xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "cnl-sst-dsp.h"
26 #include "skl-sst-ipc.h"
27 #include "skl.h"
28 #include "../common/sst-dsp.h"
29 #include "../common/sst-dsp-priv.h"
30 #include "skl-topology.h"
31 #include "skl-tplg-interface.h"
32 
33 static int skl_alloc_dma_buf(struct device *dev,
34 		struct snd_dma_buffer *dmab, size_t size)
35 {
36 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
37 	struct hdac_bus *bus = ebus_to_hbus(ebus);
38 
39 	if (!bus)
40 		return -ENODEV;
41 
42 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
43 }
44 
45 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 {
47 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
48 	struct hdac_bus *bus = ebus_to_hbus(ebus);
49 
50 	if (!bus)
51 		return -ENODEV;
52 
53 	bus->io_ops->dma_free_pages(bus, dmab);
54 
55 	return 0;
56 }
57 
58 #define SKL_ASTATE_PARAM_ID	4
59 
60 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
61 {
62 	struct skl_ipc_large_config_msg	msg = {0};
63 
64 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
65 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
66 				sizeof(cnt));
67 
68 	skl_ipc_set_large_config(&ctx->ipc, &msg, data);
69 }
70 
71 #define NOTIFICATION_PARAM_ID 3
72 #define NOTIFICATION_MASK 0xf
73 
74 /* disable notfication for underruns/overruns from firmware module */
75 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
76 {
77 	struct notification_mask mask;
78 	struct skl_ipc_large_config_msg	msg = {0};
79 
80 	mask.notify = NOTIFICATION_MASK;
81 	mask.enable = enable;
82 
83 	msg.large_param_id = NOTIFICATION_PARAM_ID;
84 	msg.param_data_size = sizeof(mask);
85 
86 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
87 }
88 
89 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
90 				int stream_tag, int enable)
91 {
92 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
93 	struct hdac_bus *bus = ebus_to_hbus(ebus);
94 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
95 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
96 	struct hdac_ext_stream *estream;
97 
98 	if (!stream)
99 		return -EINVAL;
100 
101 	estream = stream_to_hdac_ext_stream(stream);
102 	/* enable/disable SPIB for this hdac stream */
103 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
104 
105 	/* set the spib value */
106 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
107 
108 	return 0;
109 }
110 
111 static int skl_dsp_prepare(struct device *dev, unsigned int format,
112 			unsigned int size, struct snd_dma_buffer *dmab)
113 {
114 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
115 	struct hdac_bus *bus = ebus_to_hbus(ebus);
116 	struct hdac_ext_stream *estream;
117 	struct hdac_stream *stream;
118 	struct snd_pcm_substream substream;
119 	int ret;
120 
121 	if (!bus)
122 		return -ENODEV;
123 
124 	memset(&substream, 0, sizeof(substream));
125 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
126 
127 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
128 					HDAC_EXT_STREAM_TYPE_HOST);
129 	if (!estream)
130 		return -ENODEV;
131 
132 	stream = hdac_stream(estream);
133 
134 	/* assign decouple host dma channel */
135 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
136 	if (ret < 0)
137 		return ret;
138 
139 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
140 
141 	return stream->stream_tag;
142 }
143 
144 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
145 {
146 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
147 	struct hdac_stream *stream;
148 	struct hdac_bus *bus = ebus_to_hbus(ebus);
149 
150 	if (!bus)
151 		return -ENODEV;
152 
153 	stream = snd_hdac_get_stream(bus,
154 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
155 	if (!stream)
156 		return -EINVAL;
157 
158 	snd_hdac_dsp_trigger(stream, start);
159 
160 	return 0;
161 }
162 
163 static int skl_dsp_cleanup(struct device *dev,
164 		struct snd_dma_buffer *dmab, int stream_tag)
165 {
166 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
167 	struct hdac_stream *stream;
168 	struct hdac_ext_stream *estream;
169 	struct hdac_bus *bus = ebus_to_hbus(ebus);
170 
171 	if (!bus)
172 		return -ENODEV;
173 
174 	stream = snd_hdac_get_stream(bus,
175 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
176 	if (!stream)
177 		return -EINVAL;
178 
179 	estream = stream_to_hdac_ext_stream(stream);
180 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
181 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
182 
183 	snd_hdac_dsp_cleanup(stream, dmab);
184 
185 	return 0;
186 }
187 
188 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
189 {
190 	struct skl_dsp_loader_ops loader_ops;
191 
192 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
193 
194 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
195 	loader_ops.free_dma_buf = skl_free_dma_buf;
196 
197 	return loader_ops;
198 };
199 
200 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
201 {
202 	struct skl_dsp_loader_ops loader_ops;
203 
204 	memset(&loader_ops, 0, sizeof(loader_ops));
205 
206 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
207 	loader_ops.free_dma_buf = skl_free_dma_buf;
208 	loader_ops.prepare = skl_dsp_prepare;
209 	loader_ops.trigger = skl_dsp_trigger;
210 	loader_ops.cleanup = skl_dsp_cleanup;
211 
212 	return loader_ops;
213 };
214 
215 static const struct skl_dsp_ops dsp_ops[] = {
216 	{
217 		.id = 0x9d70,
218 		.num_cores = 2,
219 		.loader_ops = skl_get_loader_ops,
220 		.init = skl_sst_dsp_init,
221 		.init_fw = skl_sst_init_fw,
222 		.cleanup = skl_sst_dsp_cleanup
223 	},
224 	{
225 		.id = 0x9d71,
226 		.num_cores = 2,
227 		.loader_ops = skl_get_loader_ops,
228 		.init = kbl_sst_dsp_init,
229 		.init_fw = skl_sst_init_fw,
230 		.cleanup = skl_sst_dsp_cleanup
231 	},
232 	{
233 		.id = 0x5a98,
234 		.num_cores = 2,
235 		.loader_ops = bxt_get_loader_ops,
236 		.init = bxt_sst_dsp_init,
237 		.init_fw = bxt_sst_init_fw,
238 		.cleanup = bxt_sst_dsp_cleanup
239 	},
240 	{
241 		.id = 0x3198,
242 		.num_cores = 2,
243 		.loader_ops = bxt_get_loader_ops,
244 		.init = bxt_sst_dsp_init,
245 		.init_fw = bxt_sst_init_fw,
246 		.cleanup = bxt_sst_dsp_cleanup
247 	},
248 	{
249 		.id = 0x9dc8,
250 		.num_cores = 4,
251 		.loader_ops = bxt_get_loader_ops,
252 		.init = cnl_sst_dsp_init,
253 		.init_fw = cnl_sst_init_fw,
254 		.cleanup = cnl_sst_dsp_cleanup
255 	},
256 };
257 
258 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
259 {
260 	int i;
261 
262 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
263 		if (dsp_ops[i].id == pci_id)
264 			return &dsp_ops[i];
265 	}
266 
267 	return NULL;
268 }
269 
270 int skl_init_dsp(struct skl *skl)
271 {
272 	void __iomem *mmio_base;
273 	struct hdac_ext_bus *ebus = &skl->ebus;
274 	struct hdac_bus *bus = ebus_to_hbus(ebus);
275 	struct skl_dsp_loader_ops loader_ops;
276 	int irq = bus->irq;
277 	const struct skl_dsp_ops *ops;
278 	struct skl_dsp_cores *cores;
279 	int ret;
280 
281 	/* enable ppcap interrupt */
282 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
283 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
284 
285 	/* read the BAR of the ADSP MMIO */
286 	mmio_base = pci_ioremap_bar(skl->pci, 4);
287 	if (mmio_base == NULL) {
288 		dev_err(bus->dev, "ioremap error\n");
289 		return -ENXIO;
290 	}
291 
292 	ops = skl_get_dsp_ops(skl->pci->device);
293 	if (!ops) {
294 		ret = -EIO;
295 		goto unmap_mmio;
296 	}
297 
298 	loader_ops = ops->loader_ops();
299 	ret = ops->init(bus->dev, mmio_base, irq,
300 				skl->fw_name, loader_ops,
301 				&skl->skl_sst);
302 
303 	if (ret < 0)
304 		goto unmap_mmio;
305 
306 	skl->skl_sst->dsp_ops = ops;
307 	cores = &skl->skl_sst->cores;
308 	cores->count = ops->num_cores;
309 
310 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
311 	if (!cores->state) {
312 		ret = -ENOMEM;
313 		goto unmap_mmio;
314 	}
315 
316 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
317 				     GFP_KERNEL);
318 	if (!cores->usage_count) {
319 		ret = -ENOMEM;
320 		goto free_core_state;
321 	}
322 
323 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
324 
325 	return 0;
326 
327 free_core_state:
328 	kfree(cores->state);
329 
330 unmap_mmio:
331 	iounmap(mmio_base);
332 
333 	return ret;
334 }
335 
336 int skl_free_dsp(struct skl *skl)
337 {
338 	struct hdac_ext_bus *ebus = &skl->ebus;
339 	struct hdac_bus *bus = ebus_to_hbus(ebus);
340 	struct skl_sst *ctx = skl->skl_sst;
341 
342 	/* disable  ppcap interrupt */
343 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
344 
345 	ctx->dsp_ops->cleanup(bus->dev, ctx);
346 
347 	kfree(ctx->cores.state);
348 	kfree(ctx->cores.usage_count);
349 
350 	if (ctx->dsp->addr.lpe)
351 		iounmap(ctx->dsp->addr.lpe);
352 
353 	return 0;
354 }
355 
356 /*
357  * In the case of "suspend_active" i.e, the Audio IP being active
358  * during system suspend, immediately excecute any pending D0i3 work
359  * before suspending. This is needed for the IP to work in low power
360  * mode during system suspend. In the case of normal suspend, cancel
361  * any pending D0i3 work.
362  */
363 int skl_suspend_late_dsp(struct skl *skl)
364 {
365 	struct skl_sst *ctx = skl->skl_sst;
366 	struct delayed_work *dwork;
367 
368 	if (!ctx)
369 		return 0;
370 
371 	dwork = &ctx->d0i3.work;
372 
373 	if (dwork->work.func) {
374 		if (skl->supend_active)
375 			flush_delayed_work(dwork);
376 		else
377 			cancel_delayed_work_sync(dwork);
378 	}
379 
380 	return 0;
381 }
382 
383 int skl_suspend_dsp(struct skl *skl)
384 {
385 	struct skl_sst *ctx = skl->skl_sst;
386 	int ret;
387 
388 	/* if ppcap is not supported return 0 */
389 	if (!skl->ebus.bus.ppcap)
390 		return 0;
391 
392 	ret = skl_dsp_sleep(ctx->dsp);
393 	if (ret < 0)
394 		return ret;
395 
396 	/* disable ppcap interrupt */
397 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
398 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
399 
400 	return 0;
401 }
402 
403 int skl_resume_dsp(struct skl *skl)
404 {
405 	struct skl_sst *ctx = skl->skl_sst;
406 	int ret;
407 
408 	/* if ppcap is not supported return 0 */
409 	if (!skl->ebus.bus.ppcap)
410 		return 0;
411 
412 	/* enable ppcap interrupt */
413 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
414 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
415 
416 	/* check if DSP 1st boot is done */
417 	if (skl->skl_sst->is_first_boot == true)
418 		return 0;
419 
420 	/* disable dynamic clock gating during fw and lib download */
421 	ctx->enable_miscbdcge(ctx->dev, false);
422 
423 	ret = skl_dsp_wake(ctx->dsp);
424 	ctx->enable_miscbdcge(ctx->dev, true);
425 	if (ret < 0)
426 		return ret;
427 
428 	skl_dsp_enable_notification(skl->skl_sst, false);
429 
430 	if (skl->cfg.astate_cfg != NULL) {
431 		skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
432 					skl->cfg.astate_cfg);
433 	}
434 	return ret;
435 }
436 
437 enum skl_bitdepth skl_get_bit_depth(int params)
438 {
439 	switch (params) {
440 	case 8:
441 		return SKL_DEPTH_8BIT;
442 
443 	case 16:
444 		return SKL_DEPTH_16BIT;
445 
446 	case 24:
447 		return SKL_DEPTH_24BIT;
448 
449 	case 32:
450 		return SKL_DEPTH_32BIT;
451 
452 	default:
453 		return SKL_DEPTH_INVALID;
454 
455 	}
456 }
457 
458 /*
459  * Each module in DSP expects a base module configuration, which consists of
460  * PCM format information, which we calculate in driver and resource values
461  * which are read from widget information passed through topology binary
462  * This is send when we create a module with INIT_INSTANCE IPC msg
463  */
464 static void skl_set_base_module_format(struct skl_sst *ctx,
465 			struct skl_module_cfg *mconfig,
466 			struct skl_base_cfg *base_cfg)
467 {
468 	struct skl_module *module = mconfig->module;
469 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
470 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
471 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
472 
473 	base_cfg->audio_fmt.number_of_channels = format->channels;
474 
475 	base_cfg->audio_fmt.s_freq = format->s_freq;
476 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
477 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
478 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
479 
480 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
481 			format->bit_depth, format->valid_bit_depth,
482 			format->ch_cfg);
483 
484 	base_cfg->audio_fmt.channel_map = format->ch_map;
485 
486 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
487 
488 	base_cfg->cps = res->cps;
489 	base_cfg->ibs = res->ibs;
490 	base_cfg->obs = res->obs;
491 	base_cfg->is_pages = res->is_pages;
492 }
493 
494 /*
495  * Copies copier capabilities into copier module and updates copier module
496  * config size.
497  */
498 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
499 				struct skl_cpr_cfg *cpr_mconfig)
500 {
501 	if (mconfig->formats_config.caps_size == 0)
502 		return;
503 
504 	memcpy(cpr_mconfig->gtw_cfg.config_data,
505 			mconfig->formats_config.caps,
506 			mconfig->formats_config.caps_size);
507 
508 	cpr_mconfig->gtw_cfg.config_length =
509 			(mconfig->formats_config.caps_size) / 4;
510 }
511 
512 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
513 /*
514  * Calculate the gatewat settings required for copier module, type of
515  * gateway and index of gateway to use
516  */
517 static u32 skl_get_node_id(struct skl_sst *ctx,
518 			struct skl_module_cfg *mconfig)
519 {
520 	union skl_connector_node_id node_id = {0};
521 	union skl_ssp_dma_node ssp_node  = {0};
522 	struct skl_pipe_params *params = mconfig->pipe->p_params;
523 
524 	switch (mconfig->dev_type) {
525 	case SKL_DEVICE_BT:
526 		node_id.node.dma_type =
527 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
528 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
529 			SKL_DMA_I2S_LINK_INPUT_CLASS;
530 		node_id.node.vindex = params->host_dma_id +
531 					(mconfig->vbus_id << 3);
532 		break;
533 
534 	case SKL_DEVICE_I2S:
535 		node_id.node.dma_type =
536 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
537 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
538 			SKL_DMA_I2S_LINK_INPUT_CLASS;
539 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
540 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
541 		node_id.node.vindex = ssp_node.val;
542 		break;
543 
544 	case SKL_DEVICE_DMIC:
545 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
546 		node_id.node.vindex = mconfig->vbus_id +
547 					 (mconfig->time_slot);
548 		break;
549 
550 	case SKL_DEVICE_HDALINK:
551 		node_id.node.dma_type =
552 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
553 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
554 			SKL_DMA_HDA_LINK_INPUT_CLASS;
555 		node_id.node.vindex = params->link_dma_id;
556 		break;
557 
558 	case SKL_DEVICE_HDAHOST:
559 		node_id.node.dma_type =
560 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
561 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
562 			SKL_DMA_HDA_HOST_INPUT_CLASS;
563 		node_id.node.vindex = params->host_dma_id;
564 		break;
565 
566 	default:
567 		node_id.val = 0xFFFFFFFF;
568 		break;
569 	}
570 
571 	return node_id.val;
572 }
573 
574 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
575 			struct skl_module_cfg *mconfig,
576 			struct skl_cpr_cfg *cpr_mconfig)
577 {
578 	u32 dma_io_buf;
579 	struct skl_module_res *res;
580 	int res_idx = mconfig->res_idx;
581 	struct skl *skl = get_skl_ctx(ctx->dev);
582 
583 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
584 
585 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
586 		cpr_mconfig->cpr_feature_mask = 0;
587 		return;
588 	}
589 
590 	if (skl->nr_modules) {
591 		res = &mconfig->module->resources[mconfig->res_idx];
592 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
593 		goto skip_buf_size_calc;
594 	} else {
595 		res = &mconfig->module->resources[res_idx];
596 	}
597 
598 	switch (mconfig->hw_conn_type) {
599 	case SKL_CONN_SOURCE:
600 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
601 			dma_io_buf =  res->ibs;
602 		else
603 			dma_io_buf =  res->obs;
604 		break;
605 
606 	case SKL_CONN_SINK:
607 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
608 			dma_io_buf =  res->obs;
609 		else
610 			dma_io_buf =  res->ibs;
611 		break;
612 
613 	default:
614 		dev_warn(ctx->dev, "wrong connection type: %d\n",
615 				mconfig->hw_conn_type);
616 		return;
617 	}
618 
619 	cpr_mconfig->gtw_cfg.dma_buffer_size =
620 				mconfig->dma_buffer_size * dma_io_buf;
621 
622 	/* fallback to 2ms default value */
623 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
624 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
625 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
626 		else
627 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
628 	}
629 
630 skip_buf_size_calc:
631 	cpr_mconfig->cpr_feature_mask = 0;
632 	cpr_mconfig->gtw_cfg.config_length  = 0;
633 
634 	skl_copy_copier_caps(mconfig, cpr_mconfig);
635 }
636 
637 #define DMA_CONTROL_ID 5
638 #define DMA_I2S_BLOB_SIZE 21
639 
640 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
641 				u32 caps_size, u32 node_id)
642 {
643 	struct skl_dma_control *dma_ctrl;
644 	struct skl_ipc_large_config_msg msg = {0};
645 	int err = 0;
646 
647 
648 	/*
649 	 * if blob size zero, then return
650 	 */
651 	if (caps_size == 0)
652 		return 0;
653 
654 	msg.large_param_id = DMA_CONTROL_ID;
655 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
656 
657 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
658 	if (dma_ctrl == NULL)
659 		return -ENOMEM;
660 
661 	dma_ctrl->node_id = node_id;
662 
663 	/*
664 	 * NHLT blob may contain additional configs along with i2s blob.
665 	 * firmware expects only the i2s blob size as the config_length.
666 	 * So fix to i2s blob size.
667 	 * size in dwords.
668 	 */
669 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
670 
671 	memcpy(dma_ctrl->config_data, caps, caps_size);
672 
673 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
674 
675 	kfree(dma_ctrl);
676 	return err;
677 }
678 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
679 
680 static void skl_setup_out_format(struct skl_sst *ctx,
681 			struct skl_module_cfg *mconfig,
682 			struct skl_audio_data_format *out_fmt)
683 {
684 	struct skl_module *module = mconfig->module;
685 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
686 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
687 
688 	out_fmt->number_of_channels = (u8)format->channels;
689 	out_fmt->s_freq = format->s_freq;
690 	out_fmt->bit_depth = format->bit_depth;
691 	out_fmt->valid_bit_depth = format->valid_bit_depth;
692 	out_fmt->ch_cfg = format->ch_cfg;
693 
694 	out_fmt->channel_map = format->ch_map;
695 	out_fmt->interleaving = format->interleaving_style;
696 	out_fmt->sample_type = format->sample_type;
697 
698 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
699 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
700 }
701 
702 /*
703  * DSP needs SRC module for frequency conversion, SRC takes base module
704  * configuration and the target frequency as extra parameter passed as src
705  * config
706  */
707 static void skl_set_src_format(struct skl_sst *ctx,
708 			struct skl_module_cfg *mconfig,
709 			struct skl_src_module_cfg *src_mconfig)
710 {
711 	struct skl_module *module = mconfig->module;
712 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
713 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
714 
715 	skl_set_base_module_format(ctx, mconfig,
716 		(struct skl_base_cfg *)src_mconfig);
717 
718 	src_mconfig->src_cfg = fmt->s_freq;
719 }
720 
721 /*
722  * DSP needs updown module to do channel conversion. updown module take base
723  * module configuration and channel configuration
724  * It also take coefficients and now we have defaults applied here
725  */
726 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
727 			struct skl_module_cfg *mconfig,
728 			struct skl_up_down_mixer_cfg *mixer_mconfig)
729 {
730 	struct skl_module *module = mconfig->module;
731 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
732 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
733 
734 	skl_set_base_module_format(ctx,	mconfig,
735 		(struct skl_base_cfg *)mixer_mconfig);
736 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
737 	mixer_mconfig->ch_map = fmt->ch_map;
738 }
739 
740 /*
741  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
742  * dma) or link (hda link, SSP, PDM)
743  * Here we calculate the copier module parameters, like PCM format, output
744  * format, gateway settings
745  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
746  */
747 static void skl_set_copier_format(struct skl_sst *ctx,
748 			struct skl_module_cfg *mconfig,
749 			struct skl_cpr_cfg *cpr_mconfig)
750 {
751 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
752 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
753 
754 	skl_set_base_module_format(ctx, mconfig, base_cfg);
755 
756 	skl_setup_out_format(ctx, mconfig, out_fmt);
757 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
758 }
759 
760 /*
761  * Algo module are DSP pre processing modules. Algo module take base module
762  * configuration and params
763  */
764 
765 static void skl_set_algo_format(struct skl_sst *ctx,
766 			struct skl_module_cfg *mconfig,
767 			struct skl_algo_cfg *algo_mcfg)
768 {
769 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
770 
771 	skl_set_base_module_format(ctx, mconfig, base_cfg);
772 
773 	if (mconfig->formats_config.caps_size == 0)
774 		return;
775 
776 	memcpy(algo_mcfg->params,
777 			mconfig->formats_config.caps,
778 			mconfig->formats_config.caps_size);
779 
780 }
781 
782 /*
783  * Mic select module allows selecting one or many input channels, thus
784  * acting as a demux.
785  *
786  * Mic select module take base module configuration and out-format
787  * configuration
788  */
789 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
790 			struct skl_module_cfg *mconfig,
791 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
792 {
793 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
794 	struct skl_base_cfg *base_cfg =
795 				(struct skl_base_cfg *)base_outfmt_mcfg;
796 
797 	skl_set_base_module_format(ctx, mconfig, base_cfg);
798 	skl_setup_out_format(ctx, mconfig, out_fmt);
799 }
800 
801 static u16 skl_get_module_param_size(struct skl_sst *ctx,
802 			struct skl_module_cfg *mconfig)
803 {
804 	u16 param_size;
805 
806 	switch (mconfig->m_type) {
807 	case SKL_MODULE_TYPE_COPIER:
808 		param_size = sizeof(struct skl_cpr_cfg);
809 		param_size += mconfig->formats_config.caps_size;
810 		return param_size;
811 
812 	case SKL_MODULE_TYPE_SRCINT:
813 		return sizeof(struct skl_src_module_cfg);
814 
815 	case SKL_MODULE_TYPE_UPDWMIX:
816 		return sizeof(struct skl_up_down_mixer_cfg);
817 
818 	case SKL_MODULE_TYPE_ALGO:
819 		param_size = sizeof(struct skl_base_cfg);
820 		param_size += mconfig->formats_config.caps_size;
821 		return param_size;
822 
823 	case SKL_MODULE_TYPE_BASE_OUTFMT:
824 	case SKL_MODULE_TYPE_MIC_SELECT:
825 	case SKL_MODULE_TYPE_KPB:
826 		return sizeof(struct skl_base_outfmt_cfg);
827 
828 	default:
829 		/*
830 		 * return only base cfg when no specific module type is
831 		 * specified
832 		 */
833 		return sizeof(struct skl_base_cfg);
834 	}
835 
836 	return 0;
837 }
838 
839 /*
840  * DSP firmware supports various modules like copier, SRC, updown etc.
841  * These modules required various parameters to be calculated and sent for
842  * the module initialization to DSP. By default a generic module needs only
843  * base module format configuration
844  */
845 
846 static int skl_set_module_format(struct skl_sst *ctx,
847 			struct skl_module_cfg *module_config,
848 			u16 *module_config_size,
849 			void **param_data)
850 {
851 	u16 param_size;
852 
853 	param_size  = skl_get_module_param_size(ctx, module_config);
854 
855 	*param_data = kzalloc(param_size, GFP_KERNEL);
856 	if (NULL == *param_data)
857 		return -ENOMEM;
858 
859 	*module_config_size = param_size;
860 
861 	switch (module_config->m_type) {
862 	case SKL_MODULE_TYPE_COPIER:
863 		skl_set_copier_format(ctx, module_config, *param_data);
864 		break;
865 
866 	case SKL_MODULE_TYPE_SRCINT:
867 		skl_set_src_format(ctx, module_config, *param_data);
868 		break;
869 
870 	case SKL_MODULE_TYPE_UPDWMIX:
871 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
872 		break;
873 
874 	case SKL_MODULE_TYPE_ALGO:
875 		skl_set_algo_format(ctx, module_config, *param_data);
876 		break;
877 
878 	case SKL_MODULE_TYPE_BASE_OUTFMT:
879 	case SKL_MODULE_TYPE_MIC_SELECT:
880 	case SKL_MODULE_TYPE_KPB:
881 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
882 		break;
883 
884 	default:
885 		skl_set_base_module_format(ctx, module_config, *param_data);
886 		break;
887 
888 	}
889 
890 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
891 			module_config->id.module_id, param_size);
892 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
893 			*param_data, param_size, false);
894 	return 0;
895 }
896 
897 static int skl_get_queue_index(struct skl_module_pin *mpin,
898 				struct skl_module_inst_id id, int max)
899 {
900 	int i;
901 
902 	for (i = 0; i < max; i++)  {
903 		if (mpin[i].id.module_id == id.module_id &&
904 			mpin[i].id.instance_id == id.instance_id)
905 			return i;
906 	}
907 
908 	return -EINVAL;
909 }
910 
911 /*
912  * Allocates queue for each module.
913  * if dynamic, the pin_index is allocated 0 to max_pin.
914  * In static, the pin_index is fixed based on module_id and instance id
915  */
916 static int skl_alloc_queue(struct skl_module_pin *mpin,
917 			struct skl_module_cfg *tgt_cfg, int max)
918 {
919 	int i;
920 	struct skl_module_inst_id id = tgt_cfg->id;
921 	/*
922 	 * if pin in dynamic, find first free pin
923 	 * otherwise find match module and instance id pin as topology will
924 	 * ensure a unique pin is assigned to this so no need to
925 	 * allocate/free
926 	 */
927 	for (i = 0; i < max; i++)  {
928 		if (mpin[i].is_dynamic) {
929 			if (!mpin[i].in_use &&
930 				mpin[i].pin_state == SKL_PIN_UNBIND) {
931 
932 				mpin[i].in_use = true;
933 				mpin[i].id.module_id = id.module_id;
934 				mpin[i].id.instance_id = id.instance_id;
935 				mpin[i].id.pvt_id = id.pvt_id;
936 				mpin[i].tgt_mcfg = tgt_cfg;
937 				return i;
938 			}
939 		} else {
940 			if (mpin[i].id.module_id == id.module_id &&
941 				mpin[i].id.instance_id == id.instance_id &&
942 				mpin[i].pin_state == SKL_PIN_UNBIND) {
943 
944 				mpin[i].tgt_mcfg = tgt_cfg;
945 				return i;
946 			}
947 		}
948 	}
949 
950 	return -EINVAL;
951 }
952 
953 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
954 {
955 	if (mpin[q_index].is_dynamic) {
956 		mpin[q_index].in_use = false;
957 		mpin[q_index].id.module_id = 0;
958 		mpin[q_index].id.instance_id = 0;
959 		mpin[q_index].id.pvt_id = 0;
960 	}
961 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
962 	mpin[q_index].tgt_mcfg = NULL;
963 }
964 
965 /* Module state will be set to unint, if all the out pin state is UNBIND */
966 
967 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
968 						struct skl_module_cfg *mcfg)
969 {
970 	int i;
971 	bool found = false;
972 
973 	for (i = 0; i < max; i++)  {
974 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
975 			continue;
976 		found = true;
977 		break;
978 	}
979 
980 	if (!found)
981 		mcfg->m_state = SKL_MODULE_INIT_DONE;
982 	return;
983 }
984 
985 /*
986  * A module needs to be instanataited in DSP. A mdoule is present in a
987  * collection of module referred as a PIPE.
988  * We first calculate the module format, based on module type and then
989  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
990  */
991 int skl_init_module(struct skl_sst *ctx,
992 			struct skl_module_cfg *mconfig)
993 {
994 	u16 module_config_size = 0;
995 	void *param_data = NULL;
996 	int ret;
997 	struct skl_ipc_init_instance_msg msg;
998 
999 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1000 		 mconfig->id.module_id, mconfig->id.pvt_id);
1001 
1002 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1003 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1004 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1005 		return -EIO;
1006 	}
1007 
1008 	ret = skl_set_module_format(ctx, mconfig,
1009 			&module_config_size, &param_data);
1010 	if (ret < 0) {
1011 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1012 		return ret;
1013 	}
1014 
1015 	msg.module_id = mconfig->id.module_id;
1016 	msg.instance_id = mconfig->id.pvt_id;
1017 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1018 	msg.param_data_size = module_config_size;
1019 	msg.core_id = mconfig->core_id;
1020 	msg.domain = mconfig->domain;
1021 
1022 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1023 	if (ret < 0) {
1024 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1025 		kfree(param_data);
1026 		return ret;
1027 	}
1028 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1029 	kfree(param_data);
1030 	return ret;
1031 }
1032 
1033 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1034 	*src_module, struct skl_module_cfg *dst_module)
1035 {
1036 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1037 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1038 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1039 		 dst_module->id.module_id, dst_module->id.pvt_id);
1040 
1041 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1042 		src_module->m_state, dst_module->m_state);
1043 }
1044 
1045 /*
1046  * On module freeup, we need to unbind the module with modules
1047  * it is already bind.
1048  * Find the pin allocated and unbind then using bind_unbind IPC
1049  */
1050 int skl_unbind_modules(struct skl_sst *ctx,
1051 			struct skl_module_cfg *src_mcfg,
1052 			struct skl_module_cfg *dst_mcfg)
1053 {
1054 	int ret;
1055 	struct skl_ipc_bind_unbind_msg msg;
1056 	struct skl_module_inst_id src_id = src_mcfg->id;
1057 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1058 	int in_max = dst_mcfg->module->max_input_pins;
1059 	int out_max = src_mcfg->module->max_output_pins;
1060 	int src_index, dst_index, src_pin_state, dst_pin_state;
1061 
1062 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1063 
1064 	/* get src queue index */
1065 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1066 	if (src_index < 0)
1067 		return 0;
1068 
1069 	msg.src_queue = src_index;
1070 
1071 	/* get dst queue index */
1072 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1073 	if (dst_index < 0)
1074 		return 0;
1075 
1076 	msg.dst_queue = dst_index;
1077 
1078 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1079 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1080 
1081 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1082 		dst_pin_state != SKL_PIN_BIND_DONE)
1083 		return 0;
1084 
1085 	msg.module_id = src_mcfg->id.module_id;
1086 	msg.instance_id = src_mcfg->id.pvt_id;
1087 	msg.dst_module_id = dst_mcfg->id.module_id;
1088 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1089 	msg.bind = false;
1090 
1091 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1092 	if (!ret) {
1093 		/* free queue only if unbind is success */
1094 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1095 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1096 
1097 		/*
1098 		 * check only if src module bind state, bind is
1099 		 * always from src -> sink
1100 		 */
1101 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1102 	}
1103 
1104 	return ret;
1105 }
1106 
1107 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1108 				struct skl_module_fmt *format)
1109 {
1110 	pin_fmt->number_of_channels = format->channels;
1111 	pin_fmt->s_freq = format->s_freq;
1112 	pin_fmt->bit_depth = format->bit_depth;
1113 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1114 	pin_fmt->ch_cfg = format->ch_cfg;
1115 	pin_fmt->sample_type = format->sample_type;
1116 	pin_fmt->channel_map = format->ch_map;
1117 	pin_fmt->interleaving = format->interleaving_style;
1118 }
1119 
1120 #define CPR_SINK_FMT_PARAM_ID 2
1121 
1122 /*
1123  * Once a module is instantiated it need to be 'bind' with other modules in
1124  * the pipeline. For binding we need to find the module pins which are bind
1125  * together
1126  * This function finds the pins and then sends bund_unbind IPC message to
1127  * DSP using IPC helper
1128  */
1129 int skl_bind_modules(struct skl_sst *ctx,
1130 			struct skl_module_cfg *src_mcfg,
1131 			struct skl_module_cfg *dst_mcfg)
1132 {
1133 	int ret = 0;
1134 	struct skl_ipc_bind_unbind_msg msg;
1135 	int in_max = dst_mcfg->module->max_input_pins;
1136 	int out_max = src_mcfg->module->max_output_pins;
1137 	int src_index, dst_index;
1138 	struct skl_module_fmt *format;
1139 	struct skl_cpr_pin_fmt pin_fmt;
1140 	struct skl_module *module;
1141 	struct skl_module_iface *fmt;
1142 
1143 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1144 
1145 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1146 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1147 		return 0;
1148 
1149 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1150 	if (src_index < 0)
1151 		return -EINVAL;
1152 
1153 	msg.src_queue = src_index;
1154 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1155 	if (dst_index < 0) {
1156 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1157 		return -EINVAL;
1158 	}
1159 
1160 	/*
1161 	 * Copier module requires the separate large_config_set_ipc to
1162 	 * configure the pins other than 0
1163 	 */
1164 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1165 		pin_fmt.sink_id = src_index;
1166 		module = src_mcfg->module;
1167 		fmt = &module->formats[src_mcfg->fmt_idx];
1168 
1169 		/* Input fmt is same as that of src module input cfg */
1170 		format = &fmt->inputs[0].fmt;
1171 		fill_pin_params(&(pin_fmt.src_fmt), format);
1172 
1173 		format = &fmt->outputs[src_index].fmt;
1174 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1175 		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1176 					sizeof(struct skl_cpr_pin_fmt),
1177 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1178 
1179 		if (ret < 0)
1180 			goto out;
1181 	}
1182 
1183 	msg.dst_queue = dst_index;
1184 
1185 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1186 			 msg.src_queue, msg.dst_queue);
1187 
1188 	msg.module_id = src_mcfg->id.module_id;
1189 	msg.instance_id = src_mcfg->id.pvt_id;
1190 	msg.dst_module_id = dst_mcfg->id.module_id;
1191 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1192 	msg.bind = true;
1193 
1194 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1195 
1196 	if (!ret) {
1197 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1198 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1199 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1200 		return ret;
1201 	}
1202 out:
1203 	/* error case , if IPC fails, clear the queue index */
1204 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1205 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1206 
1207 	return ret;
1208 }
1209 
1210 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1211 	enum skl_ipc_pipeline_state state)
1212 {
1213 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1214 
1215 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1216 }
1217 
1218 /*
1219  * A pipeline is a collection of modules. Before a module in instantiated a
1220  * pipeline needs to be created for it.
1221  * This function creates pipeline, by sending create pipeline IPC messages
1222  * to FW
1223  */
1224 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1225 {
1226 	int ret;
1227 
1228 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1229 
1230 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1231 				pipe->pipe_priority, pipe->ppl_id,
1232 				pipe->lp_mode);
1233 	if (ret < 0) {
1234 		dev_err(ctx->dev, "Failed to create pipeline\n");
1235 		return ret;
1236 	}
1237 
1238 	pipe->state = SKL_PIPE_CREATED;
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1245  * pause the pipeline first and then delete it
1246  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1247  * DMA engines and releases resources
1248  */
1249 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1250 {
1251 	int ret;
1252 
1253 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1254 
1255 	/* If pipe is started, do stop the pipe in FW. */
1256 	if (pipe->state >= SKL_PIPE_STARTED) {
1257 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1258 		if (ret < 0) {
1259 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1260 			return ret;
1261 		}
1262 
1263 		pipe->state = SKL_PIPE_PAUSED;
1264 	}
1265 
1266 	/* If pipe was not created in FW, do not try to delete it */
1267 	if (pipe->state < SKL_PIPE_CREATED)
1268 		return 0;
1269 
1270 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1271 	if (ret < 0) {
1272 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1273 		return ret;
1274 	}
1275 
1276 	pipe->state = SKL_PIPE_INVALID;
1277 
1278 	return ret;
1279 }
1280 
1281 /*
1282  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1283  * For processing data the pipe need to be run by sending IPC set pipe state
1284  * to DSP
1285  */
1286 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1287 {
1288 	int ret;
1289 
1290 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1291 
1292 	/* If pipe was not created in FW, do not try to pause or delete */
1293 	if (pipe->state < SKL_PIPE_CREATED)
1294 		return 0;
1295 
1296 	/* Pipe has to be paused before it is started */
1297 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1298 	if (ret < 0) {
1299 		dev_err(ctx->dev, "Failed to pause pipe\n");
1300 		return ret;
1301 	}
1302 
1303 	pipe->state = SKL_PIPE_PAUSED;
1304 
1305 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1306 	if (ret < 0) {
1307 		dev_err(ctx->dev, "Failed to start pipe\n");
1308 		return ret;
1309 	}
1310 
1311 	pipe->state = SKL_PIPE_STARTED;
1312 
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Stop the pipeline by sending set pipe state IPC
1318  * DSP doesnt implement stop so we always send pause message
1319  */
1320 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1321 {
1322 	int ret;
1323 
1324 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1325 
1326 	/* If pipe was not created in FW, do not try to pause or delete */
1327 	if (pipe->state < SKL_PIPE_PAUSED)
1328 		return 0;
1329 
1330 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1331 	if (ret < 0) {
1332 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1333 		return ret;
1334 	}
1335 
1336 	pipe->state = SKL_PIPE_PAUSED;
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1343  * from the DSP side
1344  */
1345 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1346 {
1347 	int ret;
1348 
1349 	/* If pipe was not created in FW, do not try to pause or delete */
1350 	if (pipe->state < SKL_PIPE_PAUSED)
1351 		return 0;
1352 
1353 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1354 	if (ret < 0) {
1355 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1356 		return ret;
1357 	}
1358 
1359 	pipe->state = SKL_PIPE_RESET;
1360 
1361 	return 0;
1362 }
1363 
1364 /* Algo parameter set helper function */
1365 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1366 				u32 param_id, struct skl_module_cfg *mcfg)
1367 {
1368 	struct skl_ipc_large_config_msg msg;
1369 
1370 	msg.module_id = mcfg->id.module_id;
1371 	msg.instance_id = mcfg->id.pvt_id;
1372 	msg.param_data_size = size;
1373 	msg.large_param_id = param_id;
1374 
1375 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1376 }
1377 
1378 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1379 			  u32 param_id, struct skl_module_cfg *mcfg)
1380 {
1381 	struct skl_ipc_large_config_msg msg;
1382 
1383 	msg.module_id = mcfg->id.module_id;
1384 	msg.instance_id = mcfg->id.pvt_id;
1385 	msg.param_data_size = size;
1386 	msg.large_param_id = param_id;
1387 
1388 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1389 }
1390