xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.init_fw = skl_sst_init_fw,
207 		.cleanup = skl_sst_dsp_cleanup
208 	},
209 	{
210 		.id = 0x9d71,
211 		.loader_ops = skl_get_loader_ops,
212 		.init = skl_sst_dsp_init,
213 		.init_fw = skl_sst_init_fw,
214 		.cleanup = skl_sst_dsp_cleanup
215 	},
216 	{
217 		.id = 0x5a98,
218 		.loader_ops = bxt_get_loader_ops,
219 		.init = bxt_sst_dsp_init,
220 		.init_fw = bxt_sst_init_fw,
221 		.cleanup = bxt_sst_dsp_cleanup
222 	},
223 };
224 
225 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
226 {
227 	int i;
228 
229 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
230 		if (dsp_ops[i].id == pci_id)
231 			return &dsp_ops[i];
232 	}
233 
234 	return NULL;
235 }
236 
237 int skl_init_dsp(struct skl *skl)
238 {
239 	void __iomem *mmio_base;
240 	struct hdac_ext_bus *ebus = &skl->ebus;
241 	struct hdac_bus *bus = ebus_to_hbus(ebus);
242 	struct skl_dsp_loader_ops loader_ops;
243 	int irq = bus->irq;
244 	const struct skl_dsp_ops *ops;
245 	int ret;
246 
247 	/* enable ppcap interrupt */
248 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
249 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
250 
251 	/* read the BAR of the ADSP MMIO */
252 	mmio_base = pci_ioremap_bar(skl->pci, 4);
253 	if (mmio_base == NULL) {
254 		dev_err(bus->dev, "ioremap error\n");
255 		return -ENXIO;
256 	}
257 
258 	ops = skl_get_dsp_ops(skl->pci->device);
259 	if (!ops)
260 		return -EIO;
261 
262 	loader_ops = ops->loader_ops();
263 	ret = ops->init(bus->dev, mmio_base, irq,
264 				skl->fw_name, loader_ops,
265 				&skl->skl_sst);
266 
267 	if (ret < 0)
268 		return ret;
269 
270 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
271 
272 	return ret;
273 }
274 
275 int skl_free_dsp(struct skl *skl)
276 {
277 	struct hdac_ext_bus *ebus = &skl->ebus;
278 	struct hdac_bus *bus = ebus_to_hbus(ebus);
279 	struct skl_sst *ctx = skl->skl_sst;
280 	const struct skl_dsp_ops *ops;
281 
282 	/* disable  ppcap interrupt */
283 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
284 
285 	ops = skl_get_dsp_ops(skl->pci->device);
286 	if (!ops)
287 		return -EIO;
288 
289 	ops->cleanup(bus->dev, ctx);
290 
291 	if (ctx->dsp->addr.lpe)
292 		iounmap(ctx->dsp->addr.lpe);
293 
294 	return 0;
295 }
296 
297 int skl_suspend_dsp(struct skl *skl)
298 {
299 	struct skl_sst *ctx = skl->skl_sst;
300 	int ret;
301 
302 	/* if ppcap is not supported return 0 */
303 	if (!skl->ebus.bus.ppcap)
304 		return 0;
305 
306 	ret = skl_dsp_sleep(ctx->dsp);
307 	if (ret < 0)
308 		return ret;
309 
310 	/* disable ppcap interrupt */
311 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
312 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
313 
314 	return 0;
315 }
316 
317 int skl_resume_dsp(struct skl *skl)
318 {
319 	struct skl_sst *ctx = skl->skl_sst;
320 	int ret;
321 
322 	/* if ppcap is not supported return 0 */
323 	if (!skl->ebus.bus.ppcap)
324 		return 0;
325 
326 	/* enable ppcap interrupt */
327 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
328 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
329 
330 	/* check if DSP 1st boot is done */
331 	if (skl->skl_sst->is_first_boot == true)
332 		return 0;
333 
334 	ret = skl_dsp_wake(ctx->dsp);
335 	if (ret < 0)
336 		return ret;
337 
338 	skl_dsp_enable_notification(skl->skl_sst, false);
339 	return ret;
340 }
341 
342 enum skl_bitdepth skl_get_bit_depth(int params)
343 {
344 	switch (params) {
345 	case 8:
346 		return SKL_DEPTH_8BIT;
347 
348 	case 16:
349 		return SKL_DEPTH_16BIT;
350 
351 	case 24:
352 		return SKL_DEPTH_24BIT;
353 
354 	case 32:
355 		return SKL_DEPTH_32BIT;
356 
357 	default:
358 		return SKL_DEPTH_INVALID;
359 
360 	}
361 }
362 
363 /*
364  * Each module in DSP expects a base module configuration, which consists of
365  * PCM format information, which we calculate in driver and resource values
366  * which are read from widget information passed through topology binary
367  * This is send when we create a module with INIT_INSTANCE IPC msg
368  */
369 static void skl_set_base_module_format(struct skl_sst *ctx,
370 			struct skl_module_cfg *mconfig,
371 			struct skl_base_cfg *base_cfg)
372 {
373 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
374 
375 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
376 
377 	base_cfg->audio_fmt.s_freq = format->s_freq;
378 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
379 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
380 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
381 
382 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
383 			format->bit_depth, format->valid_bit_depth,
384 			format->ch_cfg);
385 
386 	base_cfg->audio_fmt.channel_map = format->ch_map;
387 
388 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
389 
390 	base_cfg->cps = mconfig->mcps;
391 	base_cfg->ibs = mconfig->ibs;
392 	base_cfg->obs = mconfig->obs;
393 	base_cfg->is_pages = mconfig->mem_pages;
394 }
395 
396 /*
397  * Copies copier capabilities into copier module and updates copier module
398  * config size.
399  */
400 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
401 				struct skl_cpr_cfg *cpr_mconfig)
402 {
403 	if (mconfig->formats_config.caps_size == 0)
404 		return;
405 
406 	memcpy(cpr_mconfig->gtw_cfg.config_data,
407 			mconfig->formats_config.caps,
408 			mconfig->formats_config.caps_size);
409 
410 	cpr_mconfig->gtw_cfg.config_length =
411 			(mconfig->formats_config.caps_size) / 4;
412 }
413 
414 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
415 /*
416  * Calculate the gatewat settings required for copier module, type of
417  * gateway and index of gateway to use
418  */
419 static u32 skl_get_node_id(struct skl_sst *ctx,
420 			struct skl_module_cfg *mconfig)
421 {
422 	union skl_connector_node_id node_id = {0};
423 	union skl_ssp_dma_node ssp_node  = {0};
424 	struct skl_pipe_params *params = mconfig->pipe->p_params;
425 
426 	switch (mconfig->dev_type) {
427 	case SKL_DEVICE_BT:
428 		node_id.node.dma_type =
429 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
430 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
431 			SKL_DMA_I2S_LINK_INPUT_CLASS;
432 		node_id.node.vindex = params->host_dma_id +
433 					(mconfig->vbus_id << 3);
434 		break;
435 
436 	case SKL_DEVICE_I2S:
437 		node_id.node.dma_type =
438 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
439 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
440 			SKL_DMA_I2S_LINK_INPUT_CLASS;
441 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
442 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
443 		node_id.node.vindex = ssp_node.val;
444 		break;
445 
446 	case SKL_DEVICE_DMIC:
447 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
448 		node_id.node.vindex = mconfig->vbus_id +
449 					 (mconfig->time_slot);
450 		break;
451 
452 	case SKL_DEVICE_HDALINK:
453 		node_id.node.dma_type =
454 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
455 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
456 			SKL_DMA_HDA_LINK_INPUT_CLASS;
457 		node_id.node.vindex = params->link_dma_id;
458 		break;
459 
460 	case SKL_DEVICE_HDAHOST:
461 		node_id.node.dma_type =
462 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
463 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
464 			SKL_DMA_HDA_HOST_INPUT_CLASS;
465 		node_id.node.vindex = params->host_dma_id;
466 		break;
467 
468 	default:
469 		node_id.val = 0xFFFFFFFF;
470 		break;
471 	}
472 
473 	return node_id.val;
474 }
475 
476 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
477 			struct skl_module_cfg *mconfig,
478 			struct skl_cpr_cfg *cpr_mconfig)
479 {
480 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
481 
482 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
483 		cpr_mconfig->cpr_feature_mask = 0;
484 		return;
485 	}
486 
487 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
488 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
489 	else
490 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
491 
492 	cpr_mconfig->cpr_feature_mask = 0;
493 	cpr_mconfig->gtw_cfg.config_length  = 0;
494 
495 	skl_copy_copier_caps(mconfig, cpr_mconfig);
496 }
497 
498 #define DMA_CONTROL_ID 5
499 
500 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
501 {
502 	struct skl_dma_control *dma_ctrl;
503 	struct skl_i2s_config_blob config_blob;
504 	struct skl_ipc_large_config_msg msg = {0};
505 	int err = 0;
506 
507 
508 	/*
509 	 * if blob size is same as capablity size, then no dma control
510 	 * present so return
511 	 */
512 	if (mconfig->formats_config.caps_size == sizeof(config_blob))
513 		return 0;
514 
515 	msg.large_param_id = DMA_CONTROL_ID;
516 	msg.param_data_size = sizeof(struct skl_dma_control) +
517 				mconfig->formats_config.caps_size;
518 
519 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
520 	if (dma_ctrl == NULL)
521 		return -ENOMEM;
522 
523 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
524 
525 	/* size in dwords */
526 	dma_ctrl->config_length = sizeof(config_blob) / 4;
527 
528 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
529 				mconfig->formats_config.caps_size);
530 
531 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
532 
533 	kfree(dma_ctrl);
534 
535 	return err;
536 }
537 
538 static void skl_setup_out_format(struct skl_sst *ctx,
539 			struct skl_module_cfg *mconfig,
540 			struct skl_audio_data_format *out_fmt)
541 {
542 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
543 
544 	out_fmt->number_of_channels = (u8)format->channels;
545 	out_fmt->s_freq = format->s_freq;
546 	out_fmt->bit_depth = format->bit_depth;
547 	out_fmt->valid_bit_depth = format->valid_bit_depth;
548 	out_fmt->ch_cfg = format->ch_cfg;
549 
550 	out_fmt->channel_map = format->ch_map;
551 	out_fmt->interleaving = format->interleaving_style;
552 	out_fmt->sample_type = format->sample_type;
553 
554 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
555 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
556 }
557 
558 /*
559  * DSP needs SRC module for frequency conversion, SRC takes base module
560  * configuration and the target frequency as extra parameter passed as src
561  * config
562  */
563 static void skl_set_src_format(struct skl_sst *ctx,
564 			struct skl_module_cfg *mconfig,
565 			struct skl_src_module_cfg *src_mconfig)
566 {
567 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
568 
569 	skl_set_base_module_format(ctx, mconfig,
570 		(struct skl_base_cfg *)src_mconfig);
571 
572 	src_mconfig->src_cfg = fmt->s_freq;
573 }
574 
575 /*
576  * DSP needs updown module to do channel conversion. updown module take base
577  * module configuration and channel configuration
578  * It also take coefficients and now we have defaults applied here
579  */
580 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
581 			struct skl_module_cfg *mconfig,
582 			struct skl_up_down_mixer_cfg *mixer_mconfig)
583 {
584 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
585 	int i = 0;
586 
587 	skl_set_base_module_format(ctx,	mconfig,
588 		(struct skl_base_cfg *)mixer_mconfig);
589 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
590 
591 	/* Select F/W default coefficient */
592 	mixer_mconfig->coeff_sel = 0x0;
593 
594 	/* User coeff, don't care since we are selecting F/W defaults */
595 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
596 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
597 }
598 
599 /*
600  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
601  * dma) or link (hda link, SSP, PDM)
602  * Here we calculate the copier module parameters, like PCM format, output
603  * format, gateway settings
604  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
605  */
606 static void skl_set_copier_format(struct skl_sst *ctx,
607 			struct skl_module_cfg *mconfig,
608 			struct skl_cpr_cfg *cpr_mconfig)
609 {
610 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
611 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
612 
613 	skl_set_base_module_format(ctx, mconfig, base_cfg);
614 
615 	skl_setup_out_format(ctx, mconfig, out_fmt);
616 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
617 }
618 
619 /*
620  * Algo module are DSP pre processing modules. Algo module take base module
621  * configuration and params
622  */
623 
624 static void skl_set_algo_format(struct skl_sst *ctx,
625 			struct skl_module_cfg *mconfig,
626 			struct skl_algo_cfg *algo_mcfg)
627 {
628 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
629 
630 	skl_set_base_module_format(ctx, mconfig, base_cfg);
631 
632 	if (mconfig->formats_config.caps_size == 0)
633 		return;
634 
635 	memcpy(algo_mcfg->params,
636 			mconfig->formats_config.caps,
637 			mconfig->formats_config.caps_size);
638 
639 }
640 
641 /*
642  * Mic select module allows selecting one or many input channels, thus
643  * acting as a demux.
644  *
645  * Mic select module take base module configuration and out-format
646  * configuration
647  */
648 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
649 			struct skl_module_cfg *mconfig,
650 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
651 {
652 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
653 	struct skl_base_cfg *base_cfg =
654 				(struct skl_base_cfg *)base_outfmt_mcfg;
655 
656 	skl_set_base_module_format(ctx, mconfig, base_cfg);
657 	skl_setup_out_format(ctx, mconfig, out_fmt);
658 }
659 
660 static u16 skl_get_module_param_size(struct skl_sst *ctx,
661 			struct skl_module_cfg *mconfig)
662 {
663 	u16 param_size;
664 
665 	switch (mconfig->m_type) {
666 	case SKL_MODULE_TYPE_COPIER:
667 		param_size = sizeof(struct skl_cpr_cfg);
668 		param_size += mconfig->formats_config.caps_size;
669 		return param_size;
670 
671 	case SKL_MODULE_TYPE_SRCINT:
672 		return sizeof(struct skl_src_module_cfg);
673 
674 	case SKL_MODULE_TYPE_UPDWMIX:
675 		return sizeof(struct skl_up_down_mixer_cfg);
676 
677 	case SKL_MODULE_TYPE_ALGO:
678 		param_size = sizeof(struct skl_base_cfg);
679 		param_size += mconfig->formats_config.caps_size;
680 		return param_size;
681 
682 	case SKL_MODULE_TYPE_BASE_OUTFMT:
683 	case SKL_MODULE_TYPE_KPB:
684 		return sizeof(struct skl_base_outfmt_cfg);
685 
686 	default:
687 		/*
688 		 * return only base cfg when no specific module type is
689 		 * specified
690 		 */
691 		return sizeof(struct skl_base_cfg);
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * DSP firmware supports various modules like copier, SRC, updown etc.
699  * These modules required various parameters to be calculated and sent for
700  * the module initialization to DSP. By default a generic module needs only
701  * base module format configuration
702  */
703 
704 static int skl_set_module_format(struct skl_sst *ctx,
705 			struct skl_module_cfg *module_config,
706 			u16 *module_config_size,
707 			void **param_data)
708 {
709 	u16 param_size;
710 
711 	param_size  = skl_get_module_param_size(ctx, module_config);
712 
713 	*param_data = kzalloc(param_size, GFP_KERNEL);
714 	if (NULL == *param_data)
715 		return -ENOMEM;
716 
717 	*module_config_size = param_size;
718 
719 	switch (module_config->m_type) {
720 	case SKL_MODULE_TYPE_COPIER:
721 		skl_set_copier_format(ctx, module_config, *param_data);
722 		break;
723 
724 	case SKL_MODULE_TYPE_SRCINT:
725 		skl_set_src_format(ctx, module_config, *param_data);
726 		break;
727 
728 	case SKL_MODULE_TYPE_UPDWMIX:
729 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
730 		break;
731 
732 	case SKL_MODULE_TYPE_ALGO:
733 		skl_set_algo_format(ctx, module_config, *param_data);
734 		break;
735 
736 	case SKL_MODULE_TYPE_BASE_OUTFMT:
737 	case SKL_MODULE_TYPE_KPB:
738 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
739 		break;
740 
741 	default:
742 		skl_set_base_module_format(ctx, module_config, *param_data);
743 		break;
744 
745 	}
746 
747 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
748 			module_config->id.module_id, param_size);
749 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
750 			*param_data, param_size, false);
751 	return 0;
752 }
753 
754 static int skl_get_queue_index(struct skl_module_pin *mpin,
755 				struct skl_module_inst_id id, int max)
756 {
757 	int i;
758 
759 	for (i = 0; i < max; i++)  {
760 		if (mpin[i].id.module_id == id.module_id &&
761 			mpin[i].id.instance_id == id.instance_id)
762 			return i;
763 	}
764 
765 	return -EINVAL;
766 }
767 
768 /*
769  * Allocates queue for each module.
770  * if dynamic, the pin_index is allocated 0 to max_pin.
771  * In static, the pin_index is fixed based on module_id and instance id
772  */
773 static int skl_alloc_queue(struct skl_module_pin *mpin,
774 			struct skl_module_cfg *tgt_cfg, int max)
775 {
776 	int i;
777 	struct skl_module_inst_id id = tgt_cfg->id;
778 	/*
779 	 * if pin in dynamic, find first free pin
780 	 * otherwise find match module and instance id pin as topology will
781 	 * ensure a unique pin is assigned to this so no need to
782 	 * allocate/free
783 	 */
784 	for (i = 0; i < max; i++)  {
785 		if (mpin[i].is_dynamic) {
786 			if (!mpin[i].in_use &&
787 				mpin[i].pin_state == SKL_PIN_UNBIND) {
788 
789 				mpin[i].in_use = true;
790 				mpin[i].id.module_id = id.module_id;
791 				mpin[i].id.instance_id = id.instance_id;
792 				mpin[i].id.pvt_id = id.pvt_id;
793 				mpin[i].tgt_mcfg = tgt_cfg;
794 				return i;
795 			}
796 		} else {
797 			if (mpin[i].id.module_id == id.module_id &&
798 				mpin[i].id.instance_id == id.instance_id &&
799 				mpin[i].pin_state == SKL_PIN_UNBIND) {
800 
801 				mpin[i].tgt_mcfg = tgt_cfg;
802 				return i;
803 			}
804 		}
805 	}
806 
807 	return -EINVAL;
808 }
809 
810 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
811 {
812 	if (mpin[q_index].is_dynamic) {
813 		mpin[q_index].in_use = false;
814 		mpin[q_index].id.module_id = 0;
815 		mpin[q_index].id.instance_id = 0;
816 		mpin[q_index].id.pvt_id = 0;
817 	}
818 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
819 	mpin[q_index].tgt_mcfg = NULL;
820 }
821 
822 /* Module state will be set to unint, if all the out pin state is UNBIND */
823 
824 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
825 						struct skl_module_cfg *mcfg)
826 {
827 	int i;
828 	bool found = false;
829 
830 	for (i = 0; i < max; i++)  {
831 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
832 			continue;
833 		found = true;
834 		break;
835 	}
836 
837 	if (!found)
838 		mcfg->m_state = SKL_MODULE_UNINIT;
839 	return;
840 }
841 
842 /*
843  * A module needs to be instanataited in DSP. A mdoule is present in a
844  * collection of module referred as a PIPE.
845  * We first calculate the module format, based on module type and then
846  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
847  */
848 int skl_init_module(struct skl_sst *ctx,
849 			struct skl_module_cfg *mconfig)
850 {
851 	u16 module_config_size = 0;
852 	void *param_data = NULL;
853 	int ret;
854 	struct skl_ipc_init_instance_msg msg;
855 
856 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
857 		 mconfig->id.module_id, mconfig->id.pvt_id);
858 
859 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
860 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
861 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
862 		return -EIO;
863 	}
864 
865 	ret = skl_set_module_format(ctx, mconfig,
866 			&module_config_size, &param_data);
867 	if (ret < 0) {
868 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
869 		return ret;
870 	}
871 
872 	msg.module_id = mconfig->id.module_id;
873 	msg.instance_id = mconfig->id.pvt_id;
874 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
875 	msg.param_data_size = module_config_size;
876 	msg.core_id = mconfig->core_id;
877 	msg.domain = mconfig->domain;
878 
879 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
880 	if (ret < 0) {
881 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
882 		kfree(param_data);
883 		return ret;
884 	}
885 	mconfig->m_state = SKL_MODULE_INIT_DONE;
886 	kfree(param_data);
887 	return ret;
888 }
889 
890 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
891 	*src_module, struct skl_module_cfg *dst_module)
892 {
893 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
894 		__func__, src_module->id.module_id, src_module->id.pvt_id);
895 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
896 		 dst_module->id.module_id, dst_module->id.pvt_id);
897 
898 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
899 		src_module->m_state, dst_module->m_state);
900 }
901 
902 /*
903  * On module freeup, we need to unbind the module with modules
904  * it is already bind.
905  * Find the pin allocated and unbind then using bind_unbind IPC
906  */
907 int skl_unbind_modules(struct skl_sst *ctx,
908 			struct skl_module_cfg *src_mcfg,
909 			struct skl_module_cfg *dst_mcfg)
910 {
911 	int ret;
912 	struct skl_ipc_bind_unbind_msg msg;
913 	struct skl_module_inst_id src_id = src_mcfg->id;
914 	struct skl_module_inst_id dst_id = dst_mcfg->id;
915 	int in_max = dst_mcfg->max_in_queue;
916 	int out_max = src_mcfg->max_out_queue;
917 	int src_index, dst_index, src_pin_state, dst_pin_state;
918 
919 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
920 
921 	/* get src queue index */
922 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
923 	if (src_index < 0)
924 		return 0;
925 
926 	msg.src_queue = src_index;
927 
928 	/* get dst queue index */
929 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
930 	if (dst_index < 0)
931 		return 0;
932 
933 	msg.dst_queue = dst_index;
934 
935 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
936 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
937 
938 	if (src_pin_state != SKL_PIN_BIND_DONE ||
939 		dst_pin_state != SKL_PIN_BIND_DONE)
940 		return 0;
941 
942 	msg.module_id = src_mcfg->id.module_id;
943 	msg.instance_id = src_mcfg->id.pvt_id;
944 	msg.dst_module_id = dst_mcfg->id.module_id;
945 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
946 	msg.bind = false;
947 
948 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
949 	if (!ret) {
950 		/* free queue only if unbind is success */
951 		skl_free_queue(src_mcfg->m_out_pin, src_index);
952 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
953 
954 		/*
955 		 * check only if src module bind state, bind is
956 		 * always from src -> sink
957 		 */
958 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
959 	}
960 
961 	return ret;
962 }
963 
964 /*
965  * Once a module is instantiated it need to be 'bind' with other modules in
966  * the pipeline. For binding we need to find the module pins which are bind
967  * together
968  * This function finds the pins and then sends bund_unbind IPC message to
969  * DSP using IPC helper
970  */
971 int skl_bind_modules(struct skl_sst *ctx,
972 			struct skl_module_cfg *src_mcfg,
973 			struct skl_module_cfg *dst_mcfg)
974 {
975 	int ret;
976 	struct skl_ipc_bind_unbind_msg msg;
977 	int in_max = dst_mcfg->max_in_queue;
978 	int out_max = src_mcfg->max_out_queue;
979 	int src_index, dst_index;
980 
981 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
982 
983 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
984 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
985 		return 0;
986 
987 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
988 	if (src_index < 0)
989 		return -EINVAL;
990 
991 	msg.src_queue = src_index;
992 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
993 	if (dst_index < 0) {
994 		skl_free_queue(src_mcfg->m_out_pin, src_index);
995 		return -EINVAL;
996 	}
997 
998 	msg.dst_queue = dst_index;
999 
1000 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1001 			 msg.src_queue, msg.dst_queue);
1002 
1003 	msg.module_id = src_mcfg->id.module_id;
1004 	msg.instance_id = src_mcfg->id.pvt_id;
1005 	msg.dst_module_id = dst_mcfg->id.module_id;
1006 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1007 	msg.bind = true;
1008 
1009 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1010 
1011 	if (!ret) {
1012 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1013 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1014 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1015 	} else {
1016 		/* error case , if IPC fails, clear the queue index */
1017 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1018 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1019 	}
1020 
1021 	return ret;
1022 }
1023 
1024 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1025 	enum skl_ipc_pipeline_state state)
1026 {
1027 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1028 
1029 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1030 }
1031 
1032 /*
1033  * A pipeline is a collection of modules. Before a module in instantiated a
1034  * pipeline needs to be created for it.
1035  * This function creates pipeline, by sending create pipeline IPC messages
1036  * to FW
1037  */
1038 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1039 {
1040 	int ret;
1041 
1042 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1043 
1044 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1045 				pipe->pipe_priority, pipe->ppl_id);
1046 	if (ret < 0) {
1047 		dev_err(ctx->dev, "Failed to create pipeline\n");
1048 		return ret;
1049 	}
1050 
1051 	pipe->state = SKL_PIPE_CREATED;
1052 
1053 	return 0;
1054 }
1055 
1056 /*
1057  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1058  * pause the pipeline first and then delete it
1059  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1060  * DMA engines and releases resources
1061  */
1062 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1063 {
1064 	int ret;
1065 
1066 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1067 
1068 	/* If pipe is started, do stop the pipe in FW. */
1069 	if (pipe->state > SKL_PIPE_STARTED) {
1070 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1071 		if (ret < 0) {
1072 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1073 			return ret;
1074 		}
1075 
1076 		pipe->state = SKL_PIPE_PAUSED;
1077 	}
1078 
1079 	/* If pipe was not created in FW, do not try to delete it */
1080 	if (pipe->state < SKL_PIPE_CREATED)
1081 		return 0;
1082 
1083 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1084 	if (ret < 0) {
1085 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1086 		return ret;
1087 	}
1088 
1089 	pipe->state = SKL_PIPE_INVALID;
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1096  * For processing data the pipe need to be run by sending IPC set pipe state
1097  * to DSP
1098  */
1099 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1100 {
1101 	int ret;
1102 
1103 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1104 
1105 	/* If pipe was not created in FW, do not try to pause or delete */
1106 	if (pipe->state < SKL_PIPE_CREATED)
1107 		return 0;
1108 
1109 	/* Pipe has to be paused before it is started */
1110 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1111 	if (ret < 0) {
1112 		dev_err(ctx->dev, "Failed to pause pipe\n");
1113 		return ret;
1114 	}
1115 
1116 	pipe->state = SKL_PIPE_PAUSED;
1117 
1118 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1119 	if (ret < 0) {
1120 		dev_err(ctx->dev, "Failed to start pipe\n");
1121 		return ret;
1122 	}
1123 
1124 	pipe->state = SKL_PIPE_STARTED;
1125 
1126 	return 0;
1127 }
1128 
1129 /*
1130  * Stop the pipeline by sending set pipe state IPC
1131  * DSP doesnt implement stop so we always send pause message
1132  */
1133 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1134 {
1135 	int ret;
1136 
1137 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1138 
1139 	/* If pipe was not created in FW, do not try to pause or delete */
1140 	if (pipe->state < SKL_PIPE_PAUSED)
1141 		return 0;
1142 
1143 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1144 	if (ret < 0) {
1145 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1146 		return ret;
1147 	}
1148 
1149 	pipe->state = SKL_PIPE_PAUSED;
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1156  * from the DSP side
1157  */
1158 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1159 {
1160 	int ret;
1161 
1162 	/* If pipe was not created in FW, do not try to pause or delete */
1163 	if (pipe->state < SKL_PIPE_PAUSED)
1164 		return 0;
1165 
1166 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1167 	if (ret < 0) {
1168 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1169 		return ret;
1170 	}
1171 
1172 	pipe->state = SKL_PIPE_RESET;
1173 
1174 	return 0;
1175 }
1176 
1177 /* Algo parameter set helper function */
1178 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1179 				u32 param_id, struct skl_module_cfg *mcfg)
1180 {
1181 	struct skl_ipc_large_config_msg msg;
1182 
1183 	msg.module_id = mcfg->id.module_id;
1184 	msg.instance_id = mcfg->id.pvt_id;
1185 	msg.param_data_size = size;
1186 	msg.large_param_id = param_id;
1187 
1188 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1189 }
1190 
1191 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1192 			  u32 param_id, struct skl_module_cfg *mcfg)
1193 {
1194 	struct skl_ipc_large_config_msg msg;
1195 
1196 	msg.module_id = mcfg->id.module_id;
1197 	msg.instance_id = mcfg->id.pvt_id;
1198 	msg.param_data_size = size;
1199 	msg.large_param_id = param_id;
1200 
1201 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1202 }
1203