl_sst;
66 
67 	if (skl->resource.mem + mconfig->pipe->memory_pages >
68 				skl->resource.max_mem) {
69 		dev_err(ctx->dev,
70 				"%s: module_id %d instance %d\n", __func__,
71 				mconfig->id.module_id,
72 				mconfig->id.instance_id);
73 		dev_err(ctx->dev,
74 				"exceeds ppl memory available %d mem %d\n",
75 				skl->resource.max_mem, skl->resource.mem);
76 		return false;
77 	}
78 
79 	skl->resource.mem += mconfig->pipe->memory_pages;
80 	return true;
81 }
82 
83 /*
84  * Pipeline needs needs DSP CPU resources for computation, this is
85  * quantified in MCPS (Million Clocks Per Second) required for module/pipe
86  *
87  * Each pipelines needs mcps to be allocated. Check if we have mcps for this
88  * pipe. This adds the mcps to driver counter
89  * This is removed on pipeline delete
90  */
91 static bool skl_tplg_alloc_pipe_mcps(struct skl *skl,
92 				struct skl_module_cfg *mconfig)
93 {
94 	struct skl_sst *ctx = skl->skl_sst;
95 
96 	if (skl->resource.mcps + mconfig->mcps > skl->resource.max_mcps) {
97 		dev_err(ctx->dev,
98 			"%s: module_id %d instance %d\n", __func__,
99 			mconfig->id.module_id, mconfig->id.instance_id);
100 		dev_err(ctx->dev,
101 			"exceeds ppl memory available %d > mem %d\n",
102 			skl->resource.max_mcps, skl->resource.mcps);
103 		return false;
104 	}
105 
106 	skl->resource.mcps += mconfig->mcps;
107 	return true;
108 }
109 
110 /*
111  * Free the mcps when tearing down
112  */
113 static void
114 skl_tplg_free_pipe_mcps(struct skl *skl, struct skl_module_cfg *mconfig)
115 {
116 	skl->resource.mcps -= mconfig->mcps;
117 }
118 
119 /*
120  * Free the memory when tearing down
121  */
122 static void
123 skl_tplg_free_pipe_mem(struct skl *skl, struct skl_module_cfg *mconfig)
124 {
125 	skl->resource.mem -= mconfig->pipe->memory_pages;
126 }
127 
128 
129 static void skl_dump_mconfig(struct skl_sst *ctx,
130 					struct skl_module_cfg *mcfg)
131 {
132 	dev_dbg(ctx->dev, "Dumping config\n");
133 	dev_dbg(ctx->dev, "Input Format:\n");
134 	dev_dbg(ctx->dev, "channels = %d\n", mcfg->in_fmt[0].channels);
135 	dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->in_fmt[0].s_freq);
136 	dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->in_fmt[0].ch_cfg);
137 	dev_dbg(ctx->dev, "valid bit depth = %d\n", mcfg->in_fmt[0].valid_bit_depth);
138 	dev_dbg(ctx->dev, "Output Format:\n");
139 	dev_dbg(ctx->dev, "channels = %d\n", mcfg->out_fmt[0].channels);
140 	dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->out_fmt[0].s_freq);
141 	dev_dbg(ctx->dev, "valid bit depth = %d\n", mcfg->out_fmt[0].valid_bit_depth);
142 	dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->out_fmt[0].ch_cfg);
143 }
144 
145 static void skl_tplg_update_params(struct skl_module_fmt *fmt,
146 			struct skl_pipe_params *params, int fixup)
147 {
148 	if (fixup & SKL_RATE_FIXUP_MASK)
149 		fmt->s_freq = params->s_freq;
150 	if (fixup & SKL_CH_FIXUP_MASK)
151 		fmt->channels = params->ch;
152 	if (fixup & SKL_FMT_FIXUP_MASK) {
153 		fmt->valid_bit_depth = skl_get_bit_depth(params->s_fmt);
154 
155 		/*
156 		 * 16 bit is 16 bit container whereas 24 bit is in 32 bit
157 		 * container so update bit depth accordingly
158 		 */
159 		switch (fmt->valid_bit_depth) {
160 		case SKL_DEPTH_16BIT:
161 			fmt->bit_depth = fmt->valid_bit_depth;
162 			break;
163 
164 		default:
165 			fmt->bit_depth = SKL_DEPTH_32BIT;
166 			break;
167 		}
168 	}
169 
170 }
171 
172 /*
173  * A pipeline may have modules which impact the pcm parameters, like SRC,
174  * channel converter, format converter.
175  * We need to calculate the output params by applying the 'fixup'
176  * Topology will tell driver which type of fixup is to be applied by
177  * supplying the fixup mask, so based on that we calculate the output
178  *
179  * Now In FE the pcm hw_params is source/target format. Same is applicable
180  * for BE with its hw_params invoked.
181  * here based on FE, BE pipeline and direction we calculate the input and
182  * outfix and then apply that for a module
183  */
184 static void skl_tplg_update_params_fixup(struct skl_module_cfg *m_cfg,
185 		struct skl_pipe_params *params, bool is_fe)
186 {
187 	int in_fixup, out_fixup;
188 	struct skl_module_fmt *in_fmt, *out_fmt;
189 
190 	/* Fixups will be applied to pin 0 only */
191 	in_fmt = &m_cfg->in_fmt[0];
192 	out_fmt = &m_cfg->out_fmt[0];
193 
194 	if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) {
195 		if (is_fe) {
196 			in_fixup = m_cfg->params_fixup;
197 			out_fixup = (~m_cfg->converter) &
198 					m_cfg->params_fixup;
199 		} else {
200 			out_fixup = m_cfg->params_fixup;
201 			in_fixup = (~m_cfg->converter) &
202 					m_cfg->params_fixup;
203 		}
204 	} else {
205 		if (is_fe) {
206 			out_fixup = m_cfg->params_fixup;
207 			in_fixup = (~m_cfg->converter) &
208 					m_cfg->params_fixup;
209 		} else {
210 			in_fixup = m_cfg->params_fixup;
211 			out_fixup = (~m_cfg->converter) &
212 					m_cfg->params_fixup;
213 		}
214 	}
215 
216 	skl_tplg_update_params(in_fmt, params, in_fixup);
217 	skl_tplg_update_params(out_fmt, params, out_fixup);
218 }
219 
220 /*
221  * A module needs input and output buffers, which are dependent upon pcm
222  * params, so once we have calculate params, we need buffer calculation as
223  * well.
224  */
225 static void skl_tplg_update_buffer_size(struct skl_sst *ctx,
226 				struct skl_module_cfg *mcfg)
227 {
228 	int multiplier = 1;
229 	struct skl_module_fmt *in_fmt, *out_fmt;
230 
231 
232 	/* Since fixups is applied to pin 0 only, ibs, obs needs
233 	 * change for pin 0 only
234 	 */
235 	in_fmt = &mcfg->in_fmt[0];
236 	out_fmt = &mcfg->out_fmt[0];
237 
238 	if (mcfg->m_type == SKL_MODULE_TYPE_SRCINT)
239 		multiplier = 5;
240 	mcfg->ibs = (in_fmt->s_freq / 1000) *
241 				(mcfg->in_fmt->channels) *
242 				(mcfg->in_fmt->bit_depth >> 3) *
243 				multiplier;
244 
245 	mcfg->obs = (mcfg->out_fmt->s_freq / 1000) *
246 				(mcfg->out_fmt->channels) *
247 				(mcfg->out_fmt->bit_depth >> 3) *
248 				multiplier;
249 }
250 
251 static void skl_tplg_update_module_params(struct snd_soc_dapm_widget *w,
252 							struct skl_sst *ctx)
253 {
254 	struct skl_module_cfg *m_cfg = w->priv;
255 	struct skl_pipe_params *params = m_cfg->pipe->p_params;
256 	int p_conn_type = m_cfg->pipe->conn_type;
257 	bool is_fe;
258 
259 	if (!m_cfg->params_fixup)
260 		return;
261 
262 	dev_dbg(ctx->dev, "Mconfig for widget=%s BEFORE updation\n",
263 				w->name);
264 
265 	skl_dump_mconfig(ctx, m_cfg);
266 
267 	if (p_conn_type == SKL_PIPE_CONN_TYPE_FE)
268 		is_fe = true;
269 	else
270 		is_fe = false;
271 
272 	skl_tplg_update_params_fixup(m_cfg, params, is_fe);
273 	skl_tplg_update_buffer_size(ctx, m_cfg);
274 
275 	dev_dbg(ctx->dev, "Mconfig for widget=%s AFTER updation\n",
276 				w->name);
277 
278 	skl_dump_mconfig(ctx, m_cfg);
279 }
280 
281 /*
282  * A pipe can have multiple modules, each of them will be a DAPM widget as
283  * well. While managing a pipeline we need to get the list of all the
284  * widgets in a pipelines, so this helper - skl_tplg_get_pipe_widget() helps
285  * to get the SKL type widgets in that pipeline
286  */
287 static int skl_tplg_alloc_pipe_widget(struct device *dev,
288 	struct snd_soc_dapm_widget *w, struct skl_pipe *pipe)
289 {
290 	struct skl_module_cfg *src_module = NULL;
291 	struct snd_soc_dapm_path *p = NULL;
292 	struct skl_pipe_module *p_module = NULL;
293 
294 	p_module = devm_kzalloc(dev, sizeof(*p_module), GFP_KERNEL);
295 	if (!p_module)
296 		return -ENOMEM;
297 
298 	p_module->w = w;
299 	list_add_tail(&p_module->node, &pipe->w_list);
300 
301 	snd_soc_dapm_widget_for_each_sink_path(w, p) {
302 		if ((p->sink->priv == NULL)
303 				&& (!is_skl_dsp_widget_type(w)))
304 			continue;
305 
306 		if ((p->sink->priv != NULL) && p->connect
307 				&& is_skl_dsp_widget_type(p->sink)) {
308 
309 			src_module = p->sink->priv;
310 			if (pipe->ppl_id == src_module->pipe->ppl_id)
311 				skl_tplg_alloc_pipe_widget(dev,
312 							p->sink, pipe);
313 		}
314 	}
315 	return 0;
316 }
317 
318 /*
319  * some modules can have multiple params set from user control and
320  * need to be set after module is initialized. If set_param flag is
321  * set module params will be done after module is initialised.
322  */
323 static int skl_tplg_set_module_params(struct snd_soc_dapm_widget *w,
324 						struct skl_sst *ctx)
325 {
326 	int i, ret;
327 	struct skl_module_cfg *mconfig = w->priv;
328 	const struct snd_kcontrol_new *k;
329 	struct soc_bytes_ext *sb;
330 	struct skl_algo_data *bc;
331 	struct skl_specific_cfg *sp_cfg;
332 
333 	if (mconfig->formats_config.caps_size > 0 &&
334 		mconfig->formats_config.set_params == SKL_PARAM_SET) {
335 		sp_cfg = &mconfig->formats_config;
336 		ret = skl_set_module_params(ctx, sp_cfg->caps,
337 					sp_cfg->caps_size,
338 					sp_cfg->param_id, mconfig);
339 		if (ret < 0)
340 			return ret;
341 	}
342 
343 	for (i = 0; i < w->num_kcontrols; i++) {
344 		k = &w->kcontrol_news[i];
345 		if (k->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
346 			sb = (void *) k->private_value;
347 			bc = (struct skl_algo_data *)sb->dobj.private;
348 
349 			if (bc->set_params == SKL_PARAM_SET) {
350 				ret = skl_set_module_params(ctx,
351 						(u32 *)bc->params, bc->max,
352 						bc->param_id, mconfig);
353 				if (ret < 0)
354 					return ret;
355 			}
356 		}
357 	}
358 
359 	return 0;
360 }
361 
362 /*
363  * some module param can set from user control and this is required as
364  * when module is initailzed. if module param is required in init it is
365  * identifed by set_param flag. if set_param flag is not set, then this
366  * parameter needs to set as part of module init.
367  */
368 static int skl_tplg_set_module_init_data(struct snd_soc_dapm_widget *w)
369 {
370 	const struct snd_kcontrol_new *k;
371 	struct soc_bytes_ext *sb;
372 	struct skl_algo_data *bc;
373 	struct skl_module_cfg *mconfig = w->priv;
374 	int i;
375 
376 	for (i = 0; i < w->num_kcontrols; i++) {
377 		k = &w->kcontrol_news[i];
378 		if (k->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
379 			sb = (struct soc_bytes_ext *)k->private_value;
380 			bc = (struct skl_algo_data *)sb->dobj.private;
381 
382 			if (bc->set_params != SKL_PARAM_INIT)
383 				continue;
384 
385 			mconfig->formats_config.caps = (u32 *)&bc->params;
386 			mconfig->formats_config.caps_size = bc->max;
387 
388 			break;
389 		}
390 	}
391 
392 	return 0;
393 }
394 
395 /*
396  * Inside a pipe instance, we can have various modules. These modules need
397  * to instantiated in DSP by invoking INIT_MODULE IPC, which is achieved by
398  * skl_init_module() routine, so invoke that for all modules in a pipeline
399  */
400 static int
401 skl_tplg_init_pipe_modules(struct skl *skl, struct skl_pipe *pipe)
402 {
403 	struct skl_pipe_module *w_module;
404 	struct snd_soc_dapm_widget *w;
405 	struct skl_module_cfg *mconfig;
406 	struct skl_sst *ctx = skl->skl_sst;
407 	int ret = 0;
408 
409 	list_for_each_entry(w_module, &pipe->w_list, node) {
410 		w = w_module->w;
411 		mconfig = w->priv;
412 
413 		/* check resource available */
414 		if (!skl_tplg_alloc_pipe_mcps(skl, mconfig))
415 			return -ENOMEM;
416 
417 		if (mconfig->is_loadable && ctx->dsp->fw_ops.load_mod) {
418 			ret = ctx->dsp->fw_ops.load_mod(ctx->dsp,
419 				mconfig->id.module_id, mconfig->guid);
420 			if (ret < 0)
421 				return ret;
422 		}
423 
424 		/*
425 		 * apply fix/conversion to module params based on
426 		 * FE/BE params
427 		 */
428 		skl_tplg_update_module_params(w, ctx);
429 
430 		skl_tplg_set_module_init_data(w);
431 		ret = skl_init_module(ctx, mconfig);
432 		if (ret < 0)
433 			return ret;
434 
435 		ret = skl_tplg_set_module_params(w, ctx);
436 		if (ret < 0)
437 			return ret;
438 	}
439 
440 	return 0;
441 }
442 
443 static int skl_tplg_unload_pipe_modules(struct skl_sst *ctx,
444 	 struct skl_pipe *pipe)
445 {
446 	struct skl_pipe_module *w_module = NULL;
447 	struct skl_module_cfg *mconfig = NULL;
448 
449 	list_for_each_entry(w_module, &pipe->w_list, node) {
450 		mconfig  = w_module->w->priv;
451 
452 		if (mconfig->is_loadable && ctx->dsp->fw_ops.unload_mod)
453 			return ctx->dsp->fw_ops.unload_mod(ctx->dsp,
454 						mconfig->id.module_id);
455 	}
456 
457 	/* no modules to unload in this path, so return */
458 	return 0;
459 }
460 
461 /*
462  * Mixer module represents a pipeline. So in the Pre-PMU event of mixer we
463  * need create the pipeline. So we do following:
464  *   - check the resources
465  *   - Create the pipeline
466  *   - Initialize the modules in pipeline
467  *   - finally bind all modules together
468  */
469 static int skl_tplg_mixer_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w,
470 							struct skl *skl)
471 {
472 	int ret;
473 	struct skl_module_cfg *mconfig = w->priv;
474 	struct skl_pipe_module *w_module;
475 	struct skl_pipe *s_pipe = mconfig->pipe;
476 	struct skl_module_cfg *src_module = NULL, *dst_module;
477 	struct skl_sst *ctx = skl->skl_sst;
478 
479 	/* check resource available */
480 	if (!skl_tplg_alloc_pipe_mcps(skl, mconfig))
481 		return -EBUSY;
482 
483 	if (!skl_tplg_alloc_pipe_mem(skl, mconfig))
484 		return -ENOMEM;
485 
486 	/*
487 	 * Create a list of modules for pipe.
488 	 * This list contains modules from source to sink
489 	 */
490 	ret = skl_create_pipeline(ctx, mconfig->pipe);
491 	if (ret < 0)
492 		return ret;
493 
494 	/*
495 	 * we create a w_list of all widgets in that pipe. This list is not
496 	 * freed on PMD event as widgets within a pipe are static. This
497 	 * saves us cycles to get widgets in pipe every time.
498 	 *
499 	 * So if we have already initialized all the widgets of a pipeline
500 	 * we skip, so check for list_empty and create the list if empty
501 	 */
502 	if (list_empty(&s_pipe->w_list)) {
503 		ret = skl_tplg_alloc_pipe_widget(ctx->dev, w, s_pipe);
504 		if (ret < 0)
505 			return ret;
506 	}
507 
508 	/* Init all pipe modules from source to sink */
509 	ret = skl_tplg_init_pipe_modules(skl, s_pipe);
510 	if (ret < 0)
511 		return ret;
512 
513 	/* Bind modules from source to sink */
514 	list_for_each_entry(w_module, &s_pipe->w_list, node) {
515 		dst_module = w_module->w->priv;
516 
517 		if (src_module == NULL) {
518 			src_module = dst_module;
519 			continue;
520 		}
521 
522 		ret = skl_bind_modules(ctx, src_module, dst_module);
523 		if (ret < 0)
524 			return ret;
525 
526 		src_module = dst_module;
527 	}
528 
529 	return 0;
530 }
531 
532 static int skl_tplg_bind_sinks(struct snd_soc_dapm_widget *w,
533 				struct skl *skl,
534 				struct skl_module_cfg *src_mconfig)
535 {
536 	struct snd_soc_dapm_path *p;
537 	struct snd_soc_dapm_widget *sink = NULL, *next_sink = NULL;
538 	struct skl_module_cfg *sink_mconfig;
539 	struct skl_sst *ctx = skl->skl_sst;
540 	int ret;
541 
542 	snd_soc_dapm_widget_for_each_sink_path(w, p) {
543 		if (!p->connect)
544 			continue;
545 
546 		dev_dbg(ctx->dev, "%s: src widget=%s\n", __func__, w->name);
547 		dev_dbg(ctx->dev, "%s: sink widget=%s\n", __func__, p->sink->name);
548 
549 		next_sink = p->sink;
550 		/*
551 		 * here we will check widgets in sink pipelines, so that
552 		 * can be any widgets type and we are only interested if
553 		 * they are ones used for SKL so check that first
554 		 */
555 		if ((p->sink->priv != NULL) &&
556 					is_skl_dsp_widget_type(p->sink)) {
557 
558 			sink = p->sink;
559 			sink_mconfig = sink->priv;
560 
561 			/* Bind source to sink, mixin is always source */
562 			ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig);
563 			if (ret)
564 				return ret;
565 
566 			/* Start sinks pipe first */
567 			if (sink_mconfig->pipe->state != SKL_PIPE_STARTED) {
568 				if (sink_mconfig->pipe->conn_type !=
569 							SKL_PIPE_CONN_TYPE_FE)
570 					ret = skl_run_pipe(ctx,
571 							sink_mconfig->pipe);
572 				if (ret)
573 					return ret;
574 			}
575 		}
576 	}
577 
578 	if (!sink)
579 		return skl_tplg_bind_sinks(next_sink, skl, src_mconfig);
580 
581 	return 0;
582 }
583 
584 /*
585  * A PGA represents a module in a pipeline. So in the Pre-PMU event of PGA
586  * we need to do following:
587  *   - Bind to sink pipeline
588  *      Since the sink pipes can be running and we don't get mixer event on
589  *      connect for already running mixer, we need to find the sink pipes
590  *      here and bind to them. This way dynamic connect works.
591  *   - Start sink pipeline, if not running
592  *   - Then run current pipe
593  */
594 static int skl_tplg_pga_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w,
595 								struct skl *skl)
596 {
597 	struct skl_module_cfg *src_mconfig;
598 	struct skl_sst *ctx = skl->skl_sst;
599 	int ret = 0;
600 
601 	src_mconfig = w->priv;
602 
603 	/*
604 	 * find which sink it is connected to, bind with the sink,
605 	 * if sink is not started, start sink pipe first, then start
606 	 * this pipe
607 	 */
608 	ret = skl_tplg_bind_sinks(w, skl, src_mconfig);
609 	if (ret)
610 		return ret;
611 
612 	/* Start source pipe last after starting all sinks */
613 	if (src_mconfig->pipe->conn_type != SKL_PIPE_CONN_TYPE_FE)
614 		return skl_run_pipe(ctx, src_mconfig->pipe);
615 
616 	return 0;
617 }
618 
619 static struct snd_soc_dapm_widget *skl_get_src_dsp_widget(
620 		struct snd_soc_dapm_widget *w, struct skl *skl)
621 {
622 	struct snd_soc_dapm_path *p;
623 	struct snd_soc_dapm_widget *src_w = NULL;
624 	struct skl_sst *ctx = skl->skl_sst;
625 
626 	snd_soc_dapm_widget_for_each_source_path(w, p) {
627 		src_w = p->source;
628 		if (!p->connect)
629 			continue;
630 
631 		dev_dbg(ctx->dev, "sink widget=%s\n", w->name);
632 		dev_dbg(ctx->dev, "src widget=%s\n", p->source->name);
633 
634 		/*
635 		 * here we will check widgets in sink pipelines, so that can
636 		 * be any widgets type and we are only interested if they are
637 		 * ones used for SKL so check that first
638 		 */
639 		if ((p->source->priv != NULL) &&
640 					is_skl_dsp_widget_type(p->source)) {
641 			return p->source;
642 		}
643 	}
644 
645 	if (src_w != NULL)
646 		return skl_get_src_dsp_widget(src_w, skl);
647 
648 	return NULL;
649 }
650 
651 /*
652  * in the Post-PMU event of mixer we need to do following:
653  *   - Check if this pipe is running
654  *   - if not, then
655  *	- bind this pipeline to its source pipeline
656  *	  if source pipe is already running, this means it is a dynamic
657  *	  connection and we need to bind only to that pipe
658  *	- start this pipeline
659  */
660 static int skl_tplg_mixer_dapm_post_pmu_event(struct snd_soc_dapm_widget *w,
661 							struct skl *skl)
662 {
663 	int ret = 0;
664 	struct snd_soc_dapm_widget *source, *sink;
665 	struct skl_module_cfg *src_mconfig, *sink_mconfig;
666 	struct skl_sst *ctx = skl->skl_sst;
667 	int src_pipe_started = 0;
668 
669 	sink = w;
670 	sink_mconfig = sink->priv;
671 
672 	/*
673 	 * If source pipe is already started, that means source is driving
674 	 * one more sink before this sink got connected, Since source is
675 	 * started, bind this sink to source and start this pipe.
676 	 */
677 	source = skl_get_src_dsp_widget(w, skl);
678 	if (source != NULL) {
679 		src_mconfig = source->priv;
680 		sink_mconfig = sink->priv;
681 		src_pipe_started = 1;
682 
683 		/*
684 		 * check pipe state, then no need to bind or start the
685 		 * pipe
686 		 */
687 		if (src_mconfig->pipe->state != SKL_PIPE_STARTED)
688 			src_pipe_started = 0;
689 	}
690 
691 	if (src_pipe_started) {
692 		ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig);
693 		if (ret)
694 			return ret;
695 
696 		if (sink_mconfig->pipe->conn_type != SKL_PIPE_CONN_TYPE_FE)
697 			ret = skl_run_pipe(ctx, sink_mconfig->pipe);
698 	}
699 
700 	return ret;
701 }
702 
703 /*
704  * in the Pre-PMD event of mixer we need to do following:
705  *   - Stop the pipe
706  *   - find the source connections and remove that from dapm_path_list
707  *   - unbind with source pipelines if still connected
708  */
709 static int skl_tplg_mixer_dapm_pre_pmd_event(struct snd_soc_dapm_widget *w,
710 							struct skl *skl)
711 {
712 	struct skl_module_cfg *src_mconfig, *sink_mconfig;
713 	int ret = 0, i;
714 	struct skl_sst *ctx = skl->skl_sst;
715 
716 	sink_mconfig = w->priv;
717 
718 	/* Stop the pipe */
719 	ret = skl_stop_pipe(ctx, sink_mconfig->pipe);
720 	if (ret)
721 		return ret;
722 
723 	for (i = 0; i < sink_mconfig->max_in_queue; i++) {
724 		if (sink_mconfig->m_in_pin[i].pin_state == SKL_PIN_BIND_DONE) {
725 			src_mconfig = sink_mconfig->m_in_pin[i].tgt_mcfg;
726 			if (!src_mconfig)
727 				continue;
728 			/*
729 			 * If path_found == 1, that means pmd for source
730 			 * pipe has not occurred, source is connected to
731 			 * some other sink. so its responsibility of sink
732 			 * to unbind itself from source.
733 			 */
734 			ret = skl_stop_pipe(ctx, src_mconfig->pipe);
735 			if (ret < 0)
736 				return ret;
737 
738 			ret = skl_unbind_modules(ctx,
739 						src_mconfig, sink_mconfig);
740 		}
741 	}
742 
743 	return ret;
744 }
745 
746 /*
747  * in the Post-PMD event of mixer we need to do following:
748  *   - Free the mcps used
749  *   - Free the mem used
750  *   - Unbind the modules within the pipeline
751  *   - Delete the pipeline (modules are not required to be explicitly
752  *     deleted, pipeline delete is enough here
753  */
754 static int skl_tplg_mixer_dapm_post_pmd_event(struct snd_soc_dapm_widget *w,
755 							struct skl *skl)
756 {
757 	struct skl_module_cfg *mconfig = w->priv;
758 	struct skl_pipe_module *w_module;
759 	struct skl_module_cfg *src_module = NULL, *dst_module;
760 	struct skl_sst *ctx = skl->skl_sst;
761 	struct skl_pipe *s_pipe = mconfig->pipe;
762 	int ret = 0;
763 
764 	skl_tplg_free_pipe_mcps(skl, mconfig);
765 	skl_tplg_free_pipe_mem(skl, mconfig);
766 
767 	list_for_each_entry(w_module, &s_pipe->w_list, node) {
768 		dst_module = w_module->w->priv;
769 
770 		skl_tplg_free_pipe_mcps(skl, dst_module);
771 		if (src_module == NULL) {
772 			src_module = dst_module;
773 			continue;
774 		}
775 
776 		ret = skl_unbind_modules(ctx, src_module, dst_module);
777 		if (ret < 0)
778 			return ret;
779 
780 		src_module = dst_module;
781 	}
782 
783 	ret = skl_delete_pipe(ctx, mconfig->pipe);
784 
785 	return skl_tplg_unload_pipe_modules(ctx, s_pipe);
786 }
787 
788 /*
789  * in the Post-PMD event of PGA we need to do following:
790  *   - Free the mcps used
791  *   - Stop the pipeline
792  *   - In source pipe is connected, unbind with source pipelines
793  */
794 static int skl_tplg_pga_dapm_post_pmd_event(struct snd_soc_dapm_widget *w,
795 								struct skl *skl)
796 {
797 	struct skl_module_cfg *src_mconfig, *sink_mconfig;
798 	int ret = 0, i;
799 	struct skl_sst *ctx = skl->skl_sst;
800 
801 	src_mconfig = w->priv;
802 
803 	/* Stop the pipe since this is a mixin module */
804 	ret = skl_stop_pipe(ctx, src_mconfig->pipe);
805 	if (ret)
806 		return ret;
807 
808 	for (i = 0; i < src_mconfig->max_out_queue; i++) {
809 		if (src_mconfig->m_out_pin[i].pin_state == SKL_PIN_BIND_DONE) {
810 			sink_mconfig = src_mconfig->m_out_pin[i].tgt_mcfg;
811 			if (!sink_mconfig)
812 				continue;
813 			/*
814 			 * This is a connecter and if path is found that means
815 			 * unbind between source and sink has not happened yet
816 			 */
817 			ret = skl_stop_pipe(ctx, sink_mconfig->pipe);
818 			if (ret < 0)
819 				return ret;
820 			ret = skl_unbind_modules(ctx, src_mconfig,
821 							sink_mconfig);
822 		}
823 	}
824 
825 	return ret;
826 }
827 
828 /*
829  * In modelling, we assume there will be ONLY one mixer in a pipeline.  If
830  * mixer is not required then it is treated as static mixer aka vmixer with
831  * a hard path to source module
832  * So we don't need to check if source is started or not as hard path puts
833  * dependency on each other
834  */
835 static int skl_tplg_vmixer_event(struct snd_soc_dapm_widget *w,
836 				struct snd_kcontrol *k, int event)
837 {
838 	struct snd_soc_dapm_context *dapm = w->dapm;
839 	struct skl *skl = get_skl_ctx(dapm->dev);
840 
841 	switch (event) {
842 	case SND_SOC_DAPM_PRE_PMU:
843 		return skl_tplg_mixer_dapm_pre_pmu_event(w, skl);
844 
845 	case SND_SOC_DAPM_POST_PMD:
846 		return skl_tplg_mixer_dapm_post_pmd_event(w, skl);
847 	}
848 
849 	return 0;
850 }
851 
852 /*
853  * In modelling, we assume there will be ONLY one mixer in a pipeline. If a
854  * second one is required that is created as another pipe entity.
855  * The mixer is responsible for pipe management and represent a pipeline
856  * instance
857  */
858 static int skl_tplg_mixer_event(struct snd_soc_dapm_widget *w,
859 				struct snd_kcontrol *k, int event)
860 {
861 	struct snd_soc_dapm_context *dapm = w->dapm;
862 	struct skl *skl = get_skl_ctx(dapm->dev);
863 
864 	switch (event) {
865 	case SND_SOC_DAPM_PRE_PMU:
866 		return skl_tplg_mixer_dapm_pre_pmu_event(w, skl);
867 
868 	case SND_SOC_DAPM_POST_PMU:
869 		return skl_tplg_mixer_dapm_post_pmu_event(w, skl);
870 
871 	case SND_SOC_DAPM_PRE_PMD:
872 		return skl_tplg_mixer_dapm_pre_pmd_event(w, skl);
873 
874 	case SND_SOC_DAPM_POST_PMD:
875 		return skl_tplg_mixer_dapm_post_pmd_event(w, skl);
876 	}
877 
878 	return 0;
879 }
880 
881 /*
882  * In modelling, we assumed rest of the modules in pipeline are PGA. But we
883  * are interested in last PGA (leaf PGA) in a pipeline to disconnect with
884  * the sink when it is running (two FE to one BE or one FE to two BE)
885  * scenarios
886  */
887 static int skl_tplg_pga_event(struct snd_soc_dapm_widget *w,
888 			struct snd_kcontrol *k, int event)
889 
890 {
891 	struct snd_soc_dapm_context *dapm = w->dapm;
892 	struct skl *skl = get_skl_ctx(dapm->dev);
893 
894 	switch (event) {
895 	case SND_SOC_DAPM_PRE_PMU:
896 		return skl_tplg_pga_dapm_pre_pmu_event(w, skl);
897 
898 	case SND_SOC_DAPM_POST_PMD:
899 		return skl_tplg_pga_dapm_post_pmd_event(w, skl);
900 	}
901 
902 	return 0;
903 }
904 
905 static int skl_tplg_tlv_control_get(struct snd_kcontrol *kcontrol,
906 			unsigned int __user *data, unsigned int size)
907 {
908 	struct soc_bytes_ext *sb =
909 			(struct soc_bytes_ext *)kcontrol->private_value;
910 	struct skl_algo_data *bc = (struct skl_algo_data *)sb->dobj.private;
911 	struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol);
912 	struct skl_module_cfg *mconfig = w->priv;
913 	struct skl *skl = get_skl_ctx(w->dapm->dev);
914 
915 	if (w->power)
916 		skl_get_module_params(skl->skl_sst, (u32 *)bc->params,
917 				      bc->max, bc->param_id, mconfig);
918 
919 	if (bc->params) {
920 		if (copy_to_user(data, &bc->param_id, sizeof(u32)))
921 			return -EFAULT;
922 		if (copy_to_user(data + 1, &size, sizeof(u32)))
923 			return -EFAULT;
924 		if (copy_to_user(data + 2, bc->params, size))
925 			return -EFAULT;
926 	}
927 
928 	return 0;
929 }
930 
931 #define SKL_PARAM_VENDOR_ID 0xff
932 
933 static int skl_tplg_tlv_control_set(struct snd_kcontrol *kcontrol,
934 			const unsigned int __user *data, unsigned int size)
935 {
936 	struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol);
937 	struct skl_module_cfg *mconfig = w->priv;
938 	struct soc_bytes_ext *sb =
939 			(struct soc_bytes_ext *)kcontrol->private_value;
940 	struct skl_algo_data *ac = (struct skl_algo_data *)sb->dobj.private;
941 	struct skl *skl = get_skl_ctx(w->dapm->dev);
942 
943 	if (ac->params) {
944 		/*
945 		 * if the param_is is of type Vendor, firmware expects actual
946 		 * parameter id and size from the control.
947 		 */
948 		if (ac->param_id == SKL_PARAM_VENDOR_ID) {
949 			if (copy_from_user(ac->params, data, size))
950 				return -EFAULT;
951 		} else {
952 			if (copy_from_user(ac->params,
953 					   data + 2 * sizeof(u32), size))
954 				return -EFAULT;
955 		}
956 
957 		if (w->power)
958 			return skl_set_module_params(skl->skl_sst,
959 						(u32 *)ac->params, ac->max,
960 						ac->param_id, mconfig);
961 	}
962 
963 	return 0;
964 }
965 
966 /*
967  * The FE params are passed by hw_params of the DAI.
968  * On hw_params, the params are stored in Gateway module of the FE and we
969  * need to calculate the format in DSP module configuration, that
970  * conversion is done here
971  */
972 int skl_tplg_update_pipe_params(struct device *dev,
973 			struct skl_module_cfg *mconfig,
974 			struct skl_pipe_params *params)
975 {
976 	struct skl_pipe *pipe = mconfig->pipe;
977 	struct skl_module_fmt *format = NULL;
978 
979 	memcpy(pipe->p_params, params, sizeof(*params));
980 
981 	if (params->stream == SNDRV_PCM_STREAM_PLAYBACK)
982 		format = &mconfig->in_fmt[0];
983 	else
984 		format = &mconfig->out_fmt[0];
985 
986 	/* set the hw_params */
987 	format->s_freq = params->s_freq;
988 	format->channels = params->ch;
989 	format->valid_bit_depth = skl_get_bit_depth(params->s_fmt);
990 
991 	/*
992 	 * 16 bit is 16 bit container whereas 24 bit is in 32 bit
993 	 * container so update bit depth accordingly
994 	 */
995 	switch (format->valid_bit_depth) {
996 	case SKL_DEPTH_16BIT:
997 		format->bit_depth = format->valid_bit_depth;
998 		break;
999 
1000 	case SKL_DEPTH_24BIT:
1001 	case SKL_DEPTH_32BIT:
1002 		format->bit_depth = SKL_DEPTH_32BIT;
1003 		break;
1004 
1005 	default:
1006 		dev_err(dev, "Invalid bit depth %x for pipe\n",
1007 				format->valid_bit_depth);
1008 		return -EINVAL;
1009 	}
1010 
1011 	if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1012 		mconfig->ibs = (format->s_freq / 1000) *
1013 				(format->channels) *
1014 				(format->bit_depth >> 3);
1015 	} else {
1016 		mconfig->obs = (format->s_freq / 1000) *
1017 				(format->channels) *
1018 				(format->bit_depth >> 3);
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Query the module config for the FE DAI
1026  * This is used to find the hw_params set for that DAI and apply to FE
1027  * pipeline
1028  */
1029 struct skl_module_cfg *
1030 skl_tplg_fe_get_cpr_module(struct snd_soc_dai *dai, int stream)
1031 {
1032 	struct snd_soc_dapm_widget *w;
1033 	struct snd_soc_dapm_path *p = NULL;
1034 
1035 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1036 		w = dai->playback_widget;
1037 		snd_soc_dapm_widget_for_each_sink_path(w, p) {
1038 			if (p->connect && p->sink->power &&
1039 					!is_skl_dsp_widget_type(p->sink))
1040 				continue;
1041 
1042 			if (p->sink->priv) {
1043 				dev_dbg(dai->dev, "set params for %s\n",
1044 						p->sink->name);
1045 				return p->sink->priv;
1046 			}
1047 		}
1048 	} else {
1049 		w = dai->capture_widget;
1050 		snd_soc_dapm_widget_for_each_source_path(w, p) {
1051 			if (p->connect && p->source->power &&
1052 					!is_skl_dsp_widget_type(p->source))
1053 				continue;
1054 
1055 			if (p->source->priv) {
1056 				dev_dbg(dai->dev, "set params for %s\n",
1057 						p->source->name);
1058 				return p->source->priv;
1059 			}
1060 		}
1061 	}
1062 
1063 	return NULL;
1064 }
1065 
1066 static u8 skl_tplg_be_link_type(int dev_type)
1067 {
1068 	int ret;
1069 
1070 	switch (dev_type) {
1071 	case SKL_DEVICE_BT:
1072 		ret = NHLT_LINK_SSP;
1073 		break;
1074 
1075 	case SKL_DEVICE_DMIC:
1076 		ret = NHLT_LINK_DMIC;
1077 		break;
1078 
1079 	case SKL_DEVICE_I2S:
1080 		ret = NHLT_LINK_SSP;
1081 		break;
1082 
1083 	case SKL_DEVICE_HDALINK:
1084 		ret = NHLT_LINK_HDA;
1085 		break;
1086 
1087 	default:
1088 		ret = NHLT_LINK_INVALID;
1089 		break;
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Fill the BE gateway parameters
1097  * The BE gateway expects a blob of parameters which are kept in the ACPI
1098  * NHLT blob, so query the blob for interface type (i2s/pdm) and instance.
1099  * The port can have multiple settings so pick based on the PCM
1100  * parameters
1101  */
1102 static int skl_tplg_be_fill_pipe_params(struct snd_soc_dai *dai,
1103 				struct skl_module_cfg *mconfig,
1104 				struct skl_pipe_params *params)
1105 {
1106 	struct skl_pipe *pipe = mconfig->pipe;
1107 	struct nhlt_specific_cfg *cfg;
1108 	struct skl *skl = get_skl_ctx(dai->dev);
1109 	int link_type = skl_tplg_be_link_type(mconfig->dev_type);
1110 
1111 	memcpy(pipe->p_params, params, sizeof(*params));
1112 
1113 	if (link_type == NHLT_LINK_HDA)
1114 		return 0;
1115 
1116 	/* update the blob based on virtual bus_id*/
1117 	cfg = skl_get_ep_blob(skl, mconfig->vbus_id, link_type,
1118 					params->s_fmt, params->ch,
1119 					params->s_freq, params->stream);
1120 	if (cfg) {
1121 		mconfig->formats_config.caps_size = cfg->size;
1122 		mconfig->formats_config.caps = (u32 *) &cfg->caps;
1123 	} else {
1124 		dev_err(dai->dev, "Blob NULL for id %x type %d dirn %d\n",
1125 					mconfig->vbus_id, link_type,
1126 					params->stream);
1127 		dev_err(dai->dev, "PCM: ch %d, freq %d, fmt %d\n",
1128 				 params->ch, params->s_freq, params->s_fmt);
1129 		return -EINVAL;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int skl_tplg_be_set_src_pipe_params(struct snd_soc_dai *dai,
1136 				struct snd_soc_dapm_widget *w,
1137 				struct skl_pipe_params *params)
1138 {
1139 	struct snd_soc_dapm_path *p;
1140 	int ret = -EIO;
1141 
1142 	snd_soc_dapm_widget_for_each_source_path(w, p) {
1143 		if (p->connect && is_skl_dsp_widget_type(p->source) &&
1144 						p->source->priv) {
1145 
1146 			ret = skl_tplg_be_fill_pipe_params(dai,
1147 						p->source->priv, params);
1148 			if (ret < 0)
1149 				return ret;
1150 		} else {
1151 			ret = skl_tplg_be_set_src_pipe_params(dai,
1152 						p->source, params);
1153 			if (ret < 0)
1154 				return ret;
1155 		}
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 static int skl_tplg_be_set_sink_pipe_params(struct snd_soc_dai *dai,
1162 	struct snd_soc_dapm_widget *w, struct skl_pipe_params *params)
1163 {
1164 	struct snd_soc_dapm_path *p = NULL;
1165 	int ret = -EIO;
1166 
1167 	snd_soc_dapm_widget_for_each_sink_path(w, p) {
1168 		if (p->connect && is_skl_dsp_widget_type(p->sink) &&
1169 						p->sink->priv) {
1170 
1171 			ret = skl_tplg_be_fill_pipe_params(dai,
1172 						p->sink->priv, params);
1173 			if (ret < 0)
1174 				return ret;
1175 		} else {
1176 			ret = skl_tplg_be_set_sink_pipe_params(
1177 						dai, p->sink, params);
1178 			if (ret < 0)
1179 				return ret;
1180 		}
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 /*
1187  * BE hw_params can be a source parameters (capture) or sink parameters
1188  * (playback). Based on sink and source we need to either find the source
1189  * list or the sink list and set the pipeline parameters
1190  */
1191 int skl_tplg_be_update_params(struct snd_soc_dai *dai,
1192 				struct skl_pipe_params *params)
1193 {
1194 	struct snd_soc_dapm_widget *w;
1195 
1196 	if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1197 		w = dai->playback_widget;
1198 
1199 		return skl_tplg_be_set_src_pipe_params(dai, w, params);
1200 
1201 	} else {
1202 		w = dai->capture_widget;
1203 
1204 		return skl_tplg_be_set_sink_pipe_params(dai, w, params);
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static const struct snd_soc_tplg_widget_events skl_tplg_widget_ops[] = {
1211 	{SKL_MIXER_EVENT, skl_tplg_mixer_event},
1212 	{SKL_VMIXER_EVENT, skl_tplg_vmixer_event},
1213 	{SKL_PGA_EVENT, skl_tplg_pga_event},
1214 };
1215 
1216 static const struct snd_soc_tplg_bytes_ext_ops skl_tlv_ops[] = {
1217 	{SKL_CONTROL_TYPE_BYTE_TLV, skl_tplg_tlv_control_get,
1218 					skl_tplg_tlv_control_set},
1219 };
1220 
1221 /*
1222  * The topology binary passes the pin info for a module so initialize the pin
1223  * info passed into module instance
1224  */
1225 static void skl_fill_module_pin_info(struct skl_dfw_module_pin *dfw_pin,
1226 						struct skl_module_pin *m_pin,
1227 						bool is_dynamic, int max_pin)
1228 {
1229 	int i;
1230 
1231 	for (i = 0; i < max_pin; i++) {
1232 		m_pin[i].id.module_id = dfw_pin[i].module_id;
1233 		m_pin[i].id.instance_id = dfw_pin[i].instance_id;
1234 		m_pin[i].in_use = false;
1235 		m_pin[i].is_dynamic = is_dynamic;
1236 		m_pin[i].pin_state = SKL_PIN_UNBIND;
1237 	}
1238 }
1239 
1240 /*
1241  * Add pipeline from topology binary into driver pipeline list
1242  *
1243  * If already added we return that instance
1244  * Otherwise we create a new instance and add into driver list
1245  */
1246 static struct skl_pipe *skl_tplg_add_pipe(struct device *dev,
1247 			struct skl *skl, struct skl_dfw_pipe *dfw_pipe)
1248 {
1249 	struct skl_pipeline *ppl;
1250 	struct skl_pipe *pipe;
1251 	struct skl_pipe_params *params;
1252 
1253 	list_for_each_entry(ppl, &skl->ppl_list, node) {
1254 		if (ppl->pipe->ppl_id == dfw_pipe->pipe_id)
1255 			return ppl->pipe;
1256 	}
1257 
1258 	ppl = devm_kzalloc(dev, sizeof(*ppl), GFP_KERNEL);
1259 	if (!ppl)
1260 		return NULL;
1261 
1262 	pipe = devm_kzalloc(dev, sizeof(*pipe), GFP_KERNEL);
1263 	if (!pipe)
1264 		return NULL;
1265 
1266 	params = devm_kzalloc(dev, sizeof(*params), GFP_KERNEL);
1267 	if (!params)
1268 		return NULL;
1269 
1270 	pipe->ppl_id = dfw_pipe->pipe_id;
1271 	pipe->memory_pages = dfw_pipe->memory_pages;
1272 	pipe->pipe_priority = dfw_pipe->pipe_priority;
1273 	pipe->conn_type = dfw_pipe->conn_type;
1274 	pipe->state = SKL_PIPE_INVALID;
1275 	pipe->p_params = params;
1276 	INIT_LIST_HEAD(&pipe->w_list);
1277 
1278 	ppl->pipe = pipe;
1279 	list_add(&ppl->node, &skl->ppl_list);
1280 
1281 	return ppl->pipe;
1282 }
1283 
1284 static void skl_tplg_fill_fmt(struct skl_module_fmt *dst_fmt,
1285 				struct skl_dfw_module_fmt *src_fmt,
1286 				int pins)
1287 {
1288 	int i;
1289 
1290 	for (i = 0; i < pins; i++) {
1291 		dst_fmt[i].channels  = src_fmt[i].channels;
1292 		dst_fmt[i].s_freq = src_fmt[i].freq;
1293 		dst_fmt[i].bit_depth = src_fmt[i].bit_depth;
1294 		dst_fmt[i].valid_bit_depth = src_fmt[i].valid_bit_depth;
1295 		dst_fmt[i].ch_cfg = src_fmt[i].ch_cfg;
1296 		dst_fmt[i].ch_map = src_fmt[i].ch_map;
1297 		dst_fmt[i].interleaving_style = src_fmt[i].interleaving_style;
1298 		dst_fmt[i].sample_type = src_fmt[i].sample_type;
1299 	}
1300 }
1301 
1302 /*
1303  * Topology core widget load callback
1304  *
1305  * This is used to save the private data for each widget which gives
1306  * information to the driver about module and pipeline parameters which DSP
1307  * FW expects like ids, resource values, formats etc
1308  */
1309 static int skl_tplg_widget_load(struct snd_soc_component *cmpnt,
1310 				struct snd_soc_dapm_widget *w,
1311 				struct snd_soc_tplg_dapm_widget *tplg_w)
1312 {
1313 	int ret;
1314 	struct hdac_ext_bus *ebus = snd_soc_component_get_drvdata(cmpnt);
1315 	struct skl *skl = ebus_to_skl(ebus);
1316 	struct hdac_bus *bus = ebus_to_hbus(ebus);
1317 	struct skl_module_cfg *mconfig;
1318 	struct skl_pipe *pipe;
1319 	struct skl_dfw_module *dfw_config =
1320 				(struct skl_dfw_module *)tplg_w->priv.data;
1321 
1322 	if (!tplg_w->priv.size)
1323 		goto bind_event;
1324 
1325 	mconfig = devm_kzalloc(bus->dev, sizeof(*mconfig), GFP_KERNEL);
1326 
1327 	if (!mconfig)
1328 		return -ENOMEM;
1329 
1330 	w->priv = mconfig;
1331 	mconfig->id.module_id = dfw_config->module_id;
1332 	mconfig->id.instance_id = dfw_config->instance_id;
1333 	mconfig->mcps = dfw_config->max_mcps;
1334 	mconfig->ibs = dfw_config->ibs;
1335 	mconfig->obs = dfw_config->obs;
1336 	mconfig->core_id = dfw_config->core_id;
1337 	mconfig->max_in_queue = dfw_config->max_in_queue;
1338 	mconfig->max_out_queue = dfw_config->max_out_queue;
1339 	mconfig->is_loadable = dfw_config->is_loadable;
1340 	skl_tplg_fill_fmt(mconfig->in_fmt, dfw_config->in_fmt,
1341 						MODULE_MAX_IN_PINS);
1342 	skl_tplg_fill_fmt(mconfig->out_fmt, dfw_config->out_fmt,
1343 						MODULE_MAX_OUT_PINS);
1344 
1345 	mconfig->params_fixup = dfw_config->params_fixup;
1346 	mconfig->converter = dfw_config->converter;
1347 	mconfig->m_type = dfw_config->module_type;
1348 	mconfig->vbus_id = dfw_config->vbus_id;
1349 	mconfig->mem_pages = dfw_config->mem_pages;
1350 
1351 	pipe = skl_tplg_add_pipe(bus->dev, skl, &dfw_config->pipe);
1352 	if (pipe)
1353 		mconfig->pipe = pipe;
1354 
1355 	mconfig->dev_type = dfw_config->dev_type;
1356 	mconfig->hw_conn_type = dfw_config->hw_conn_type;
1357 	mconfig->time_slot = dfw_config->time_slot;
1358 	mconfig->formats_config.caps_size = dfw_config->caps.caps_size;
1359 
1360 	if (dfw_config->is_loadable)
1361 		memcpy(mconfig->guid, dfw_config->uuid,
1362 					ARRAY_SIZE(dfw_config->uuid));
1363 
1364 	mconfig->m_in_pin = devm_kzalloc(bus->dev, (mconfig->max_in_queue) *
1365 						sizeof(*mconfig->m_in_pin),
1366 						GFP_KERNEL);
1367 	if (!mconfig->m_in_pin)
1368 		return -ENOMEM;
1369 
1370 	mconfig->m_out_pin = devm_kzalloc(bus->dev, (mconfig->max_out_queue) *
1371 						sizeof(*mconfig->m_out_pin),
1372 						GFP_KERNEL);
1373 	if (!mconfig->m_out_pin)
1374 		return -ENOMEM;
1375 
1376 	skl_fill_module_pin_info(dfw_config->in_pin, mconfig->m_in_pin,
1377 						dfw_config->is_dynamic_in_pin,
1378 						mconfig->max_in_queue);
1379 
1380 	skl_fill_module_pin_info(dfw_config->out_pin, mconfig->m_out_pin,
1381 						 dfw_config->is_dynamic_out_pin,
1382 							mconfig->max_out_queue);
1383 
1384 
1385 	if (mconfig->formats_config.caps_size == 0)
1386 		goto bind_event;
1387 
1388 	mconfig->formats_config.caps = (u32 *)devm_kzalloc(bus->dev,
1389 			mconfig->formats_config.caps_size, GFP_KERNEL);
1390 
1391 	if (mconfig->formats_config.caps == NULL)
1392 		return -ENOMEM;
1393 
1394 	memcpy(mconfig->formats_config.caps, dfw_config->caps.caps,
1395 						 dfw_config->caps.caps_size);
1396 	mconfig->formats_config.param_id = dfw_config->caps.param_id;
1397 	mconfig->formats_config.set_params = dfw_config->caps.set_params;
1398 
1399 bind_event:
1400 	if (tplg_w->event_type == 0) {
1401 		dev_dbg(bus->dev, "ASoC: No event handler required\n");
1402 		return 0;
1403 	}
1404 
1405 	ret = snd_soc_tplg_widget_bind_event(w, skl_tplg_widget_ops,
1406 					ARRAY_SIZE(skl_tplg_widget_ops),
1407 					tplg_w->event_type);
1408 
1409 	if (ret) {
1410 		dev_err(bus->dev, "%s: No matching event handlers found for %d\n",
1411 					__func__, tplg_w->event_type);
1412 		return -EINVAL;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int skl_init_algo_data(struct device *dev, struct soc_bytes_ext *be,
1419 					struct snd_soc_tplg_bytes_control *bc)
1420 {
1421 	struct skl_algo_data *ac;
1422 	struct skl_dfw_algo_data *dfw_ac =
1423 				(struct skl_dfw_algo_data *)bc->priv.data;
1424 
1425 	ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL);
1426 	if (!ac)
1427 		return -ENOMEM;
1428 
1429 	/* Fill private data */
1430 	ac->max = dfw_ac->max;
1431 	ac->param_id = dfw_ac->param_id;
1432 	ac->set_params = dfw_ac->set_params;
1433 
1434 	if (ac->max) {
1435 		ac->params = (char *) devm_kzalloc(dev, ac->max, GFP_KERNEL);
1436 		if (!ac->params)
1437 			return -ENOMEM;
1438 
1439 		if (dfw_ac->params)
1440 			memcpy(ac->params, dfw_ac->params, ac->max);
1441 	}
1442 
1443 	be->dobj.private  = ac;
1444 	return 0;
1445 }
1446 
1447 static int skl_tplg_control_load(struct snd_soc_component *cmpnt,
1448 				struct snd_kcontrol_new *kctl,
1449 				struct snd_soc_tplg_ctl_hdr *hdr)
1450 {
1451 	struct soc_bytes_ext *sb;
1452 	struct snd_soc_tplg_bytes_control *tplg_bc;
1453 	struct hdac_ext_bus *ebus  = snd_soc_component_get_drvdata(cmpnt);
1454 	struct hdac_bus *bus = ebus_to_hbus(ebus);
1455 
1456 	switch (hdr->ops.info) {
1457 	case SND_SOC_TPLG_CTL_BYTES:
1458 		tplg_bc = container_of(hdr,
1459 				struct snd_soc_tplg_bytes_control, hdr);
1460 		if (kctl->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
1461 			sb = (struct soc_bytes_ext *)kctl->private_value;
1462 			if (tplg_bc->priv.size)
1463 				return skl_init_algo_data(
1464 						bus->dev, sb, tplg_bc);
1465 		}
1466 		break;
1467 
1468 	default:
1469 		dev_warn(bus->dev, "Control load not supported %d:%d:%d\n",
1470 			hdr->ops.get, hdr->ops.put, hdr->ops.info);
1471 		break;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static struct snd_soc_tplg_ops skl_tplg_ops  = {
1478 	.widget_load = skl_tplg_widget_load,
1479 	.control_load = skl_tplg_control_load,
1480 	.bytes_ext_ops = skl_tlv_ops,
1481 	.bytes_ext_ops_count = ARRAY_SIZE(skl_tlv_ops),
1482 };
1483 
1484 /* This will be read from topology manifest, currently defined here */
1485 #define SKL_MAX_MCPS 30000000
1486 #define SKL_FW_MAX_MEM 1000000
1487 
1488 /*
1489  * SKL topology init routine
1490  */
1491 int skl_tplg_init(struct snd_soc_platform *platform, struct hdac_ext_bus *ebus)
1492 {
1493 	int ret;
1494 	const struct firmware *fw;
1495 	struct hdac_bus *bus = ebus_to_hbus(ebus);
1496 	struct skl *skl = ebus_to_skl(ebus);
1497 
1498 	ret = request_firmware(&fw, "dfw_sst.bin", bus->dev);
1499 	if (ret < 0) {
1500 		dev_err(bus->dev, "tplg fw %s load failed with %d\n",
1501 				"dfw_sst.bin", ret);
1502 		return ret;
1503 	}
1504 
1505 	/*
1506 	 * The complete tplg for SKL is loaded as index 0, we don't use
1507 	 * any other index
1508 	 */
1509 	ret = snd_soc_tplg_component_load(&platform->component,
1510 					&skl_tplg_ops, fw, 0);
1511 	if (ret < 0) {
1512 		dev_err(bus->dev, "tplg component load failed%d\n", ret);
1513 		return -EINVAL;
1514 	}
1515 
1516 	skl->resource.max_mcps = SKL_MAX_MCPS;
1517 	skl->resource.max_mem = SKL_FW_MAX_MEM;
1518 
1519 	skl->tplg = fw;
1520 
1521 	return 0;
1522 }
1523