xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.init_fw = skl_sst_init_fw,
207 		.cleanup = skl_sst_dsp_cleanup
208 	},
209 	{
210 		.id = 0x9d71,
211 		.loader_ops = skl_get_loader_ops,
212 		.init = skl_sst_dsp_init,
213 		.init_fw = skl_sst_init_fw,
214 		.cleanup = skl_sst_dsp_cleanup
215 	},
216 	{
217 		.id = 0x5a98,
218 		.loader_ops = bxt_get_loader_ops,
219 		.init = bxt_sst_dsp_init,
220 		.init_fw = bxt_sst_init_fw,
221 		.cleanup = bxt_sst_dsp_cleanup
222 	},
223 };
224 
225 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
226 {
227 	int i;
228 
229 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
230 		if (dsp_ops[i].id == pci_id)
231 			return &dsp_ops[i];
232 	}
233 
234 	return NULL;
235 }
236 
237 int skl_init_dsp(struct skl *skl)
238 {
239 	void __iomem *mmio_base;
240 	struct hdac_ext_bus *ebus = &skl->ebus;
241 	struct hdac_bus *bus = ebus_to_hbus(ebus);
242 	struct skl_dsp_loader_ops loader_ops;
243 	int irq = bus->irq;
244 	const struct skl_dsp_ops *ops;
245 	int ret;
246 
247 	/* enable ppcap interrupt */
248 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
249 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
250 
251 	/* read the BAR of the ADSP MMIO */
252 	mmio_base = pci_ioremap_bar(skl->pci, 4);
253 	if (mmio_base == NULL) {
254 		dev_err(bus->dev, "ioremap error\n");
255 		return -ENXIO;
256 	}
257 
258 	ops = skl_get_dsp_ops(skl->pci->device);
259 	if (!ops)
260 		return -EIO;
261 
262 	loader_ops = ops->loader_ops();
263 	ret = ops->init(bus->dev, mmio_base, irq,
264 				skl->fw_name, loader_ops,
265 				&skl->skl_sst);
266 
267 	if (ret < 0)
268 		return ret;
269 
270 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
271 
272 	return ret;
273 }
274 
275 int skl_free_dsp(struct skl *skl)
276 {
277 	struct hdac_ext_bus *ebus = &skl->ebus;
278 	struct hdac_bus *bus = ebus_to_hbus(ebus);
279 	struct skl_sst *ctx = skl->skl_sst;
280 	const struct skl_dsp_ops *ops;
281 
282 	/* disable  ppcap interrupt */
283 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
284 
285 	ops = skl_get_dsp_ops(skl->pci->device);
286 	if (!ops)
287 		return -EIO;
288 
289 	ops->cleanup(bus->dev, ctx);
290 
291 	if (ctx->dsp->addr.lpe)
292 		iounmap(ctx->dsp->addr.lpe);
293 
294 	return 0;
295 }
296 
297 /*
298  * In the case of "suspend_active" i.e, the Audio IP being active
299  * during system suspend, immediately excecute any pending D0i3 work
300  * before suspending. This is needed for the IP to work in low power
301  * mode during system suspend. In the case of normal suspend, cancel
302  * any pending D0i3 work.
303  */
304 int skl_suspend_late_dsp(struct skl *skl)
305 {
306 	struct skl_sst *ctx = skl->skl_sst;
307 	struct delayed_work *dwork;
308 
309 	if (!ctx)
310 		return 0;
311 
312 	dwork = &ctx->d0i3.work;
313 
314 	if (dwork->work.func) {
315 		if (skl->supend_active)
316 			flush_delayed_work(dwork);
317 		else
318 			cancel_delayed_work_sync(dwork);
319 	}
320 
321 	return 0;
322 }
323 
324 int skl_suspend_dsp(struct skl *skl)
325 {
326 	struct skl_sst *ctx = skl->skl_sst;
327 	int ret;
328 
329 	/* if ppcap is not supported return 0 */
330 	if (!skl->ebus.bus.ppcap)
331 		return 0;
332 
333 	ret = skl_dsp_sleep(ctx->dsp);
334 	if (ret < 0)
335 		return ret;
336 
337 	/* disable ppcap interrupt */
338 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
339 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
340 
341 	return 0;
342 }
343 
344 int skl_resume_dsp(struct skl *skl)
345 {
346 	struct skl_sst *ctx = skl->skl_sst;
347 	int ret;
348 
349 	/* if ppcap is not supported return 0 */
350 	if (!skl->ebus.bus.ppcap)
351 		return 0;
352 
353 	/* enable ppcap interrupt */
354 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
355 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
356 
357 	/* check if DSP 1st boot is done */
358 	if (skl->skl_sst->is_first_boot == true)
359 		return 0;
360 
361 	ret = skl_dsp_wake(ctx->dsp);
362 	if (ret < 0)
363 		return ret;
364 
365 	skl_dsp_enable_notification(skl->skl_sst, false);
366 	return ret;
367 }
368 
369 enum skl_bitdepth skl_get_bit_depth(int params)
370 {
371 	switch (params) {
372 	case 8:
373 		return SKL_DEPTH_8BIT;
374 
375 	case 16:
376 		return SKL_DEPTH_16BIT;
377 
378 	case 24:
379 		return SKL_DEPTH_24BIT;
380 
381 	case 32:
382 		return SKL_DEPTH_32BIT;
383 
384 	default:
385 		return SKL_DEPTH_INVALID;
386 
387 	}
388 }
389 
390 /*
391  * Each module in DSP expects a base module configuration, which consists of
392  * PCM format information, which we calculate in driver and resource values
393  * which are read from widget information passed through topology binary
394  * This is send when we create a module with INIT_INSTANCE IPC msg
395  */
396 static void skl_set_base_module_format(struct skl_sst *ctx,
397 			struct skl_module_cfg *mconfig,
398 			struct skl_base_cfg *base_cfg)
399 {
400 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
401 
402 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
403 
404 	base_cfg->audio_fmt.s_freq = format->s_freq;
405 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
406 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
407 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
408 
409 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
410 			format->bit_depth, format->valid_bit_depth,
411 			format->ch_cfg);
412 
413 	base_cfg->audio_fmt.channel_map = format->ch_map;
414 
415 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
416 
417 	base_cfg->cps = mconfig->mcps;
418 	base_cfg->ibs = mconfig->ibs;
419 	base_cfg->obs = mconfig->obs;
420 	base_cfg->is_pages = mconfig->mem_pages;
421 }
422 
423 /*
424  * Copies copier capabilities into copier module and updates copier module
425  * config size.
426  */
427 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
428 				struct skl_cpr_cfg *cpr_mconfig)
429 {
430 	if (mconfig->formats_config.caps_size == 0)
431 		return;
432 
433 	memcpy(cpr_mconfig->gtw_cfg.config_data,
434 			mconfig->formats_config.caps,
435 			mconfig->formats_config.caps_size);
436 
437 	cpr_mconfig->gtw_cfg.config_length =
438 			(mconfig->formats_config.caps_size) / 4;
439 }
440 
441 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
442 /*
443  * Calculate the gatewat settings required for copier module, type of
444  * gateway and index of gateway to use
445  */
446 static u32 skl_get_node_id(struct skl_sst *ctx,
447 			struct skl_module_cfg *mconfig)
448 {
449 	union skl_connector_node_id node_id = {0};
450 	union skl_ssp_dma_node ssp_node  = {0};
451 	struct skl_pipe_params *params = mconfig->pipe->p_params;
452 
453 	switch (mconfig->dev_type) {
454 	case SKL_DEVICE_BT:
455 		node_id.node.dma_type =
456 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
457 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
458 			SKL_DMA_I2S_LINK_INPUT_CLASS;
459 		node_id.node.vindex = params->host_dma_id +
460 					(mconfig->vbus_id << 3);
461 		break;
462 
463 	case SKL_DEVICE_I2S:
464 		node_id.node.dma_type =
465 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
466 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
467 			SKL_DMA_I2S_LINK_INPUT_CLASS;
468 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
469 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
470 		node_id.node.vindex = ssp_node.val;
471 		break;
472 
473 	case SKL_DEVICE_DMIC:
474 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
475 		node_id.node.vindex = mconfig->vbus_id +
476 					 (mconfig->time_slot);
477 		break;
478 
479 	case SKL_DEVICE_HDALINK:
480 		node_id.node.dma_type =
481 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
482 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
483 			SKL_DMA_HDA_LINK_INPUT_CLASS;
484 		node_id.node.vindex = params->link_dma_id;
485 		break;
486 
487 	case SKL_DEVICE_HDAHOST:
488 		node_id.node.dma_type =
489 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
490 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
491 			SKL_DMA_HDA_HOST_INPUT_CLASS;
492 		node_id.node.vindex = params->host_dma_id;
493 		break;
494 
495 	default:
496 		node_id.val = 0xFFFFFFFF;
497 		break;
498 	}
499 
500 	return node_id.val;
501 }
502 
503 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
504 			struct skl_module_cfg *mconfig,
505 			struct skl_cpr_cfg *cpr_mconfig)
506 {
507 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
508 
509 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
510 		cpr_mconfig->cpr_feature_mask = 0;
511 		return;
512 	}
513 
514 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
515 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
516 	else
517 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
518 
519 	cpr_mconfig->cpr_feature_mask = 0;
520 	cpr_mconfig->gtw_cfg.config_length  = 0;
521 
522 	skl_copy_copier_caps(mconfig, cpr_mconfig);
523 }
524 
525 #define DMA_CONTROL_ID 5
526 
527 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
528 {
529 	struct skl_dma_control *dma_ctrl;
530 	struct skl_ipc_large_config_msg msg = {0};
531 	int err = 0;
532 
533 
534 	/*
535 	 * if blob size zero, then return
536 	 */
537 	if (mconfig->formats_config.caps_size == 0)
538 		return 0;
539 
540 	msg.large_param_id = DMA_CONTROL_ID;
541 	msg.param_data_size = sizeof(struct skl_dma_control) +
542 				mconfig->formats_config.caps_size;
543 
544 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
545 	if (dma_ctrl == NULL)
546 		return -ENOMEM;
547 
548 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
549 
550 	/* size in dwords */
551 	dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
552 
553 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
554 				mconfig->formats_config.caps_size);
555 
556 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
557 
558 	kfree(dma_ctrl);
559 	return err;
560 }
561 
562 static void skl_setup_out_format(struct skl_sst *ctx,
563 			struct skl_module_cfg *mconfig,
564 			struct skl_audio_data_format *out_fmt)
565 {
566 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
567 
568 	out_fmt->number_of_channels = (u8)format->channels;
569 	out_fmt->s_freq = format->s_freq;
570 	out_fmt->bit_depth = format->bit_depth;
571 	out_fmt->valid_bit_depth = format->valid_bit_depth;
572 	out_fmt->ch_cfg = format->ch_cfg;
573 
574 	out_fmt->channel_map = format->ch_map;
575 	out_fmt->interleaving = format->interleaving_style;
576 	out_fmt->sample_type = format->sample_type;
577 
578 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
579 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
580 }
581 
582 /*
583  * DSP needs SRC module for frequency conversion, SRC takes base module
584  * configuration and the target frequency as extra parameter passed as src
585  * config
586  */
587 static void skl_set_src_format(struct skl_sst *ctx,
588 			struct skl_module_cfg *mconfig,
589 			struct skl_src_module_cfg *src_mconfig)
590 {
591 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
592 
593 	skl_set_base_module_format(ctx, mconfig,
594 		(struct skl_base_cfg *)src_mconfig);
595 
596 	src_mconfig->src_cfg = fmt->s_freq;
597 }
598 
599 /*
600  * DSP needs updown module to do channel conversion. updown module take base
601  * module configuration and channel configuration
602  * It also take coefficients and now we have defaults applied here
603  */
604 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
605 			struct skl_module_cfg *mconfig,
606 			struct skl_up_down_mixer_cfg *mixer_mconfig)
607 {
608 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
609 	int i = 0;
610 
611 	skl_set_base_module_format(ctx,	mconfig,
612 		(struct skl_base_cfg *)mixer_mconfig);
613 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
614 
615 	/* Select F/W default coefficient */
616 	mixer_mconfig->coeff_sel = 0x0;
617 
618 	/* User coeff, don't care since we are selecting F/W defaults */
619 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
620 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
621 }
622 
623 /*
624  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
625  * dma) or link (hda link, SSP, PDM)
626  * Here we calculate the copier module parameters, like PCM format, output
627  * format, gateway settings
628  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
629  */
630 static void skl_set_copier_format(struct skl_sst *ctx,
631 			struct skl_module_cfg *mconfig,
632 			struct skl_cpr_cfg *cpr_mconfig)
633 {
634 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
635 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
636 
637 	skl_set_base_module_format(ctx, mconfig, base_cfg);
638 
639 	skl_setup_out_format(ctx, mconfig, out_fmt);
640 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
641 }
642 
643 /*
644  * Algo module are DSP pre processing modules. Algo module take base module
645  * configuration and params
646  */
647 
648 static void skl_set_algo_format(struct skl_sst *ctx,
649 			struct skl_module_cfg *mconfig,
650 			struct skl_algo_cfg *algo_mcfg)
651 {
652 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
653 
654 	skl_set_base_module_format(ctx, mconfig, base_cfg);
655 
656 	if (mconfig->formats_config.caps_size == 0)
657 		return;
658 
659 	memcpy(algo_mcfg->params,
660 			mconfig->formats_config.caps,
661 			mconfig->formats_config.caps_size);
662 
663 }
664 
665 /*
666  * Mic select module allows selecting one or many input channels, thus
667  * acting as a demux.
668  *
669  * Mic select module take base module configuration and out-format
670  * configuration
671  */
672 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
673 			struct skl_module_cfg *mconfig,
674 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
675 {
676 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
677 	struct skl_base_cfg *base_cfg =
678 				(struct skl_base_cfg *)base_outfmt_mcfg;
679 
680 	skl_set_base_module_format(ctx, mconfig, base_cfg);
681 	skl_setup_out_format(ctx, mconfig, out_fmt);
682 }
683 
684 static u16 skl_get_module_param_size(struct skl_sst *ctx,
685 			struct skl_module_cfg *mconfig)
686 {
687 	u16 param_size;
688 
689 	switch (mconfig->m_type) {
690 	case SKL_MODULE_TYPE_COPIER:
691 		param_size = sizeof(struct skl_cpr_cfg);
692 		param_size += mconfig->formats_config.caps_size;
693 		return param_size;
694 
695 	case SKL_MODULE_TYPE_SRCINT:
696 		return sizeof(struct skl_src_module_cfg);
697 
698 	case SKL_MODULE_TYPE_UPDWMIX:
699 		return sizeof(struct skl_up_down_mixer_cfg);
700 
701 	case SKL_MODULE_TYPE_ALGO:
702 		param_size = sizeof(struct skl_base_cfg);
703 		param_size += mconfig->formats_config.caps_size;
704 		return param_size;
705 
706 	case SKL_MODULE_TYPE_BASE_OUTFMT:
707 	case SKL_MODULE_TYPE_KPB:
708 		return sizeof(struct skl_base_outfmt_cfg);
709 
710 	default:
711 		/*
712 		 * return only base cfg when no specific module type is
713 		 * specified
714 		 */
715 		return sizeof(struct skl_base_cfg);
716 	}
717 
718 	return 0;
719 }
720 
721 /*
722  * DSP firmware supports various modules like copier, SRC, updown etc.
723  * These modules required various parameters to be calculated and sent for
724  * the module initialization to DSP. By default a generic module needs only
725  * base module format configuration
726  */
727 
728 static int skl_set_module_format(struct skl_sst *ctx,
729 			struct skl_module_cfg *module_config,
730 			u16 *module_config_size,
731 			void **param_data)
732 {
733 	u16 param_size;
734 
735 	param_size  = skl_get_module_param_size(ctx, module_config);
736 
737 	*param_data = kzalloc(param_size, GFP_KERNEL);
738 	if (NULL == *param_data)
739 		return -ENOMEM;
740 
741 	*module_config_size = param_size;
742 
743 	switch (module_config->m_type) {
744 	case SKL_MODULE_TYPE_COPIER:
745 		skl_set_copier_format(ctx, module_config, *param_data);
746 		break;
747 
748 	case SKL_MODULE_TYPE_SRCINT:
749 		skl_set_src_format(ctx, module_config, *param_data);
750 		break;
751 
752 	case SKL_MODULE_TYPE_UPDWMIX:
753 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
754 		break;
755 
756 	case SKL_MODULE_TYPE_ALGO:
757 		skl_set_algo_format(ctx, module_config, *param_data);
758 		break;
759 
760 	case SKL_MODULE_TYPE_BASE_OUTFMT:
761 	case SKL_MODULE_TYPE_KPB:
762 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
763 		break;
764 
765 	default:
766 		skl_set_base_module_format(ctx, module_config, *param_data);
767 		break;
768 
769 	}
770 
771 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
772 			module_config->id.module_id, param_size);
773 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
774 			*param_data, param_size, false);
775 	return 0;
776 }
777 
778 static int skl_get_queue_index(struct skl_module_pin *mpin,
779 				struct skl_module_inst_id id, int max)
780 {
781 	int i;
782 
783 	for (i = 0; i < max; i++)  {
784 		if (mpin[i].id.module_id == id.module_id &&
785 			mpin[i].id.instance_id == id.instance_id)
786 			return i;
787 	}
788 
789 	return -EINVAL;
790 }
791 
792 /*
793  * Allocates queue for each module.
794  * if dynamic, the pin_index is allocated 0 to max_pin.
795  * In static, the pin_index is fixed based on module_id and instance id
796  */
797 static int skl_alloc_queue(struct skl_module_pin *mpin,
798 			struct skl_module_cfg *tgt_cfg, int max)
799 {
800 	int i;
801 	struct skl_module_inst_id id = tgt_cfg->id;
802 	/*
803 	 * if pin in dynamic, find first free pin
804 	 * otherwise find match module and instance id pin as topology will
805 	 * ensure a unique pin is assigned to this so no need to
806 	 * allocate/free
807 	 */
808 	for (i = 0; i < max; i++)  {
809 		if (mpin[i].is_dynamic) {
810 			if (!mpin[i].in_use &&
811 				mpin[i].pin_state == SKL_PIN_UNBIND) {
812 
813 				mpin[i].in_use = true;
814 				mpin[i].id.module_id = id.module_id;
815 				mpin[i].id.instance_id = id.instance_id;
816 				mpin[i].id.pvt_id = id.pvt_id;
817 				mpin[i].tgt_mcfg = tgt_cfg;
818 				return i;
819 			}
820 		} else {
821 			if (mpin[i].id.module_id == id.module_id &&
822 				mpin[i].id.instance_id == id.instance_id &&
823 				mpin[i].pin_state == SKL_PIN_UNBIND) {
824 
825 				mpin[i].tgt_mcfg = tgt_cfg;
826 				return i;
827 			}
828 		}
829 	}
830 
831 	return -EINVAL;
832 }
833 
834 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
835 {
836 	if (mpin[q_index].is_dynamic) {
837 		mpin[q_index].in_use = false;
838 		mpin[q_index].id.module_id = 0;
839 		mpin[q_index].id.instance_id = 0;
840 		mpin[q_index].id.pvt_id = 0;
841 	}
842 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
843 	mpin[q_index].tgt_mcfg = NULL;
844 }
845 
846 /* Module state will be set to unint, if all the out pin state is UNBIND */
847 
848 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
849 						struct skl_module_cfg *mcfg)
850 {
851 	int i;
852 	bool found = false;
853 
854 	for (i = 0; i < max; i++)  {
855 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
856 			continue;
857 		found = true;
858 		break;
859 	}
860 
861 	if (!found)
862 		mcfg->m_state = SKL_MODULE_UNINIT;
863 	return;
864 }
865 
866 /*
867  * A module needs to be instanataited in DSP. A mdoule is present in a
868  * collection of module referred as a PIPE.
869  * We first calculate the module format, based on module type and then
870  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
871  */
872 int skl_init_module(struct skl_sst *ctx,
873 			struct skl_module_cfg *mconfig)
874 {
875 	u16 module_config_size = 0;
876 	void *param_data = NULL;
877 	int ret;
878 	struct skl_ipc_init_instance_msg msg;
879 
880 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
881 		 mconfig->id.module_id, mconfig->id.pvt_id);
882 
883 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
884 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
885 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
886 		return -EIO;
887 	}
888 
889 	ret = skl_set_module_format(ctx, mconfig,
890 			&module_config_size, &param_data);
891 	if (ret < 0) {
892 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
893 		return ret;
894 	}
895 
896 	msg.module_id = mconfig->id.module_id;
897 	msg.instance_id = mconfig->id.pvt_id;
898 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
899 	msg.param_data_size = module_config_size;
900 	msg.core_id = mconfig->core_id;
901 	msg.domain = mconfig->domain;
902 
903 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
904 	if (ret < 0) {
905 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
906 		kfree(param_data);
907 		return ret;
908 	}
909 	mconfig->m_state = SKL_MODULE_INIT_DONE;
910 	kfree(param_data);
911 	return ret;
912 }
913 
914 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
915 	*src_module, struct skl_module_cfg *dst_module)
916 {
917 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
918 		__func__, src_module->id.module_id, src_module->id.pvt_id);
919 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
920 		 dst_module->id.module_id, dst_module->id.pvt_id);
921 
922 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
923 		src_module->m_state, dst_module->m_state);
924 }
925 
926 /*
927  * On module freeup, we need to unbind the module with modules
928  * it is already bind.
929  * Find the pin allocated and unbind then using bind_unbind IPC
930  */
931 int skl_unbind_modules(struct skl_sst *ctx,
932 			struct skl_module_cfg *src_mcfg,
933 			struct skl_module_cfg *dst_mcfg)
934 {
935 	int ret;
936 	struct skl_ipc_bind_unbind_msg msg;
937 	struct skl_module_inst_id src_id = src_mcfg->id;
938 	struct skl_module_inst_id dst_id = dst_mcfg->id;
939 	int in_max = dst_mcfg->max_in_queue;
940 	int out_max = src_mcfg->max_out_queue;
941 	int src_index, dst_index, src_pin_state, dst_pin_state;
942 
943 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
944 
945 	/* get src queue index */
946 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
947 	if (src_index < 0)
948 		return 0;
949 
950 	msg.src_queue = src_index;
951 
952 	/* get dst queue index */
953 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
954 	if (dst_index < 0)
955 		return 0;
956 
957 	msg.dst_queue = dst_index;
958 
959 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
960 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
961 
962 	if (src_pin_state != SKL_PIN_BIND_DONE ||
963 		dst_pin_state != SKL_PIN_BIND_DONE)
964 		return 0;
965 
966 	msg.module_id = src_mcfg->id.module_id;
967 	msg.instance_id = src_mcfg->id.pvt_id;
968 	msg.dst_module_id = dst_mcfg->id.module_id;
969 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
970 	msg.bind = false;
971 
972 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
973 	if (!ret) {
974 		/* free queue only if unbind is success */
975 		skl_free_queue(src_mcfg->m_out_pin, src_index);
976 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
977 
978 		/*
979 		 * check only if src module bind state, bind is
980 		 * always from src -> sink
981 		 */
982 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
983 	}
984 
985 	return ret;
986 }
987 
988 /*
989  * Once a module is instantiated it need to be 'bind' with other modules in
990  * the pipeline. For binding we need to find the module pins which are bind
991  * together
992  * This function finds the pins and then sends bund_unbind IPC message to
993  * DSP using IPC helper
994  */
995 int skl_bind_modules(struct skl_sst *ctx,
996 			struct skl_module_cfg *src_mcfg,
997 			struct skl_module_cfg *dst_mcfg)
998 {
999 	int ret;
1000 	struct skl_ipc_bind_unbind_msg msg;
1001 	int in_max = dst_mcfg->max_in_queue;
1002 	int out_max = src_mcfg->max_out_queue;
1003 	int src_index, dst_index;
1004 
1005 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1006 
1007 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1008 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1009 		return 0;
1010 
1011 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1012 	if (src_index < 0)
1013 		return -EINVAL;
1014 
1015 	msg.src_queue = src_index;
1016 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1017 	if (dst_index < 0) {
1018 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1019 		return -EINVAL;
1020 	}
1021 
1022 	msg.dst_queue = dst_index;
1023 
1024 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1025 			 msg.src_queue, msg.dst_queue);
1026 
1027 	msg.module_id = src_mcfg->id.module_id;
1028 	msg.instance_id = src_mcfg->id.pvt_id;
1029 	msg.dst_module_id = dst_mcfg->id.module_id;
1030 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1031 	msg.bind = true;
1032 
1033 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1034 
1035 	if (!ret) {
1036 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1037 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1038 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1039 	} else {
1040 		/* error case , if IPC fails, clear the queue index */
1041 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1042 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1049 	enum skl_ipc_pipeline_state state)
1050 {
1051 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1052 
1053 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1054 }
1055 
1056 /*
1057  * A pipeline is a collection of modules. Before a module in instantiated a
1058  * pipeline needs to be created for it.
1059  * This function creates pipeline, by sending create pipeline IPC messages
1060  * to FW
1061  */
1062 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1063 {
1064 	int ret;
1065 
1066 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1067 
1068 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1069 				pipe->pipe_priority, pipe->ppl_id,
1070 				pipe->lp_mode);
1071 	if (ret < 0) {
1072 		dev_err(ctx->dev, "Failed to create pipeline\n");
1073 		return ret;
1074 	}
1075 
1076 	pipe->state = SKL_PIPE_CREATED;
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1083  * pause the pipeline first and then delete it
1084  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1085  * DMA engines and releases resources
1086  */
1087 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1088 {
1089 	int ret;
1090 
1091 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1092 
1093 	/* If pipe is started, do stop the pipe in FW. */
1094 	if (pipe->state > SKL_PIPE_STARTED) {
1095 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1096 		if (ret < 0) {
1097 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1098 			return ret;
1099 		}
1100 
1101 		pipe->state = SKL_PIPE_PAUSED;
1102 	}
1103 
1104 	/* If pipe was not created in FW, do not try to delete it */
1105 	if (pipe->state < SKL_PIPE_CREATED)
1106 		return 0;
1107 
1108 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1109 	if (ret < 0) {
1110 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1111 		return ret;
1112 	}
1113 
1114 	pipe->state = SKL_PIPE_INVALID;
1115 
1116 	return ret;
1117 }
1118 
1119 /*
1120  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1121  * For processing data the pipe need to be run by sending IPC set pipe state
1122  * to DSP
1123  */
1124 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1125 {
1126 	int ret;
1127 
1128 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1129 
1130 	/* If pipe was not created in FW, do not try to pause or delete */
1131 	if (pipe->state < SKL_PIPE_CREATED)
1132 		return 0;
1133 
1134 	/* Pipe has to be paused before it is started */
1135 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1136 	if (ret < 0) {
1137 		dev_err(ctx->dev, "Failed to pause pipe\n");
1138 		return ret;
1139 	}
1140 
1141 	pipe->state = SKL_PIPE_PAUSED;
1142 
1143 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1144 	if (ret < 0) {
1145 		dev_err(ctx->dev, "Failed to start pipe\n");
1146 		return ret;
1147 	}
1148 
1149 	pipe->state = SKL_PIPE_STARTED;
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Stop the pipeline by sending set pipe state IPC
1156  * DSP doesnt implement stop so we always send pause message
1157  */
1158 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1159 {
1160 	int ret;
1161 
1162 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1163 
1164 	/* If pipe was not created in FW, do not try to pause or delete */
1165 	if (pipe->state < SKL_PIPE_PAUSED)
1166 		return 0;
1167 
1168 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1169 	if (ret < 0) {
1170 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1171 		return ret;
1172 	}
1173 
1174 	pipe->state = SKL_PIPE_PAUSED;
1175 
1176 	return 0;
1177 }
1178 
1179 /*
1180  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1181  * from the DSP side
1182  */
1183 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1184 {
1185 	int ret;
1186 
1187 	/* If pipe was not created in FW, do not try to pause or delete */
1188 	if (pipe->state < SKL_PIPE_PAUSED)
1189 		return 0;
1190 
1191 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1192 	if (ret < 0) {
1193 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1194 		return ret;
1195 	}
1196 
1197 	pipe->state = SKL_PIPE_RESET;
1198 
1199 	return 0;
1200 }
1201 
1202 /* Algo parameter set helper function */
1203 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1204 				u32 param_id, struct skl_module_cfg *mcfg)
1205 {
1206 	struct skl_ipc_large_config_msg msg;
1207 
1208 	msg.module_id = mcfg->id.module_id;
1209 	msg.instance_id = mcfg->id.pvt_id;
1210 	msg.param_data_size = size;
1211 	msg.large_param_id = param_id;
1212 
1213 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1214 }
1215 
1216 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1217 			  u32 param_id, struct skl_module_cfg *mcfg)
1218 {
1219 	struct skl_ipc_large_config_msg msg;
1220 
1221 	msg.module_id = mcfg->id.module_id;
1222 	msg.instance_id = mcfg->id.pvt_id;
1223 	msg.param_data_size = size;
1224 	msg.large_param_id = param_id;
1225 
1226 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1227 }
1228