1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
4  *  configurations
5  *
6  *  Copyright (C) 2015 Intel Corp
7  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
8  *	   Jeeja KP <jeeja.kp@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/pci.h>
14 #include <sound/core.h>
15 #include <sound/pcm.h>
16 #include <uapi/sound/skl-tplg-interface.h>
17 #include "skl-sst-dsp.h"
18 #include "cnl-sst-dsp.h"
19 #include "skl-sst-ipc.h"
20 #include "skl.h"
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
23 #include "skl-topology.h"
24 
25 static int skl_alloc_dma_buf(struct device *dev,
26 		struct snd_dma_buffer *dmab, size_t size)
27 {
28 	struct hdac_bus *bus = dev_get_drvdata(dev);
29 
30 	if (!bus)
31 		return -ENODEV;
32 
33 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
34 }
35 
36 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
37 {
38 	struct hdac_bus *bus = dev_get_drvdata(dev);
39 
40 	if (!bus)
41 		return -ENODEV;
42 
43 	bus->io_ops->dma_free_pages(bus, dmab);
44 
45 	return 0;
46 }
47 
48 #define SKL_ASTATE_PARAM_ID	4
49 
50 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
51 {
52 	struct skl_ipc_large_config_msg	msg = {0};
53 
54 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
55 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
56 				sizeof(cnt));
57 
58 	skl_ipc_set_large_config(&ctx->ipc, &msg, data);
59 }
60 
61 #define NOTIFICATION_PARAM_ID 3
62 #define NOTIFICATION_MASK 0xf
63 
64 /* disable notfication for underruns/overruns from firmware module */
65 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
66 {
67 	struct notification_mask mask;
68 	struct skl_ipc_large_config_msg	msg = {0};
69 
70 	mask.notify = NOTIFICATION_MASK;
71 	mask.enable = enable;
72 
73 	msg.large_param_id = NOTIFICATION_PARAM_ID;
74 	msg.param_data_size = sizeof(mask);
75 
76 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
77 }
78 
79 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
80 				int stream_tag, int enable)
81 {
82 	struct hdac_bus *bus = dev_get_drvdata(dev);
83 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
84 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
85 	struct hdac_ext_stream *estream;
86 
87 	if (!stream)
88 		return -EINVAL;
89 
90 	estream = stream_to_hdac_ext_stream(stream);
91 	/* enable/disable SPIB for this hdac stream */
92 	snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index);
93 
94 	/* set the spib value */
95 	snd_hdac_ext_stream_set_spib(bus, estream, size);
96 
97 	return 0;
98 }
99 
100 static int skl_dsp_prepare(struct device *dev, unsigned int format,
101 			unsigned int size, struct snd_dma_buffer *dmab)
102 {
103 	struct hdac_bus *bus = dev_get_drvdata(dev);
104 	struct hdac_ext_stream *estream;
105 	struct hdac_stream *stream;
106 	struct snd_pcm_substream substream;
107 	int ret;
108 
109 	if (!bus)
110 		return -ENODEV;
111 
112 	memset(&substream, 0, sizeof(substream));
113 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
114 
115 	estream = snd_hdac_ext_stream_assign(bus, &substream,
116 					HDAC_EXT_STREAM_TYPE_HOST);
117 	if (!estream)
118 		return -ENODEV;
119 
120 	stream = hdac_stream(estream);
121 
122 	/* assign decouple host dma channel */
123 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
124 	if (ret < 0)
125 		return ret;
126 
127 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
128 
129 	return stream->stream_tag;
130 }
131 
132 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
133 {
134 	struct hdac_bus *bus = dev_get_drvdata(dev);
135 	struct hdac_stream *stream;
136 
137 	if (!bus)
138 		return -ENODEV;
139 
140 	stream = snd_hdac_get_stream(bus,
141 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
142 	if (!stream)
143 		return -EINVAL;
144 
145 	snd_hdac_dsp_trigger(stream, start);
146 
147 	return 0;
148 }
149 
150 static int skl_dsp_cleanup(struct device *dev,
151 		struct snd_dma_buffer *dmab, int stream_tag)
152 {
153 	struct hdac_bus *bus = dev_get_drvdata(dev);
154 	struct hdac_stream *stream;
155 	struct hdac_ext_stream *estream;
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.num_cores = 2,
205 		.loader_ops = skl_get_loader_ops,
206 		.init = skl_sst_dsp_init,
207 		.init_fw = skl_sst_init_fw,
208 		.cleanup = skl_sst_dsp_cleanup
209 	},
210 	{
211 		.id = 0x9d71,
212 		.num_cores = 2,
213 		.loader_ops = skl_get_loader_ops,
214 		.init = skl_sst_dsp_init,
215 		.init_fw = skl_sst_init_fw,
216 		.cleanup = skl_sst_dsp_cleanup
217 	},
218 	{
219 		.id = 0x5a98,
220 		.num_cores = 2,
221 		.loader_ops = bxt_get_loader_ops,
222 		.init = bxt_sst_dsp_init,
223 		.init_fw = bxt_sst_init_fw,
224 		.cleanup = bxt_sst_dsp_cleanup
225 	},
226 	{
227 		.id = 0x3198,
228 		.num_cores = 2,
229 		.loader_ops = bxt_get_loader_ops,
230 		.init = bxt_sst_dsp_init,
231 		.init_fw = bxt_sst_init_fw,
232 		.cleanup = bxt_sst_dsp_cleanup
233 	},
234 	{
235 		.id = 0x9dc8,
236 		.num_cores = 4,
237 		.loader_ops = bxt_get_loader_ops,
238 		.init = cnl_sst_dsp_init,
239 		.init_fw = cnl_sst_init_fw,
240 		.cleanup = cnl_sst_dsp_cleanup
241 	},
242 	{
243 		.id = 0xa348,
244 		.num_cores = 4,
245 		.loader_ops = bxt_get_loader_ops,
246 		.init = cnl_sst_dsp_init,
247 		.init_fw = cnl_sst_init_fw,
248 		.cleanup = cnl_sst_dsp_cleanup
249 	},
250 	{
251 		.id = 0x02c8,
252 		.num_cores = 4,
253 		.loader_ops = bxt_get_loader_ops,
254 		.init = cnl_sst_dsp_init,
255 		.init_fw = cnl_sst_init_fw,
256 		.cleanup = cnl_sst_dsp_cleanup
257 	},
258 	{
259 		.id = 0x06c8,
260 		.num_cores = 4,
261 		.loader_ops = bxt_get_loader_ops,
262 		.init = cnl_sst_dsp_init,
263 		.init_fw = cnl_sst_init_fw,
264 		.cleanup = cnl_sst_dsp_cleanup
265 	},
266 };
267 
268 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
269 {
270 	int i;
271 
272 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
273 		if (dsp_ops[i].id == pci_id)
274 			return &dsp_ops[i];
275 	}
276 
277 	return NULL;
278 }
279 
280 int skl_init_dsp(struct skl *skl)
281 {
282 	void __iomem *mmio_base;
283 	struct hdac_bus *bus = skl_to_bus(skl);
284 	struct skl_dsp_loader_ops loader_ops;
285 	int irq = bus->irq;
286 	const struct skl_dsp_ops *ops;
287 	struct skl_dsp_cores *cores;
288 	int ret;
289 
290 	/* enable ppcap interrupt */
291 	snd_hdac_ext_bus_ppcap_enable(bus, true);
292 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
293 
294 	/* read the BAR of the ADSP MMIO */
295 	mmio_base = pci_ioremap_bar(skl->pci, 4);
296 	if (mmio_base == NULL) {
297 		dev_err(bus->dev, "ioremap error\n");
298 		return -ENXIO;
299 	}
300 
301 	ops = skl_get_dsp_ops(skl->pci->device);
302 	if (!ops) {
303 		ret = -EIO;
304 		goto unmap_mmio;
305 	}
306 
307 	loader_ops = ops->loader_ops();
308 	ret = ops->init(bus->dev, mmio_base, irq,
309 				skl->fw_name, loader_ops,
310 				&skl->skl_sst);
311 
312 	if (ret < 0)
313 		goto unmap_mmio;
314 
315 	skl->skl_sst->dsp_ops = ops;
316 	cores = &skl->skl_sst->cores;
317 	cores->count = ops->num_cores;
318 
319 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
320 	if (!cores->state) {
321 		ret = -ENOMEM;
322 		goto unmap_mmio;
323 	}
324 
325 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
326 				     GFP_KERNEL);
327 	if (!cores->usage_count) {
328 		ret = -ENOMEM;
329 		goto free_core_state;
330 	}
331 
332 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
333 
334 	return 0;
335 
336 free_core_state:
337 	kfree(cores->state);
338 
339 unmap_mmio:
340 	iounmap(mmio_base);
341 
342 	return ret;
343 }
344 
345 int skl_free_dsp(struct skl *skl)
346 {
347 	struct hdac_bus *bus = skl_to_bus(skl);
348 	struct skl_sst *ctx = skl->skl_sst;
349 
350 	/* disable  ppcap interrupt */
351 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
352 
353 	ctx->dsp_ops->cleanup(bus->dev, ctx);
354 
355 	kfree(ctx->cores.state);
356 	kfree(ctx->cores.usage_count);
357 
358 	if (ctx->dsp->addr.lpe)
359 		iounmap(ctx->dsp->addr.lpe);
360 
361 	return 0;
362 }
363 
364 /*
365  * In the case of "suspend_active" i.e, the Audio IP being active
366  * during system suspend, immediately excecute any pending D0i3 work
367  * before suspending. This is needed for the IP to work in low power
368  * mode during system suspend. In the case of normal suspend, cancel
369  * any pending D0i3 work.
370  */
371 int skl_suspend_late_dsp(struct skl *skl)
372 {
373 	struct skl_sst *ctx = skl->skl_sst;
374 	struct delayed_work *dwork;
375 
376 	if (!ctx)
377 		return 0;
378 
379 	dwork = &ctx->d0i3.work;
380 
381 	if (dwork->work.func) {
382 		if (skl->supend_active)
383 			flush_delayed_work(dwork);
384 		else
385 			cancel_delayed_work_sync(dwork);
386 	}
387 
388 	return 0;
389 }
390 
391 int skl_suspend_dsp(struct skl *skl)
392 {
393 	struct skl_sst *ctx = skl->skl_sst;
394 	struct hdac_bus *bus = skl_to_bus(skl);
395 	int ret;
396 
397 	/* if ppcap is not supported return 0 */
398 	if (!bus->ppcap)
399 		return 0;
400 
401 	ret = skl_dsp_sleep(ctx->dsp);
402 	if (ret < 0)
403 		return ret;
404 
405 	/* disable ppcap interrupt */
406 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
407 	snd_hdac_ext_bus_ppcap_enable(bus, false);
408 
409 	return 0;
410 }
411 
412 int skl_resume_dsp(struct skl *skl)
413 {
414 	struct skl_sst *ctx = skl->skl_sst;
415 	struct hdac_bus *bus = skl_to_bus(skl);
416 	int ret;
417 
418 	/* if ppcap is not supported return 0 */
419 	if (!bus->ppcap)
420 		return 0;
421 
422 	/* enable ppcap interrupt */
423 	snd_hdac_ext_bus_ppcap_enable(bus, true);
424 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
425 
426 	/* check if DSP 1st boot is done */
427 	if (skl->skl_sst->is_first_boot)
428 		return 0;
429 
430 	/*
431 	 * Disable dynamic clock and power gating during firmware
432 	 * and library download
433 	 */
434 	ctx->enable_miscbdcge(ctx->dev, false);
435 	ctx->clock_power_gating(ctx->dev, false);
436 
437 	ret = skl_dsp_wake(ctx->dsp);
438 	ctx->enable_miscbdcge(ctx->dev, true);
439 	ctx->clock_power_gating(ctx->dev, true);
440 	if (ret < 0)
441 		return ret;
442 
443 	skl_dsp_enable_notification(skl->skl_sst, false);
444 
445 	if (skl->cfg.astate_cfg != NULL) {
446 		skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
447 					skl->cfg.astate_cfg);
448 	}
449 	return ret;
450 }
451 
452 enum skl_bitdepth skl_get_bit_depth(int params)
453 {
454 	switch (params) {
455 	case 8:
456 		return SKL_DEPTH_8BIT;
457 
458 	case 16:
459 		return SKL_DEPTH_16BIT;
460 
461 	case 24:
462 		return SKL_DEPTH_24BIT;
463 
464 	case 32:
465 		return SKL_DEPTH_32BIT;
466 
467 	default:
468 		return SKL_DEPTH_INVALID;
469 
470 	}
471 }
472 
473 /*
474  * Each module in DSP expects a base module configuration, which consists of
475  * PCM format information, which we calculate in driver and resource values
476  * which are read from widget information passed through topology binary
477  * This is send when we create a module with INIT_INSTANCE IPC msg
478  */
479 static void skl_set_base_module_format(struct skl_sst *ctx,
480 			struct skl_module_cfg *mconfig,
481 			struct skl_base_cfg *base_cfg)
482 {
483 	struct skl_module *module = mconfig->module;
484 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
485 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
486 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
487 
488 	base_cfg->audio_fmt.number_of_channels = format->channels;
489 
490 	base_cfg->audio_fmt.s_freq = format->s_freq;
491 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
492 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
493 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
494 	base_cfg->audio_fmt.sample_type = format->sample_type;
495 
496 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
497 			format->bit_depth, format->valid_bit_depth,
498 			format->ch_cfg);
499 
500 	base_cfg->audio_fmt.channel_map = format->ch_map;
501 
502 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
503 
504 	base_cfg->cps = res->cps;
505 	base_cfg->ibs = res->ibs;
506 	base_cfg->obs = res->obs;
507 	base_cfg->is_pages = res->is_pages;
508 }
509 
510 /*
511  * Copies copier capabilities into copier module and updates copier module
512  * config size.
513  */
514 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
515 				struct skl_cpr_cfg *cpr_mconfig)
516 {
517 	if (mconfig->formats_config.caps_size == 0)
518 		return;
519 
520 	memcpy(cpr_mconfig->gtw_cfg.config_data,
521 			mconfig->formats_config.caps,
522 			mconfig->formats_config.caps_size);
523 
524 	cpr_mconfig->gtw_cfg.config_length =
525 			(mconfig->formats_config.caps_size) / 4;
526 }
527 
528 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
529 /*
530  * Calculate the gatewat settings required for copier module, type of
531  * gateway and index of gateway to use
532  */
533 static u32 skl_get_node_id(struct skl_sst *ctx,
534 			struct skl_module_cfg *mconfig)
535 {
536 	union skl_connector_node_id node_id = {0};
537 	union skl_ssp_dma_node ssp_node  = {0};
538 	struct skl_pipe_params *params = mconfig->pipe->p_params;
539 
540 	switch (mconfig->dev_type) {
541 	case SKL_DEVICE_BT:
542 		node_id.node.dma_type =
543 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
544 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
545 			SKL_DMA_I2S_LINK_INPUT_CLASS;
546 		node_id.node.vindex = params->host_dma_id +
547 					(mconfig->vbus_id << 3);
548 		break;
549 
550 	case SKL_DEVICE_I2S:
551 		node_id.node.dma_type =
552 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
553 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
554 			SKL_DMA_I2S_LINK_INPUT_CLASS;
555 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
556 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
557 		node_id.node.vindex = ssp_node.val;
558 		break;
559 
560 	case SKL_DEVICE_DMIC:
561 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
562 		node_id.node.vindex = mconfig->vbus_id +
563 					 (mconfig->time_slot);
564 		break;
565 
566 	case SKL_DEVICE_HDALINK:
567 		node_id.node.dma_type =
568 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
569 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
570 			SKL_DMA_HDA_LINK_INPUT_CLASS;
571 		node_id.node.vindex = params->link_dma_id;
572 		break;
573 
574 	case SKL_DEVICE_HDAHOST:
575 		node_id.node.dma_type =
576 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
577 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
578 			SKL_DMA_HDA_HOST_INPUT_CLASS;
579 		node_id.node.vindex = params->host_dma_id;
580 		break;
581 
582 	default:
583 		node_id.val = 0xFFFFFFFF;
584 		break;
585 	}
586 
587 	return node_id.val;
588 }
589 
590 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
591 			struct skl_module_cfg *mconfig,
592 			struct skl_cpr_cfg *cpr_mconfig)
593 {
594 	u32 dma_io_buf;
595 	struct skl_module_res *res;
596 	int res_idx = mconfig->res_idx;
597 	struct skl *skl = get_skl_ctx(ctx->dev);
598 
599 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
600 
601 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
602 		cpr_mconfig->cpr_feature_mask = 0;
603 		return;
604 	}
605 
606 	if (skl->nr_modules) {
607 		res = &mconfig->module->resources[mconfig->res_idx];
608 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
609 		goto skip_buf_size_calc;
610 	} else {
611 		res = &mconfig->module->resources[res_idx];
612 	}
613 
614 	switch (mconfig->hw_conn_type) {
615 	case SKL_CONN_SOURCE:
616 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
617 			dma_io_buf =  res->ibs;
618 		else
619 			dma_io_buf =  res->obs;
620 		break;
621 
622 	case SKL_CONN_SINK:
623 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
624 			dma_io_buf =  res->obs;
625 		else
626 			dma_io_buf =  res->ibs;
627 		break;
628 
629 	default:
630 		dev_warn(ctx->dev, "wrong connection type: %d\n",
631 				mconfig->hw_conn_type);
632 		return;
633 	}
634 
635 	cpr_mconfig->gtw_cfg.dma_buffer_size =
636 				mconfig->dma_buffer_size * dma_io_buf;
637 
638 	/* fallback to 2ms default value */
639 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
640 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
641 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
642 		else
643 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
644 	}
645 
646 skip_buf_size_calc:
647 	cpr_mconfig->cpr_feature_mask = 0;
648 	cpr_mconfig->gtw_cfg.config_length  = 0;
649 
650 	skl_copy_copier_caps(mconfig, cpr_mconfig);
651 }
652 
653 #define DMA_CONTROL_ID 5
654 #define DMA_I2S_BLOB_SIZE 21
655 
656 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
657 				u32 caps_size, u32 node_id)
658 {
659 	struct skl_dma_control *dma_ctrl;
660 	struct skl_ipc_large_config_msg msg = {0};
661 	int err = 0;
662 
663 
664 	/*
665 	 * if blob size zero, then return
666 	 */
667 	if (caps_size == 0)
668 		return 0;
669 
670 	msg.large_param_id = DMA_CONTROL_ID;
671 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
672 
673 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
674 	if (dma_ctrl == NULL)
675 		return -ENOMEM;
676 
677 	dma_ctrl->node_id = node_id;
678 
679 	/*
680 	 * NHLT blob may contain additional configs along with i2s blob.
681 	 * firmware expects only the i2s blob size as the config_length.
682 	 * So fix to i2s blob size.
683 	 * size in dwords.
684 	 */
685 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
686 
687 	memcpy(dma_ctrl->config_data, caps, caps_size);
688 
689 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
690 
691 	kfree(dma_ctrl);
692 	return err;
693 }
694 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
695 
696 static void skl_setup_out_format(struct skl_sst *ctx,
697 			struct skl_module_cfg *mconfig,
698 			struct skl_audio_data_format *out_fmt)
699 {
700 	struct skl_module *module = mconfig->module;
701 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
702 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
703 
704 	out_fmt->number_of_channels = (u8)format->channels;
705 	out_fmt->s_freq = format->s_freq;
706 	out_fmt->bit_depth = format->bit_depth;
707 	out_fmt->valid_bit_depth = format->valid_bit_depth;
708 	out_fmt->ch_cfg = format->ch_cfg;
709 
710 	out_fmt->channel_map = format->ch_map;
711 	out_fmt->interleaving = format->interleaving_style;
712 	out_fmt->sample_type = format->sample_type;
713 
714 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
715 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
716 }
717 
718 /*
719  * DSP needs SRC module for frequency conversion, SRC takes base module
720  * configuration and the target frequency as extra parameter passed as src
721  * config
722  */
723 static void skl_set_src_format(struct skl_sst *ctx,
724 			struct skl_module_cfg *mconfig,
725 			struct skl_src_module_cfg *src_mconfig)
726 {
727 	struct skl_module *module = mconfig->module;
728 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
729 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
730 
731 	skl_set_base_module_format(ctx, mconfig,
732 		(struct skl_base_cfg *)src_mconfig);
733 
734 	src_mconfig->src_cfg = fmt->s_freq;
735 }
736 
737 /*
738  * DSP needs updown module to do channel conversion. updown module take base
739  * module configuration and channel configuration
740  * It also take coefficients and now we have defaults applied here
741  */
742 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
743 			struct skl_module_cfg *mconfig,
744 			struct skl_up_down_mixer_cfg *mixer_mconfig)
745 {
746 	struct skl_module *module = mconfig->module;
747 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
748 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
749 
750 	skl_set_base_module_format(ctx,	mconfig,
751 		(struct skl_base_cfg *)mixer_mconfig);
752 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
753 	mixer_mconfig->ch_map = fmt->ch_map;
754 }
755 
756 /*
757  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
758  * dma) or link (hda link, SSP, PDM)
759  * Here we calculate the copier module parameters, like PCM format, output
760  * format, gateway settings
761  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
762  */
763 static void skl_set_copier_format(struct skl_sst *ctx,
764 			struct skl_module_cfg *mconfig,
765 			struct skl_cpr_cfg *cpr_mconfig)
766 {
767 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
768 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
769 
770 	skl_set_base_module_format(ctx, mconfig, base_cfg);
771 
772 	skl_setup_out_format(ctx, mconfig, out_fmt);
773 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
774 }
775 
776 /*
777  * Algo module are DSP pre processing modules. Algo module take base module
778  * configuration and params
779  */
780 
781 static void skl_set_algo_format(struct skl_sst *ctx,
782 			struct skl_module_cfg *mconfig,
783 			struct skl_algo_cfg *algo_mcfg)
784 {
785 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
786 
787 	skl_set_base_module_format(ctx, mconfig, base_cfg);
788 
789 	if (mconfig->formats_config.caps_size == 0)
790 		return;
791 
792 	memcpy(algo_mcfg->params,
793 			mconfig->formats_config.caps,
794 			mconfig->formats_config.caps_size);
795 
796 }
797 
798 /*
799  * Mic select module allows selecting one or many input channels, thus
800  * acting as a demux.
801  *
802  * Mic select module take base module configuration and out-format
803  * configuration
804  */
805 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
806 			struct skl_module_cfg *mconfig,
807 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
808 {
809 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
810 	struct skl_base_cfg *base_cfg =
811 				(struct skl_base_cfg *)base_outfmt_mcfg;
812 
813 	skl_set_base_module_format(ctx, mconfig, base_cfg);
814 	skl_setup_out_format(ctx, mconfig, out_fmt);
815 }
816 
817 static u16 skl_get_module_param_size(struct skl_sst *ctx,
818 			struct skl_module_cfg *mconfig)
819 {
820 	u16 param_size;
821 
822 	switch (mconfig->m_type) {
823 	case SKL_MODULE_TYPE_COPIER:
824 		param_size = sizeof(struct skl_cpr_cfg);
825 		param_size += mconfig->formats_config.caps_size;
826 		return param_size;
827 
828 	case SKL_MODULE_TYPE_SRCINT:
829 		return sizeof(struct skl_src_module_cfg);
830 
831 	case SKL_MODULE_TYPE_UPDWMIX:
832 		return sizeof(struct skl_up_down_mixer_cfg);
833 
834 	case SKL_MODULE_TYPE_ALGO:
835 		param_size = sizeof(struct skl_base_cfg);
836 		param_size += mconfig->formats_config.caps_size;
837 		return param_size;
838 
839 	case SKL_MODULE_TYPE_BASE_OUTFMT:
840 	case SKL_MODULE_TYPE_MIC_SELECT:
841 	case SKL_MODULE_TYPE_KPB:
842 		return sizeof(struct skl_base_outfmt_cfg);
843 
844 	default:
845 		/*
846 		 * return only base cfg when no specific module type is
847 		 * specified
848 		 */
849 		return sizeof(struct skl_base_cfg);
850 	}
851 
852 	return 0;
853 }
854 
855 /*
856  * DSP firmware supports various modules like copier, SRC, updown etc.
857  * These modules required various parameters to be calculated and sent for
858  * the module initialization to DSP. By default a generic module needs only
859  * base module format configuration
860  */
861 
862 static int skl_set_module_format(struct skl_sst *ctx,
863 			struct skl_module_cfg *module_config,
864 			u16 *module_config_size,
865 			void **param_data)
866 {
867 	u16 param_size;
868 
869 	param_size  = skl_get_module_param_size(ctx, module_config);
870 
871 	*param_data = kzalloc(param_size, GFP_KERNEL);
872 	if (NULL == *param_data)
873 		return -ENOMEM;
874 
875 	*module_config_size = param_size;
876 
877 	switch (module_config->m_type) {
878 	case SKL_MODULE_TYPE_COPIER:
879 		skl_set_copier_format(ctx, module_config, *param_data);
880 		break;
881 
882 	case SKL_MODULE_TYPE_SRCINT:
883 		skl_set_src_format(ctx, module_config, *param_data);
884 		break;
885 
886 	case SKL_MODULE_TYPE_UPDWMIX:
887 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
888 		break;
889 
890 	case SKL_MODULE_TYPE_ALGO:
891 		skl_set_algo_format(ctx, module_config, *param_data);
892 		break;
893 
894 	case SKL_MODULE_TYPE_BASE_OUTFMT:
895 	case SKL_MODULE_TYPE_MIC_SELECT:
896 	case SKL_MODULE_TYPE_KPB:
897 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
898 		break;
899 
900 	default:
901 		skl_set_base_module_format(ctx, module_config, *param_data);
902 		break;
903 
904 	}
905 
906 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
907 			module_config->id.module_id, param_size);
908 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
909 			*param_data, param_size, false);
910 	return 0;
911 }
912 
913 static int skl_get_queue_index(struct skl_module_pin *mpin,
914 				struct skl_module_inst_id id, int max)
915 {
916 	int i;
917 
918 	for (i = 0; i < max; i++)  {
919 		if (mpin[i].id.module_id == id.module_id &&
920 			mpin[i].id.instance_id == id.instance_id)
921 			return i;
922 	}
923 
924 	return -EINVAL;
925 }
926 
927 /*
928  * Allocates queue for each module.
929  * if dynamic, the pin_index is allocated 0 to max_pin.
930  * In static, the pin_index is fixed based on module_id and instance id
931  */
932 static int skl_alloc_queue(struct skl_module_pin *mpin,
933 			struct skl_module_cfg *tgt_cfg, int max)
934 {
935 	int i;
936 	struct skl_module_inst_id id = tgt_cfg->id;
937 	/*
938 	 * if pin in dynamic, find first free pin
939 	 * otherwise find match module and instance id pin as topology will
940 	 * ensure a unique pin is assigned to this so no need to
941 	 * allocate/free
942 	 */
943 	for (i = 0; i < max; i++)  {
944 		if (mpin[i].is_dynamic) {
945 			if (!mpin[i].in_use &&
946 				mpin[i].pin_state == SKL_PIN_UNBIND) {
947 
948 				mpin[i].in_use = true;
949 				mpin[i].id.module_id = id.module_id;
950 				mpin[i].id.instance_id = id.instance_id;
951 				mpin[i].id.pvt_id = id.pvt_id;
952 				mpin[i].tgt_mcfg = tgt_cfg;
953 				return i;
954 			}
955 		} else {
956 			if (mpin[i].id.module_id == id.module_id &&
957 				mpin[i].id.instance_id == id.instance_id &&
958 				mpin[i].pin_state == SKL_PIN_UNBIND) {
959 
960 				mpin[i].tgt_mcfg = tgt_cfg;
961 				return i;
962 			}
963 		}
964 	}
965 
966 	return -EINVAL;
967 }
968 
969 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
970 {
971 	if (mpin[q_index].is_dynamic) {
972 		mpin[q_index].in_use = false;
973 		mpin[q_index].id.module_id = 0;
974 		mpin[q_index].id.instance_id = 0;
975 		mpin[q_index].id.pvt_id = 0;
976 	}
977 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
978 	mpin[q_index].tgt_mcfg = NULL;
979 }
980 
981 /* Module state will be set to unint, if all the out pin state is UNBIND */
982 
983 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
984 						struct skl_module_cfg *mcfg)
985 {
986 	int i;
987 	bool found = false;
988 
989 	for (i = 0; i < max; i++)  {
990 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
991 			continue;
992 		found = true;
993 		break;
994 	}
995 
996 	if (!found)
997 		mcfg->m_state = SKL_MODULE_INIT_DONE;
998 	return;
999 }
1000 
1001 /*
1002  * A module needs to be instanataited in DSP. A mdoule is present in a
1003  * collection of module referred as a PIPE.
1004  * We first calculate the module format, based on module type and then
1005  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
1006  */
1007 int skl_init_module(struct skl_sst *ctx,
1008 			struct skl_module_cfg *mconfig)
1009 {
1010 	u16 module_config_size = 0;
1011 	void *param_data = NULL;
1012 	int ret;
1013 	struct skl_ipc_init_instance_msg msg;
1014 
1015 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1016 		 mconfig->id.module_id, mconfig->id.pvt_id);
1017 
1018 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1019 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1020 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1021 		return -EIO;
1022 	}
1023 
1024 	ret = skl_set_module_format(ctx, mconfig,
1025 			&module_config_size, &param_data);
1026 	if (ret < 0) {
1027 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1028 		return ret;
1029 	}
1030 
1031 	msg.module_id = mconfig->id.module_id;
1032 	msg.instance_id = mconfig->id.pvt_id;
1033 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1034 	msg.param_data_size = module_config_size;
1035 	msg.core_id = mconfig->core_id;
1036 	msg.domain = mconfig->domain;
1037 
1038 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1039 	if (ret < 0) {
1040 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1041 		kfree(param_data);
1042 		return ret;
1043 	}
1044 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1045 	kfree(param_data);
1046 	return ret;
1047 }
1048 
1049 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1050 	*src_module, struct skl_module_cfg *dst_module)
1051 {
1052 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1053 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1054 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1055 		 dst_module->id.module_id, dst_module->id.pvt_id);
1056 
1057 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1058 		src_module->m_state, dst_module->m_state);
1059 }
1060 
1061 /*
1062  * On module freeup, we need to unbind the module with modules
1063  * it is already bind.
1064  * Find the pin allocated and unbind then using bind_unbind IPC
1065  */
1066 int skl_unbind_modules(struct skl_sst *ctx,
1067 			struct skl_module_cfg *src_mcfg,
1068 			struct skl_module_cfg *dst_mcfg)
1069 {
1070 	int ret;
1071 	struct skl_ipc_bind_unbind_msg msg;
1072 	struct skl_module_inst_id src_id = src_mcfg->id;
1073 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1074 	int in_max = dst_mcfg->module->max_input_pins;
1075 	int out_max = src_mcfg->module->max_output_pins;
1076 	int src_index, dst_index, src_pin_state, dst_pin_state;
1077 
1078 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1079 
1080 	/* get src queue index */
1081 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1082 	if (src_index < 0)
1083 		return 0;
1084 
1085 	msg.src_queue = src_index;
1086 
1087 	/* get dst queue index */
1088 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1089 	if (dst_index < 0)
1090 		return 0;
1091 
1092 	msg.dst_queue = dst_index;
1093 
1094 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1095 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1096 
1097 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1098 		dst_pin_state != SKL_PIN_BIND_DONE)
1099 		return 0;
1100 
1101 	msg.module_id = src_mcfg->id.module_id;
1102 	msg.instance_id = src_mcfg->id.pvt_id;
1103 	msg.dst_module_id = dst_mcfg->id.module_id;
1104 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1105 	msg.bind = false;
1106 
1107 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1108 	if (!ret) {
1109 		/* free queue only if unbind is success */
1110 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1111 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1112 
1113 		/*
1114 		 * check only if src module bind state, bind is
1115 		 * always from src -> sink
1116 		 */
1117 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1118 	}
1119 
1120 	return ret;
1121 }
1122 
1123 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1124 				struct skl_module_fmt *format)
1125 {
1126 	pin_fmt->number_of_channels = format->channels;
1127 	pin_fmt->s_freq = format->s_freq;
1128 	pin_fmt->bit_depth = format->bit_depth;
1129 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1130 	pin_fmt->ch_cfg = format->ch_cfg;
1131 	pin_fmt->sample_type = format->sample_type;
1132 	pin_fmt->channel_map = format->ch_map;
1133 	pin_fmt->interleaving = format->interleaving_style;
1134 }
1135 
1136 #define CPR_SINK_FMT_PARAM_ID 2
1137 
1138 /*
1139  * Once a module is instantiated it need to be 'bind' with other modules in
1140  * the pipeline. For binding we need to find the module pins which are bind
1141  * together
1142  * This function finds the pins and then sends bund_unbind IPC message to
1143  * DSP using IPC helper
1144  */
1145 int skl_bind_modules(struct skl_sst *ctx,
1146 			struct skl_module_cfg *src_mcfg,
1147 			struct skl_module_cfg *dst_mcfg)
1148 {
1149 	int ret = 0;
1150 	struct skl_ipc_bind_unbind_msg msg;
1151 	int in_max = dst_mcfg->module->max_input_pins;
1152 	int out_max = src_mcfg->module->max_output_pins;
1153 	int src_index, dst_index;
1154 	struct skl_module_fmt *format;
1155 	struct skl_cpr_pin_fmt pin_fmt;
1156 	struct skl_module *module;
1157 	struct skl_module_iface *fmt;
1158 
1159 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1160 
1161 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1162 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1163 		return 0;
1164 
1165 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1166 	if (src_index < 0)
1167 		return -EINVAL;
1168 
1169 	msg.src_queue = src_index;
1170 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1171 	if (dst_index < 0) {
1172 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1173 		return -EINVAL;
1174 	}
1175 
1176 	/*
1177 	 * Copier module requires the separate large_config_set_ipc to
1178 	 * configure the pins other than 0
1179 	 */
1180 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1181 		pin_fmt.sink_id = src_index;
1182 		module = src_mcfg->module;
1183 		fmt = &module->formats[src_mcfg->fmt_idx];
1184 
1185 		/* Input fmt is same as that of src module input cfg */
1186 		format = &fmt->inputs[0].fmt;
1187 		fill_pin_params(&(pin_fmt.src_fmt), format);
1188 
1189 		format = &fmt->outputs[src_index].fmt;
1190 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1191 		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1192 					sizeof(struct skl_cpr_pin_fmt),
1193 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1194 
1195 		if (ret < 0)
1196 			goto out;
1197 	}
1198 
1199 	msg.dst_queue = dst_index;
1200 
1201 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1202 			 msg.src_queue, msg.dst_queue);
1203 
1204 	msg.module_id = src_mcfg->id.module_id;
1205 	msg.instance_id = src_mcfg->id.pvt_id;
1206 	msg.dst_module_id = dst_mcfg->id.module_id;
1207 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1208 	msg.bind = true;
1209 
1210 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1211 
1212 	if (!ret) {
1213 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1214 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1215 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1216 		return ret;
1217 	}
1218 out:
1219 	/* error case , if IPC fails, clear the queue index */
1220 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1221 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1222 
1223 	return ret;
1224 }
1225 
1226 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1227 	enum skl_ipc_pipeline_state state)
1228 {
1229 	dev_dbg(ctx->dev, "%s: pipe_state = %d\n", __func__, state);
1230 
1231 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1232 }
1233 
1234 /*
1235  * A pipeline is a collection of modules. Before a module in instantiated a
1236  * pipeline needs to be created for it.
1237  * This function creates pipeline, by sending create pipeline IPC messages
1238  * to FW
1239  */
1240 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1241 {
1242 	int ret;
1243 
1244 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1245 
1246 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1247 				pipe->pipe_priority, pipe->ppl_id,
1248 				pipe->lp_mode);
1249 	if (ret < 0) {
1250 		dev_err(ctx->dev, "Failed to create pipeline\n");
1251 		return ret;
1252 	}
1253 
1254 	pipe->state = SKL_PIPE_CREATED;
1255 
1256 	return 0;
1257 }
1258 
1259 /*
1260  * A pipeline needs to be deleted on cleanup. If a pipeline is running,
1261  * then pause it first. Before actual deletion, pipeline should enter
1262  * reset state. Finish the procedure by sending delete pipeline IPC.
1263  * DSP will stop the DMA engines and release resources
1264  */
1265 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1266 {
1267 	int ret;
1268 
1269 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1270 
1271 	/* If pipe was not created in FW, do not try to delete it */
1272 	if (pipe->state < SKL_PIPE_CREATED)
1273 		return 0;
1274 
1275 	/* If pipe is started, do stop the pipe in FW. */
1276 	if (pipe->state >= SKL_PIPE_STARTED) {
1277 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1278 		if (ret < 0) {
1279 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1280 			return ret;
1281 		}
1282 
1283 		pipe->state = SKL_PIPE_PAUSED;
1284 	}
1285 
1286 	/* reset pipe state before deletion */
1287 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1288 	if (ret < 0) {
1289 		dev_err(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1290 		return ret;
1291 	}
1292 
1293 	pipe->state = SKL_PIPE_RESET;
1294 
1295 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1296 	if (ret < 0) {
1297 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1298 		return ret;
1299 	}
1300 
1301 	pipe->state = SKL_PIPE_INVALID;
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1308  * For processing data the pipe need to be run by sending IPC set pipe state
1309  * to DSP
1310  */
1311 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1312 {
1313 	int ret;
1314 
1315 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1316 
1317 	/* If pipe was not created in FW, do not try to pause or delete */
1318 	if (pipe->state < SKL_PIPE_CREATED)
1319 		return 0;
1320 
1321 	/* Pipe has to be paused before it is started */
1322 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1323 	if (ret < 0) {
1324 		dev_err(ctx->dev, "Failed to pause pipe\n");
1325 		return ret;
1326 	}
1327 
1328 	pipe->state = SKL_PIPE_PAUSED;
1329 
1330 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1331 	if (ret < 0) {
1332 		dev_err(ctx->dev, "Failed to start pipe\n");
1333 		return ret;
1334 	}
1335 
1336 	pipe->state = SKL_PIPE_STARTED;
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Stop the pipeline by sending set pipe state IPC
1343  * DSP doesnt implement stop so we always send pause message
1344  */
1345 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1346 {
1347 	int ret;
1348 
1349 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1350 
1351 	/* If pipe was not created in FW, do not try to pause or delete */
1352 	if (pipe->state < SKL_PIPE_PAUSED)
1353 		return 0;
1354 
1355 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1356 	if (ret < 0) {
1357 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1358 		return ret;
1359 	}
1360 
1361 	pipe->state = SKL_PIPE_PAUSED;
1362 
1363 	return 0;
1364 }
1365 
1366 /*
1367  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1368  * from the DSP side
1369  */
1370 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1371 {
1372 	int ret;
1373 
1374 	/* If pipe was not created in FW, do not try to pause or delete */
1375 	if (pipe->state < SKL_PIPE_PAUSED)
1376 		return 0;
1377 
1378 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1379 	if (ret < 0) {
1380 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1381 		return ret;
1382 	}
1383 
1384 	pipe->state = SKL_PIPE_RESET;
1385 
1386 	return 0;
1387 }
1388 
1389 /* Algo parameter set helper function */
1390 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1391 				u32 param_id, struct skl_module_cfg *mcfg)
1392 {
1393 	struct skl_ipc_large_config_msg msg;
1394 
1395 	msg.module_id = mcfg->id.module_id;
1396 	msg.instance_id = mcfg->id.pvt_id;
1397 	msg.param_data_size = size;
1398 	msg.large_param_id = param_id;
1399 
1400 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1401 }
1402 
1403 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1404 			  u32 param_id, struct skl_module_cfg *mcfg)
1405 {
1406 	struct skl_ipc_large_config_msg msg;
1407 
1408 	msg.module_id = mcfg->id.module_id;
1409 	msg.instance_id = mcfg->id.pvt_id;
1410 	msg.param_data_size = size;
1411 	msg.large_param_id = param_id;
1412 
1413 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1414 }
1415