1 /* 2 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module 3 * configurations 4 * 5 * Copyright (C) 2015 Intel Corp 6 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com> 7 * Jeeja KP <jeeja.kp@intel.com> 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as version 2, as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 */ 19 20 #include <linux/slab.h> 21 #include <linux/pci.h> 22 #include <sound/core.h> 23 #include <sound/pcm.h> 24 #include "skl-sst-dsp.h" 25 #include "skl-sst-ipc.h" 26 #include "skl.h" 27 #include "../common/sst-dsp.h" 28 #include "../common/sst-dsp-priv.h" 29 #include "skl-topology.h" 30 #include "skl-tplg-interface.h" 31 32 static int skl_alloc_dma_buf(struct device *dev, 33 struct snd_dma_buffer *dmab, size_t size) 34 { 35 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 36 struct hdac_bus *bus = ebus_to_hbus(ebus); 37 38 if (!bus) 39 return -ENODEV; 40 41 return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab); 42 } 43 44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) 45 { 46 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 47 struct hdac_bus *bus = ebus_to_hbus(ebus); 48 49 if (!bus) 50 return -ENODEV; 51 52 bus->io_ops->dma_free_pages(bus, dmab); 53 54 return 0; 55 } 56 57 #define NOTIFICATION_PARAM_ID 3 58 #define NOTIFICATION_MASK 0xf 59 60 /* disable notfication for underruns/overruns from firmware module */ 61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable) 62 { 63 struct notification_mask mask; 64 struct skl_ipc_large_config_msg msg = {0}; 65 66 mask.notify = NOTIFICATION_MASK; 67 mask.enable = enable; 68 69 msg.large_param_id = NOTIFICATION_PARAM_ID; 70 msg.param_data_size = sizeof(mask); 71 72 skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask); 73 } 74 75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size, 76 int stream_tag, int enable) 77 { 78 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 79 struct hdac_bus *bus = ebus_to_hbus(ebus); 80 struct hdac_stream *stream = snd_hdac_get_stream(bus, 81 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 82 struct hdac_ext_stream *estream; 83 84 if (!stream) 85 return -EINVAL; 86 87 estream = stream_to_hdac_ext_stream(stream); 88 /* enable/disable SPIB for this hdac stream */ 89 snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index); 90 91 /* set the spib value */ 92 snd_hdac_ext_stream_set_spib(ebus, estream, size); 93 94 return 0; 95 } 96 97 static int skl_dsp_prepare(struct device *dev, unsigned int format, 98 unsigned int size, struct snd_dma_buffer *dmab) 99 { 100 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 101 struct hdac_bus *bus = ebus_to_hbus(ebus); 102 struct hdac_ext_stream *estream; 103 struct hdac_stream *stream; 104 struct snd_pcm_substream substream; 105 int ret; 106 107 if (!bus) 108 return -ENODEV; 109 110 memset(&substream, 0, sizeof(substream)); 111 substream.stream = SNDRV_PCM_STREAM_PLAYBACK; 112 113 estream = snd_hdac_ext_stream_assign(ebus, &substream, 114 HDAC_EXT_STREAM_TYPE_HOST); 115 if (!estream) 116 return -ENODEV; 117 118 stream = hdac_stream(estream); 119 120 /* assign decouple host dma channel */ 121 ret = snd_hdac_dsp_prepare(stream, format, size, dmab); 122 if (ret < 0) 123 return ret; 124 125 skl_dsp_setup_spib(dev, size, stream->stream_tag, true); 126 127 return stream->stream_tag; 128 } 129 130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) 131 { 132 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 133 struct hdac_stream *stream; 134 struct hdac_bus *bus = ebus_to_hbus(ebus); 135 136 if (!bus) 137 return -ENODEV; 138 139 stream = snd_hdac_get_stream(bus, 140 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 141 if (!stream) 142 return -EINVAL; 143 144 snd_hdac_dsp_trigger(stream, start); 145 146 return 0; 147 } 148 149 static int skl_dsp_cleanup(struct device *dev, 150 struct snd_dma_buffer *dmab, int stream_tag) 151 { 152 struct hdac_ext_bus *ebus = dev_get_drvdata(dev); 153 struct hdac_stream *stream; 154 struct hdac_ext_stream *estream; 155 struct hdac_bus *bus = ebus_to_hbus(ebus); 156 157 if (!bus) 158 return -ENODEV; 159 160 stream = snd_hdac_get_stream(bus, 161 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 162 if (!stream) 163 return -EINVAL; 164 165 estream = stream_to_hdac_ext_stream(stream); 166 skl_dsp_setup_spib(dev, 0, stream_tag, false); 167 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); 168 169 snd_hdac_dsp_cleanup(stream, dmab); 170 171 return 0; 172 } 173 174 static struct skl_dsp_loader_ops skl_get_loader_ops(void) 175 { 176 struct skl_dsp_loader_ops loader_ops; 177 178 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); 179 180 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 181 loader_ops.free_dma_buf = skl_free_dma_buf; 182 183 return loader_ops; 184 }; 185 186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void) 187 { 188 struct skl_dsp_loader_ops loader_ops; 189 190 memset(&loader_ops, 0, sizeof(loader_ops)); 191 192 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 193 loader_ops.free_dma_buf = skl_free_dma_buf; 194 loader_ops.prepare = skl_dsp_prepare; 195 loader_ops.trigger = skl_dsp_trigger; 196 loader_ops.cleanup = skl_dsp_cleanup; 197 198 return loader_ops; 199 }; 200 201 static const struct skl_dsp_ops dsp_ops[] = { 202 { 203 .id = 0x9d70, 204 .loader_ops = skl_get_loader_ops, 205 .init = skl_sst_dsp_init, 206 .init_fw = skl_sst_init_fw, 207 .cleanup = skl_sst_dsp_cleanup 208 }, 209 { 210 .id = 0x9d71, 211 .loader_ops = skl_get_loader_ops, 212 .init = skl_sst_dsp_init, 213 .init_fw = skl_sst_init_fw, 214 .cleanup = skl_sst_dsp_cleanup 215 }, 216 { 217 .id = 0x5a98, 218 .loader_ops = bxt_get_loader_ops, 219 .init = bxt_sst_dsp_init, 220 .init_fw = bxt_sst_init_fw, 221 .cleanup = bxt_sst_dsp_cleanup 222 }, 223 }; 224 225 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) 226 { 227 int i; 228 229 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { 230 if (dsp_ops[i].id == pci_id) 231 return &dsp_ops[i]; 232 } 233 234 return NULL; 235 } 236 237 int skl_init_dsp(struct skl *skl) 238 { 239 void __iomem *mmio_base; 240 struct hdac_ext_bus *ebus = &skl->ebus; 241 struct hdac_bus *bus = ebus_to_hbus(ebus); 242 struct skl_dsp_loader_ops loader_ops; 243 int irq = bus->irq; 244 const struct skl_dsp_ops *ops; 245 int ret; 246 247 /* enable ppcap interrupt */ 248 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true); 249 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true); 250 251 /* read the BAR of the ADSP MMIO */ 252 mmio_base = pci_ioremap_bar(skl->pci, 4); 253 if (mmio_base == NULL) { 254 dev_err(bus->dev, "ioremap error\n"); 255 return -ENXIO; 256 } 257 258 ops = skl_get_dsp_ops(skl->pci->device); 259 if (!ops) 260 return -EIO; 261 262 loader_ops = ops->loader_ops(); 263 ret = ops->init(bus->dev, mmio_base, irq, 264 skl->fw_name, loader_ops, 265 &skl->skl_sst); 266 267 if (ret < 0) 268 return ret; 269 270 dev_dbg(bus->dev, "dsp registration status=%d\n", ret); 271 272 return ret; 273 } 274 275 int skl_free_dsp(struct skl *skl) 276 { 277 struct hdac_ext_bus *ebus = &skl->ebus; 278 struct hdac_bus *bus = ebus_to_hbus(ebus); 279 struct skl_sst *ctx = skl->skl_sst; 280 const struct skl_dsp_ops *ops; 281 282 /* disable ppcap interrupt */ 283 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false); 284 285 ops = skl_get_dsp_ops(skl->pci->device); 286 if (!ops) 287 return -EIO; 288 289 ops->cleanup(bus->dev, ctx); 290 291 if (ctx->dsp->addr.lpe) 292 iounmap(ctx->dsp->addr.lpe); 293 294 return 0; 295 } 296 297 int skl_suspend_dsp(struct skl *skl) 298 { 299 struct skl_sst *ctx = skl->skl_sst; 300 int ret; 301 302 /* if ppcap is not supported return 0 */ 303 if (!skl->ebus.bus.ppcap) 304 return 0; 305 306 ret = skl_dsp_sleep(ctx->dsp); 307 if (ret < 0) 308 return ret; 309 310 /* disable ppcap interrupt */ 311 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false); 312 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false); 313 314 return 0; 315 } 316 317 int skl_resume_dsp(struct skl *skl) 318 { 319 struct skl_sst *ctx = skl->skl_sst; 320 int ret; 321 322 /* if ppcap is not supported return 0 */ 323 if (!skl->ebus.bus.ppcap) 324 return 0; 325 326 /* enable ppcap interrupt */ 327 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true); 328 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true); 329 330 /* check if DSP 1st boot is done */ 331 if (skl->skl_sst->is_first_boot == true) 332 return 0; 333 334 ret = skl_dsp_wake(ctx->dsp); 335 if (ret < 0) 336 return ret; 337 338 skl_dsp_enable_notification(skl->skl_sst, false); 339 return ret; 340 } 341 342 enum skl_bitdepth skl_get_bit_depth(int params) 343 { 344 switch (params) { 345 case 8: 346 return SKL_DEPTH_8BIT; 347 348 case 16: 349 return SKL_DEPTH_16BIT; 350 351 case 24: 352 return SKL_DEPTH_24BIT; 353 354 case 32: 355 return SKL_DEPTH_32BIT; 356 357 default: 358 return SKL_DEPTH_INVALID; 359 360 } 361 } 362 363 /* 364 * Each module in DSP expects a base module configuration, which consists of 365 * PCM format information, which we calculate in driver and resource values 366 * which are read from widget information passed through topology binary 367 * This is send when we create a module with INIT_INSTANCE IPC msg 368 */ 369 static void skl_set_base_module_format(struct skl_sst *ctx, 370 struct skl_module_cfg *mconfig, 371 struct skl_base_cfg *base_cfg) 372 { 373 struct skl_module_fmt *format = &mconfig->in_fmt[0]; 374 375 base_cfg->audio_fmt.number_of_channels = (u8)format->channels; 376 377 base_cfg->audio_fmt.s_freq = format->s_freq; 378 base_cfg->audio_fmt.bit_depth = format->bit_depth; 379 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; 380 base_cfg->audio_fmt.ch_cfg = format->ch_cfg; 381 382 dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", 383 format->bit_depth, format->valid_bit_depth, 384 format->ch_cfg); 385 386 base_cfg->audio_fmt.channel_map = format->ch_map; 387 388 base_cfg->audio_fmt.interleaving = format->interleaving_style; 389 390 base_cfg->cps = mconfig->mcps; 391 base_cfg->ibs = mconfig->ibs; 392 base_cfg->obs = mconfig->obs; 393 base_cfg->is_pages = mconfig->mem_pages; 394 } 395 396 /* 397 * Copies copier capabilities into copier module and updates copier module 398 * config size. 399 */ 400 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, 401 struct skl_cpr_cfg *cpr_mconfig) 402 { 403 if (mconfig->formats_config.caps_size == 0) 404 return; 405 406 memcpy(cpr_mconfig->gtw_cfg.config_data, 407 mconfig->formats_config.caps, 408 mconfig->formats_config.caps_size); 409 410 cpr_mconfig->gtw_cfg.config_length = 411 (mconfig->formats_config.caps_size) / 4; 412 } 413 414 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF 415 /* 416 * Calculate the gatewat settings required for copier module, type of 417 * gateway and index of gateway to use 418 */ 419 static u32 skl_get_node_id(struct skl_sst *ctx, 420 struct skl_module_cfg *mconfig) 421 { 422 union skl_connector_node_id node_id = {0}; 423 union skl_ssp_dma_node ssp_node = {0}; 424 struct skl_pipe_params *params = mconfig->pipe->p_params; 425 426 switch (mconfig->dev_type) { 427 case SKL_DEVICE_BT: 428 node_id.node.dma_type = 429 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 430 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 431 SKL_DMA_I2S_LINK_INPUT_CLASS; 432 node_id.node.vindex = params->host_dma_id + 433 (mconfig->vbus_id << 3); 434 break; 435 436 case SKL_DEVICE_I2S: 437 node_id.node.dma_type = 438 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 439 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 440 SKL_DMA_I2S_LINK_INPUT_CLASS; 441 ssp_node.dma_node.time_slot_index = mconfig->time_slot; 442 ssp_node.dma_node.i2s_instance = mconfig->vbus_id; 443 node_id.node.vindex = ssp_node.val; 444 break; 445 446 case SKL_DEVICE_DMIC: 447 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; 448 node_id.node.vindex = mconfig->vbus_id + 449 (mconfig->time_slot); 450 break; 451 452 case SKL_DEVICE_HDALINK: 453 node_id.node.dma_type = 454 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 455 SKL_DMA_HDA_LINK_OUTPUT_CLASS : 456 SKL_DMA_HDA_LINK_INPUT_CLASS; 457 node_id.node.vindex = params->link_dma_id; 458 break; 459 460 case SKL_DEVICE_HDAHOST: 461 node_id.node.dma_type = 462 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 463 SKL_DMA_HDA_HOST_OUTPUT_CLASS : 464 SKL_DMA_HDA_HOST_INPUT_CLASS; 465 node_id.node.vindex = params->host_dma_id; 466 break; 467 468 default: 469 node_id.val = 0xFFFFFFFF; 470 break; 471 } 472 473 return node_id.val; 474 } 475 476 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx, 477 struct skl_module_cfg *mconfig, 478 struct skl_cpr_cfg *cpr_mconfig) 479 { 480 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig); 481 482 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { 483 cpr_mconfig->cpr_feature_mask = 0; 484 return; 485 } 486 487 if (SKL_CONN_SOURCE == mconfig->hw_conn_type) 488 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs; 489 else 490 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs; 491 492 cpr_mconfig->cpr_feature_mask = 0; 493 cpr_mconfig->gtw_cfg.config_length = 0; 494 495 skl_copy_copier_caps(mconfig, cpr_mconfig); 496 } 497 498 #define DMA_CONTROL_ID 5 499 500 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig) 501 { 502 struct skl_dma_control *dma_ctrl; 503 struct skl_i2s_config_blob config_blob; 504 struct skl_ipc_large_config_msg msg = {0}; 505 int err = 0; 506 507 508 /* 509 * if blob size is same as capablity size, then no dma control 510 * present so return 511 */ 512 if (mconfig->formats_config.caps_size == sizeof(config_blob)) 513 return 0; 514 515 msg.large_param_id = DMA_CONTROL_ID; 516 msg.param_data_size = sizeof(struct skl_dma_control) + 517 mconfig->formats_config.caps_size; 518 519 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); 520 if (dma_ctrl == NULL) 521 return -ENOMEM; 522 523 dma_ctrl->node_id = skl_get_node_id(ctx, mconfig); 524 525 /* size in dwords */ 526 dma_ctrl->config_length = sizeof(config_blob) / 4; 527 528 memcpy(dma_ctrl->config_data, mconfig->formats_config.caps, 529 mconfig->formats_config.caps_size); 530 531 err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl); 532 533 kfree(dma_ctrl); 534 535 return err; 536 } 537 538 static void skl_setup_out_format(struct skl_sst *ctx, 539 struct skl_module_cfg *mconfig, 540 struct skl_audio_data_format *out_fmt) 541 { 542 struct skl_module_fmt *format = &mconfig->out_fmt[0]; 543 544 out_fmt->number_of_channels = (u8)format->channels; 545 out_fmt->s_freq = format->s_freq; 546 out_fmt->bit_depth = format->bit_depth; 547 out_fmt->valid_bit_depth = format->valid_bit_depth; 548 out_fmt->ch_cfg = format->ch_cfg; 549 550 out_fmt->channel_map = format->ch_map; 551 out_fmt->interleaving = format->interleaving_style; 552 out_fmt->sample_type = format->sample_type; 553 554 dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", 555 out_fmt->number_of_channels, format->s_freq, format->bit_depth); 556 } 557 558 /* 559 * DSP needs SRC module for frequency conversion, SRC takes base module 560 * configuration and the target frequency as extra parameter passed as src 561 * config 562 */ 563 static void skl_set_src_format(struct skl_sst *ctx, 564 struct skl_module_cfg *mconfig, 565 struct skl_src_module_cfg *src_mconfig) 566 { 567 struct skl_module_fmt *fmt = &mconfig->out_fmt[0]; 568 569 skl_set_base_module_format(ctx, mconfig, 570 (struct skl_base_cfg *)src_mconfig); 571 572 src_mconfig->src_cfg = fmt->s_freq; 573 } 574 575 /* 576 * DSP needs updown module to do channel conversion. updown module take base 577 * module configuration and channel configuration 578 * It also take coefficients and now we have defaults applied here 579 */ 580 static void skl_set_updown_mixer_format(struct skl_sst *ctx, 581 struct skl_module_cfg *mconfig, 582 struct skl_up_down_mixer_cfg *mixer_mconfig) 583 { 584 struct skl_module_fmt *fmt = &mconfig->out_fmt[0]; 585 int i = 0; 586 587 skl_set_base_module_format(ctx, mconfig, 588 (struct skl_base_cfg *)mixer_mconfig); 589 mixer_mconfig->out_ch_cfg = fmt->ch_cfg; 590 591 /* Select F/W default coefficient */ 592 mixer_mconfig->coeff_sel = 0x0; 593 594 /* User coeff, don't care since we are selecting F/W defaults */ 595 for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++) 596 mixer_mconfig->coeff[i] = 0xDEADBEEF; 597 } 598 599 /* 600 * 'copier' is DSP internal module which copies data from Host DMA (HDA host 601 * dma) or link (hda link, SSP, PDM) 602 * Here we calculate the copier module parameters, like PCM format, output 603 * format, gateway settings 604 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg 605 */ 606 static void skl_set_copier_format(struct skl_sst *ctx, 607 struct skl_module_cfg *mconfig, 608 struct skl_cpr_cfg *cpr_mconfig) 609 { 610 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; 611 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; 612 613 skl_set_base_module_format(ctx, mconfig, base_cfg); 614 615 skl_setup_out_format(ctx, mconfig, out_fmt); 616 skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig); 617 } 618 619 /* 620 * Algo module are DSP pre processing modules. Algo module take base module 621 * configuration and params 622 */ 623 624 static void skl_set_algo_format(struct skl_sst *ctx, 625 struct skl_module_cfg *mconfig, 626 struct skl_algo_cfg *algo_mcfg) 627 { 628 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg; 629 630 skl_set_base_module_format(ctx, mconfig, base_cfg); 631 632 if (mconfig->formats_config.caps_size == 0) 633 return; 634 635 memcpy(algo_mcfg->params, 636 mconfig->formats_config.caps, 637 mconfig->formats_config.caps_size); 638 639 } 640 641 /* 642 * Mic select module allows selecting one or many input channels, thus 643 * acting as a demux. 644 * 645 * Mic select module take base module configuration and out-format 646 * configuration 647 */ 648 static void skl_set_base_outfmt_format(struct skl_sst *ctx, 649 struct skl_module_cfg *mconfig, 650 struct skl_base_outfmt_cfg *base_outfmt_mcfg) 651 { 652 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; 653 struct skl_base_cfg *base_cfg = 654 (struct skl_base_cfg *)base_outfmt_mcfg; 655 656 skl_set_base_module_format(ctx, mconfig, base_cfg); 657 skl_setup_out_format(ctx, mconfig, out_fmt); 658 } 659 660 static u16 skl_get_module_param_size(struct skl_sst *ctx, 661 struct skl_module_cfg *mconfig) 662 { 663 u16 param_size; 664 665 switch (mconfig->m_type) { 666 case SKL_MODULE_TYPE_COPIER: 667 param_size = sizeof(struct skl_cpr_cfg); 668 param_size += mconfig->formats_config.caps_size; 669 return param_size; 670 671 case SKL_MODULE_TYPE_SRCINT: 672 return sizeof(struct skl_src_module_cfg); 673 674 case SKL_MODULE_TYPE_UPDWMIX: 675 return sizeof(struct skl_up_down_mixer_cfg); 676 677 case SKL_MODULE_TYPE_ALGO: 678 param_size = sizeof(struct skl_base_cfg); 679 param_size += mconfig->formats_config.caps_size; 680 return param_size; 681 682 case SKL_MODULE_TYPE_BASE_OUTFMT: 683 case SKL_MODULE_TYPE_KPB: 684 return sizeof(struct skl_base_outfmt_cfg); 685 686 default: 687 /* 688 * return only base cfg when no specific module type is 689 * specified 690 */ 691 return sizeof(struct skl_base_cfg); 692 } 693 694 return 0; 695 } 696 697 /* 698 * DSP firmware supports various modules like copier, SRC, updown etc. 699 * These modules required various parameters to be calculated and sent for 700 * the module initialization to DSP. By default a generic module needs only 701 * base module format configuration 702 */ 703 704 static int skl_set_module_format(struct skl_sst *ctx, 705 struct skl_module_cfg *module_config, 706 u16 *module_config_size, 707 void **param_data) 708 { 709 u16 param_size; 710 711 param_size = skl_get_module_param_size(ctx, module_config); 712 713 *param_data = kzalloc(param_size, GFP_KERNEL); 714 if (NULL == *param_data) 715 return -ENOMEM; 716 717 *module_config_size = param_size; 718 719 switch (module_config->m_type) { 720 case SKL_MODULE_TYPE_COPIER: 721 skl_set_copier_format(ctx, module_config, *param_data); 722 break; 723 724 case SKL_MODULE_TYPE_SRCINT: 725 skl_set_src_format(ctx, module_config, *param_data); 726 break; 727 728 case SKL_MODULE_TYPE_UPDWMIX: 729 skl_set_updown_mixer_format(ctx, module_config, *param_data); 730 break; 731 732 case SKL_MODULE_TYPE_ALGO: 733 skl_set_algo_format(ctx, module_config, *param_data); 734 break; 735 736 case SKL_MODULE_TYPE_BASE_OUTFMT: 737 case SKL_MODULE_TYPE_KPB: 738 skl_set_base_outfmt_format(ctx, module_config, *param_data); 739 break; 740 741 default: 742 skl_set_base_module_format(ctx, module_config, *param_data); 743 break; 744 745 } 746 747 dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n", 748 module_config->id.module_id, param_size); 749 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, 750 *param_data, param_size, false); 751 return 0; 752 } 753 754 static int skl_get_queue_index(struct skl_module_pin *mpin, 755 struct skl_module_inst_id id, int max) 756 { 757 int i; 758 759 for (i = 0; i < max; i++) { 760 if (mpin[i].id.module_id == id.module_id && 761 mpin[i].id.instance_id == id.instance_id) 762 return i; 763 } 764 765 return -EINVAL; 766 } 767 768 /* 769 * Allocates queue for each module. 770 * if dynamic, the pin_index is allocated 0 to max_pin. 771 * In static, the pin_index is fixed based on module_id and instance id 772 */ 773 static int skl_alloc_queue(struct skl_module_pin *mpin, 774 struct skl_module_cfg *tgt_cfg, int max) 775 { 776 int i; 777 struct skl_module_inst_id id = tgt_cfg->id; 778 /* 779 * if pin in dynamic, find first free pin 780 * otherwise find match module and instance id pin as topology will 781 * ensure a unique pin is assigned to this so no need to 782 * allocate/free 783 */ 784 for (i = 0; i < max; i++) { 785 if (mpin[i].is_dynamic) { 786 if (!mpin[i].in_use && 787 mpin[i].pin_state == SKL_PIN_UNBIND) { 788 789 mpin[i].in_use = true; 790 mpin[i].id.module_id = id.module_id; 791 mpin[i].id.instance_id = id.instance_id; 792 mpin[i].id.pvt_id = id.pvt_id; 793 mpin[i].tgt_mcfg = tgt_cfg; 794 return i; 795 } 796 } else { 797 if (mpin[i].id.module_id == id.module_id && 798 mpin[i].id.instance_id == id.instance_id && 799 mpin[i].pin_state == SKL_PIN_UNBIND) { 800 801 mpin[i].tgt_mcfg = tgt_cfg; 802 return i; 803 } 804 } 805 } 806 807 return -EINVAL; 808 } 809 810 static void skl_free_queue(struct skl_module_pin *mpin, int q_index) 811 { 812 if (mpin[q_index].is_dynamic) { 813 mpin[q_index].in_use = false; 814 mpin[q_index].id.module_id = 0; 815 mpin[q_index].id.instance_id = 0; 816 mpin[q_index].id.pvt_id = 0; 817 } 818 mpin[q_index].pin_state = SKL_PIN_UNBIND; 819 mpin[q_index].tgt_mcfg = NULL; 820 } 821 822 /* Module state will be set to unint, if all the out pin state is UNBIND */ 823 824 static void skl_clear_module_state(struct skl_module_pin *mpin, int max, 825 struct skl_module_cfg *mcfg) 826 { 827 int i; 828 bool found = false; 829 830 for (i = 0; i < max; i++) { 831 if (mpin[i].pin_state == SKL_PIN_UNBIND) 832 continue; 833 found = true; 834 break; 835 } 836 837 if (!found) 838 mcfg->m_state = SKL_MODULE_UNINIT; 839 return; 840 } 841 842 /* 843 * A module needs to be instanataited in DSP. A mdoule is present in a 844 * collection of module referred as a PIPE. 845 * We first calculate the module format, based on module type and then 846 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper 847 */ 848 int skl_init_module(struct skl_sst *ctx, 849 struct skl_module_cfg *mconfig) 850 { 851 u16 module_config_size = 0; 852 void *param_data = NULL; 853 int ret; 854 struct skl_ipc_init_instance_msg msg; 855 856 dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__, 857 mconfig->id.module_id, mconfig->id.pvt_id); 858 859 if (mconfig->pipe->state != SKL_PIPE_CREATED) { 860 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n", 861 mconfig->pipe->state, mconfig->pipe->ppl_id); 862 return -EIO; 863 } 864 865 ret = skl_set_module_format(ctx, mconfig, 866 &module_config_size, ¶m_data); 867 if (ret < 0) { 868 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret); 869 return ret; 870 } 871 872 msg.module_id = mconfig->id.module_id; 873 msg.instance_id = mconfig->id.pvt_id; 874 msg.ppl_instance_id = mconfig->pipe->ppl_id; 875 msg.param_data_size = module_config_size; 876 msg.core_id = mconfig->core_id; 877 msg.domain = mconfig->domain; 878 879 ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data); 880 if (ret < 0) { 881 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret); 882 kfree(param_data); 883 return ret; 884 } 885 mconfig->m_state = SKL_MODULE_INIT_DONE; 886 kfree(param_data); 887 return ret; 888 } 889 890 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg 891 *src_module, struct skl_module_cfg *dst_module) 892 { 893 dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n", 894 __func__, src_module->id.module_id, src_module->id.pvt_id); 895 dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__, 896 dst_module->id.module_id, dst_module->id.pvt_id); 897 898 dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n", 899 src_module->m_state, dst_module->m_state); 900 } 901 902 /* 903 * On module freeup, we need to unbind the module with modules 904 * it is already bind. 905 * Find the pin allocated and unbind then using bind_unbind IPC 906 */ 907 int skl_unbind_modules(struct skl_sst *ctx, 908 struct skl_module_cfg *src_mcfg, 909 struct skl_module_cfg *dst_mcfg) 910 { 911 int ret; 912 struct skl_ipc_bind_unbind_msg msg; 913 struct skl_module_inst_id src_id = src_mcfg->id; 914 struct skl_module_inst_id dst_id = dst_mcfg->id; 915 int in_max = dst_mcfg->max_in_queue; 916 int out_max = src_mcfg->max_out_queue; 917 int src_index, dst_index, src_pin_state, dst_pin_state; 918 919 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg); 920 921 /* get src queue index */ 922 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); 923 if (src_index < 0) 924 return 0; 925 926 msg.src_queue = src_index; 927 928 /* get dst queue index */ 929 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); 930 if (dst_index < 0) 931 return 0; 932 933 msg.dst_queue = dst_index; 934 935 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; 936 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; 937 938 if (src_pin_state != SKL_PIN_BIND_DONE || 939 dst_pin_state != SKL_PIN_BIND_DONE) 940 return 0; 941 942 msg.module_id = src_mcfg->id.module_id; 943 msg.instance_id = src_mcfg->id.pvt_id; 944 msg.dst_module_id = dst_mcfg->id.module_id; 945 msg.dst_instance_id = dst_mcfg->id.pvt_id; 946 msg.bind = false; 947 948 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg); 949 if (!ret) { 950 /* free queue only if unbind is success */ 951 skl_free_queue(src_mcfg->m_out_pin, src_index); 952 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 953 954 /* 955 * check only if src module bind state, bind is 956 * always from src -> sink 957 */ 958 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); 959 } 960 961 return ret; 962 } 963 964 /* 965 * Once a module is instantiated it need to be 'bind' with other modules in 966 * the pipeline. For binding we need to find the module pins which are bind 967 * together 968 * This function finds the pins and then sends bund_unbind IPC message to 969 * DSP using IPC helper 970 */ 971 int skl_bind_modules(struct skl_sst *ctx, 972 struct skl_module_cfg *src_mcfg, 973 struct skl_module_cfg *dst_mcfg) 974 { 975 int ret; 976 struct skl_ipc_bind_unbind_msg msg; 977 int in_max = dst_mcfg->max_in_queue; 978 int out_max = src_mcfg->max_out_queue; 979 int src_index, dst_index; 980 981 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg); 982 983 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || 984 dst_mcfg->m_state < SKL_MODULE_INIT_DONE) 985 return 0; 986 987 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); 988 if (src_index < 0) 989 return -EINVAL; 990 991 msg.src_queue = src_index; 992 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); 993 if (dst_index < 0) { 994 skl_free_queue(src_mcfg->m_out_pin, src_index); 995 return -EINVAL; 996 } 997 998 msg.dst_queue = dst_index; 999 1000 dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n", 1001 msg.src_queue, msg.dst_queue); 1002 1003 msg.module_id = src_mcfg->id.module_id; 1004 msg.instance_id = src_mcfg->id.pvt_id; 1005 msg.dst_module_id = dst_mcfg->id.module_id; 1006 msg.dst_instance_id = dst_mcfg->id.pvt_id; 1007 msg.bind = true; 1008 1009 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg); 1010 1011 if (!ret) { 1012 src_mcfg->m_state = SKL_MODULE_BIND_DONE; 1013 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; 1014 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; 1015 } else { 1016 /* error case , if IPC fails, clear the queue index */ 1017 skl_free_queue(src_mcfg->m_out_pin, src_index); 1018 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 1019 } 1020 1021 return ret; 1022 } 1023 1024 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe, 1025 enum skl_ipc_pipeline_state state) 1026 { 1027 dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state); 1028 1029 return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state); 1030 } 1031 1032 /* 1033 * A pipeline is a collection of modules. Before a module in instantiated a 1034 * pipeline needs to be created for it. 1035 * This function creates pipeline, by sending create pipeline IPC messages 1036 * to FW 1037 */ 1038 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe) 1039 { 1040 int ret; 1041 1042 dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); 1043 1044 ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages, 1045 pipe->pipe_priority, pipe->ppl_id); 1046 if (ret < 0) { 1047 dev_err(ctx->dev, "Failed to create pipeline\n"); 1048 return ret; 1049 } 1050 1051 pipe->state = SKL_PIPE_CREATED; 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then 1058 * pause the pipeline first and then delete it 1059 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the 1060 * DMA engines and releases resources 1061 */ 1062 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) 1063 { 1064 int ret; 1065 1066 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1067 1068 /* If pipe is started, do stop the pipe in FW. */ 1069 if (pipe->state > SKL_PIPE_STARTED) { 1070 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); 1071 if (ret < 0) { 1072 dev_err(ctx->dev, "Failed to stop pipeline\n"); 1073 return ret; 1074 } 1075 1076 pipe->state = SKL_PIPE_PAUSED; 1077 } 1078 1079 /* If pipe was not created in FW, do not try to delete it */ 1080 if (pipe->state < SKL_PIPE_CREATED) 1081 return 0; 1082 1083 ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id); 1084 if (ret < 0) { 1085 dev_err(ctx->dev, "Failed to delete pipeline\n"); 1086 return ret; 1087 } 1088 1089 pipe->state = SKL_PIPE_INVALID; 1090 1091 return ret; 1092 } 1093 1094 /* 1095 * A pipeline is also a scheduling entity in DSP which can be run, stopped 1096 * For processing data the pipe need to be run by sending IPC set pipe state 1097 * to DSP 1098 */ 1099 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) 1100 { 1101 int ret; 1102 1103 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1104 1105 /* If pipe was not created in FW, do not try to pause or delete */ 1106 if (pipe->state < SKL_PIPE_CREATED) 1107 return 0; 1108 1109 /* Pipe has to be paused before it is started */ 1110 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); 1111 if (ret < 0) { 1112 dev_err(ctx->dev, "Failed to pause pipe\n"); 1113 return ret; 1114 } 1115 1116 pipe->state = SKL_PIPE_PAUSED; 1117 1118 ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING); 1119 if (ret < 0) { 1120 dev_err(ctx->dev, "Failed to start pipe\n"); 1121 return ret; 1122 } 1123 1124 pipe->state = SKL_PIPE_STARTED; 1125 1126 return 0; 1127 } 1128 1129 /* 1130 * Stop the pipeline by sending set pipe state IPC 1131 * DSP doesnt implement stop so we always send pause message 1132 */ 1133 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) 1134 { 1135 int ret; 1136 1137 dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); 1138 1139 /* If pipe was not created in FW, do not try to pause or delete */ 1140 if (pipe->state < SKL_PIPE_PAUSED) 1141 return 0; 1142 1143 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); 1144 if (ret < 0) { 1145 dev_dbg(ctx->dev, "Failed to stop pipe\n"); 1146 return ret; 1147 } 1148 1149 pipe->state = SKL_PIPE_PAUSED; 1150 1151 return 0; 1152 } 1153 1154 /* 1155 * Reset the pipeline by sending set pipe state IPC this will reset the DMA 1156 * from the DSP side 1157 */ 1158 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) 1159 { 1160 int ret; 1161 1162 /* If pipe was not created in FW, do not try to pause or delete */ 1163 if (pipe->state < SKL_PIPE_PAUSED) 1164 return 0; 1165 1166 ret = skl_set_pipe_state(ctx, pipe, PPL_RESET); 1167 if (ret < 0) { 1168 dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret); 1169 return ret; 1170 } 1171 1172 pipe->state = SKL_PIPE_RESET; 1173 1174 return 0; 1175 } 1176 1177 /* Algo parameter set helper function */ 1178 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size, 1179 u32 param_id, struct skl_module_cfg *mcfg) 1180 { 1181 struct skl_ipc_large_config_msg msg; 1182 1183 msg.module_id = mcfg->id.module_id; 1184 msg.instance_id = mcfg->id.pvt_id; 1185 msg.param_data_size = size; 1186 msg.large_param_id = param_id; 1187 1188 return skl_ipc_set_large_config(&ctx->ipc, &msg, params); 1189 } 1190 1191 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size, 1192 u32 param_id, struct skl_module_cfg *mcfg) 1193 { 1194 struct skl_ipc_large_config_msg msg; 1195 1196 msg.module_id = mcfg->id.module_id; 1197 msg.instance_id = mcfg->id.pvt_id; 1198 msg.param_data_size = size; 1199 msg.large_param_id = param_id; 1200 1201 return skl_ipc_get_large_config(&ctx->ipc, &msg, params); 1202 } 1203