1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.init_fw = skl_sst_init_fw,
207 		.cleanup = skl_sst_dsp_cleanup
208 	},
209 	{
210 		.id = 0x9d71,
211 		.loader_ops = skl_get_loader_ops,
212 		.init = kbl_sst_dsp_init,
213 		.init_fw = skl_sst_init_fw,
214 		.cleanup = skl_sst_dsp_cleanup
215 	},
216 	{
217 		.id = 0x5a98,
218 		.loader_ops = bxt_get_loader_ops,
219 		.init = bxt_sst_dsp_init,
220 		.init_fw = bxt_sst_init_fw,
221 		.cleanup = bxt_sst_dsp_cleanup
222 	},
223 	{
224 		.id = 0x3198,
225 		.loader_ops = bxt_get_loader_ops,
226 		.init = bxt_sst_dsp_init,
227 		.init_fw = bxt_sst_init_fw,
228 		.cleanup = bxt_sst_dsp_cleanup
229 	},
230 };
231 
232 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
233 {
234 	int i;
235 
236 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
237 		if (dsp_ops[i].id == pci_id)
238 			return &dsp_ops[i];
239 	}
240 
241 	return NULL;
242 }
243 
244 int skl_init_dsp(struct skl *skl)
245 {
246 	void __iomem *mmio_base;
247 	struct hdac_ext_bus *ebus = &skl->ebus;
248 	struct hdac_bus *bus = ebus_to_hbus(ebus);
249 	struct skl_dsp_loader_ops loader_ops;
250 	int irq = bus->irq;
251 	const struct skl_dsp_ops *ops;
252 	int ret;
253 
254 	/* enable ppcap interrupt */
255 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
256 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
257 
258 	/* read the BAR of the ADSP MMIO */
259 	mmio_base = pci_ioremap_bar(skl->pci, 4);
260 	if (mmio_base == NULL) {
261 		dev_err(bus->dev, "ioremap error\n");
262 		return -ENXIO;
263 	}
264 
265 	ops = skl_get_dsp_ops(skl->pci->device);
266 	if (!ops)
267 		return -EIO;
268 
269 	loader_ops = ops->loader_ops();
270 	ret = ops->init(bus->dev, mmio_base, irq,
271 				skl->fw_name, loader_ops,
272 				&skl->skl_sst);
273 
274 	if (ret < 0)
275 		return ret;
276 
277 	skl->skl_sst->dsp_ops = ops;
278 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
279 
280 	return ret;
281 }
282 
283 int skl_free_dsp(struct skl *skl)
284 {
285 	struct hdac_ext_bus *ebus = &skl->ebus;
286 	struct hdac_bus *bus = ebus_to_hbus(ebus);
287 	struct skl_sst *ctx = skl->skl_sst;
288 
289 	/* disable  ppcap interrupt */
290 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
291 
292 	ctx->dsp_ops->cleanup(bus->dev, ctx);
293 
294 	if (ctx->dsp->addr.lpe)
295 		iounmap(ctx->dsp->addr.lpe);
296 
297 	return 0;
298 }
299 
300 /*
301  * In the case of "suspend_active" i.e, the Audio IP being active
302  * during system suspend, immediately excecute any pending D0i3 work
303  * before suspending. This is needed for the IP to work in low power
304  * mode during system suspend. In the case of normal suspend, cancel
305  * any pending D0i3 work.
306  */
307 int skl_suspend_late_dsp(struct skl *skl)
308 {
309 	struct skl_sst *ctx = skl->skl_sst;
310 	struct delayed_work *dwork;
311 
312 	if (!ctx)
313 		return 0;
314 
315 	dwork = &ctx->d0i3.work;
316 
317 	if (dwork->work.func) {
318 		if (skl->supend_active)
319 			flush_delayed_work(dwork);
320 		else
321 			cancel_delayed_work_sync(dwork);
322 	}
323 
324 	return 0;
325 }
326 
327 int skl_suspend_dsp(struct skl *skl)
328 {
329 	struct skl_sst *ctx = skl->skl_sst;
330 	int ret;
331 
332 	/* if ppcap is not supported return 0 */
333 	if (!skl->ebus.bus.ppcap)
334 		return 0;
335 
336 	ret = skl_dsp_sleep(ctx->dsp);
337 	if (ret < 0)
338 		return ret;
339 
340 	/* disable ppcap interrupt */
341 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
342 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
343 
344 	return 0;
345 }
346 
347 int skl_resume_dsp(struct skl *skl)
348 {
349 	struct skl_sst *ctx = skl->skl_sst;
350 	int ret;
351 
352 	/* if ppcap is not supported return 0 */
353 	if (!skl->ebus.bus.ppcap)
354 		return 0;
355 
356 	/* enable ppcap interrupt */
357 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
358 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
359 
360 	/* check if DSP 1st boot is done */
361 	if (skl->skl_sst->is_first_boot == true)
362 		return 0;
363 
364 	ret = skl_dsp_wake(ctx->dsp);
365 	if (ret < 0)
366 		return ret;
367 
368 	skl_dsp_enable_notification(skl->skl_sst, false);
369 	return ret;
370 }
371 
372 enum skl_bitdepth skl_get_bit_depth(int params)
373 {
374 	switch (params) {
375 	case 8:
376 		return SKL_DEPTH_8BIT;
377 
378 	case 16:
379 		return SKL_DEPTH_16BIT;
380 
381 	case 24:
382 		return SKL_DEPTH_24BIT;
383 
384 	case 32:
385 		return SKL_DEPTH_32BIT;
386 
387 	default:
388 		return SKL_DEPTH_INVALID;
389 
390 	}
391 }
392 
393 /*
394  * Each module in DSP expects a base module configuration, which consists of
395  * PCM format information, which we calculate in driver and resource values
396  * which are read from widget information passed through topology binary
397  * This is send when we create a module with INIT_INSTANCE IPC msg
398  */
399 static void skl_set_base_module_format(struct skl_sst *ctx,
400 			struct skl_module_cfg *mconfig,
401 			struct skl_base_cfg *base_cfg)
402 {
403 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
404 
405 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
406 
407 	base_cfg->audio_fmt.s_freq = format->s_freq;
408 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
409 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
410 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
411 
412 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
413 			format->bit_depth, format->valid_bit_depth,
414 			format->ch_cfg);
415 
416 	base_cfg->audio_fmt.channel_map = format->ch_map;
417 
418 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
419 
420 	base_cfg->cps = mconfig->mcps;
421 	base_cfg->ibs = mconfig->ibs;
422 	base_cfg->obs = mconfig->obs;
423 	base_cfg->is_pages = mconfig->mem_pages;
424 }
425 
426 /*
427  * Copies copier capabilities into copier module and updates copier module
428  * config size.
429  */
430 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
431 				struct skl_cpr_cfg *cpr_mconfig)
432 {
433 	if (mconfig->formats_config.caps_size == 0)
434 		return;
435 
436 	memcpy(cpr_mconfig->gtw_cfg.config_data,
437 			mconfig->formats_config.caps,
438 			mconfig->formats_config.caps_size);
439 
440 	cpr_mconfig->gtw_cfg.config_length =
441 			(mconfig->formats_config.caps_size) / 4;
442 }
443 
444 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
445 /*
446  * Calculate the gatewat settings required for copier module, type of
447  * gateway and index of gateway to use
448  */
449 static u32 skl_get_node_id(struct skl_sst *ctx,
450 			struct skl_module_cfg *mconfig)
451 {
452 	union skl_connector_node_id node_id = {0};
453 	union skl_ssp_dma_node ssp_node  = {0};
454 	struct skl_pipe_params *params = mconfig->pipe->p_params;
455 
456 	switch (mconfig->dev_type) {
457 	case SKL_DEVICE_BT:
458 		node_id.node.dma_type =
459 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
460 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
461 			SKL_DMA_I2S_LINK_INPUT_CLASS;
462 		node_id.node.vindex = params->host_dma_id +
463 					(mconfig->vbus_id << 3);
464 		break;
465 
466 	case SKL_DEVICE_I2S:
467 		node_id.node.dma_type =
468 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
469 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
470 			SKL_DMA_I2S_LINK_INPUT_CLASS;
471 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
472 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
473 		node_id.node.vindex = ssp_node.val;
474 		break;
475 
476 	case SKL_DEVICE_DMIC:
477 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
478 		node_id.node.vindex = mconfig->vbus_id +
479 					 (mconfig->time_slot);
480 		break;
481 
482 	case SKL_DEVICE_HDALINK:
483 		node_id.node.dma_type =
484 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
485 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
486 			SKL_DMA_HDA_LINK_INPUT_CLASS;
487 		node_id.node.vindex = params->link_dma_id;
488 		break;
489 
490 	case SKL_DEVICE_HDAHOST:
491 		node_id.node.dma_type =
492 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
493 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
494 			SKL_DMA_HDA_HOST_INPUT_CLASS;
495 		node_id.node.vindex = params->host_dma_id;
496 		break;
497 
498 	default:
499 		node_id.val = 0xFFFFFFFF;
500 		break;
501 	}
502 
503 	return node_id.val;
504 }
505 
506 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
507 			struct skl_module_cfg *mconfig,
508 			struct skl_cpr_cfg *cpr_mconfig)
509 {
510 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
511 
512 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
513 		cpr_mconfig->cpr_feature_mask = 0;
514 		return;
515 	}
516 
517 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
518 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
519 	else
520 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
521 
522 	cpr_mconfig->cpr_feature_mask = 0;
523 	cpr_mconfig->gtw_cfg.config_length  = 0;
524 
525 	skl_copy_copier_caps(mconfig, cpr_mconfig);
526 }
527 
528 #define DMA_CONTROL_ID 5
529 
530 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
531 {
532 	struct skl_dma_control *dma_ctrl;
533 	struct skl_ipc_large_config_msg msg = {0};
534 	int err = 0;
535 
536 
537 	/*
538 	 * if blob size zero, then return
539 	 */
540 	if (mconfig->formats_config.caps_size == 0)
541 		return 0;
542 
543 	msg.large_param_id = DMA_CONTROL_ID;
544 	msg.param_data_size = sizeof(struct skl_dma_control) +
545 				mconfig->formats_config.caps_size;
546 
547 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
548 	if (dma_ctrl == NULL)
549 		return -ENOMEM;
550 
551 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
552 
553 	/* size in dwords */
554 	dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
555 
556 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
557 				mconfig->formats_config.caps_size);
558 
559 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
560 
561 	kfree(dma_ctrl);
562 	return err;
563 }
564 
565 static void skl_setup_out_format(struct skl_sst *ctx,
566 			struct skl_module_cfg *mconfig,
567 			struct skl_audio_data_format *out_fmt)
568 {
569 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
570 
571 	out_fmt->number_of_channels = (u8)format->channels;
572 	out_fmt->s_freq = format->s_freq;
573 	out_fmt->bit_depth = format->bit_depth;
574 	out_fmt->valid_bit_depth = format->valid_bit_depth;
575 	out_fmt->ch_cfg = format->ch_cfg;
576 
577 	out_fmt->channel_map = format->ch_map;
578 	out_fmt->interleaving = format->interleaving_style;
579 	out_fmt->sample_type = format->sample_type;
580 
581 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
582 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
583 }
584 
585 /*
586  * DSP needs SRC module for frequency conversion, SRC takes base module
587  * configuration and the target frequency as extra parameter passed as src
588  * config
589  */
590 static void skl_set_src_format(struct skl_sst *ctx,
591 			struct skl_module_cfg *mconfig,
592 			struct skl_src_module_cfg *src_mconfig)
593 {
594 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
595 
596 	skl_set_base_module_format(ctx, mconfig,
597 		(struct skl_base_cfg *)src_mconfig);
598 
599 	src_mconfig->src_cfg = fmt->s_freq;
600 }
601 
602 /*
603  * DSP needs updown module to do channel conversion. updown module take base
604  * module configuration and channel configuration
605  * It also take coefficients and now we have defaults applied here
606  */
607 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
608 			struct skl_module_cfg *mconfig,
609 			struct skl_up_down_mixer_cfg *mixer_mconfig)
610 {
611 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
612 	int i = 0;
613 
614 	skl_set_base_module_format(ctx,	mconfig,
615 		(struct skl_base_cfg *)mixer_mconfig);
616 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
617 
618 	/* Select F/W default coefficient */
619 	mixer_mconfig->coeff_sel = 0x0;
620 
621 	/* User coeff, don't care since we are selecting F/W defaults */
622 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
623 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
624 }
625 
626 /*
627  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
628  * dma) or link (hda link, SSP, PDM)
629  * Here we calculate the copier module parameters, like PCM format, output
630  * format, gateway settings
631  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
632  */
633 static void skl_set_copier_format(struct skl_sst *ctx,
634 			struct skl_module_cfg *mconfig,
635 			struct skl_cpr_cfg *cpr_mconfig)
636 {
637 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
638 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
639 
640 	skl_set_base_module_format(ctx, mconfig, base_cfg);
641 
642 	skl_setup_out_format(ctx, mconfig, out_fmt);
643 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
644 }
645 
646 /*
647  * Algo module are DSP pre processing modules. Algo module take base module
648  * configuration and params
649  */
650 
651 static void skl_set_algo_format(struct skl_sst *ctx,
652 			struct skl_module_cfg *mconfig,
653 			struct skl_algo_cfg *algo_mcfg)
654 {
655 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
656 
657 	skl_set_base_module_format(ctx, mconfig, base_cfg);
658 
659 	if (mconfig->formats_config.caps_size == 0)
660 		return;
661 
662 	memcpy(algo_mcfg->params,
663 			mconfig->formats_config.caps,
664 			mconfig->formats_config.caps_size);
665 
666 }
667 
668 /*
669  * Mic select module allows selecting one or many input channels, thus
670  * acting as a demux.
671  *
672  * Mic select module take base module configuration and out-format
673  * configuration
674  */
675 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
676 			struct skl_module_cfg *mconfig,
677 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
678 {
679 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
680 	struct skl_base_cfg *base_cfg =
681 				(struct skl_base_cfg *)base_outfmt_mcfg;
682 
683 	skl_set_base_module_format(ctx, mconfig, base_cfg);
684 	skl_setup_out_format(ctx, mconfig, out_fmt);
685 }
686 
687 static u16 skl_get_module_param_size(struct skl_sst *ctx,
688 			struct skl_module_cfg *mconfig)
689 {
690 	u16 param_size;
691 
692 	switch (mconfig->m_type) {
693 	case SKL_MODULE_TYPE_COPIER:
694 		param_size = sizeof(struct skl_cpr_cfg);
695 		param_size += mconfig->formats_config.caps_size;
696 		return param_size;
697 
698 	case SKL_MODULE_TYPE_SRCINT:
699 		return sizeof(struct skl_src_module_cfg);
700 
701 	case SKL_MODULE_TYPE_UPDWMIX:
702 		return sizeof(struct skl_up_down_mixer_cfg);
703 
704 	case SKL_MODULE_TYPE_ALGO:
705 		param_size = sizeof(struct skl_base_cfg);
706 		param_size += mconfig->formats_config.caps_size;
707 		return param_size;
708 
709 	case SKL_MODULE_TYPE_BASE_OUTFMT:
710 	case SKL_MODULE_TYPE_KPB:
711 		return sizeof(struct skl_base_outfmt_cfg);
712 
713 	default:
714 		/*
715 		 * return only base cfg when no specific module type is
716 		 * specified
717 		 */
718 		return sizeof(struct skl_base_cfg);
719 	}
720 
721 	return 0;
722 }
723 
724 /*
725  * DSP firmware supports various modules like copier, SRC, updown etc.
726  * These modules required various parameters to be calculated and sent for
727  * the module initialization to DSP. By default a generic module needs only
728  * base module format configuration
729  */
730 
731 static int skl_set_module_format(struct skl_sst *ctx,
732 			struct skl_module_cfg *module_config,
733 			u16 *module_config_size,
734 			void **param_data)
735 {
736 	u16 param_size;
737 
738 	param_size  = skl_get_module_param_size(ctx, module_config);
739 
740 	*param_data = kzalloc(param_size, GFP_KERNEL);
741 	if (NULL == *param_data)
742 		return -ENOMEM;
743 
744 	*module_config_size = param_size;
745 
746 	switch (module_config->m_type) {
747 	case SKL_MODULE_TYPE_COPIER:
748 		skl_set_copier_format(ctx, module_config, *param_data);
749 		break;
750 
751 	case SKL_MODULE_TYPE_SRCINT:
752 		skl_set_src_format(ctx, module_config, *param_data);
753 		break;
754 
755 	case SKL_MODULE_TYPE_UPDWMIX:
756 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
757 		break;
758 
759 	case SKL_MODULE_TYPE_ALGO:
760 		skl_set_algo_format(ctx, module_config, *param_data);
761 		break;
762 
763 	case SKL_MODULE_TYPE_BASE_OUTFMT:
764 	case SKL_MODULE_TYPE_KPB:
765 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
766 		break;
767 
768 	default:
769 		skl_set_base_module_format(ctx, module_config, *param_data);
770 		break;
771 
772 	}
773 
774 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
775 			module_config->id.module_id, param_size);
776 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
777 			*param_data, param_size, false);
778 	return 0;
779 }
780 
781 static int skl_get_queue_index(struct skl_module_pin *mpin,
782 				struct skl_module_inst_id id, int max)
783 {
784 	int i;
785 
786 	for (i = 0; i < max; i++)  {
787 		if (mpin[i].id.module_id == id.module_id &&
788 			mpin[i].id.instance_id == id.instance_id)
789 			return i;
790 	}
791 
792 	return -EINVAL;
793 }
794 
795 /*
796  * Allocates queue for each module.
797  * if dynamic, the pin_index is allocated 0 to max_pin.
798  * In static, the pin_index is fixed based on module_id and instance id
799  */
800 static int skl_alloc_queue(struct skl_module_pin *mpin,
801 			struct skl_module_cfg *tgt_cfg, int max)
802 {
803 	int i;
804 	struct skl_module_inst_id id = tgt_cfg->id;
805 	/*
806 	 * if pin in dynamic, find first free pin
807 	 * otherwise find match module and instance id pin as topology will
808 	 * ensure a unique pin is assigned to this so no need to
809 	 * allocate/free
810 	 */
811 	for (i = 0; i < max; i++)  {
812 		if (mpin[i].is_dynamic) {
813 			if (!mpin[i].in_use &&
814 				mpin[i].pin_state == SKL_PIN_UNBIND) {
815 
816 				mpin[i].in_use = true;
817 				mpin[i].id.module_id = id.module_id;
818 				mpin[i].id.instance_id = id.instance_id;
819 				mpin[i].id.pvt_id = id.pvt_id;
820 				mpin[i].tgt_mcfg = tgt_cfg;
821 				return i;
822 			}
823 		} else {
824 			if (mpin[i].id.module_id == id.module_id &&
825 				mpin[i].id.instance_id == id.instance_id &&
826 				mpin[i].pin_state == SKL_PIN_UNBIND) {
827 
828 				mpin[i].tgt_mcfg = tgt_cfg;
829 				return i;
830 			}
831 		}
832 	}
833 
834 	return -EINVAL;
835 }
836 
837 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
838 {
839 	if (mpin[q_index].is_dynamic) {
840 		mpin[q_index].in_use = false;
841 		mpin[q_index].id.module_id = 0;
842 		mpin[q_index].id.instance_id = 0;
843 		mpin[q_index].id.pvt_id = 0;
844 	}
845 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
846 	mpin[q_index].tgt_mcfg = NULL;
847 }
848 
849 /* Module state will be set to unint, if all the out pin state is UNBIND */
850 
851 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
852 						struct skl_module_cfg *mcfg)
853 {
854 	int i;
855 	bool found = false;
856 
857 	for (i = 0; i < max; i++)  {
858 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
859 			continue;
860 		found = true;
861 		break;
862 	}
863 
864 	if (!found)
865 		mcfg->m_state = SKL_MODULE_INIT_DONE;
866 	return;
867 }
868 
869 /*
870  * A module needs to be instanataited in DSP. A mdoule is present in a
871  * collection of module referred as a PIPE.
872  * We first calculate the module format, based on module type and then
873  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
874  */
875 int skl_init_module(struct skl_sst *ctx,
876 			struct skl_module_cfg *mconfig)
877 {
878 	u16 module_config_size = 0;
879 	void *param_data = NULL;
880 	int ret;
881 	struct skl_ipc_init_instance_msg msg;
882 
883 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
884 		 mconfig->id.module_id, mconfig->id.pvt_id);
885 
886 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
887 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
888 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
889 		return -EIO;
890 	}
891 
892 	ret = skl_set_module_format(ctx, mconfig,
893 			&module_config_size, &param_data);
894 	if (ret < 0) {
895 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
896 		return ret;
897 	}
898 
899 	msg.module_id = mconfig->id.module_id;
900 	msg.instance_id = mconfig->id.pvt_id;
901 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
902 	msg.param_data_size = module_config_size;
903 	msg.core_id = mconfig->core_id;
904 	msg.domain = mconfig->domain;
905 
906 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
907 	if (ret < 0) {
908 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
909 		kfree(param_data);
910 		return ret;
911 	}
912 	mconfig->m_state = SKL_MODULE_INIT_DONE;
913 	kfree(param_data);
914 	return ret;
915 }
916 
917 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
918 	*src_module, struct skl_module_cfg *dst_module)
919 {
920 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
921 		__func__, src_module->id.module_id, src_module->id.pvt_id);
922 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
923 		 dst_module->id.module_id, dst_module->id.pvt_id);
924 
925 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
926 		src_module->m_state, dst_module->m_state);
927 }
928 
929 /*
930  * On module freeup, we need to unbind the module with modules
931  * it is already bind.
932  * Find the pin allocated and unbind then using bind_unbind IPC
933  */
934 int skl_unbind_modules(struct skl_sst *ctx,
935 			struct skl_module_cfg *src_mcfg,
936 			struct skl_module_cfg *dst_mcfg)
937 {
938 	int ret;
939 	struct skl_ipc_bind_unbind_msg msg;
940 	struct skl_module_inst_id src_id = src_mcfg->id;
941 	struct skl_module_inst_id dst_id = dst_mcfg->id;
942 	int in_max = dst_mcfg->max_in_queue;
943 	int out_max = src_mcfg->max_out_queue;
944 	int src_index, dst_index, src_pin_state, dst_pin_state;
945 
946 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
947 
948 	/* get src queue index */
949 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
950 	if (src_index < 0)
951 		return 0;
952 
953 	msg.src_queue = src_index;
954 
955 	/* get dst queue index */
956 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
957 	if (dst_index < 0)
958 		return 0;
959 
960 	msg.dst_queue = dst_index;
961 
962 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
963 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
964 
965 	if (src_pin_state != SKL_PIN_BIND_DONE ||
966 		dst_pin_state != SKL_PIN_BIND_DONE)
967 		return 0;
968 
969 	msg.module_id = src_mcfg->id.module_id;
970 	msg.instance_id = src_mcfg->id.pvt_id;
971 	msg.dst_module_id = dst_mcfg->id.module_id;
972 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
973 	msg.bind = false;
974 
975 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
976 	if (!ret) {
977 		/* free queue only if unbind is success */
978 		skl_free_queue(src_mcfg->m_out_pin, src_index);
979 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
980 
981 		/*
982 		 * check only if src module bind state, bind is
983 		 * always from src -> sink
984 		 */
985 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
986 	}
987 
988 	return ret;
989 }
990 
991 /*
992  * Once a module is instantiated it need to be 'bind' with other modules in
993  * the pipeline. For binding we need to find the module pins which are bind
994  * together
995  * This function finds the pins and then sends bund_unbind IPC message to
996  * DSP using IPC helper
997  */
998 int skl_bind_modules(struct skl_sst *ctx,
999 			struct skl_module_cfg *src_mcfg,
1000 			struct skl_module_cfg *dst_mcfg)
1001 {
1002 	int ret;
1003 	struct skl_ipc_bind_unbind_msg msg;
1004 	int in_max = dst_mcfg->max_in_queue;
1005 	int out_max = src_mcfg->max_out_queue;
1006 	int src_index, dst_index;
1007 
1008 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1009 
1010 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1011 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1012 		return 0;
1013 
1014 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1015 	if (src_index < 0)
1016 		return -EINVAL;
1017 
1018 	msg.src_queue = src_index;
1019 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1020 	if (dst_index < 0) {
1021 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1022 		return -EINVAL;
1023 	}
1024 
1025 	msg.dst_queue = dst_index;
1026 
1027 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1028 			 msg.src_queue, msg.dst_queue);
1029 
1030 	msg.module_id = src_mcfg->id.module_id;
1031 	msg.instance_id = src_mcfg->id.pvt_id;
1032 	msg.dst_module_id = dst_mcfg->id.module_id;
1033 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1034 	msg.bind = true;
1035 
1036 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1037 
1038 	if (!ret) {
1039 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1040 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1041 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1042 	} else {
1043 		/* error case , if IPC fails, clear the queue index */
1044 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1045 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1052 	enum skl_ipc_pipeline_state state)
1053 {
1054 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1055 
1056 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1057 }
1058 
1059 /*
1060  * A pipeline is a collection of modules. Before a module in instantiated a
1061  * pipeline needs to be created for it.
1062  * This function creates pipeline, by sending create pipeline IPC messages
1063  * to FW
1064  */
1065 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1066 {
1067 	int ret;
1068 
1069 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1070 
1071 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1072 				pipe->pipe_priority, pipe->ppl_id,
1073 				pipe->lp_mode);
1074 	if (ret < 0) {
1075 		dev_err(ctx->dev, "Failed to create pipeline\n");
1076 		return ret;
1077 	}
1078 
1079 	pipe->state = SKL_PIPE_CREATED;
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1086  * pause the pipeline first and then delete it
1087  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1088  * DMA engines and releases resources
1089  */
1090 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1091 {
1092 	int ret;
1093 
1094 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1095 
1096 	/* If pipe is started, do stop the pipe in FW. */
1097 	if (pipe->state >= SKL_PIPE_STARTED) {
1098 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1099 		if (ret < 0) {
1100 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1101 			return ret;
1102 		}
1103 
1104 		pipe->state = SKL_PIPE_PAUSED;
1105 	}
1106 
1107 	/* If pipe was not created in FW, do not try to delete it */
1108 	if (pipe->state < SKL_PIPE_CREATED)
1109 		return 0;
1110 
1111 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1112 	if (ret < 0) {
1113 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1114 		return ret;
1115 	}
1116 
1117 	pipe->state = SKL_PIPE_INVALID;
1118 
1119 	return ret;
1120 }
1121 
1122 /*
1123  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1124  * For processing data the pipe need to be run by sending IPC set pipe state
1125  * to DSP
1126  */
1127 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1128 {
1129 	int ret;
1130 
1131 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1132 
1133 	/* If pipe was not created in FW, do not try to pause or delete */
1134 	if (pipe->state < SKL_PIPE_CREATED)
1135 		return 0;
1136 
1137 	/* Pipe has to be paused before it is started */
1138 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1139 	if (ret < 0) {
1140 		dev_err(ctx->dev, "Failed to pause pipe\n");
1141 		return ret;
1142 	}
1143 
1144 	pipe->state = SKL_PIPE_PAUSED;
1145 
1146 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1147 	if (ret < 0) {
1148 		dev_err(ctx->dev, "Failed to start pipe\n");
1149 		return ret;
1150 	}
1151 
1152 	pipe->state = SKL_PIPE_STARTED;
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Stop the pipeline by sending set pipe state IPC
1159  * DSP doesnt implement stop so we always send pause message
1160  */
1161 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1162 {
1163 	int ret;
1164 
1165 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1166 
1167 	/* If pipe was not created in FW, do not try to pause or delete */
1168 	if (pipe->state < SKL_PIPE_PAUSED)
1169 		return 0;
1170 
1171 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1172 	if (ret < 0) {
1173 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1174 		return ret;
1175 	}
1176 
1177 	pipe->state = SKL_PIPE_PAUSED;
1178 
1179 	return 0;
1180 }
1181 
1182 /*
1183  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1184  * from the DSP side
1185  */
1186 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1187 {
1188 	int ret;
1189 
1190 	/* If pipe was not created in FW, do not try to pause or delete */
1191 	if (pipe->state < SKL_PIPE_PAUSED)
1192 		return 0;
1193 
1194 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1195 	if (ret < 0) {
1196 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1197 		return ret;
1198 	}
1199 
1200 	pipe->state = SKL_PIPE_RESET;
1201 
1202 	return 0;
1203 }
1204 
1205 /* Algo parameter set helper function */
1206 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1207 				u32 param_id, struct skl_module_cfg *mcfg)
1208 {
1209 	struct skl_ipc_large_config_msg msg;
1210 
1211 	msg.module_id = mcfg->id.module_id;
1212 	msg.instance_id = mcfg->id.pvt_id;
1213 	msg.param_data_size = size;
1214 	msg.large_param_id = param_id;
1215 
1216 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1217 }
1218 
1219 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1220 			  u32 param_id, struct skl_module_cfg *mcfg)
1221 {
1222 	struct skl_ipc_large_config_msg msg;
1223 
1224 	msg.module_id = mcfg->id.module_id;
1225 	msg.instance_id = mcfg->id.pvt_id;
1226 	msg.param_data_size = size;
1227 	msg.large_param_id = param_id;
1228 
1229 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1230 }
1231