1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 int skl_init_dsp(struct skl *skl)
76 {
77 	void __iomem *mmio_base;
78 	struct hdac_ext_bus *ebus = &skl->ebus;
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	int irq = bus->irq;
81 	struct skl_dsp_loader_ops loader_ops;
82 	int ret;
83 
84 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
85 	loader_ops.free_dma_buf = skl_free_dma_buf;
86 
87 	/* enable ppcap interrupt */
88 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
89 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
90 
91 	/* read the BAR of the ADSP MMIO */
92 	mmio_base = pci_ioremap_bar(skl->pci, 4);
93 	if (mmio_base == NULL) {
94 		dev_err(bus->dev, "ioremap error\n");
95 		return -ENXIO;
96 	}
97 
98 	ret = skl_sst_dsp_init(bus->dev, mmio_base, irq,
99 			loader_ops, &skl->skl_sst);
100 	if (ret < 0)
101 		return ret;
102 
103 	skl_dsp_enable_notification(skl->skl_sst, false);
104 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
105 
106 	return ret;
107 }
108 
109 void skl_free_dsp(struct skl *skl)
110 {
111 	struct hdac_ext_bus *ebus = &skl->ebus;
112 	struct hdac_bus *bus = ebus_to_hbus(ebus);
113 	struct skl_sst *ctx =  skl->skl_sst;
114 
115 	/* disable  ppcap interrupt */
116 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
117 
118 	skl_sst_dsp_cleanup(bus->dev, ctx);
119 	if (ctx->dsp->addr.lpe)
120 		iounmap(ctx->dsp->addr.lpe);
121 }
122 
123 int skl_suspend_dsp(struct skl *skl)
124 {
125 	struct skl_sst *ctx = skl->skl_sst;
126 	int ret;
127 
128 	/* if ppcap is not supported return 0 */
129 	if (!skl->ebus.ppcap)
130 		return 0;
131 
132 	ret = skl_dsp_sleep(ctx->dsp);
133 	if (ret < 0)
134 		return ret;
135 
136 	/* disable ppcap interrupt */
137 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
138 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
139 
140 	return 0;
141 }
142 
143 int skl_resume_dsp(struct skl *skl)
144 {
145 	struct skl_sst *ctx = skl->skl_sst;
146 	int ret;
147 
148 	/* if ppcap is not supported return 0 */
149 	if (!skl->ebus.ppcap)
150 		return 0;
151 
152 	/* enable ppcap interrupt */
153 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
154 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
155 
156 	ret = skl_dsp_wake(ctx->dsp);
157 	if (ret < 0)
158 		return ret;
159 
160 	skl_dsp_enable_notification(skl->skl_sst, false);
161 	return ret;
162 }
163 
164 enum skl_bitdepth skl_get_bit_depth(int params)
165 {
166 	switch (params) {
167 	case 8:
168 		return SKL_DEPTH_8BIT;
169 
170 	case 16:
171 		return SKL_DEPTH_16BIT;
172 
173 	case 24:
174 		return SKL_DEPTH_24BIT;
175 
176 	case 32:
177 		return SKL_DEPTH_32BIT;
178 
179 	default:
180 		return SKL_DEPTH_INVALID;
181 
182 	}
183 }
184 
185 static u32 skl_create_channel_map(enum skl_ch_cfg ch_cfg)
186 {
187 	u32 config;
188 
189 	switch (ch_cfg) {
190 	case SKL_CH_CFG_MONO:
191 		config =  (0xFFFFFFF0 | SKL_CHANNEL_LEFT);
192 		break;
193 
194 	case SKL_CH_CFG_STEREO:
195 		config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
196 			| (SKL_CHANNEL_RIGHT << 4));
197 		break;
198 
199 	case SKL_CH_CFG_2_1:
200 		config = (0xFFFFF000 | SKL_CHANNEL_LEFT
201 			| (SKL_CHANNEL_RIGHT << 4)
202 			| (SKL_CHANNEL_LFE << 8));
203 		break;
204 
205 	case SKL_CH_CFG_3_0:
206 		config =  (0xFFFFF000 | SKL_CHANNEL_LEFT
207 			| (SKL_CHANNEL_CENTER << 4)
208 			| (SKL_CHANNEL_RIGHT << 8));
209 		break;
210 
211 	case SKL_CH_CFG_3_1:
212 		config = (0xFFFF0000 | SKL_CHANNEL_LEFT
213 			| (SKL_CHANNEL_CENTER << 4)
214 			| (SKL_CHANNEL_RIGHT << 8)
215 			| (SKL_CHANNEL_LFE << 12));
216 		break;
217 
218 	case SKL_CH_CFG_QUATRO:
219 		config = (0xFFFF0000 | SKL_CHANNEL_LEFT
220 			| (SKL_CHANNEL_RIGHT << 4)
221 			| (SKL_CHANNEL_LEFT_SURROUND << 8)
222 			| (SKL_CHANNEL_RIGHT_SURROUND << 12));
223 		break;
224 
225 	case SKL_CH_CFG_4_0:
226 		config = (0xFFFF0000 | SKL_CHANNEL_LEFT
227 			| (SKL_CHANNEL_CENTER << 4)
228 			| (SKL_CHANNEL_RIGHT << 8)
229 			| (SKL_CHANNEL_CENTER_SURROUND << 12));
230 		break;
231 
232 	case SKL_CH_CFG_5_0:
233 		config = (0xFFF00000 | SKL_CHANNEL_LEFT
234 			| (SKL_CHANNEL_CENTER << 4)
235 			| (SKL_CHANNEL_RIGHT << 8)
236 			| (SKL_CHANNEL_LEFT_SURROUND << 12)
237 			| (SKL_CHANNEL_RIGHT_SURROUND << 16));
238 		break;
239 
240 	case SKL_CH_CFG_5_1:
241 		config = (0xFF000000 | SKL_CHANNEL_CENTER
242 			| (SKL_CHANNEL_LEFT << 4)
243 			| (SKL_CHANNEL_RIGHT << 8)
244 			| (SKL_CHANNEL_LEFT_SURROUND << 12)
245 			| (SKL_CHANNEL_RIGHT_SURROUND << 16)
246 			| (SKL_CHANNEL_LFE << 20));
247 		break;
248 
249 	case SKL_CH_CFG_DUAL_MONO:
250 		config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
251 			| (SKL_CHANNEL_LEFT << 4));
252 		break;
253 
254 	case SKL_CH_CFG_I2S_DUAL_STEREO_0:
255 		config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
256 			| (SKL_CHANNEL_RIGHT << 4));
257 		break;
258 
259 	case SKL_CH_CFG_I2S_DUAL_STEREO_1:
260 		config = (0xFFFF00FF | (SKL_CHANNEL_LEFT << 8)
261 			| (SKL_CHANNEL_RIGHT << 12));
262 		break;
263 
264 	default:
265 		config =  0xFFFFFFFF;
266 		break;
267 
268 	}
269 
270 	return config;
271 }
272 
273 /*
274  * Each module in DSP expects a base module configuration, which consists of
275  * PCM format information, which we calculate in driver and resource values
276  * which are read from widget information passed through topology binary
277  * This is send when we create a module with INIT_INSTANCE IPC msg
278  */
279 static void skl_set_base_module_format(struct skl_sst *ctx,
280 			struct skl_module_cfg *mconfig,
281 			struct skl_base_cfg *base_cfg)
282 {
283 	struct skl_module_fmt *format = &mconfig->in_fmt;
284 
285 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
286 
287 	base_cfg->audio_fmt.s_freq = format->s_freq;
288 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
289 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
290 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
291 
292 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
293 			format->bit_depth, format->valid_bit_depth,
294 			format->ch_cfg);
295 
296 	base_cfg->audio_fmt.channel_map = skl_create_channel_map(
297 					base_cfg->audio_fmt.ch_cfg);
298 
299 	base_cfg->audio_fmt.interleaving = SKL_INTERLEAVING_PER_CHANNEL;
300 
301 	base_cfg->cps = mconfig->mcps;
302 	base_cfg->ibs = mconfig->ibs;
303 	base_cfg->obs = mconfig->obs;
304 }
305 
306 /*
307  * Copies copier capabilities into copier module and updates copier module
308  * config size.
309  */
310 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
311 				struct skl_cpr_cfg *cpr_mconfig)
312 {
313 	if (mconfig->formats_config.caps_size == 0)
314 		return;
315 
316 	memcpy(cpr_mconfig->gtw_cfg.config_data,
317 			mconfig->formats_config.caps,
318 			mconfig->formats_config.caps_size);
319 
320 	cpr_mconfig->gtw_cfg.config_length =
321 			(mconfig->formats_config.caps_size) / 4;
322 }
323 
324 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
325 /*
326  * Calculate the gatewat settings required for copier module, type of
327  * gateway and index of gateway to use
328  */
329 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
330 			struct skl_module_cfg *mconfig,
331 			struct skl_cpr_cfg *cpr_mconfig)
332 {
333 	union skl_connector_node_id node_id = {0};
334 	union skl_ssp_dma_node ssp_node  = {0};
335 	struct skl_pipe_params *params = mconfig->pipe->p_params;
336 
337 	switch (mconfig->dev_type) {
338 	case SKL_DEVICE_BT:
339 		node_id.node.dma_type =
340 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
341 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
342 			SKL_DMA_I2S_LINK_INPUT_CLASS;
343 		node_id.node.vindex = params->host_dma_id +
344 					(mconfig->vbus_id << 3);
345 		break;
346 
347 	case SKL_DEVICE_I2S:
348 		node_id.node.dma_type =
349 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
350 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
351 			SKL_DMA_I2S_LINK_INPUT_CLASS;
352 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
353 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
354 		node_id.node.vindex = ssp_node.val;
355 		break;
356 
357 	case SKL_DEVICE_DMIC:
358 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
359 		node_id.node.vindex = mconfig->vbus_id +
360 					 (mconfig->time_slot);
361 		break;
362 
363 	case SKL_DEVICE_HDALINK:
364 		node_id.node.dma_type =
365 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
366 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
367 			SKL_DMA_HDA_LINK_INPUT_CLASS;
368 		node_id.node.vindex = params->link_dma_id;
369 		break;
370 
371 	case SKL_DEVICE_HDAHOST:
372 		node_id.node.dma_type =
373 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
374 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
375 			SKL_DMA_HDA_HOST_INPUT_CLASS;
376 		node_id.node.vindex = params->host_dma_id;
377 		break;
378 
379 	default:
380 		cpr_mconfig->gtw_cfg.node_id = SKL_NON_GATEWAY_CPR_NODE_ID;
381 		cpr_mconfig->cpr_feature_mask = 0;
382 		return;
383 	}
384 
385 	cpr_mconfig->gtw_cfg.node_id = node_id.val;
386 
387 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
388 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
389 	else
390 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
391 
392 	cpr_mconfig->cpr_feature_mask = 0;
393 	cpr_mconfig->gtw_cfg.config_length  = 0;
394 
395 	skl_copy_copier_caps(mconfig, cpr_mconfig);
396 }
397 
398 static void skl_setup_out_format(struct skl_sst *ctx,
399 			struct skl_module_cfg *mconfig,
400 			struct skl_audio_data_format *out_fmt)
401 {
402 	struct skl_module_fmt *format = &mconfig->out_fmt;
403 
404 	out_fmt->number_of_channels = (u8)format->channels;
405 	out_fmt->s_freq = format->s_freq;
406 	out_fmt->bit_depth = format->bit_depth;
407 	out_fmt->valid_bit_depth = format->valid_bit_depth;
408 	out_fmt->ch_cfg = format->ch_cfg;
409 
410 	out_fmt->channel_map = skl_create_channel_map(out_fmt->ch_cfg);
411 	out_fmt->interleaving = SKL_INTERLEAVING_PER_CHANNEL;
412 
413 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
414 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
415 }
416 
417 /*
418  * DSP needs SRC module for frequency conversion, SRC takes base module
419  * configuration and the target frequency as extra parameter passed as src
420  * config
421  */
422 static void skl_set_src_format(struct skl_sst *ctx,
423 			struct skl_module_cfg *mconfig,
424 			struct skl_src_module_cfg *src_mconfig)
425 {
426 	struct skl_module_fmt *fmt = &mconfig->out_fmt;
427 
428 	skl_set_base_module_format(ctx, mconfig,
429 		(struct skl_base_cfg *)src_mconfig);
430 
431 	src_mconfig->src_cfg = fmt->s_freq;
432 }
433 
434 /*
435  * DSP needs updown module to do channel conversion. updown module take base
436  * module configuration and channel configuration
437  * It also take coefficients and now we have defaults applied here
438  */
439 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
440 			struct skl_module_cfg *mconfig,
441 			struct skl_up_down_mixer_cfg *mixer_mconfig)
442 {
443 	struct skl_module_fmt *fmt = &mconfig->out_fmt;
444 	int i = 0;
445 
446 	skl_set_base_module_format(ctx,	mconfig,
447 		(struct skl_base_cfg *)mixer_mconfig);
448 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
449 
450 	/* Select F/W default coefficient */
451 	mixer_mconfig->coeff_sel = 0x0;
452 
453 	/* User coeff, don't care since we are selecting F/W defaults */
454 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
455 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
456 }
457 
458 /*
459  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
460  * dma) or link (hda link, SSP, PDM)
461  * Here we calculate the copier module parameters, like PCM format, output
462  * format, gateway settings
463  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
464  */
465 static void skl_set_copier_format(struct skl_sst *ctx,
466 			struct skl_module_cfg *mconfig,
467 			struct skl_cpr_cfg *cpr_mconfig)
468 {
469 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
470 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
471 
472 	skl_set_base_module_format(ctx, mconfig, base_cfg);
473 
474 	skl_setup_out_format(ctx, mconfig, out_fmt);
475 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
476 }
477 
478 static u16 skl_get_module_param_size(struct skl_sst *ctx,
479 			struct skl_module_cfg *mconfig)
480 {
481 	u16 param_size;
482 
483 	switch (mconfig->m_type) {
484 	case SKL_MODULE_TYPE_COPIER:
485 		param_size = sizeof(struct skl_cpr_cfg);
486 		param_size += mconfig->formats_config.caps_size;
487 		return param_size;
488 
489 	case SKL_MODULE_TYPE_SRCINT:
490 		return sizeof(struct skl_src_module_cfg);
491 
492 	case SKL_MODULE_TYPE_UPDWMIX:
493 		return sizeof(struct skl_up_down_mixer_cfg);
494 
495 	default:
496 		/*
497 		 * return only base cfg when no specific module type is
498 		 * specified
499 		 */
500 		return sizeof(struct skl_base_cfg);
501 	}
502 
503 	return 0;
504 }
505 
506 /*
507  * DSP firmware supports various modules like copier, SRC, updown etc.
508  * These modules required various parameters to be calculated and sent for
509  * the module initialization to DSP. By default a generic module needs only
510  * base module format configuration
511  */
512 
513 static int skl_set_module_format(struct skl_sst *ctx,
514 			struct skl_module_cfg *module_config,
515 			u16 *module_config_size,
516 			void **param_data)
517 {
518 	u16 param_size;
519 
520 	param_size  = skl_get_module_param_size(ctx, module_config);
521 
522 	*param_data = kzalloc(param_size, GFP_KERNEL);
523 	if (NULL == *param_data)
524 		return -ENOMEM;
525 
526 	*module_config_size = param_size;
527 
528 	switch (module_config->m_type) {
529 	case SKL_MODULE_TYPE_COPIER:
530 		skl_set_copier_format(ctx, module_config, *param_data);
531 		break;
532 
533 	case SKL_MODULE_TYPE_SRCINT:
534 		skl_set_src_format(ctx, module_config, *param_data);
535 		break;
536 
537 	case SKL_MODULE_TYPE_UPDWMIX:
538 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
539 		break;
540 
541 	default:
542 		skl_set_base_module_format(ctx, module_config, *param_data);
543 		break;
544 
545 	}
546 
547 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
548 			module_config->id.module_id, param_size);
549 	print_hex_dump(KERN_DEBUG, "Module params:", DUMP_PREFIX_OFFSET, 8, 4,
550 			*param_data, param_size, false);
551 	return 0;
552 }
553 
554 static int skl_get_queue_index(struct skl_module_pin *mpin,
555 				struct skl_module_inst_id id, int max)
556 {
557 	int i;
558 
559 	for (i = 0; i < max; i++)  {
560 		if (mpin[i].id.module_id == id.module_id &&
561 			mpin[i].id.instance_id == id.instance_id)
562 			return i;
563 	}
564 
565 	return -EINVAL;
566 }
567 
568 /*
569  * Allocates queue for each module.
570  * if dynamic, the pin_index is allocated 0 to max_pin.
571  * In static, the pin_index is fixed based on module_id and instance id
572  */
573 static int skl_alloc_queue(struct skl_module_pin *mpin,
574 			struct skl_module_inst_id id, int max)
575 {
576 	int i;
577 
578 	/*
579 	 * if pin in dynamic, find first free pin
580 	 * otherwise find match module and instance id pin as topology will
581 	 * ensure a unique pin is assigned to this so no need to
582 	 * allocate/free
583 	 */
584 	for (i = 0; i < max; i++)  {
585 		if (mpin[i].is_dynamic) {
586 			if (!mpin[i].in_use) {
587 				mpin[i].in_use = true;
588 				mpin[i].id.module_id = id.module_id;
589 				mpin[i].id.instance_id = id.instance_id;
590 				return i;
591 			}
592 		} else {
593 			if (mpin[i].id.module_id == id.module_id &&
594 				mpin[i].id.instance_id == id.instance_id)
595 				return i;
596 		}
597 	}
598 
599 	return -EINVAL;
600 }
601 
602 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
603 {
604 	if (mpin[q_index].is_dynamic) {
605 		mpin[q_index].in_use = false;
606 		mpin[q_index].id.module_id = 0;
607 		mpin[q_index].id.instance_id = 0;
608 	}
609 }
610 
611 /*
612  * A module needs to be instanataited in DSP. A mdoule is present in a
613  * collection of module referred as a PIPE.
614  * We first calculate the module format, based on module type and then
615  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
616  */
617 int skl_init_module(struct skl_sst *ctx,
618 			struct skl_module_cfg *mconfig, char *param)
619 {
620 	u16 module_config_size = 0;
621 	void *param_data = NULL;
622 	int ret;
623 	struct skl_ipc_init_instance_msg msg;
624 
625 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
626 		 mconfig->id.module_id, mconfig->id.instance_id);
627 
628 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
629 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
630 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
631 		return -EIO;
632 	}
633 
634 	ret = skl_set_module_format(ctx, mconfig,
635 			&module_config_size, &param_data);
636 	if (ret < 0) {
637 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
638 		return ret;
639 	}
640 
641 	msg.module_id = mconfig->id.module_id;
642 	msg.instance_id = mconfig->id.instance_id;
643 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
644 	msg.param_data_size = module_config_size;
645 	msg.core_id = mconfig->core_id;
646 
647 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
648 	if (ret < 0) {
649 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
650 		kfree(param_data);
651 		return ret;
652 	}
653 	mconfig->m_state = SKL_MODULE_INIT_DONE;
654 
655 	return ret;
656 }
657 
658 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
659 	*src_module, struct skl_module_cfg *dst_module)
660 {
661 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
662 		__func__, src_module->id.module_id, src_module->id.instance_id);
663 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
664 		 dst_module->id.module_id, dst_module->id.instance_id);
665 
666 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
667 		src_module->m_state, dst_module->m_state);
668 }
669 
670 /*
671  * On module freeup, we need to unbind the module with modules
672  * it is already bind.
673  * Find the pin allocated and unbind then using bind_unbind IPC
674  */
675 int skl_unbind_modules(struct skl_sst *ctx,
676 			struct skl_module_cfg *src_mcfg,
677 			struct skl_module_cfg *dst_mcfg)
678 {
679 	int ret;
680 	struct skl_ipc_bind_unbind_msg msg;
681 	struct skl_module_inst_id src_id = src_mcfg->id;
682 	struct skl_module_inst_id dst_id = dst_mcfg->id;
683 	int in_max = dst_mcfg->max_in_queue;
684 	int out_max = src_mcfg->max_out_queue;
685 	int src_index, dst_index;
686 
687 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
688 
689 	if (src_mcfg->m_state != SKL_MODULE_BIND_DONE)
690 		return 0;
691 
692 	/*
693 	 * if intra module unbind, check if both modules are BIND,
694 	 * then send unbind
695 	 */
696 	if ((src_mcfg->pipe->ppl_id != dst_mcfg->pipe->ppl_id) &&
697 				dst_mcfg->m_state != SKL_MODULE_BIND_DONE)
698 		return 0;
699 	else if (src_mcfg->m_state < SKL_MODULE_INIT_DONE &&
700 				 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
701 		return 0;
702 
703 	/* get src queue index */
704 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
705 	if (src_index < 0)
706 		return -EINVAL;
707 
708 	msg.src_queue = src_mcfg->m_out_pin[src_index].pin_index;
709 
710 	/* get dst queue index */
711 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
712 	if (dst_index < 0)
713 		return -EINVAL;
714 
715 	msg.dst_queue = dst_mcfg->m_in_pin[dst_index].pin_index;
716 
717 	msg.module_id = src_mcfg->id.module_id;
718 	msg.instance_id = src_mcfg->id.instance_id;
719 	msg.dst_module_id = dst_mcfg->id.module_id;
720 	msg.dst_instance_id = dst_mcfg->id.instance_id;
721 	msg.bind = false;
722 
723 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
724 	if (!ret) {
725 		src_mcfg->m_state = SKL_MODULE_UNINIT;
726 		/* free queue only if unbind is success */
727 		skl_free_queue(src_mcfg->m_out_pin, src_index);
728 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
729 	}
730 
731 	return ret;
732 }
733 
734 /*
735  * Once a module is instantiated it need to be 'bind' with other modules in
736  * the pipeline. For binding we need to find the module pins which are bind
737  * together
738  * This function finds the pins and then sends bund_unbind IPC message to
739  * DSP using IPC helper
740  */
741 int skl_bind_modules(struct skl_sst *ctx,
742 			struct skl_module_cfg *src_mcfg,
743 			struct skl_module_cfg *dst_mcfg)
744 {
745 	int ret;
746 	struct skl_ipc_bind_unbind_msg msg;
747 	struct skl_module_inst_id src_id = src_mcfg->id;
748 	struct skl_module_inst_id dst_id = dst_mcfg->id;
749 	int in_max = dst_mcfg->max_in_queue;
750 	int out_max = src_mcfg->max_out_queue;
751 	int src_index, dst_index;
752 
753 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
754 
755 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE &&
756 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
757 		return 0;
758 
759 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_id, out_max);
760 	if (src_index < 0)
761 		return -EINVAL;
762 
763 	msg.src_queue = src_mcfg->m_out_pin[src_index].pin_index;
764 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_id, in_max);
765 	if (dst_index < 0) {
766 		skl_free_queue(src_mcfg->m_out_pin, src_index);
767 		return -EINVAL;
768 	}
769 
770 	msg.dst_queue = dst_mcfg->m_in_pin[dst_index].pin_index;
771 
772 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
773 			 msg.src_queue, msg.dst_queue);
774 
775 	msg.module_id = src_mcfg->id.module_id;
776 	msg.instance_id = src_mcfg->id.instance_id;
777 	msg.dst_module_id = dst_mcfg->id.module_id;
778 	msg.dst_instance_id = dst_mcfg->id.instance_id;
779 	msg.bind = true;
780 
781 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
782 
783 	if (!ret) {
784 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
785 	} else {
786 		/* error case , if IPC fails, clear the queue index */
787 		skl_free_queue(src_mcfg->m_out_pin, src_index);
788 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
789 	}
790 
791 	return ret;
792 }
793 
794 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
795 	enum skl_ipc_pipeline_state state)
796 {
797 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
798 
799 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
800 }
801 
802 /*
803  * A pipeline is a collection of modules. Before a module in instantiated a
804  * pipeline needs to be created for it.
805  * This function creates pipeline, by sending create pipeline IPC messages
806  * to FW
807  */
808 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
809 {
810 	int ret;
811 
812 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
813 
814 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
815 				pipe->pipe_priority, pipe->ppl_id);
816 	if (ret < 0) {
817 		dev_err(ctx->dev, "Failed to create pipeline\n");
818 		return ret;
819 	}
820 
821 	pipe->state = SKL_PIPE_CREATED;
822 
823 	return 0;
824 }
825 
826 /*
827  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
828  * pause the pipeline first and then delete it
829  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
830  * DMA engines and releases resources
831  */
832 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
833 {
834 	int ret;
835 
836 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
837 
838 	/* If pipe is not started, do not try to stop the pipe in FW. */
839 	if (pipe->state > SKL_PIPE_STARTED) {
840 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
841 		if (ret < 0) {
842 			dev_err(ctx->dev, "Failed to stop pipeline\n");
843 			return ret;
844 		}
845 
846 		pipe->state = SKL_PIPE_PAUSED;
847 	} else {
848 		/* If pipe was not created in FW, do not try to delete it */
849 		if (pipe->state < SKL_PIPE_CREATED)
850 			return 0;
851 
852 		ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
853 		if (ret < 0)
854 			dev_err(ctx->dev, "Failed to delete pipeline\n");
855 	}
856 
857 	return ret;
858 }
859 
860 /*
861  * A pipeline is also a scheduling entity in DSP which can be run, stopped
862  * For processing data the pipe need to be run by sending IPC set pipe state
863  * to DSP
864  */
865 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
866 {
867 	int ret;
868 
869 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
870 
871 	/* If pipe was not created in FW, do not try to pause or delete */
872 	if (pipe->state < SKL_PIPE_CREATED)
873 		return 0;
874 
875 	/* Pipe has to be paused before it is started */
876 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
877 	if (ret < 0) {
878 		dev_err(ctx->dev, "Failed to pause pipe\n");
879 		return ret;
880 	}
881 
882 	pipe->state = SKL_PIPE_PAUSED;
883 
884 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
885 	if (ret < 0) {
886 		dev_err(ctx->dev, "Failed to start pipe\n");
887 		return ret;
888 	}
889 
890 	pipe->state = SKL_PIPE_STARTED;
891 
892 	return 0;
893 }
894 
895 /*
896  * Stop the pipeline by sending set pipe state IPC
897  * DSP doesnt implement stop so we always send pause message
898  */
899 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
900 {
901 	int ret;
902 
903 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
904 
905 	/* If pipe was not created in FW, do not try to pause or delete */
906 	if (pipe->state < SKL_PIPE_PAUSED)
907 		return 0;
908 
909 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
910 	if (ret < 0) {
911 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
912 		return ret;
913 	}
914 
915 	pipe->state = SKL_PIPE_CREATED;
916 
917 	return 0;
918 }
919