xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include <uapi/sound/skl-tplg-interface.h>
25 #include "skl-sst-dsp.h"
26 #include "cnl-sst-dsp.h"
27 #include "skl-sst-ipc.h"
28 #include "skl.h"
29 #include "../common/sst-dsp.h"
30 #include "../common/sst-dsp-priv.h"
31 #include "skl-topology.h"
32 
33 static int skl_alloc_dma_buf(struct device *dev,
34 		struct snd_dma_buffer *dmab, size_t size)
35 {
36 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
37 	struct hdac_bus *bus = ebus_to_hbus(ebus);
38 
39 	if (!bus)
40 		return -ENODEV;
41 
42 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
43 }
44 
45 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 {
47 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
48 	struct hdac_bus *bus = ebus_to_hbus(ebus);
49 
50 	if (!bus)
51 		return -ENODEV;
52 
53 	bus->io_ops->dma_free_pages(bus, dmab);
54 
55 	return 0;
56 }
57 
58 #define SKL_ASTATE_PARAM_ID	4
59 
60 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
61 {
62 	struct skl_ipc_large_config_msg	msg = {0};
63 
64 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
65 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
66 				sizeof(cnt));
67 
68 	skl_ipc_set_large_config(&ctx->ipc, &msg, data);
69 }
70 
71 #define NOTIFICATION_PARAM_ID 3
72 #define NOTIFICATION_MASK 0xf
73 
74 /* disable notfication for underruns/overruns from firmware module */
75 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
76 {
77 	struct notification_mask mask;
78 	struct skl_ipc_large_config_msg	msg = {0};
79 
80 	mask.notify = NOTIFICATION_MASK;
81 	mask.enable = enable;
82 
83 	msg.large_param_id = NOTIFICATION_PARAM_ID;
84 	msg.param_data_size = sizeof(mask);
85 
86 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
87 }
88 
89 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
90 				int stream_tag, int enable)
91 {
92 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
93 	struct hdac_bus *bus = ebus_to_hbus(ebus);
94 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
95 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
96 	struct hdac_ext_stream *estream;
97 
98 	if (!stream)
99 		return -EINVAL;
100 
101 	estream = stream_to_hdac_ext_stream(stream);
102 	/* enable/disable SPIB for this hdac stream */
103 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
104 
105 	/* set the spib value */
106 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
107 
108 	return 0;
109 }
110 
111 static int skl_dsp_prepare(struct device *dev, unsigned int format,
112 			unsigned int size, struct snd_dma_buffer *dmab)
113 {
114 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
115 	struct hdac_bus *bus = ebus_to_hbus(ebus);
116 	struct hdac_ext_stream *estream;
117 	struct hdac_stream *stream;
118 	struct snd_pcm_substream substream;
119 	int ret;
120 
121 	if (!bus)
122 		return -ENODEV;
123 
124 	memset(&substream, 0, sizeof(substream));
125 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
126 
127 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
128 					HDAC_EXT_STREAM_TYPE_HOST);
129 	if (!estream)
130 		return -ENODEV;
131 
132 	stream = hdac_stream(estream);
133 
134 	/* assign decouple host dma channel */
135 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
136 	if (ret < 0)
137 		return ret;
138 
139 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
140 
141 	return stream->stream_tag;
142 }
143 
144 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
145 {
146 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
147 	struct hdac_stream *stream;
148 	struct hdac_bus *bus = ebus_to_hbus(ebus);
149 
150 	if (!bus)
151 		return -ENODEV;
152 
153 	stream = snd_hdac_get_stream(bus,
154 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
155 	if (!stream)
156 		return -EINVAL;
157 
158 	snd_hdac_dsp_trigger(stream, start);
159 
160 	return 0;
161 }
162 
163 static int skl_dsp_cleanup(struct device *dev,
164 		struct snd_dma_buffer *dmab, int stream_tag)
165 {
166 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
167 	struct hdac_stream *stream;
168 	struct hdac_ext_stream *estream;
169 	struct hdac_bus *bus = ebus_to_hbus(ebus);
170 
171 	if (!bus)
172 		return -ENODEV;
173 
174 	stream = snd_hdac_get_stream(bus,
175 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
176 	if (!stream)
177 		return -EINVAL;
178 
179 	estream = stream_to_hdac_ext_stream(stream);
180 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
181 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
182 
183 	snd_hdac_dsp_cleanup(stream, dmab);
184 
185 	return 0;
186 }
187 
188 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
189 {
190 	struct skl_dsp_loader_ops loader_ops;
191 
192 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
193 
194 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
195 	loader_ops.free_dma_buf = skl_free_dma_buf;
196 
197 	return loader_ops;
198 };
199 
200 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
201 {
202 	struct skl_dsp_loader_ops loader_ops;
203 
204 	memset(&loader_ops, 0, sizeof(loader_ops));
205 
206 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
207 	loader_ops.free_dma_buf = skl_free_dma_buf;
208 	loader_ops.prepare = skl_dsp_prepare;
209 	loader_ops.trigger = skl_dsp_trigger;
210 	loader_ops.cleanup = skl_dsp_cleanup;
211 
212 	return loader_ops;
213 };
214 
215 static const struct skl_dsp_ops dsp_ops[] = {
216 	{
217 		.id = 0x9d70,
218 		.num_cores = 2,
219 		.loader_ops = skl_get_loader_ops,
220 		.init = skl_sst_dsp_init,
221 		.init_fw = skl_sst_init_fw,
222 		.cleanup = skl_sst_dsp_cleanup
223 	},
224 	{
225 		.id = 0x9d71,
226 		.num_cores = 2,
227 		.loader_ops = skl_get_loader_ops,
228 		.init = skl_sst_dsp_init,
229 		.init_fw = skl_sst_init_fw,
230 		.cleanup = skl_sst_dsp_cleanup
231 	},
232 	{
233 		.id = 0x5a98,
234 		.num_cores = 2,
235 		.loader_ops = bxt_get_loader_ops,
236 		.init = bxt_sst_dsp_init,
237 		.init_fw = bxt_sst_init_fw,
238 		.cleanup = bxt_sst_dsp_cleanup
239 	},
240 	{
241 		.id = 0x3198,
242 		.num_cores = 2,
243 		.loader_ops = bxt_get_loader_ops,
244 		.init = bxt_sst_dsp_init,
245 		.init_fw = bxt_sst_init_fw,
246 		.cleanup = bxt_sst_dsp_cleanup
247 	},
248 	{
249 		.id = 0x9dc8,
250 		.num_cores = 4,
251 		.loader_ops = bxt_get_loader_ops,
252 		.init = cnl_sst_dsp_init,
253 		.init_fw = cnl_sst_init_fw,
254 		.cleanup = cnl_sst_dsp_cleanup
255 	},
256 };
257 
258 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
259 {
260 	int i;
261 
262 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
263 		if (dsp_ops[i].id == pci_id)
264 			return &dsp_ops[i];
265 	}
266 
267 	return NULL;
268 }
269 
270 int skl_init_dsp(struct skl *skl)
271 {
272 	void __iomem *mmio_base;
273 	struct hdac_ext_bus *ebus = &skl->ebus;
274 	struct hdac_bus *bus = ebus_to_hbus(ebus);
275 	struct skl_dsp_loader_ops loader_ops;
276 	int irq = bus->irq;
277 	const struct skl_dsp_ops *ops;
278 	struct skl_dsp_cores *cores;
279 	int ret;
280 
281 	/* enable ppcap interrupt */
282 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
283 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
284 
285 	/* read the BAR of the ADSP MMIO */
286 	mmio_base = pci_ioremap_bar(skl->pci, 4);
287 	if (mmio_base == NULL) {
288 		dev_err(bus->dev, "ioremap error\n");
289 		return -ENXIO;
290 	}
291 
292 	ops = skl_get_dsp_ops(skl->pci->device);
293 	if (!ops) {
294 		ret = -EIO;
295 		goto unmap_mmio;
296 	}
297 
298 	loader_ops = ops->loader_ops();
299 	ret = ops->init(bus->dev, mmio_base, irq,
300 				skl->fw_name, loader_ops,
301 				&skl->skl_sst);
302 
303 	if (ret < 0)
304 		goto unmap_mmio;
305 
306 	skl->skl_sst->dsp_ops = ops;
307 	cores = &skl->skl_sst->cores;
308 	cores->count = ops->num_cores;
309 
310 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
311 	if (!cores->state) {
312 		ret = -ENOMEM;
313 		goto unmap_mmio;
314 	}
315 
316 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
317 				     GFP_KERNEL);
318 	if (!cores->usage_count) {
319 		ret = -ENOMEM;
320 		goto free_core_state;
321 	}
322 
323 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
324 
325 	return 0;
326 
327 free_core_state:
328 	kfree(cores->state);
329 
330 unmap_mmio:
331 	iounmap(mmio_base);
332 
333 	return ret;
334 }
335 
336 int skl_free_dsp(struct skl *skl)
337 {
338 	struct hdac_ext_bus *ebus = &skl->ebus;
339 	struct hdac_bus *bus = ebus_to_hbus(ebus);
340 	struct skl_sst *ctx = skl->skl_sst;
341 
342 	/* disable  ppcap interrupt */
343 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
344 
345 	ctx->dsp_ops->cleanup(bus->dev, ctx);
346 
347 	kfree(ctx->cores.state);
348 	kfree(ctx->cores.usage_count);
349 
350 	if (ctx->dsp->addr.lpe)
351 		iounmap(ctx->dsp->addr.lpe);
352 
353 	return 0;
354 }
355 
356 /*
357  * In the case of "suspend_active" i.e, the Audio IP being active
358  * during system suspend, immediately excecute any pending D0i3 work
359  * before suspending. This is needed for the IP to work in low power
360  * mode during system suspend. In the case of normal suspend, cancel
361  * any pending D0i3 work.
362  */
363 int skl_suspend_late_dsp(struct skl *skl)
364 {
365 	struct skl_sst *ctx = skl->skl_sst;
366 	struct delayed_work *dwork;
367 
368 	if (!ctx)
369 		return 0;
370 
371 	dwork = &ctx->d0i3.work;
372 
373 	if (dwork->work.func) {
374 		if (skl->supend_active)
375 			flush_delayed_work(dwork);
376 		else
377 			cancel_delayed_work_sync(dwork);
378 	}
379 
380 	return 0;
381 }
382 
383 int skl_suspend_dsp(struct skl *skl)
384 {
385 	struct skl_sst *ctx = skl->skl_sst;
386 	int ret;
387 
388 	/* if ppcap is not supported return 0 */
389 	if (!skl->ebus.bus.ppcap)
390 		return 0;
391 
392 	ret = skl_dsp_sleep(ctx->dsp);
393 	if (ret < 0)
394 		return ret;
395 
396 	/* disable ppcap interrupt */
397 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
398 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
399 
400 	return 0;
401 }
402 
403 int skl_resume_dsp(struct skl *skl)
404 {
405 	struct skl_sst *ctx = skl->skl_sst;
406 	int ret;
407 
408 	/* if ppcap is not supported return 0 */
409 	if (!skl->ebus.bus.ppcap)
410 		return 0;
411 
412 	/* enable ppcap interrupt */
413 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
414 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
415 
416 	/* check if DSP 1st boot is done */
417 	if (skl->skl_sst->is_first_boot == true)
418 		return 0;
419 
420 	/*
421 	 * Disable dynamic clock and power gating during firmware
422 	 * and library download
423 	 */
424 	ctx->enable_miscbdcge(ctx->dev, false);
425 	ctx->clock_power_gating(ctx->dev, false);
426 
427 	ret = skl_dsp_wake(ctx->dsp);
428 	ctx->enable_miscbdcge(ctx->dev, true);
429 	ctx->clock_power_gating(ctx->dev, true);
430 	if (ret < 0)
431 		return ret;
432 
433 	skl_dsp_enable_notification(skl->skl_sst, false);
434 
435 	if (skl->cfg.astate_cfg != NULL) {
436 		skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
437 					skl->cfg.astate_cfg);
438 	}
439 	return ret;
440 }
441 
442 enum skl_bitdepth skl_get_bit_depth(int params)
443 {
444 	switch (params) {
445 	case 8:
446 		return SKL_DEPTH_8BIT;
447 
448 	case 16:
449 		return SKL_DEPTH_16BIT;
450 
451 	case 24:
452 		return SKL_DEPTH_24BIT;
453 
454 	case 32:
455 		return SKL_DEPTH_32BIT;
456 
457 	default:
458 		return SKL_DEPTH_INVALID;
459 
460 	}
461 }
462 
463 /*
464  * Each module in DSP expects a base module configuration, which consists of
465  * PCM format information, which we calculate in driver and resource values
466  * which are read from widget information passed through topology binary
467  * This is send when we create a module with INIT_INSTANCE IPC msg
468  */
469 static void skl_set_base_module_format(struct skl_sst *ctx,
470 			struct skl_module_cfg *mconfig,
471 			struct skl_base_cfg *base_cfg)
472 {
473 	struct skl_module *module = mconfig->module;
474 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
475 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
476 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
477 
478 	base_cfg->audio_fmt.number_of_channels = format->channels;
479 
480 	base_cfg->audio_fmt.s_freq = format->s_freq;
481 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
482 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
483 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
484 
485 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
486 			format->bit_depth, format->valid_bit_depth,
487 			format->ch_cfg);
488 
489 	base_cfg->audio_fmt.channel_map = format->ch_map;
490 
491 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
492 
493 	base_cfg->cps = res->cps;
494 	base_cfg->ibs = res->ibs;
495 	base_cfg->obs = res->obs;
496 	base_cfg->is_pages = res->is_pages;
497 }
498 
499 /*
500  * Copies copier capabilities into copier module and updates copier module
501  * config size.
502  */
503 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
504 				struct skl_cpr_cfg *cpr_mconfig)
505 {
506 	if (mconfig->formats_config.caps_size == 0)
507 		return;
508 
509 	memcpy(cpr_mconfig->gtw_cfg.config_data,
510 			mconfig->formats_config.caps,
511 			mconfig->formats_config.caps_size);
512 
513 	cpr_mconfig->gtw_cfg.config_length =
514 			(mconfig->formats_config.caps_size) / 4;
515 }
516 
517 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
518 /*
519  * Calculate the gatewat settings required for copier module, type of
520  * gateway and index of gateway to use
521  */
522 static u32 skl_get_node_id(struct skl_sst *ctx,
523 			struct skl_module_cfg *mconfig)
524 {
525 	union skl_connector_node_id node_id = {0};
526 	union skl_ssp_dma_node ssp_node  = {0};
527 	struct skl_pipe_params *params = mconfig->pipe->p_params;
528 
529 	switch (mconfig->dev_type) {
530 	case SKL_DEVICE_BT:
531 		node_id.node.dma_type =
532 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
533 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
534 			SKL_DMA_I2S_LINK_INPUT_CLASS;
535 		node_id.node.vindex = params->host_dma_id +
536 					(mconfig->vbus_id << 3);
537 		break;
538 
539 	case SKL_DEVICE_I2S:
540 		node_id.node.dma_type =
541 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
542 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
543 			SKL_DMA_I2S_LINK_INPUT_CLASS;
544 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
545 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
546 		node_id.node.vindex = ssp_node.val;
547 		break;
548 
549 	case SKL_DEVICE_DMIC:
550 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
551 		node_id.node.vindex = mconfig->vbus_id +
552 					 (mconfig->time_slot);
553 		break;
554 
555 	case SKL_DEVICE_HDALINK:
556 		node_id.node.dma_type =
557 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
558 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
559 			SKL_DMA_HDA_LINK_INPUT_CLASS;
560 		node_id.node.vindex = params->link_dma_id;
561 		break;
562 
563 	case SKL_DEVICE_HDAHOST:
564 		node_id.node.dma_type =
565 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
566 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
567 			SKL_DMA_HDA_HOST_INPUT_CLASS;
568 		node_id.node.vindex = params->host_dma_id;
569 		break;
570 
571 	default:
572 		node_id.val = 0xFFFFFFFF;
573 		break;
574 	}
575 
576 	return node_id.val;
577 }
578 
579 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
580 			struct skl_module_cfg *mconfig,
581 			struct skl_cpr_cfg *cpr_mconfig)
582 {
583 	u32 dma_io_buf;
584 	struct skl_module_res *res;
585 	int res_idx = mconfig->res_idx;
586 	struct skl *skl = get_skl_ctx(ctx->dev);
587 
588 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
589 
590 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
591 		cpr_mconfig->cpr_feature_mask = 0;
592 		return;
593 	}
594 
595 	if (skl->nr_modules) {
596 		res = &mconfig->module->resources[mconfig->res_idx];
597 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
598 		goto skip_buf_size_calc;
599 	} else {
600 		res = &mconfig->module->resources[res_idx];
601 	}
602 
603 	switch (mconfig->hw_conn_type) {
604 	case SKL_CONN_SOURCE:
605 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
606 			dma_io_buf =  res->ibs;
607 		else
608 			dma_io_buf =  res->obs;
609 		break;
610 
611 	case SKL_CONN_SINK:
612 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
613 			dma_io_buf =  res->obs;
614 		else
615 			dma_io_buf =  res->ibs;
616 		break;
617 
618 	default:
619 		dev_warn(ctx->dev, "wrong connection type: %d\n",
620 				mconfig->hw_conn_type);
621 		return;
622 	}
623 
624 	cpr_mconfig->gtw_cfg.dma_buffer_size =
625 				mconfig->dma_buffer_size * dma_io_buf;
626 
627 	/* fallback to 2ms default value */
628 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
629 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
630 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
631 		else
632 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
633 	}
634 
635 skip_buf_size_calc:
636 	cpr_mconfig->cpr_feature_mask = 0;
637 	cpr_mconfig->gtw_cfg.config_length  = 0;
638 
639 	skl_copy_copier_caps(mconfig, cpr_mconfig);
640 }
641 
642 #define DMA_CONTROL_ID 5
643 #define DMA_I2S_BLOB_SIZE 21
644 
645 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
646 				u32 caps_size, u32 node_id)
647 {
648 	struct skl_dma_control *dma_ctrl;
649 	struct skl_ipc_large_config_msg msg = {0};
650 	int err = 0;
651 
652 
653 	/*
654 	 * if blob size zero, then return
655 	 */
656 	if (caps_size == 0)
657 		return 0;
658 
659 	msg.large_param_id = DMA_CONTROL_ID;
660 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
661 
662 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
663 	if (dma_ctrl == NULL)
664 		return -ENOMEM;
665 
666 	dma_ctrl->node_id = node_id;
667 
668 	/*
669 	 * NHLT blob may contain additional configs along with i2s blob.
670 	 * firmware expects only the i2s blob size as the config_length.
671 	 * So fix to i2s blob size.
672 	 * size in dwords.
673 	 */
674 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
675 
676 	memcpy(dma_ctrl->config_data, caps, caps_size);
677 
678 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
679 
680 	kfree(dma_ctrl);
681 	return err;
682 }
683 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
684 
685 static void skl_setup_out_format(struct skl_sst *ctx,
686 			struct skl_module_cfg *mconfig,
687 			struct skl_audio_data_format *out_fmt)
688 {
689 	struct skl_module *module = mconfig->module;
690 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
691 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
692 
693 	out_fmt->number_of_channels = (u8)format->channels;
694 	out_fmt->s_freq = format->s_freq;
695 	out_fmt->bit_depth = format->bit_depth;
696 	out_fmt->valid_bit_depth = format->valid_bit_depth;
697 	out_fmt->ch_cfg = format->ch_cfg;
698 
699 	out_fmt->channel_map = format->ch_map;
700 	out_fmt->interleaving = format->interleaving_style;
701 	out_fmt->sample_type = format->sample_type;
702 
703 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
704 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
705 }
706 
707 /*
708  * DSP needs SRC module for frequency conversion, SRC takes base module
709  * configuration and the target frequency as extra parameter passed as src
710  * config
711  */
712 static void skl_set_src_format(struct skl_sst *ctx,
713 			struct skl_module_cfg *mconfig,
714 			struct skl_src_module_cfg *src_mconfig)
715 {
716 	struct skl_module *module = mconfig->module;
717 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
718 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
719 
720 	skl_set_base_module_format(ctx, mconfig,
721 		(struct skl_base_cfg *)src_mconfig);
722 
723 	src_mconfig->src_cfg = fmt->s_freq;
724 }
725 
726 /*
727  * DSP needs updown module to do channel conversion. updown module take base
728  * module configuration and channel configuration
729  * It also take coefficients and now we have defaults applied here
730  */
731 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
732 			struct skl_module_cfg *mconfig,
733 			struct skl_up_down_mixer_cfg *mixer_mconfig)
734 {
735 	struct skl_module *module = mconfig->module;
736 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
737 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
738 
739 	skl_set_base_module_format(ctx,	mconfig,
740 		(struct skl_base_cfg *)mixer_mconfig);
741 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
742 	mixer_mconfig->ch_map = fmt->ch_map;
743 }
744 
745 /*
746  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
747  * dma) or link (hda link, SSP, PDM)
748  * Here we calculate the copier module parameters, like PCM format, output
749  * format, gateway settings
750  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
751  */
752 static void skl_set_copier_format(struct skl_sst *ctx,
753 			struct skl_module_cfg *mconfig,
754 			struct skl_cpr_cfg *cpr_mconfig)
755 {
756 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
757 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
758 
759 	skl_set_base_module_format(ctx, mconfig, base_cfg);
760 
761 	skl_setup_out_format(ctx, mconfig, out_fmt);
762 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
763 }
764 
765 /*
766  * Algo module are DSP pre processing modules. Algo module take base module
767  * configuration and params
768  */
769 
770 static void skl_set_algo_format(struct skl_sst *ctx,
771 			struct skl_module_cfg *mconfig,
772 			struct skl_algo_cfg *algo_mcfg)
773 {
774 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
775 
776 	skl_set_base_module_format(ctx, mconfig, base_cfg);
777 
778 	if (mconfig->formats_config.caps_size == 0)
779 		return;
780 
781 	memcpy(algo_mcfg->params,
782 			mconfig->formats_config.caps,
783 			mconfig->formats_config.caps_size);
784 
785 }
786 
787 /*
788  * Mic select module allows selecting one or many input channels, thus
789  * acting as a demux.
790  *
791  * Mic select module take base module configuration and out-format
792  * configuration
793  */
794 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
795 			struct skl_module_cfg *mconfig,
796 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
797 {
798 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
799 	struct skl_base_cfg *base_cfg =
800 				(struct skl_base_cfg *)base_outfmt_mcfg;
801 
802 	skl_set_base_module_format(ctx, mconfig, base_cfg);
803 	skl_setup_out_format(ctx, mconfig, out_fmt);
804 }
805 
806 static u16 skl_get_module_param_size(struct skl_sst *ctx,
807 			struct skl_module_cfg *mconfig)
808 {
809 	u16 param_size;
810 
811 	switch (mconfig->m_type) {
812 	case SKL_MODULE_TYPE_COPIER:
813 		param_size = sizeof(struct skl_cpr_cfg);
814 		param_size += mconfig->formats_config.caps_size;
815 		return param_size;
816 
817 	case SKL_MODULE_TYPE_SRCINT:
818 		return sizeof(struct skl_src_module_cfg);
819 
820 	case SKL_MODULE_TYPE_UPDWMIX:
821 		return sizeof(struct skl_up_down_mixer_cfg);
822 
823 	case SKL_MODULE_TYPE_ALGO:
824 		param_size = sizeof(struct skl_base_cfg);
825 		param_size += mconfig->formats_config.caps_size;
826 		return param_size;
827 
828 	case SKL_MODULE_TYPE_BASE_OUTFMT:
829 	case SKL_MODULE_TYPE_MIC_SELECT:
830 	case SKL_MODULE_TYPE_KPB:
831 		return sizeof(struct skl_base_outfmt_cfg);
832 
833 	default:
834 		/*
835 		 * return only base cfg when no specific module type is
836 		 * specified
837 		 */
838 		return sizeof(struct skl_base_cfg);
839 	}
840 
841 	return 0;
842 }
843 
844 /*
845  * DSP firmware supports various modules like copier, SRC, updown etc.
846  * These modules required various parameters to be calculated and sent for
847  * the module initialization to DSP. By default a generic module needs only
848  * base module format configuration
849  */
850 
851 static int skl_set_module_format(struct skl_sst *ctx,
852 			struct skl_module_cfg *module_config,
853 			u16 *module_config_size,
854 			void **param_data)
855 {
856 	u16 param_size;
857 
858 	param_size  = skl_get_module_param_size(ctx, module_config);
859 
860 	*param_data = kzalloc(param_size, GFP_KERNEL);
861 	if (NULL == *param_data)
862 		return -ENOMEM;
863 
864 	*module_config_size = param_size;
865 
866 	switch (module_config->m_type) {
867 	case SKL_MODULE_TYPE_COPIER:
868 		skl_set_copier_format(ctx, module_config, *param_data);
869 		break;
870 
871 	case SKL_MODULE_TYPE_SRCINT:
872 		skl_set_src_format(ctx, module_config, *param_data);
873 		break;
874 
875 	case SKL_MODULE_TYPE_UPDWMIX:
876 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
877 		break;
878 
879 	case SKL_MODULE_TYPE_ALGO:
880 		skl_set_algo_format(ctx, module_config, *param_data);
881 		break;
882 
883 	case SKL_MODULE_TYPE_BASE_OUTFMT:
884 	case SKL_MODULE_TYPE_MIC_SELECT:
885 	case SKL_MODULE_TYPE_KPB:
886 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
887 		break;
888 
889 	default:
890 		skl_set_base_module_format(ctx, module_config, *param_data);
891 		break;
892 
893 	}
894 
895 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
896 			module_config->id.module_id, param_size);
897 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
898 			*param_data, param_size, false);
899 	return 0;
900 }
901 
902 static int skl_get_queue_index(struct skl_module_pin *mpin,
903 				struct skl_module_inst_id id, int max)
904 {
905 	int i;
906 
907 	for (i = 0; i < max; i++)  {
908 		if (mpin[i].id.module_id == id.module_id &&
909 			mpin[i].id.instance_id == id.instance_id)
910 			return i;
911 	}
912 
913 	return -EINVAL;
914 }
915 
916 /*
917  * Allocates queue for each module.
918  * if dynamic, the pin_index is allocated 0 to max_pin.
919  * In static, the pin_index is fixed based on module_id and instance id
920  */
921 static int skl_alloc_queue(struct skl_module_pin *mpin,
922 			struct skl_module_cfg *tgt_cfg, int max)
923 {
924 	int i;
925 	struct skl_module_inst_id id = tgt_cfg->id;
926 	/*
927 	 * if pin in dynamic, find first free pin
928 	 * otherwise find match module and instance id pin as topology will
929 	 * ensure a unique pin is assigned to this so no need to
930 	 * allocate/free
931 	 */
932 	for (i = 0; i < max; i++)  {
933 		if (mpin[i].is_dynamic) {
934 			if (!mpin[i].in_use &&
935 				mpin[i].pin_state == SKL_PIN_UNBIND) {
936 
937 				mpin[i].in_use = true;
938 				mpin[i].id.module_id = id.module_id;
939 				mpin[i].id.instance_id = id.instance_id;
940 				mpin[i].id.pvt_id = id.pvt_id;
941 				mpin[i].tgt_mcfg = tgt_cfg;
942 				return i;
943 			}
944 		} else {
945 			if (mpin[i].id.module_id == id.module_id &&
946 				mpin[i].id.instance_id == id.instance_id &&
947 				mpin[i].pin_state == SKL_PIN_UNBIND) {
948 
949 				mpin[i].tgt_mcfg = tgt_cfg;
950 				return i;
951 			}
952 		}
953 	}
954 
955 	return -EINVAL;
956 }
957 
958 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
959 {
960 	if (mpin[q_index].is_dynamic) {
961 		mpin[q_index].in_use = false;
962 		mpin[q_index].id.module_id = 0;
963 		mpin[q_index].id.instance_id = 0;
964 		mpin[q_index].id.pvt_id = 0;
965 	}
966 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
967 	mpin[q_index].tgt_mcfg = NULL;
968 }
969 
970 /* Module state will be set to unint, if all the out pin state is UNBIND */
971 
972 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
973 						struct skl_module_cfg *mcfg)
974 {
975 	int i;
976 	bool found = false;
977 
978 	for (i = 0; i < max; i++)  {
979 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
980 			continue;
981 		found = true;
982 		break;
983 	}
984 
985 	if (!found)
986 		mcfg->m_state = SKL_MODULE_INIT_DONE;
987 	return;
988 }
989 
990 /*
991  * A module needs to be instanataited in DSP. A mdoule is present in a
992  * collection of module referred as a PIPE.
993  * We first calculate the module format, based on module type and then
994  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
995  */
996 int skl_init_module(struct skl_sst *ctx,
997 			struct skl_module_cfg *mconfig)
998 {
999 	u16 module_config_size = 0;
1000 	void *param_data = NULL;
1001 	int ret;
1002 	struct skl_ipc_init_instance_msg msg;
1003 
1004 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1005 		 mconfig->id.module_id, mconfig->id.pvt_id);
1006 
1007 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1008 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1009 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1010 		return -EIO;
1011 	}
1012 
1013 	ret = skl_set_module_format(ctx, mconfig,
1014 			&module_config_size, &param_data);
1015 	if (ret < 0) {
1016 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1017 		return ret;
1018 	}
1019 
1020 	msg.module_id = mconfig->id.module_id;
1021 	msg.instance_id = mconfig->id.pvt_id;
1022 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1023 	msg.param_data_size = module_config_size;
1024 	msg.core_id = mconfig->core_id;
1025 	msg.domain = mconfig->domain;
1026 
1027 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1028 	if (ret < 0) {
1029 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1030 		kfree(param_data);
1031 		return ret;
1032 	}
1033 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1034 	kfree(param_data);
1035 	return ret;
1036 }
1037 
1038 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1039 	*src_module, struct skl_module_cfg *dst_module)
1040 {
1041 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1042 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1043 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1044 		 dst_module->id.module_id, dst_module->id.pvt_id);
1045 
1046 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1047 		src_module->m_state, dst_module->m_state);
1048 }
1049 
1050 /*
1051  * On module freeup, we need to unbind the module with modules
1052  * it is already bind.
1053  * Find the pin allocated and unbind then using bind_unbind IPC
1054  */
1055 int skl_unbind_modules(struct skl_sst *ctx,
1056 			struct skl_module_cfg *src_mcfg,
1057 			struct skl_module_cfg *dst_mcfg)
1058 {
1059 	int ret;
1060 	struct skl_ipc_bind_unbind_msg msg;
1061 	struct skl_module_inst_id src_id = src_mcfg->id;
1062 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1063 	int in_max = dst_mcfg->module->max_input_pins;
1064 	int out_max = src_mcfg->module->max_output_pins;
1065 	int src_index, dst_index, src_pin_state, dst_pin_state;
1066 
1067 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1068 
1069 	/* get src queue index */
1070 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1071 	if (src_index < 0)
1072 		return 0;
1073 
1074 	msg.src_queue = src_index;
1075 
1076 	/* get dst queue index */
1077 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1078 	if (dst_index < 0)
1079 		return 0;
1080 
1081 	msg.dst_queue = dst_index;
1082 
1083 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1084 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1085 
1086 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1087 		dst_pin_state != SKL_PIN_BIND_DONE)
1088 		return 0;
1089 
1090 	msg.module_id = src_mcfg->id.module_id;
1091 	msg.instance_id = src_mcfg->id.pvt_id;
1092 	msg.dst_module_id = dst_mcfg->id.module_id;
1093 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1094 	msg.bind = false;
1095 
1096 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1097 	if (!ret) {
1098 		/* free queue only if unbind is success */
1099 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1100 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1101 
1102 		/*
1103 		 * check only if src module bind state, bind is
1104 		 * always from src -> sink
1105 		 */
1106 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1113 				struct skl_module_fmt *format)
1114 {
1115 	pin_fmt->number_of_channels = format->channels;
1116 	pin_fmt->s_freq = format->s_freq;
1117 	pin_fmt->bit_depth = format->bit_depth;
1118 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1119 	pin_fmt->ch_cfg = format->ch_cfg;
1120 	pin_fmt->sample_type = format->sample_type;
1121 	pin_fmt->channel_map = format->ch_map;
1122 	pin_fmt->interleaving = format->interleaving_style;
1123 }
1124 
1125 #define CPR_SINK_FMT_PARAM_ID 2
1126 
1127 /*
1128  * Once a module is instantiated it need to be 'bind' with other modules in
1129  * the pipeline. For binding we need to find the module pins which are bind
1130  * together
1131  * This function finds the pins and then sends bund_unbind IPC message to
1132  * DSP using IPC helper
1133  */
1134 int skl_bind_modules(struct skl_sst *ctx,
1135 			struct skl_module_cfg *src_mcfg,
1136 			struct skl_module_cfg *dst_mcfg)
1137 {
1138 	int ret = 0;
1139 	struct skl_ipc_bind_unbind_msg msg;
1140 	int in_max = dst_mcfg->module->max_input_pins;
1141 	int out_max = src_mcfg->module->max_output_pins;
1142 	int src_index, dst_index;
1143 	struct skl_module_fmt *format;
1144 	struct skl_cpr_pin_fmt pin_fmt;
1145 	struct skl_module *module;
1146 	struct skl_module_iface *fmt;
1147 
1148 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1149 
1150 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1151 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1152 		return 0;
1153 
1154 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1155 	if (src_index < 0)
1156 		return -EINVAL;
1157 
1158 	msg.src_queue = src_index;
1159 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1160 	if (dst_index < 0) {
1161 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1162 		return -EINVAL;
1163 	}
1164 
1165 	/*
1166 	 * Copier module requires the separate large_config_set_ipc to
1167 	 * configure the pins other than 0
1168 	 */
1169 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1170 		pin_fmt.sink_id = src_index;
1171 		module = src_mcfg->module;
1172 		fmt = &module->formats[src_mcfg->fmt_idx];
1173 
1174 		/* Input fmt is same as that of src module input cfg */
1175 		format = &fmt->inputs[0].fmt;
1176 		fill_pin_params(&(pin_fmt.src_fmt), format);
1177 
1178 		format = &fmt->outputs[src_index].fmt;
1179 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1180 		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1181 					sizeof(struct skl_cpr_pin_fmt),
1182 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1183 
1184 		if (ret < 0)
1185 			goto out;
1186 	}
1187 
1188 	msg.dst_queue = dst_index;
1189 
1190 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1191 			 msg.src_queue, msg.dst_queue);
1192 
1193 	msg.module_id = src_mcfg->id.module_id;
1194 	msg.instance_id = src_mcfg->id.pvt_id;
1195 	msg.dst_module_id = dst_mcfg->id.module_id;
1196 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1197 	msg.bind = true;
1198 
1199 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1200 
1201 	if (!ret) {
1202 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1203 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1204 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1205 		return ret;
1206 	}
1207 out:
1208 	/* error case , if IPC fails, clear the queue index */
1209 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1210 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1211 
1212 	return ret;
1213 }
1214 
1215 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1216 	enum skl_ipc_pipeline_state state)
1217 {
1218 	dev_dbg(ctx->dev, "%s: pipe_state = %d\n", __func__, state);
1219 
1220 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1221 }
1222 
1223 /*
1224  * A pipeline is a collection of modules. Before a module in instantiated a
1225  * pipeline needs to be created for it.
1226  * This function creates pipeline, by sending create pipeline IPC messages
1227  * to FW
1228  */
1229 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1230 {
1231 	int ret;
1232 
1233 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1234 
1235 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1236 				pipe->pipe_priority, pipe->ppl_id,
1237 				pipe->lp_mode);
1238 	if (ret < 0) {
1239 		dev_err(ctx->dev, "Failed to create pipeline\n");
1240 		return ret;
1241 	}
1242 
1243 	pipe->state = SKL_PIPE_CREATED;
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1250  * pause the pipeline first and then delete it
1251  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1252  * DMA engines and releases resources
1253  */
1254 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1255 {
1256 	int ret;
1257 
1258 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1259 
1260 	/* If pipe is started, do stop the pipe in FW. */
1261 	if (pipe->state >= SKL_PIPE_STARTED) {
1262 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1263 		if (ret < 0) {
1264 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1265 			return ret;
1266 		}
1267 
1268 		pipe->state = SKL_PIPE_PAUSED;
1269 	}
1270 
1271 	/* If pipe was not created in FW, do not try to delete it */
1272 	if (pipe->state < SKL_PIPE_CREATED)
1273 		return 0;
1274 
1275 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1276 	if (ret < 0) {
1277 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1278 		return ret;
1279 	}
1280 
1281 	pipe->state = SKL_PIPE_INVALID;
1282 
1283 	return ret;
1284 }
1285 
1286 /*
1287  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1288  * For processing data the pipe need to be run by sending IPC set pipe state
1289  * to DSP
1290  */
1291 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1292 {
1293 	int ret;
1294 
1295 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1296 
1297 	/* If pipe was not created in FW, do not try to pause or delete */
1298 	if (pipe->state < SKL_PIPE_CREATED)
1299 		return 0;
1300 
1301 	/* Pipe has to be paused before it is started */
1302 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1303 	if (ret < 0) {
1304 		dev_err(ctx->dev, "Failed to pause pipe\n");
1305 		return ret;
1306 	}
1307 
1308 	pipe->state = SKL_PIPE_PAUSED;
1309 
1310 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1311 	if (ret < 0) {
1312 		dev_err(ctx->dev, "Failed to start pipe\n");
1313 		return ret;
1314 	}
1315 
1316 	pipe->state = SKL_PIPE_STARTED;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Stop the pipeline by sending set pipe state IPC
1323  * DSP doesnt implement stop so we always send pause message
1324  */
1325 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1326 {
1327 	int ret;
1328 
1329 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1330 
1331 	/* If pipe was not created in FW, do not try to pause or delete */
1332 	if (pipe->state < SKL_PIPE_PAUSED)
1333 		return 0;
1334 
1335 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1336 	if (ret < 0) {
1337 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1338 		return ret;
1339 	}
1340 
1341 	pipe->state = SKL_PIPE_PAUSED;
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1348  * from the DSP side
1349  */
1350 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1351 {
1352 	int ret;
1353 
1354 	/* If pipe was not created in FW, do not try to pause or delete */
1355 	if (pipe->state < SKL_PIPE_PAUSED)
1356 		return 0;
1357 
1358 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1359 	if (ret < 0) {
1360 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1361 		return ret;
1362 	}
1363 
1364 	pipe->state = SKL_PIPE_RESET;
1365 
1366 	return 0;
1367 }
1368 
1369 /* Algo parameter set helper function */
1370 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1371 				u32 param_id, struct skl_module_cfg *mcfg)
1372 {
1373 	struct skl_ipc_large_config_msg msg;
1374 
1375 	msg.module_id = mcfg->id.module_id;
1376 	msg.instance_id = mcfg->id.pvt_id;
1377 	msg.param_data_size = size;
1378 	msg.large_param_id = param_id;
1379 
1380 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1381 }
1382 
1383 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1384 			  u32 param_id, struct skl_module_cfg *mcfg)
1385 {
1386 	struct skl_ipc_large_config_msg msg;
1387 
1388 	msg.module_id = mcfg->id.module_id;
1389 	msg.instance_id = mcfg->id.pvt_id;
1390 	msg.param_data_size = size;
1391 	msg.large_param_id = param_id;
1392 
1393 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1394 }
1395