1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include <uapi/sound/skl-tplg-interface.h>
25 #include "skl-sst-dsp.h"
26 #include "cnl-sst-dsp.h"
27 #include "skl-sst-ipc.h"
28 #include "skl.h"
29 #include "../common/sst-dsp.h"
30 #include "../common/sst-dsp-priv.h"
31 #include "skl-topology.h"
32 
33 static int skl_alloc_dma_buf(struct device *dev,
34 		struct snd_dma_buffer *dmab, size_t size)
35 {
36 	struct hdac_bus *bus = dev_get_drvdata(dev);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_bus *bus = dev_get_drvdata(dev);
47 
48 	if (!bus)
49 		return -ENODEV;
50 
51 	bus->io_ops->dma_free_pages(bus, dmab);
52 
53 	return 0;
54 }
55 
56 #define SKL_ASTATE_PARAM_ID	4
57 
58 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
59 {
60 	struct skl_ipc_large_config_msg	msg = {0};
61 
62 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
63 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
64 				sizeof(cnt));
65 
66 	skl_ipc_set_large_config(&ctx->ipc, &msg, data);
67 }
68 
69 #define NOTIFICATION_PARAM_ID 3
70 #define NOTIFICATION_MASK 0xf
71 
72 /* disable notfication for underruns/overruns from firmware module */
73 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
74 {
75 	struct notification_mask mask;
76 	struct skl_ipc_large_config_msg	msg = {0};
77 
78 	mask.notify = NOTIFICATION_MASK;
79 	mask.enable = enable;
80 
81 	msg.large_param_id = NOTIFICATION_PARAM_ID;
82 	msg.param_data_size = sizeof(mask);
83 
84 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
85 }
86 
87 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
88 				int stream_tag, int enable)
89 {
90 	struct hdac_bus *bus = dev_get_drvdata(dev);
91 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
92 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
93 	struct hdac_ext_stream *estream;
94 
95 	if (!stream)
96 		return -EINVAL;
97 
98 	estream = stream_to_hdac_ext_stream(stream);
99 	/* enable/disable SPIB for this hdac stream */
100 	snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index);
101 
102 	/* set the spib value */
103 	snd_hdac_ext_stream_set_spib(bus, estream, size);
104 
105 	return 0;
106 }
107 
108 static int skl_dsp_prepare(struct device *dev, unsigned int format,
109 			unsigned int size, struct snd_dma_buffer *dmab)
110 {
111 	struct hdac_bus *bus = dev_get_drvdata(dev);
112 	struct hdac_ext_stream *estream;
113 	struct hdac_stream *stream;
114 	struct snd_pcm_substream substream;
115 	int ret;
116 
117 	if (!bus)
118 		return -ENODEV;
119 
120 	memset(&substream, 0, sizeof(substream));
121 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
122 
123 	estream = snd_hdac_ext_stream_assign(bus, &substream,
124 					HDAC_EXT_STREAM_TYPE_HOST);
125 	if (!estream)
126 		return -ENODEV;
127 
128 	stream = hdac_stream(estream);
129 
130 	/* assign decouple host dma channel */
131 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
132 	if (ret < 0)
133 		return ret;
134 
135 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
136 
137 	return stream->stream_tag;
138 }
139 
140 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
141 {
142 	struct hdac_bus *bus = dev_get_drvdata(dev);
143 	struct hdac_stream *stream;
144 
145 	if (!bus)
146 		return -ENODEV;
147 
148 	stream = snd_hdac_get_stream(bus,
149 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
150 	if (!stream)
151 		return -EINVAL;
152 
153 	snd_hdac_dsp_trigger(stream, start);
154 
155 	return 0;
156 }
157 
158 static int skl_dsp_cleanup(struct device *dev,
159 		struct snd_dma_buffer *dmab, int stream_tag)
160 {
161 	struct hdac_bus *bus = dev_get_drvdata(dev);
162 	struct hdac_stream *stream;
163 	struct hdac_ext_stream *estream;
164 
165 	if (!bus)
166 		return -ENODEV;
167 
168 	stream = snd_hdac_get_stream(bus,
169 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
170 	if (!stream)
171 		return -EINVAL;
172 
173 	estream = stream_to_hdac_ext_stream(stream);
174 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
175 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
176 
177 	snd_hdac_dsp_cleanup(stream, dmab);
178 
179 	return 0;
180 }
181 
182 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
183 {
184 	struct skl_dsp_loader_ops loader_ops;
185 
186 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
187 
188 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
189 	loader_ops.free_dma_buf = skl_free_dma_buf;
190 
191 	return loader_ops;
192 };
193 
194 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
195 {
196 	struct skl_dsp_loader_ops loader_ops;
197 
198 	memset(&loader_ops, 0, sizeof(loader_ops));
199 
200 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
201 	loader_ops.free_dma_buf = skl_free_dma_buf;
202 	loader_ops.prepare = skl_dsp_prepare;
203 	loader_ops.trigger = skl_dsp_trigger;
204 	loader_ops.cleanup = skl_dsp_cleanup;
205 
206 	return loader_ops;
207 };
208 
209 static const struct skl_dsp_ops dsp_ops[] = {
210 	{
211 		.id = 0x9d70,
212 		.num_cores = 2,
213 		.loader_ops = skl_get_loader_ops,
214 		.init = skl_sst_dsp_init,
215 		.init_fw = skl_sst_init_fw,
216 		.cleanup = skl_sst_dsp_cleanup
217 	},
218 	{
219 		.id = 0x9d71,
220 		.num_cores = 2,
221 		.loader_ops = skl_get_loader_ops,
222 		.init = skl_sst_dsp_init,
223 		.init_fw = skl_sst_init_fw,
224 		.cleanup = skl_sst_dsp_cleanup
225 	},
226 	{
227 		.id = 0x5a98,
228 		.num_cores = 2,
229 		.loader_ops = bxt_get_loader_ops,
230 		.init = bxt_sst_dsp_init,
231 		.init_fw = bxt_sst_init_fw,
232 		.cleanup = bxt_sst_dsp_cleanup
233 	},
234 	{
235 		.id = 0x3198,
236 		.num_cores = 2,
237 		.loader_ops = bxt_get_loader_ops,
238 		.init = bxt_sst_dsp_init,
239 		.init_fw = bxt_sst_init_fw,
240 		.cleanup = bxt_sst_dsp_cleanup
241 	},
242 	{
243 		.id = 0x9dc8,
244 		.num_cores = 4,
245 		.loader_ops = bxt_get_loader_ops,
246 		.init = cnl_sst_dsp_init,
247 		.init_fw = cnl_sst_init_fw,
248 		.cleanup = cnl_sst_dsp_cleanup
249 	},
250 };
251 
252 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
253 {
254 	int i;
255 
256 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
257 		if (dsp_ops[i].id == pci_id)
258 			return &dsp_ops[i];
259 	}
260 
261 	return NULL;
262 }
263 
264 int skl_init_dsp(struct skl *skl)
265 {
266 	void __iomem *mmio_base;
267 	struct hdac_bus *bus = skl_to_bus(skl);
268 	struct skl_dsp_loader_ops loader_ops;
269 	int irq = bus->irq;
270 	const struct skl_dsp_ops *ops;
271 	struct skl_dsp_cores *cores;
272 	int ret;
273 
274 	/* enable ppcap interrupt */
275 	snd_hdac_ext_bus_ppcap_enable(bus, true);
276 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
277 
278 	/* read the BAR of the ADSP MMIO */
279 	mmio_base = pci_ioremap_bar(skl->pci, 4);
280 	if (mmio_base == NULL) {
281 		dev_err(bus->dev, "ioremap error\n");
282 		return -ENXIO;
283 	}
284 
285 	ops = skl_get_dsp_ops(skl->pci->device);
286 	if (!ops) {
287 		ret = -EIO;
288 		goto unmap_mmio;
289 	}
290 
291 	loader_ops = ops->loader_ops();
292 	ret = ops->init(bus->dev, mmio_base, irq,
293 				skl->fw_name, loader_ops,
294 				&skl->skl_sst);
295 
296 	if (ret < 0)
297 		goto unmap_mmio;
298 
299 	skl->skl_sst->dsp_ops = ops;
300 	cores = &skl->skl_sst->cores;
301 	cores->count = ops->num_cores;
302 
303 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
304 	if (!cores->state) {
305 		ret = -ENOMEM;
306 		goto unmap_mmio;
307 	}
308 
309 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
310 				     GFP_KERNEL);
311 	if (!cores->usage_count) {
312 		ret = -ENOMEM;
313 		goto free_core_state;
314 	}
315 
316 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
317 
318 	return 0;
319 
320 free_core_state:
321 	kfree(cores->state);
322 
323 unmap_mmio:
324 	iounmap(mmio_base);
325 
326 	return ret;
327 }
328 
329 int skl_free_dsp(struct skl *skl)
330 {
331 	struct hdac_bus *bus = skl_to_bus(skl);
332 	struct skl_sst *ctx = skl->skl_sst;
333 
334 	/* disable  ppcap interrupt */
335 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
336 
337 	ctx->dsp_ops->cleanup(bus->dev, ctx);
338 
339 	kfree(ctx->cores.state);
340 	kfree(ctx->cores.usage_count);
341 
342 	if (ctx->dsp->addr.lpe)
343 		iounmap(ctx->dsp->addr.lpe);
344 
345 	return 0;
346 }
347 
348 /*
349  * In the case of "suspend_active" i.e, the Audio IP being active
350  * during system suspend, immediately excecute any pending D0i3 work
351  * before suspending. This is needed for the IP to work in low power
352  * mode during system suspend. In the case of normal suspend, cancel
353  * any pending D0i3 work.
354  */
355 int skl_suspend_late_dsp(struct skl *skl)
356 {
357 	struct skl_sst *ctx = skl->skl_sst;
358 	struct delayed_work *dwork;
359 
360 	if (!ctx)
361 		return 0;
362 
363 	dwork = &ctx->d0i3.work;
364 
365 	if (dwork->work.func) {
366 		if (skl->supend_active)
367 			flush_delayed_work(dwork);
368 		else
369 			cancel_delayed_work_sync(dwork);
370 	}
371 
372 	return 0;
373 }
374 
375 int skl_suspend_dsp(struct skl *skl)
376 {
377 	struct skl_sst *ctx = skl->skl_sst;
378 	struct hdac_bus *bus = skl_to_bus(skl);
379 	int ret;
380 
381 	/* if ppcap is not supported return 0 */
382 	if (!bus->ppcap)
383 		return 0;
384 
385 	ret = skl_dsp_sleep(ctx->dsp);
386 	if (ret < 0)
387 		return ret;
388 
389 	/* disable ppcap interrupt */
390 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
391 	snd_hdac_ext_bus_ppcap_enable(bus, false);
392 
393 	return 0;
394 }
395 
396 int skl_resume_dsp(struct skl *skl)
397 {
398 	struct skl_sst *ctx = skl->skl_sst;
399 	struct hdac_bus *bus = skl_to_bus(skl);
400 	int ret;
401 
402 	/* if ppcap is not supported return 0 */
403 	if (!bus->ppcap)
404 		return 0;
405 
406 	/* enable ppcap interrupt */
407 	snd_hdac_ext_bus_ppcap_enable(bus, true);
408 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
409 
410 	/* check if DSP 1st boot is done */
411 	if (skl->skl_sst->is_first_boot == true)
412 		return 0;
413 
414 	/*
415 	 * Disable dynamic clock and power gating during firmware
416 	 * and library download
417 	 */
418 	ctx->enable_miscbdcge(ctx->dev, false);
419 	ctx->clock_power_gating(ctx->dev, false);
420 
421 	ret = skl_dsp_wake(ctx->dsp);
422 	ctx->enable_miscbdcge(ctx->dev, true);
423 	ctx->clock_power_gating(ctx->dev, true);
424 	if (ret < 0)
425 		return ret;
426 
427 	skl_dsp_enable_notification(skl->skl_sst, false);
428 
429 	if (skl->cfg.astate_cfg != NULL) {
430 		skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
431 					skl->cfg.astate_cfg);
432 	}
433 	return ret;
434 }
435 
436 enum skl_bitdepth skl_get_bit_depth(int params)
437 {
438 	switch (params) {
439 	case 8:
440 		return SKL_DEPTH_8BIT;
441 
442 	case 16:
443 		return SKL_DEPTH_16BIT;
444 
445 	case 24:
446 		return SKL_DEPTH_24BIT;
447 
448 	case 32:
449 		return SKL_DEPTH_32BIT;
450 
451 	default:
452 		return SKL_DEPTH_INVALID;
453 
454 	}
455 }
456 
457 /*
458  * Each module in DSP expects a base module configuration, which consists of
459  * PCM format information, which we calculate in driver and resource values
460  * which are read from widget information passed through topology binary
461  * This is send when we create a module with INIT_INSTANCE IPC msg
462  */
463 static void skl_set_base_module_format(struct skl_sst *ctx,
464 			struct skl_module_cfg *mconfig,
465 			struct skl_base_cfg *base_cfg)
466 {
467 	struct skl_module *module = mconfig->module;
468 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
469 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
470 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
471 
472 	base_cfg->audio_fmt.number_of_channels = format->channels;
473 
474 	base_cfg->audio_fmt.s_freq = format->s_freq;
475 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
476 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
477 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
478 
479 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
480 			format->bit_depth, format->valid_bit_depth,
481 			format->ch_cfg);
482 
483 	base_cfg->audio_fmt.channel_map = format->ch_map;
484 
485 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
486 
487 	base_cfg->cps = res->cps;
488 	base_cfg->ibs = res->ibs;
489 	base_cfg->obs = res->obs;
490 	base_cfg->is_pages = res->is_pages;
491 }
492 
493 /*
494  * Copies copier capabilities into copier module and updates copier module
495  * config size.
496  */
497 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
498 				struct skl_cpr_cfg *cpr_mconfig)
499 {
500 	if (mconfig->formats_config.caps_size == 0)
501 		return;
502 
503 	memcpy(cpr_mconfig->gtw_cfg.config_data,
504 			mconfig->formats_config.caps,
505 			mconfig->formats_config.caps_size);
506 
507 	cpr_mconfig->gtw_cfg.config_length =
508 			(mconfig->formats_config.caps_size) / 4;
509 }
510 
511 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
512 /*
513  * Calculate the gatewat settings required for copier module, type of
514  * gateway and index of gateway to use
515  */
516 static u32 skl_get_node_id(struct skl_sst *ctx,
517 			struct skl_module_cfg *mconfig)
518 {
519 	union skl_connector_node_id node_id = {0};
520 	union skl_ssp_dma_node ssp_node  = {0};
521 	struct skl_pipe_params *params = mconfig->pipe->p_params;
522 
523 	switch (mconfig->dev_type) {
524 	case SKL_DEVICE_BT:
525 		node_id.node.dma_type =
526 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
527 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
528 			SKL_DMA_I2S_LINK_INPUT_CLASS;
529 		node_id.node.vindex = params->host_dma_id +
530 					(mconfig->vbus_id << 3);
531 		break;
532 
533 	case SKL_DEVICE_I2S:
534 		node_id.node.dma_type =
535 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
536 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
537 			SKL_DMA_I2S_LINK_INPUT_CLASS;
538 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
539 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
540 		node_id.node.vindex = ssp_node.val;
541 		break;
542 
543 	case SKL_DEVICE_DMIC:
544 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
545 		node_id.node.vindex = mconfig->vbus_id +
546 					 (mconfig->time_slot);
547 		break;
548 
549 	case SKL_DEVICE_HDALINK:
550 		node_id.node.dma_type =
551 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
552 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
553 			SKL_DMA_HDA_LINK_INPUT_CLASS;
554 		node_id.node.vindex = params->link_dma_id;
555 		break;
556 
557 	case SKL_DEVICE_HDAHOST:
558 		node_id.node.dma_type =
559 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
560 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
561 			SKL_DMA_HDA_HOST_INPUT_CLASS;
562 		node_id.node.vindex = params->host_dma_id;
563 		break;
564 
565 	default:
566 		node_id.val = 0xFFFFFFFF;
567 		break;
568 	}
569 
570 	return node_id.val;
571 }
572 
573 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
574 			struct skl_module_cfg *mconfig,
575 			struct skl_cpr_cfg *cpr_mconfig)
576 {
577 	u32 dma_io_buf;
578 	struct skl_module_res *res;
579 	int res_idx = mconfig->res_idx;
580 	struct skl *skl = get_skl_ctx(ctx->dev);
581 
582 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
583 
584 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
585 		cpr_mconfig->cpr_feature_mask = 0;
586 		return;
587 	}
588 
589 	if (skl->nr_modules) {
590 		res = &mconfig->module->resources[mconfig->res_idx];
591 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
592 		goto skip_buf_size_calc;
593 	} else {
594 		res = &mconfig->module->resources[res_idx];
595 	}
596 
597 	switch (mconfig->hw_conn_type) {
598 	case SKL_CONN_SOURCE:
599 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
600 			dma_io_buf =  res->ibs;
601 		else
602 			dma_io_buf =  res->obs;
603 		break;
604 
605 	case SKL_CONN_SINK:
606 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
607 			dma_io_buf =  res->obs;
608 		else
609 			dma_io_buf =  res->ibs;
610 		break;
611 
612 	default:
613 		dev_warn(ctx->dev, "wrong connection type: %d\n",
614 				mconfig->hw_conn_type);
615 		return;
616 	}
617 
618 	cpr_mconfig->gtw_cfg.dma_buffer_size =
619 				mconfig->dma_buffer_size * dma_io_buf;
620 
621 	/* fallback to 2ms default value */
622 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
623 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
624 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
625 		else
626 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
627 	}
628 
629 skip_buf_size_calc:
630 	cpr_mconfig->cpr_feature_mask = 0;
631 	cpr_mconfig->gtw_cfg.config_length  = 0;
632 
633 	skl_copy_copier_caps(mconfig, cpr_mconfig);
634 }
635 
636 #define DMA_CONTROL_ID 5
637 #define DMA_I2S_BLOB_SIZE 21
638 
639 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
640 				u32 caps_size, u32 node_id)
641 {
642 	struct skl_dma_control *dma_ctrl;
643 	struct skl_ipc_large_config_msg msg = {0};
644 	int err = 0;
645 
646 
647 	/*
648 	 * if blob size zero, then return
649 	 */
650 	if (caps_size == 0)
651 		return 0;
652 
653 	msg.large_param_id = DMA_CONTROL_ID;
654 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
655 
656 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
657 	if (dma_ctrl == NULL)
658 		return -ENOMEM;
659 
660 	dma_ctrl->node_id = node_id;
661 
662 	/*
663 	 * NHLT blob may contain additional configs along with i2s blob.
664 	 * firmware expects only the i2s blob size as the config_length.
665 	 * So fix to i2s blob size.
666 	 * size in dwords.
667 	 */
668 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
669 
670 	memcpy(dma_ctrl->config_data, caps, caps_size);
671 
672 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
673 
674 	kfree(dma_ctrl);
675 	return err;
676 }
677 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
678 
679 static void skl_setup_out_format(struct skl_sst *ctx,
680 			struct skl_module_cfg *mconfig,
681 			struct skl_audio_data_format *out_fmt)
682 {
683 	struct skl_module *module = mconfig->module;
684 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
685 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
686 
687 	out_fmt->number_of_channels = (u8)format->channels;
688 	out_fmt->s_freq = format->s_freq;
689 	out_fmt->bit_depth = format->bit_depth;
690 	out_fmt->valid_bit_depth = format->valid_bit_depth;
691 	out_fmt->ch_cfg = format->ch_cfg;
692 
693 	out_fmt->channel_map = format->ch_map;
694 	out_fmt->interleaving = format->interleaving_style;
695 	out_fmt->sample_type = format->sample_type;
696 
697 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
698 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
699 }
700 
701 /*
702  * DSP needs SRC module for frequency conversion, SRC takes base module
703  * configuration and the target frequency as extra parameter passed as src
704  * config
705  */
706 static void skl_set_src_format(struct skl_sst *ctx,
707 			struct skl_module_cfg *mconfig,
708 			struct skl_src_module_cfg *src_mconfig)
709 {
710 	struct skl_module *module = mconfig->module;
711 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
712 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
713 
714 	skl_set_base_module_format(ctx, mconfig,
715 		(struct skl_base_cfg *)src_mconfig);
716 
717 	src_mconfig->src_cfg = fmt->s_freq;
718 }
719 
720 /*
721  * DSP needs updown module to do channel conversion. updown module take base
722  * module configuration and channel configuration
723  * It also take coefficients and now we have defaults applied here
724  */
725 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
726 			struct skl_module_cfg *mconfig,
727 			struct skl_up_down_mixer_cfg *mixer_mconfig)
728 {
729 	struct skl_module *module = mconfig->module;
730 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
731 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
732 
733 	skl_set_base_module_format(ctx,	mconfig,
734 		(struct skl_base_cfg *)mixer_mconfig);
735 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
736 	mixer_mconfig->ch_map = fmt->ch_map;
737 }
738 
739 /*
740  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
741  * dma) or link (hda link, SSP, PDM)
742  * Here we calculate the copier module parameters, like PCM format, output
743  * format, gateway settings
744  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
745  */
746 static void skl_set_copier_format(struct skl_sst *ctx,
747 			struct skl_module_cfg *mconfig,
748 			struct skl_cpr_cfg *cpr_mconfig)
749 {
750 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
751 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
752 
753 	skl_set_base_module_format(ctx, mconfig, base_cfg);
754 
755 	skl_setup_out_format(ctx, mconfig, out_fmt);
756 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
757 }
758 
759 /*
760  * Algo module are DSP pre processing modules. Algo module take base module
761  * configuration and params
762  */
763 
764 static void skl_set_algo_format(struct skl_sst *ctx,
765 			struct skl_module_cfg *mconfig,
766 			struct skl_algo_cfg *algo_mcfg)
767 {
768 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
769 
770 	skl_set_base_module_format(ctx, mconfig, base_cfg);
771 
772 	if (mconfig->formats_config.caps_size == 0)
773 		return;
774 
775 	memcpy(algo_mcfg->params,
776 			mconfig->formats_config.caps,
777 			mconfig->formats_config.caps_size);
778 
779 }
780 
781 /*
782  * Mic select module allows selecting one or many input channels, thus
783  * acting as a demux.
784  *
785  * Mic select module take base module configuration and out-format
786  * configuration
787  */
788 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
789 			struct skl_module_cfg *mconfig,
790 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
791 {
792 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
793 	struct skl_base_cfg *base_cfg =
794 				(struct skl_base_cfg *)base_outfmt_mcfg;
795 
796 	skl_set_base_module_format(ctx, mconfig, base_cfg);
797 	skl_setup_out_format(ctx, mconfig, out_fmt);
798 }
799 
800 static u16 skl_get_module_param_size(struct skl_sst *ctx,
801 			struct skl_module_cfg *mconfig)
802 {
803 	u16 param_size;
804 
805 	switch (mconfig->m_type) {
806 	case SKL_MODULE_TYPE_COPIER:
807 		param_size = sizeof(struct skl_cpr_cfg);
808 		param_size += mconfig->formats_config.caps_size;
809 		return param_size;
810 
811 	case SKL_MODULE_TYPE_SRCINT:
812 		return sizeof(struct skl_src_module_cfg);
813 
814 	case SKL_MODULE_TYPE_UPDWMIX:
815 		return sizeof(struct skl_up_down_mixer_cfg);
816 
817 	case SKL_MODULE_TYPE_ALGO:
818 		param_size = sizeof(struct skl_base_cfg);
819 		param_size += mconfig->formats_config.caps_size;
820 		return param_size;
821 
822 	case SKL_MODULE_TYPE_BASE_OUTFMT:
823 	case SKL_MODULE_TYPE_MIC_SELECT:
824 	case SKL_MODULE_TYPE_KPB:
825 		return sizeof(struct skl_base_outfmt_cfg);
826 
827 	default:
828 		/*
829 		 * return only base cfg when no specific module type is
830 		 * specified
831 		 */
832 		return sizeof(struct skl_base_cfg);
833 	}
834 
835 	return 0;
836 }
837 
838 /*
839  * DSP firmware supports various modules like copier, SRC, updown etc.
840  * These modules required various parameters to be calculated and sent for
841  * the module initialization to DSP. By default a generic module needs only
842  * base module format configuration
843  */
844 
845 static int skl_set_module_format(struct skl_sst *ctx,
846 			struct skl_module_cfg *module_config,
847 			u16 *module_config_size,
848 			void **param_data)
849 {
850 	u16 param_size;
851 
852 	param_size  = skl_get_module_param_size(ctx, module_config);
853 
854 	*param_data = kzalloc(param_size, GFP_KERNEL);
855 	if (NULL == *param_data)
856 		return -ENOMEM;
857 
858 	*module_config_size = param_size;
859 
860 	switch (module_config->m_type) {
861 	case SKL_MODULE_TYPE_COPIER:
862 		skl_set_copier_format(ctx, module_config, *param_data);
863 		break;
864 
865 	case SKL_MODULE_TYPE_SRCINT:
866 		skl_set_src_format(ctx, module_config, *param_data);
867 		break;
868 
869 	case SKL_MODULE_TYPE_UPDWMIX:
870 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
871 		break;
872 
873 	case SKL_MODULE_TYPE_ALGO:
874 		skl_set_algo_format(ctx, module_config, *param_data);
875 		break;
876 
877 	case SKL_MODULE_TYPE_BASE_OUTFMT:
878 	case SKL_MODULE_TYPE_MIC_SELECT:
879 	case SKL_MODULE_TYPE_KPB:
880 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
881 		break;
882 
883 	default:
884 		skl_set_base_module_format(ctx, module_config, *param_data);
885 		break;
886 
887 	}
888 
889 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
890 			module_config->id.module_id, param_size);
891 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
892 			*param_data, param_size, false);
893 	return 0;
894 }
895 
896 static int skl_get_queue_index(struct skl_module_pin *mpin,
897 				struct skl_module_inst_id id, int max)
898 {
899 	int i;
900 
901 	for (i = 0; i < max; i++)  {
902 		if (mpin[i].id.module_id == id.module_id &&
903 			mpin[i].id.instance_id == id.instance_id)
904 			return i;
905 	}
906 
907 	return -EINVAL;
908 }
909 
910 /*
911  * Allocates queue for each module.
912  * if dynamic, the pin_index is allocated 0 to max_pin.
913  * In static, the pin_index is fixed based on module_id and instance id
914  */
915 static int skl_alloc_queue(struct skl_module_pin *mpin,
916 			struct skl_module_cfg *tgt_cfg, int max)
917 {
918 	int i;
919 	struct skl_module_inst_id id = tgt_cfg->id;
920 	/*
921 	 * if pin in dynamic, find first free pin
922 	 * otherwise find match module and instance id pin as topology will
923 	 * ensure a unique pin is assigned to this so no need to
924 	 * allocate/free
925 	 */
926 	for (i = 0; i < max; i++)  {
927 		if (mpin[i].is_dynamic) {
928 			if (!mpin[i].in_use &&
929 				mpin[i].pin_state == SKL_PIN_UNBIND) {
930 
931 				mpin[i].in_use = true;
932 				mpin[i].id.module_id = id.module_id;
933 				mpin[i].id.instance_id = id.instance_id;
934 				mpin[i].id.pvt_id = id.pvt_id;
935 				mpin[i].tgt_mcfg = tgt_cfg;
936 				return i;
937 			}
938 		} else {
939 			if (mpin[i].id.module_id == id.module_id &&
940 				mpin[i].id.instance_id == id.instance_id &&
941 				mpin[i].pin_state == SKL_PIN_UNBIND) {
942 
943 				mpin[i].tgt_mcfg = tgt_cfg;
944 				return i;
945 			}
946 		}
947 	}
948 
949 	return -EINVAL;
950 }
951 
952 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
953 {
954 	if (mpin[q_index].is_dynamic) {
955 		mpin[q_index].in_use = false;
956 		mpin[q_index].id.module_id = 0;
957 		mpin[q_index].id.instance_id = 0;
958 		mpin[q_index].id.pvt_id = 0;
959 	}
960 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
961 	mpin[q_index].tgt_mcfg = NULL;
962 }
963 
964 /* Module state will be set to unint, if all the out pin state is UNBIND */
965 
966 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
967 						struct skl_module_cfg *mcfg)
968 {
969 	int i;
970 	bool found = false;
971 
972 	for (i = 0; i < max; i++)  {
973 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
974 			continue;
975 		found = true;
976 		break;
977 	}
978 
979 	if (!found)
980 		mcfg->m_state = SKL_MODULE_INIT_DONE;
981 	return;
982 }
983 
984 /*
985  * A module needs to be instanataited in DSP. A mdoule is present in a
986  * collection of module referred as a PIPE.
987  * We first calculate the module format, based on module type and then
988  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
989  */
990 int skl_init_module(struct skl_sst *ctx,
991 			struct skl_module_cfg *mconfig)
992 {
993 	u16 module_config_size = 0;
994 	void *param_data = NULL;
995 	int ret;
996 	struct skl_ipc_init_instance_msg msg;
997 
998 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
999 		 mconfig->id.module_id, mconfig->id.pvt_id);
1000 
1001 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1002 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1003 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1004 		return -EIO;
1005 	}
1006 
1007 	ret = skl_set_module_format(ctx, mconfig,
1008 			&module_config_size, &param_data);
1009 	if (ret < 0) {
1010 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1011 		return ret;
1012 	}
1013 
1014 	msg.module_id = mconfig->id.module_id;
1015 	msg.instance_id = mconfig->id.pvt_id;
1016 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1017 	msg.param_data_size = module_config_size;
1018 	msg.core_id = mconfig->core_id;
1019 	msg.domain = mconfig->domain;
1020 
1021 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1022 	if (ret < 0) {
1023 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1024 		kfree(param_data);
1025 		return ret;
1026 	}
1027 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1028 	kfree(param_data);
1029 	return ret;
1030 }
1031 
1032 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1033 	*src_module, struct skl_module_cfg *dst_module)
1034 {
1035 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1036 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1037 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1038 		 dst_module->id.module_id, dst_module->id.pvt_id);
1039 
1040 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1041 		src_module->m_state, dst_module->m_state);
1042 }
1043 
1044 /*
1045  * On module freeup, we need to unbind the module with modules
1046  * it is already bind.
1047  * Find the pin allocated and unbind then using bind_unbind IPC
1048  */
1049 int skl_unbind_modules(struct skl_sst *ctx,
1050 			struct skl_module_cfg *src_mcfg,
1051 			struct skl_module_cfg *dst_mcfg)
1052 {
1053 	int ret;
1054 	struct skl_ipc_bind_unbind_msg msg;
1055 	struct skl_module_inst_id src_id = src_mcfg->id;
1056 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1057 	int in_max = dst_mcfg->module->max_input_pins;
1058 	int out_max = src_mcfg->module->max_output_pins;
1059 	int src_index, dst_index, src_pin_state, dst_pin_state;
1060 
1061 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1062 
1063 	/* get src queue index */
1064 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1065 	if (src_index < 0)
1066 		return 0;
1067 
1068 	msg.src_queue = src_index;
1069 
1070 	/* get dst queue index */
1071 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1072 	if (dst_index < 0)
1073 		return 0;
1074 
1075 	msg.dst_queue = dst_index;
1076 
1077 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1078 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1079 
1080 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1081 		dst_pin_state != SKL_PIN_BIND_DONE)
1082 		return 0;
1083 
1084 	msg.module_id = src_mcfg->id.module_id;
1085 	msg.instance_id = src_mcfg->id.pvt_id;
1086 	msg.dst_module_id = dst_mcfg->id.module_id;
1087 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1088 	msg.bind = false;
1089 
1090 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1091 	if (!ret) {
1092 		/* free queue only if unbind is success */
1093 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1094 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1095 
1096 		/*
1097 		 * check only if src module bind state, bind is
1098 		 * always from src -> sink
1099 		 */
1100 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1101 	}
1102 
1103 	return ret;
1104 }
1105 
1106 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1107 				struct skl_module_fmt *format)
1108 {
1109 	pin_fmt->number_of_channels = format->channels;
1110 	pin_fmt->s_freq = format->s_freq;
1111 	pin_fmt->bit_depth = format->bit_depth;
1112 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1113 	pin_fmt->ch_cfg = format->ch_cfg;
1114 	pin_fmt->sample_type = format->sample_type;
1115 	pin_fmt->channel_map = format->ch_map;
1116 	pin_fmt->interleaving = format->interleaving_style;
1117 }
1118 
1119 #define CPR_SINK_FMT_PARAM_ID 2
1120 
1121 /*
1122  * Once a module is instantiated it need to be 'bind' with other modules in
1123  * the pipeline. For binding we need to find the module pins which are bind
1124  * together
1125  * This function finds the pins and then sends bund_unbind IPC message to
1126  * DSP using IPC helper
1127  */
1128 int skl_bind_modules(struct skl_sst *ctx,
1129 			struct skl_module_cfg *src_mcfg,
1130 			struct skl_module_cfg *dst_mcfg)
1131 {
1132 	int ret = 0;
1133 	struct skl_ipc_bind_unbind_msg msg;
1134 	int in_max = dst_mcfg->module->max_input_pins;
1135 	int out_max = src_mcfg->module->max_output_pins;
1136 	int src_index, dst_index;
1137 	struct skl_module_fmt *format;
1138 	struct skl_cpr_pin_fmt pin_fmt;
1139 	struct skl_module *module;
1140 	struct skl_module_iface *fmt;
1141 
1142 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1143 
1144 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1145 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1146 		return 0;
1147 
1148 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1149 	if (src_index < 0)
1150 		return -EINVAL;
1151 
1152 	msg.src_queue = src_index;
1153 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1154 	if (dst_index < 0) {
1155 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1156 		return -EINVAL;
1157 	}
1158 
1159 	/*
1160 	 * Copier module requires the separate large_config_set_ipc to
1161 	 * configure the pins other than 0
1162 	 */
1163 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1164 		pin_fmt.sink_id = src_index;
1165 		module = src_mcfg->module;
1166 		fmt = &module->formats[src_mcfg->fmt_idx];
1167 
1168 		/* Input fmt is same as that of src module input cfg */
1169 		format = &fmt->inputs[0].fmt;
1170 		fill_pin_params(&(pin_fmt.src_fmt), format);
1171 
1172 		format = &fmt->outputs[src_index].fmt;
1173 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1174 		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1175 					sizeof(struct skl_cpr_pin_fmt),
1176 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1177 
1178 		if (ret < 0)
1179 			goto out;
1180 	}
1181 
1182 	msg.dst_queue = dst_index;
1183 
1184 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1185 			 msg.src_queue, msg.dst_queue);
1186 
1187 	msg.module_id = src_mcfg->id.module_id;
1188 	msg.instance_id = src_mcfg->id.pvt_id;
1189 	msg.dst_module_id = dst_mcfg->id.module_id;
1190 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1191 	msg.bind = true;
1192 
1193 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1194 
1195 	if (!ret) {
1196 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1197 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1198 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1199 		return ret;
1200 	}
1201 out:
1202 	/* error case , if IPC fails, clear the queue index */
1203 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1204 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1205 
1206 	return ret;
1207 }
1208 
1209 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1210 	enum skl_ipc_pipeline_state state)
1211 {
1212 	dev_dbg(ctx->dev, "%s: pipe_state = %d\n", __func__, state);
1213 
1214 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1215 }
1216 
1217 /*
1218  * A pipeline is a collection of modules. Before a module in instantiated a
1219  * pipeline needs to be created for it.
1220  * This function creates pipeline, by sending create pipeline IPC messages
1221  * to FW
1222  */
1223 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1224 {
1225 	int ret;
1226 
1227 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1228 
1229 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1230 				pipe->pipe_priority, pipe->ppl_id,
1231 				pipe->lp_mode);
1232 	if (ret < 0) {
1233 		dev_err(ctx->dev, "Failed to create pipeline\n");
1234 		return ret;
1235 	}
1236 
1237 	pipe->state = SKL_PIPE_CREATED;
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1244  * pause the pipeline first and then delete it
1245  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1246  * DMA engines and releases resources
1247  */
1248 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1249 {
1250 	int ret;
1251 
1252 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1253 
1254 	/* If pipe is started, do stop the pipe in FW. */
1255 	if (pipe->state >= SKL_PIPE_STARTED) {
1256 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1257 		if (ret < 0) {
1258 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1259 			return ret;
1260 		}
1261 
1262 		pipe->state = SKL_PIPE_PAUSED;
1263 	}
1264 
1265 	/* If pipe was not created in FW, do not try to delete it */
1266 	if (pipe->state < SKL_PIPE_CREATED)
1267 		return 0;
1268 
1269 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1270 	if (ret < 0) {
1271 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1272 		return ret;
1273 	}
1274 
1275 	pipe->state = SKL_PIPE_INVALID;
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1282  * For processing data the pipe need to be run by sending IPC set pipe state
1283  * to DSP
1284  */
1285 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1286 {
1287 	int ret;
1288 
1289 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1290 
1291 	/* If pipe was not created in FW, do not try to pause or delete */
1292 	if (pipe->state < SKL_PIPE_CREATED)
1293 		return 0;
1294 
1295 	/* Pipe has to be paused before it is started */
1296 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1297 	if (ret < 0) {
1298 		dev_err(ctx->dev, "Failed to pause pipe\n");
1299 		return ret;
1300 	}
1301 
1302 	pipe->state = SKL_PIPE_PAUSED;
1303 
1304 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1305 	if (ret < 0) {
1306 		dev_err(ctx->dev, "Failed to start pipe\n");
1307 		return ret;
1308 	}
1309 
1310 	pipe->state = SKL_PIPE_STARTED;
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Stop the pipeline by sending set pipe state IPC
1317  * DSP doesnt implement stop so we always send pause message
1318  */
1319 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1320 {
1321 	int ret;
1322 
1323 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1324 
1325 	/* If pipe was not created in FW, do not try to pause or delete */
1326 	if (pipe->state < SKL_PIPE_PAUSED)
1327 		return 0;
1328 
1329 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1330 	if (ret < 0) {
1331 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1332 		return ret;
1333 	}
1334 
1335 	pipe->state = SKL_PIPE_PAUSED;
1336 
1337 	return 0;
1338 }
1339 
1340 /*
1341  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1342  * from the DSP side
1343  */
1344 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1345 {
1346 	int ret;
1347 
1348 	/* If pipe was not created in FW, do not try to pause or delete */
1349 	if (pipe->state < SKL_PIPE_PAUSED)
1350 		return 0;
1351 
1352 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1353 	if (ret < 0) {
1354 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1355 		return ret;
1356 	}
1357 
1358 	pipe->state = SKL_PIPE_RESET;
1359 
1360 	return 0;
1361 }
1362 
1363 /* Algo parameter set helper function */
1364 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1365 				u32 param_id, struct skl_module_cfg *mcfg)
1366 {
1367 	struct skl_ipc_large_config_msg msg;
1368 
1369 	msg.module_id = mcfg->id.module_id;
1370 	msg.instance_id = mcfg->id.pvt_id;
1371 	msg.param_data_size = size;
1372 	msg.large_param_id = param_id;
1373 
1374 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1375 }
1376 
1377 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1378 			  u32 param_id, struct skl_module_cfg *mcfg)
1379 {
1380 	struct skl_ipc_large_config_msg msg;
1381 
1382 	msg.module_id = mcfg->id.module_id;
1383 	msg.instance_id = mcfg->id.pvt_id;
1384 	msg.param_data_size = size;
1385 	msg.large_param_id = param_id;
1386 
1387 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1388 }
1389