1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module 4 * configurations 5 * 6 * Copyright (C) 2015 Intel Corp 7 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com> 8 * Jeeja KP <jeeja.kp@intel.com> 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/pci.h> 14 #include <sound/core.h> 15 #include <sound/pcm.h> 16 #include <uapi/sound/skl-tplg-interface.h> 17 #include "skl-sst-dsp.h" 18 #include "cnl-sst-dsp.h" 19 #include "skl-sst-ipc.h" 20 #include "skl.h" 21 #include "../common/sst-dsp.h" 22 #include "../common/sst-dsp-priv.h" 23 #include "skl-topology.h" 24 25 static int skl_alloc_dma_buf(struct device *dev, 26 struct snd_dma_buffer *dmab, size_t size) 27 { 28 return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab); 29 } 30 31 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) 32 { 33 snd_dma_free_pages(dmab); 34 return 0; 35 } 36 37 #define SKL_ASTATE_PARAM_ID 4 38 39 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data) 40 { 41 struct skl_ipc_large_config_msg msg = {0}; 42 43 msg.large_param_id = SKL_ASTATE_PARAM_ID; 44 msg.param_data_size = (cnt * sizeof(struct skl_astate_param) + 45 sizeof(cnt)); 46 47 skl_ipc_set_large_config(&skl->ipc, &msg, data); 48 } 49 50 static int skl_dsp_setup_spib(struct device *dev, unsigned int size, 51 int stream_tag, int enable) 52 { 53 struct hdac_bus *bus = dev_get_drvdata(dev); 54 struct hdac_stream *stream = snd_hdac_get_stream(bus, 55 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 56 struct hdac_ext_stream *estream; 57 58 if (!stream) 59 return -EINVAL; 60 61 estream = stream_to_hdac_ext_stream(stream); 62 /* enable/disable SPIB for this hdac stream */ 63 snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index); 64 65 /* set the spib value */ 66 snd_hdac_ext_stream_set_spib(bus, estream, size); 67 68 return 0; 69 } 70 71 static int skl_dsp_prepare(struct device *dev, unsigned int format, 72 unsigned int size, struct snd_dma_buffer *dmab) 73 { 74 struct hdac_bus *bus = dev_get_drvdata(dev); 75 struct hdac_ext_stream *estream; 76 struct hdac_stream *stream; 77 struct snd_pcm_substream substream; 78 int ret; 79 80 if (!bus) 81 return -ENODEV; 82 83 memset(&substream, 0, sizeof(substream)); 84 substream.stream = SNDRV_PCM_STREAM_PLAYBACK; 85 86 estream = snd_hdac_ext_stream_assign(bus, &substream, 87 HDAC_EXT_STREAM_TYPE_HOST); 88 if (!estream) 89 return -ENODEV; 90 91 stream = hdac_stream(estream); 92 93 /* assign decouple host dma channel */ 94 ret = snd_hdac_dsp_prepare(stream, format, size, dmab); 95 if (ret < 0) 96 return ret; 97 98 skl_dsp_setup_spib(dev, size, stream->stream_tag, true); 99 100 return stream->stream_tag; 101 } 102 103 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) 104 { 105 struct hdac_bus *bus = dev_get_drvdata(dev); 106 struct hdac_stream *stream; 107 108 if (!bus) 109 return -ENODEV; 110 111 stream = snd_hdac_get_stream(bus, 112 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 113 if (!stream) 114 return -EINVAL; 115 116 snd_hdac_dsp_trigger(stream, start); 117 118 return 0; 119 } 120 121 static int skl_dsp_cleanup(struct device *dev, 122 struct snd_dma_buffer *dmab, int stream_tag) 123 { 124 struct hdac_bus *bus = dev_get_drvdata(dev); 125 struct hdac_stream *stream; 126 struct hdac_ext_stream *estream; 127 128 if (!bus) 129 return -ENODEV; 130 131 stream = snd_hdac_get_stream(bus, 132 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 133 if (!stream) 134 return -EINVAL; 135 136 estream = stream_to_hdac_ext_stream(stream); 137 skl_dsp_setup_spib(dev, 0, stream_tag, false); 138 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); 139 140 snd_hdac_dsp_cleanup(stream, dmab); 141 142 return 0; 143 } 144 145 static struct skl_dsp_loader_ops skl_get_loader_ops(void) 146 { 147 struct skl_dsp_loader_ops loader_ops; 148 149 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); 150 151 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 152 loader_ops.free_dma_buf = skl_free_dma_buf; 153 154 return loader_ops; 155 }; 156 157 static struct skl_dsp_loader_ops bxt_get_loader_ops(void) 158 { 159 struct skl_dsp_loader_ops loader_ops; 160 161 memset(&loader_ops, 0, sizeof(loader_ops)); 162 163 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 164 loader_ops.free_dma_buf = skl_free_dma_buf; 165 loader_ops.prepare = skl_dsp_prepare; 166 loader_ops.trigger = skl_dsp_trigger; 167 loader_ops.cleanup = skl_dsp_cleanup; 168 169 return loader_ops; 170 }; 171 172 static const struct skl_dsp_ops dsp_ops[] = { 173 { 174 .id = 0x9d70, 175 .num_cores = 2, 176 .loader_ops = skl_get_loader_ops, 177 .init = skl_sst_dsp_init, 178 .init_fw = skl_sst_init_fw, 179 .cleanup = skl_sst_dsp_cleanup 180 }, 181 { 182 .id = 0x9d71, 183 .num_cores = 2, 184 .loader_ops = skl_get_loader_ops, 185 .init = skl_sst_dsp_init, 186 .init_fw = skl_sst_init_fw, 187 .cleanup = skl_sst_dsp_cleanup 188 }, 189 { 190 .id = 0x5a98, 191 .num_cores = 2, 192 .loader_ops = bxt_get_loader_ops, 193 .init = bxt_sst_dsp_init, 194 .init_fw = bxt_sst_init_fw, 195 .cleanup = bxt_sst_dsp_cleanup 196 }, 197 { 198 .id = 0x3198, 199 .num_cores = 2, 200 .loader_ops = bxt_get_loader_ops, 201 .init = bxt_sst_dsp_init, 202 .init_fw = bxt_sst_init_fw, 203 .cleanup = bxt_sst_dsp_cleanup 204 }, 205 { 206 .id = 0x9dc8, 207 .num_cores = 4, 208 .loader_ops = bxt_get_loader_ops, 209 .init = cnl_sst_dsp_init, 210 .init_fw = cnl_sst_init_fw, 211 .cleanup = cnl_sst_dsp_cleanup 212 }, 213 { 214 .id = 0xa348, 215 .num_cores = 4, 216 .loader_ops = bxt_get_loader_ops, 217 .init = cnl_sst_dsp_init, 218 .init_fw = cnl_sst_init_fw, 219 .cleanup = cnl_sst_dsp_cleanup 220 }, 221 { 222 .id = 0x02c8, 223 .num_cores = 4, 224 .loader_ops = bxt_get_loader_ops, 225 .init = cnl_sst_dsp_init, 226 .init_fw = cnl_sst_init_fw, 227 .cleanup = cnl_sst_dsp_cleanup 228 }, 229 { 230 .id = 0x06c8, 231 .num_cores = 4, 232 .loader_ops = bxt_get_loader_ops, 233 .init = cnl_sst_dsp_init, 234 .init_fw = cnl_sst_init_fw, 235 .cleanup = cnl_sst_dsp_cleanup 236 }, 237 }; 238 239 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) 240 { 241 int i; 242 243 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { 244 if (dsp_ops[i].id == pci_id) 245 return &dsp_ops[i]; 246 } 247 248 return NULL; 249 } 250 251 int skl_init_dsp(struct skl_dev *skl) 252 { 253 void __iomem *mmio_base; 254 struct hdac_bus *bus = skl_to_bus(skl); 255 struct skl_dsp_loader_ops loader_ops; 256 int irq = bus->irq; 257 const struct skl_dsp_ops *ops; 258 struct skl_dsp_cores *cores; 259 int ret; 260 261 /* enable ppcap interrupt */ 262 snd_hdac_ext_bus_ppcap_enable(bus, true); 263 snd_hdac_ext_bus_ppcap_int_enable(bus, true); 264 265 /* read the BAR of the ADSP MMIO */ 266 mmio_base = pci_ioremap_bar(skl->pci, 4); 267 if (mmio_base == NULL) { 268 dev_err(bus->dev, "ioremap error\n"); 269 return -ENXIO; 270 } 271 272 ops = skl_get_dsp_ops(skl->pci->device); 273 if (!ops) { 274 ret = -EIO; 275 goto unmap_mmio; 276 } 277 278 loader_ops = ops->loader_ops(); 279 ret = ops->init(bus->dev, mmio_base, irq, 280 skl->fw_name, loader_ops, 281 &skl); 282 283 if (ret < 0) 284 goto unmap_mmio; 285 286 skl->dsp_ops = ops; 287 cores = &skl->cores; 288 cores->count = ops->num_cores; 289 290 cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL); 291 if (!cores->state) { 292 ret = -ENOMEM; 293 goto unmap_mmio; 294 } 295 296 cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count), 297 GFP_KERNEL); 298 if (!cores->usage_count) { 299 ret = -ENOMEM; 300 goto free_core_state; 301 } 302 303 dev_dbg(bus->dev, "dsp registration status=%d\n", ret); 304 305 return 0; 306 307 free_core_state: 308 kfree(cores->state); 309 310 unmap_mmio: 311 iounmap(mmio_base); 312 313 return ret; 314 } 315 316 int skl_free_dsp(struct skl_dev *skl) 317 { 318 struct hdac_bus *bus = skl_to_bus(skl); 319 320 /* disable ppcap interrupt */ 321 snd_hdac_ext_bus_ppcap_int_enable(bus, false); 322 323 skl->dsp_ops->cleanup(bus->dev, skl); 324 325 kfree(skl->cores.state); 326 kfree(skl->cores.usage_count); 327 328 if (skl->dsp->addr.lpe) 329 iounmap(skl->dsp->addr.lpe); 330 331 return 0; 332 } 333 334 /* 335 * In the case of "suspend_active" i.e, the Audio IP being active 336 * during system suspend, immediately excecute any pending D0i3 work 337 * before suspending. This is needed for the IP to work in low power 338 * mode during system suspend. In the case of normal suspend, cancel 339 * any pending D0i3 work. 340 */ 341 int skl_suspend_late_dsp(struct skl_dev *skl) 342 { 343 struct delayed_work *dwork; 344 345 if (!skl) 346 return 0; 347 348 dwork = &skl->d0i3.work; 349 350 if (dwork->work.func) { 351 if (skl->supend_active) 352 flush_delayed_work(dwork); 353 else 354 cancel_delayed_work_sync(dwork); 355 } 356 357 return 0; 358 } 359 360 int skl_suspend_dsp(struct skl_dev *skl) 361 { 362 struct hdac_bus *bus = skl_to_bus(skl); 363 int ret; 364 365 /* if ppcap is not supported return 0 */ 366 if (!bus->ppcap) 367 return 0; 368 369 ret = skl_dsp_sleep(skl->dsp); 370 if (ret < 0) 371 return ret; 372 373 /* disable ppcap interrupt */ 374 snd_hdac_ext_bus_ppcap_int_enable(bus, false); 375 snd_hdac_ext_bus_ppcap_enable(bus, false); 376 377 return 0; 378 } 379 380 int skl_resume_dsp(struct skl_dev *skl) 381 { 382 struct hdac_bus *bus = skl_to_bus(skl); 383 int ret; 384 385 /* if ppcap is not supported return 0 */ 386 if (!bus->ppcap) 387 return 0; 388 389 /* enable ppcap interrupt */ 390 snd_hdac_ext_bus_ppcap_enable(bus, true); 391 snd_hdac_ext_bus_ppcap_int_enable(bus, true); 392 393 /* check if DSP 1st boot is done */ 394 if (skl->is_first_boot) 395 return 0; 396 397 /* 398 * Disable dynamic clock and power gating during firmware 399 * and library download 400 */ 401 skl->enable_miscbdcge(skl->dev, false); 402 skl->clock_power_gating(skl->dev, false); 403 404 ret = skl_dsp_wake(skl->dsp); 405 skl->enable_miscbdcge(skl->dev, true); 406 skl->clock_power_gating(skl->dev, true); 407 if (ret < 0) 408 return ret; 409 410 if (skl->cfg.astate_cfg != NULL) { 411 skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count, 412 skl->cfg.astate_cfg); 413 } 414 return ret; 415 } 416 417 enum skl_bitdepth skl_get_bit_depth(int params) 418 { 419 switch (params) { 420 case 8: 421 return SKL_DEPTH_8BIT; 422 423 case 16: 424 return SKL_DEPTH_16BIT; 425 426 case 24: 427 return SKL_DEPTH_24BIT; 428 429 case 32: 430 return SKL_DEPTH_32BIT; 431 432 default: 433 return SKL_DEPTH_INVALID; 434 435 } 436 } 437 438 /* 439 * Each module in DSP expects a base module configuration, which consists of 440 * PCM format information, which we calculate in driver and resource values 441 * which are read from widget information passed through topology binary 442 * This is send when we create a module with INIT_INSTANCE IPC msg 443 */ 444 static void skl_set_base_module_format(struct skl_dev *skl, 445 struct skl_module_cfg *mconfig, 446 struct skl_base_cfg *base_cfg) 447 { 448 struct skl_module *module = mconfig->module; 449 struct skl_module_res *res = &module->resources[mconfig->res_idx]; 450 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; 451 struct skl_module_fmt *format = &fmt->inputs[0].fmt; 452 453 base_cfg->audio_fmt.number_of_channels = format->channels; 454 455 base_cfg->audio_fmt.s_freq = format->s_freq; 456 base_cfg->audio_fmt.bit_depth = format->bit_depth; 457 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; 458 base_cfg->audio_fmt.ch_cfg = format->ch_cfg; 459 base_cfg->audio_fmt.sample_type = format->sample_type; 460 461 dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", 462 format->bit_depth, format->valid_bit_depth, 463 format->ch_cfg); 464 465 base_cfg->audio_fmt.channel_map = format->ch_map; 466 467 base_cfg->audio_fmt.interleaving = format->interleaving_style; 468 469 base_cfg->cpc = res->cpc; 470 base_cfg->ibs = res->ibs; 471 base_cfg->obs = res->obs; 472 base_cfg->is_pages = res->is_pages; 473 } 474 475 /* 476 * Copies copier capabilities into copier module and updates copier module 477 * config size. 478 */ 479 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, 480 struct skl_cpr_cfg *cpr_mconfig) 481 { 482 if (mconfig->formats_config.caps_size == 0) 483 return; 484 485 memcpy(cpr_mconfig->gtw_cfg.config_data, 486 mconfig->formats_config.caps, 487 mconfig->formats_config.caps_size); 488 489 cpr_mconfig->gtw_cfg.config_length = 490 (mconfig->formats_config.caps_size) / 4; 491 } 492 493 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF 494 /* 495 * Calculate the gatewat settings required for copier module, type of 496 * gateway and index of gateway to use 497 */ 498 static u32 skl_get_node_id(struct skl_dev *skl, 499 struct skl_module_cfg *mconfig) 500 { 501 union skl_connector_node_id node_id = {0}; 502 union skl_ssp_dma_node ssp_node = {0}; 503 struct skl_pipe_params *params = mconfig->pipe->p_params; 504 505 switch (mconfig->dev_type) { 506 case SKL_DEVICE_BT: 507 node_id.node.dma_type = 508 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 509 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 510 SKL_DMA_I2S_LINK_INPUT_CLASS; 511 node_id.node.vindex = params->host_dma_id + 512 (mconfig->vbus_id << 3); 513 break; 514 515 case SKL_DEVICE_I2S: 516 node_id.node.dma_type = 517 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 518 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 519 SKL_DMA_I2S_LINK_INPUT_CLASS; 520 ssp_node.dma_node.time_slot_index = mconfig->time_slot; 521 ssp_node.dma_node.i2s_instance = mconfig->vbus_id; 522 node_id.node.vindex = ssp_node.val; 523 break; 524 525 case SKL_DEVICE_DMIC: 526 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; 527 node_id.node.vindex = mconfig->vbus_id + 528 (mconfig->time_slot); 529 break; 530 531 case SKL_DEVICE_HDALINK: 532 node_id.node.dma_type = 533 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 534 SKL_DMA_HDA_LINK_OUTPUT_CLASS : 535 SKL_DMA_HDA_LINK_INPUT_CLASS; 536 node_id.node.vindex = params->link_dma_id; 537 break; 538 539 case SKL_DEVICE_HDAHOST: 540 node_id.node.dma_type = 541 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 542 SKL_DMA_HDA_HOST_OUTPUT_CLASS : 543 SKL_DMA_HDA_HOST_INPUT_CLASS; 544 node_id.node.vindex = params->host_dma_id; 545 break; 546 547 default: 548 node_id.val = 0xFFFFFFFF; 549 break; 550 } 551 552 return node_id.val; 553 } 554 555 static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl, 556 struct skl_module_cfg *mconfig, 557 struct skl_cpr_cfg *cpr_mconfig) 558 { 559 u32 dma_io_buf; 560 struct skl_module_res *res; 561 int res_idx = mconfig->res_idx; 562 563 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig); 564 565 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { 566 cpr_mconfig->cpr_feature_mask = 0; 567 return; 568 } 569 570 if (skl->nr_modules) { 571 res = &mconfig->module->resources[mconfig->res_idx]; 572 cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size; 573 goto skip_buf_size_calc; 574 } else { 575 res = &mconfig->module->resources[res_idx]; 576 } 577 578 switch (mconfig->hw_conn_type) { 579 case SKL_CONN_SOURCE: 580 if (mconfig->dev_type == SKL_DEVICE_HDAHOST) 581 dma_io_buf = res->ibs; 582 else 583 dma_io_buf = res->obs; 584 break; 585 586 case SKL_CONN_SINK: 587 if (mconfig->dev_type == SKL_DEVICE_HDAHOST) 588 dma_io_buf = res->obs; 589 else 590 dma_io_buf = res->ibs; 591 break; 592 593 default: 594 dev_warn(skl->dev, "wrong connection type: %d\n", 595 mconfig->hw_conn_type); 596 return; 597 } 598 599 cpr_mconfig->gtw_cfg.dma_buffer_size = 600 mconfig->dma_buffer_size * dma_io_buf; 601 602 /* fallback to 2ms default value */ 603 if (!cpr_mconfig->gtw_cfg.dma_buffer_size) { 604 if (mconfig->hw_conn_type == SKL_CONN_SOURCE) 605 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs; 606 else 607 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs; 608 } 609 610 skip_buf_size_calc: 611 cpr_mconfig->cpr_feature_mask = 0; 612 cpr_mconfig->gtw_cfg.config_length = 0; 613 614 skl_copy_copier_caps(mconfig, cpr_mconfig); 615 } 616 617 #define DMA_CONTROL_ID 5 618 #define DMA_I2S_BLOB_SIZE 21 619 620 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps, 621 u32 caps_size, u32 node_id) 622 { 623 struct skl_dma_control *dma_ctrl; 624 struct skl_ipc_large_config_msg msg = {0}; 625 int err = 0; 626 627 628 /* 629 * if blob size zero, then return 630 */ 631 if (caps_size == 0) 632 return 0; 633 634 msg.large_param_id = DMA_CONTROL_ID; 635 msg.param_data_size = sizeof(struct skl_dma_control) + caps_size; 636 637 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); 638 if (dma_ctrl == NULL) 639 return -ENOMEM; 640 641 dma_ctrl->node_id = node_id; 642 643 /* 644 * NHLT blob may contain additional configs along with i2s blob. 645 * firmware expects only the i2s blob size as the config_length. 646 * So fix to i2s blob size. 647 * size in dwords. 648 */ 649 dma_ctrl->config_length = DMA_I2S_BLOB_SIZE; 650 651 memcpy(dma_ctrl->config_data, caps, caps_size); 652 653 err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl); 654 655 kfree(dma_ctrl); 656 return err; 657 } 658 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control); 659 660 static void skl_setup_out_format(struct skl_dev *skl, 661 struct skl_module_cfg *mconfig, 662 struct skl_audio_data_format *out_fmt) 663 { 664 struct skl_module *module = mconfig->module; 665 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; 666 struct skl_module_fmt *format = &fmt->outputs[0].fmt; 667 668 out_fmt->number_of_channels = (u8)format->channels; 669 out_fmt->s_freq = format->s_freq; 670 out_fmt->bit_depth = format->bit_depth; 671 out_fmt->valid_bit_depth = format->valid_bit_depth; 672 out_fmt->ch_cfg = format->ch_cfg; 673 674 out_fmt->channel_map = format->ch_map; 675 out_fmt->interleaving = format->interleaving_style; 676 out_fmt->sample_type = format->sample_type; 677 678 dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", 679 out_fmt->number_of_channels, format->s_freq, format->bit_depth); 680 } 681 682 /* 683 * DSP needs SRC module for frequency conversion, SRC takes base module 684 * configuration and the target frequency as extra parameter passed as src 685 * config 686 */ 687 static void skl_set_src_format(struct skl_dev *skl, 688 struct skl_module_cfg *mconfig, 689 struct skl_src_module_cfg *src_mconfig) 690 { 691 struct skl_module *module = mconfig->module; 692 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; 693 struct skl_module_fmt *fmt = &iface->outputs[0].fmt; 694 695 skl_set_base_module_format(skl, mconfig, 696 (struct skl_base_cfg *)src_mconfig); 697 698 src_mconfig->src_cfg = fmt->s_freq; 699 } 700 701 /* 702 * DSP needs updown module to do channel conversion. updown module take base 703 * module configuration and channel configuration 704 * It also take coefficients and now we have defaults applied here 705 */ 706 static void skl_set_updown_mixer_format(struct skl_dev *skl, 707 struct skl_module_cfg *mconfig, 708 struct skl_up_down_mixer_cfg *mixer_mconfig) 709 { 710 struct skl_module *module = mconfig->module; 711 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; 712 struct skl_module_fmt *fmt = &iface->outputs[0].fmt; 713 714 skl_set_base_module_format(skl, mconfig, 715 (struct skl_base_cfg *)mixer_mconfig); 716 mixer_mconfig->out_ch_cfg = fmt->ch_cfg; 717 mixer_mconfig->ch_map = fmt->ch_map; 718 } 719 720 /* 721 * 'copier' is DSP internal module which copies data from Host DMA (HDA host 722 * dma) or link (hda link, SSP, PDM) 723 * Here we calculate the copier module parameters, like PCM format, output 724 * format, gateway settings 725 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg 726 */ 727 static void skl_set_copier_format(struct skl_dev *skl, 728 struct skl_module_cfg *mconfig, 729 struct skl_cpr_cfg *cpr_mconfig) 730 { 731 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; 732 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; 733 734 skl_set_base_module_format(skl, mconfig, base_cfg); 735 736 skl_setup_out_format(skl, mconfig, out_fmt); 737 skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig); 738 } 739 740 /* 741 * Algo module are DSP pre processing modules. Algo module take base module 742 * configuration and params 743 */ 744 745 static void skl_set_algo_format(struct skl_dev *skl, 746 struct skl_module_cfg *mconfig, 747 struct skl_algo_cfg *algo_mcfg) 748 { 749 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg; 750 751 skl_set_base_module_format(skl, mconfig, base_cfg); 752 753 if (mconfig->formats_config.caps_size == 0) 754 return; 755 756 memcpy(algo_mcfg->params, 757 mconfig->formats_config.caps, 758 mconfig->formats_config.caps_size); 759 760 } 761 762 /* 763 * Mic select module allows selecting one or many input channels, thus 764 * acting as a demux. 765 * 766 * Mic select module take base module configuration and out-format 767 * configuration 768 */ 769 static void skl_set_base_outfmt_format(struct skl_dev *skl, 770 struct skl_module_cfg *mconfig, 771 struct skl_base_outfmt_cfg *base_outfmt_mcfg) 772 { 773 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; 774 struct skl_base_cfg *base_cfg = 775 (struct skl_base_cfg *)base_outfmt_mcfg; 776 777 skl_set_base_module_format(skl, mconfig, base_cfg); 778 skl_setup_out_format(skl, mconfig, out_fmt); 779 } 780 781 static u16 skl_get_module_param_size(struct skl_dev *skl, 782 struct skl_module_cfg *mconfig) 783 { 784 u16 param_size; 785 786 switch (mconfig->m_type) { 787 case SKL_MODULE_TYPE_COPIER: 788 param_size = sizeof(struct skl_cpr_cfg); 789 param_size += mconfig->formats_config.caps_size; 790 return param_size; 791 792 case SKL_MODULE_TYPE_SRCINT: 793 return sizeof(struct skl_src_module_cfg); 794 795 case SKL_MODULE_TYPE_UPDWMIX: 796 return sizeof(struct skl_up_down_mixer_cfg); 797 798 case SKL_MODULE_TYPE_ALGO: 799 param_size = sizeof(struct skl_base_cfg); 800 param_size += mconfig->formats_config.caps_size; 801 return param_size; 802 803 case SKL_MODULE_TYPE_BASE_OUTFMT: 804 case SKL_MODULE_TYPE_MIC_SELECT: 805 case SKL_MODULE_TYPE_KPB: 806 return sizeof(struct skl_base_outfmt_cfg); 807 808 default: 809 /* 810 * return only base cfg when no specific module type is 811 * specified 812 */ 813 return sizeof(struct skl_base_cfg); 814 } 815 816 return 0; 817 } 818 819 /* 820 * DSP firmware supports various modules like copier, SRC, updown etc. 821 * These modules required various parameters to be calculated and sent for 822 * the module initialization to DSP. By default a generic module needs only 823 * base module format configuration 824 */ 825 826 static int skl_set_module_format(struct skl_dev *skl, 827 struct skl_module_cfg *module_config, 828 u16 *module_config_size, 829 void **param_data) 830 { 831 u16 param_size; 832 833 param_size = skl_get_module_param_size(skl, module_config); 834 835 *param_data = kzalloc(param_size, GFP_KERNEL); 836 if (NULL == *param_data) 837 return -ENOMEM; 838 839 *module_config_size = param_size; 840 841 switch (module_config->m_type) { 842 case SKL_MODULE_TYPE_COPIER: 843 skl_set_copier_format(skl, module_config, *param_data); 844 break; 845 846 case SKL_MODULE_TYPE_SRCINT: 847 skl_set_src_format(skl, module_config, *param_data); 848 break; 849 850 case SKL_MODULE_TYPE_UPDWMIX: 851 skl_set_updown_mixer_format(skl, module_config, *param_data); 852 break; 853 854 case SKL_MODULE_TYPE_ALGO: 855 skl_set_algo_format(skl, module_config, *param_data); 856 break; 857 858 case SKL_MODULE_TYPE_BASE_OUTFMT: 859 case SKL_MODULE_TYPE_MIC_SELECT: 860 case SKL_MODULE_TYPE_KPB: 861 skl_set_base_outfmt_format(skl, module_config, *param_data); 862 break; 863 864 default: 865 skl_set_base_module_format(skl, module_config, *param_data); 866 break; 867 868 } 869 870 dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n", 871 module_config->m_type, module_config->id.module_id, 872 param_size); 873 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, 874 *param_data, param_size, false); 875 return 0; 876 } 877 878 static int skl_get_queue_index(struct skl_module_pin *mpin, 879 struct skl_module_inst_id id, int max) 880 { 881 int i; 882 883 for (i = 0; i < max; i++) { 884 if (mpin[i].id.module_id == id.module_id && 885 mpin[i].id.instance_id == id.instance_id) 886 return i; 887 } 888 889 return -EINVAL; 890 } 891 892 /* 893 * Allocates queue for each module. 894 * if dynamic, the pin_index is allocated 0 to max_pin. 895 * In static, the pin_index is fixed based on module_id and instance id 896 */ 897 static int skl_alloc_queue(struct skl_module_pin *mpin, 898 struct skl_module_cfg *tgt_cfg, int max) 899 { 900 int i; 901 struct skl_module_inst_id id = tgt_cfg->id; 902 /* 903 * if pin in dynamic, find first free pin 904 * otherwise find match module and instance id pin as topology will 905 * ensure a unique pin is assigned to this so no need to 906 * allocate/free 907 */ 908 for (i = 0; i < max; i++) { 909 if (mpin[i].is_dynamic) { 910 if (!mpin[i].in_use && 911 mpin[i].pin_state == SKL_PIN_UNBIND) { 912 913 mpin[i].in_use = true; 914 mpin[i].id.module_id = id.module_id; 915 mpin[i].id.instance_id = id.instance_id; 916 mpin[i].id.pvt_id = id.pvt_id; 917 mpin[i].tgt_mcfg = tgt_cfg; 918 return i; 919 } 920 } else { 921 if (mpin[i].id.module_id == id.module_id && 922 mpin[i].id.instance_id == id.instance_id && 923 mpin[i].pin_state == SKL_PIN_UNBIND) { 924 925 mpin[i].tgt_mcfg = tgt_cfg; 926 return i; 927 } 928 } 929 } 930 931 return -EINVAL; 932 } 933 934 static void skl_free_queue(struct skl_module_pin *mpin, int q_index) 935 { 936 if (mpin[q_index].is_dynamic) { 937 mpin[q_index].in_use = false; 938 mpin[q_index].id.module_id = 0; 939 mpin[q_index].id.instance_id = 0; 940 mpin[q_index].id.pvt_id = 0; 941 } 942 mpin[q_index].pin_state = SKL_PIN_UNBIND; 943 mpin[q_index].tgt_mcfg = NULL; 944 } 945 946 /* Module state will be set to unint, if all the out pin state is UNBIND */ 947 948 static void skl_clear_module_state(struct skl_module_pin *mpin, int max, 949 struct skl_module_cfg *mcfg) 950 { 951 int i; 952 bool found = false; 953 954 for (i = 0; i < max; i++) { 955 if (mpin[i].pin_state == SKL_PIN_UNBIND) 956 continue; 957 found = true; 958 break; 959 } 960 961 if (!found) 962 mcfg->m_state = SKL_MODULE_INIT_DONE; 963 return; 964 } 965 966 /* 967 * A module needs to be instanataited in DSP. A mdoule is present in a 968 * collection of module referred as a PIPE. 969 * We first calculate the module format, based on module type and then 970 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper 971 */ 972 int skl_init_module(struct skl_dev *skl, 973 struct skl_module_cfg *mconfig) 974 { 975 u16 module_config_size = 0; 976 void *param_data = NULL; 977 int ret; 978 struct skl_ipc_init_instance_msg msg; 979 980 dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__, 981 mconfig->id.module_id, mconfig->id.pvt_id); 982 983 if (mconfig->pipe->state != SKL_PIPE_CREATED) { 984 dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n", 985 mconfig->pipe->state, mconfig->pipe->ppl_id); 986 return -EIO; 987 } 988 989 ret = skl_set_module_format(skl, mconfig, 990 &module_config_size, ¶m_data); 991 if (ret < 0) { 992 dev_err(skl->dev, "Failed to set module format ret=%d\n", ret); 993 return ret; 994 } 995 996 msg.module_id = mconfig->id.module_id; 997 msg.instance_id = mconfig->id.pvt_id; 998 msg.ppl_instance_id = mconfig->pipe->ppl_id; 999 msg.param_data_size = module_config_size; 1000 msg.core_id = mconfig->core_id; 1001 msg.domain = mconfig->domain; 1002 1003 ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data); 1004 if (ret < 0) { 1005 dev_err(skl->dev, "Failed to init instance ret=%d\n", ret); 1006 kfree(param_data); 1007 return ret; 1008 } 1009 mconfig->m_state = SKL_MODULE_INIT_DONE; 1010 kfree(param_data); 1011 return ret; 1012 } 1013 1014 static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg 1015 *src_module, struct skl_module_cfg *dst_module) 1016 { 1017 dev_dbg(skl->dev, "%s: src module_id = %d src_instance=%d\n", 1018 __func__, src_module->id.module_id, src_module->id.pvt_id); 1019 dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__, 1020 dst_module->id.module_id, dst_module->id.pvt_id); 1021 1022 dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n", 1023 src_module->m_state, dst_module->m_state); 1024 } 1025 1026 /* 1027 * On module freeup, we need to unbind the module with modules 1028 * it is already bind. 1029 * Find the pin allocated and unbind then using bind_unbind IPC 1030 */ 1031 int skl_unbind_modules(struct skl_dev *skl, 1032 struct skl_module_cfg *src_mcfg, 1033 struct skl_module_cfg *dst_mcfg) 1034 { 1035 int ret; 1036 struct skl_ipc_bind_unbind_msg msg; 1037 struct skl_module_inst_id src_id = src_mcfg->id; 1038 struct skl_module_inst_id dst_id = dst_mcfg->id; 1039 int in_max = dst_mcfg->module->max_input_pins; 1040 int out_max = src_mcfg->module->max_output_pins; 1041 int src_index, dst_index, src_pin_state, dst_pin_state; 1042 1043 skl_dump_bind_info(skl, src_mcfg, dst_mcfg); 1044 1045 /* get src queue index */ 1046 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); 1047 if (src_index < 0) 1048 return 0; 1049 1050 msg.src_queue = src_index; 1051 1052 /* get dst queue index */ 1053 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); 1054 if (dst_index < 0) 1055 return 0; 1056 1057 msg.dst_queue = dst_index; 1058 1059 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; 1060 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; 1061 1062 if (src_pin_state != SKL_PIN_BIND_DONE || 1063 dst_pin_state != SKL_PIN_BIND_DONE) 1064 return 0; 1065 1066 msg.module_id = src_mcfg->id.module_id; 1067 msg.instance_id = src_mcfg->id.pvt_id; 1068 msg.dst_module_id = dst_mcfg->id.module_id; 1069 msg.dst_instance_id = dst_mcfg->id.pvt_id; 1070 msg.bind = false; 1071 1072 ret = skl_ipc_bind_unbind(&skl->ipc, &msg); 1073 if (!ret) { 1074 /* free queue only if unbind is success */ 1075 skl_free_queue(src_mcfg->m_out_pin, src_index); 1076 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 1077 1078 /* 1079 * check only if src module bind state, bind is 1080 * always from src -> sink 1081 */ 1082 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); 1083 } 1084 1085 return ret; 1086 } 1087 1088 static void fill_pin_params(struct skl_audio_data_format *pin_fmt, 1089 struct skl_module_fmt *format) 1090 { 1091 pin_fmt->number_of_channels = format->channels; 1092 pin_fmt->s_freq = format->s_freq; 1093 pin_fmt->bit_depth = format->bit_depth; 1094 pin_fmt->valid_bit_depth = format->valid_bit_depth; 1095 pin_fmt->ch_cfg = format->ch_cfg; 1096 pin_fmt->sample_type = format->sample_type; 1097 pin_fmt->channel_map = format->ch_map; 1098 pin_fmt->interleaving = format->interleaving_style; 1099 } 1100 1101 #define CPR_SINK_FMT_PARAM_ID 2 1102 1103 /* 1104 * Once a module is instantiated it need to be 'bind' with other modules in 1105 * the pipeline. For binding we need to find the module pins which are bind 1106 * together 1107 * This function finds the pins and then sends bund_unbind IPC message to 1108 * DSP using IPC helper 1109 */ 1110 int skl_bind_modules(struct skl_dev *skl, 1111 struct skl_module_cfg *src_mcfg, 1112 struct skl_module_cfg *dst_mcfg) 1113 { 1114 int ret = 0; 1115 struct skl_ipc_bind_unbind_msg msg; 1116 int in_max = dst_mcfg->module->max_input_pins; 1117 int out_max = src_mcfg->module->max_output_pins; 1118 int src_index, dst_index; 1119 struct skl_module_fmt *format; 1120 struct skl_cpr_pin_fmt pin_fmt; 1121 struct skl_module *module; 1122 struct skl_module_iface *fmt; 1123 1124 skl_dump_bind_info(skl, src_mcfg, dst_mcfg); 1125 1126 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || 1127 dst_mcfg->m_state < SKL_MODULE_INIT_DONE) 1128 return 0; 1129 1130 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); 1131 if (src_index < 0) 1132 return -EINVAL; 1133 1134 msg.src_queue = src_index; 1135 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); 1136 if (dst_index < 0) { 1137 skl_free_queue(src_mcfg->m_out_pin, src_index); 1138 return -EINVAL; 1139 } 1140 1141 /* 1142 * Copier module requires the separate large_config_set_ipc to 1143 * configure the pins other than 0 1144 */ 1145 if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) { 1146 pin_fmt.sink_id = src_index; 1147 module = src_mcfg->module; 1148 fmt = &module->formats[src_mcfg->fmt_idx]; 1149 1150 /* Input fmt is same as that of src module input cfg */ 1151 format = &fmt->inputs[0].fmt; 1152 fill_pin_params(&(pin_fmt.src_fmt), format); 1153 1154 format = &fmt->outputs[src_index].fmt; 1155 fill_pin_params(&(pin_fmt.dst_fmt), format); 1156 ret = skl_set_module_params(skl, (void *)&pin_fmt, 1157 sizeof(struct skl_cpr_pin_fmt), 1158 CPR_SINK_FMT_PARAM_ID, src_mcfg); 1159 1160 if (ret < 0) 1161 goto out; 1162 } 1163 1164 msg.dst_queue = dst_index; 1165 1166 dev_dbg(skl->dev, "src queue = %d dst queue =%d\n", 1167 msg.src_queue, msg.dst_queue); 1168 1169 msg.module_id = src_mcfg->id.module_id; 1170 msg.instance_id = src_mcfg->id.pvt_id; 1171 msg.dst_module_id = dst_mcfg->id.module_id; 1172 msg.dst_instance_id = dst_mcfg->id.pvt_id; 1173 msg.bind = true; 1174 1175 ret = skl_ipc_bind_unbind(&skl->ipc, &msg); 1176 1177 if (!ret) { 1178 src_mcfg->m_state = SKL_MODULE_BIND_DONE; 1179 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; 1180 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; 1181 return ret; 1182 } 1183 out: 1184 /* error case , if IPC fails, clear the queue index */ 1185 skl_free_queue(src_mcfg->m_out_pin, src_index); 1186 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 1187 1188 return ret; 1189 } 1190 1191 static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe, 1192 enum skl_ipc_pipeline_state state) 1193 { 1194 dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state); 1195 1196 return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state); 1197 } 1198 1199 /* 1200 * A pipeline is a collection of modules. Before a module in instantiated a 1201 * pipeline needs to be created for it. 1202 * This function creates pipeline, by sending create pipeline IPC messages 1203 * to FW 1204 */ 1205 int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe) 1206 { 1207 int ret; 1208 1209 dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); 1210 1211 ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages, 1212 pipe->pipe_priority, pipe->ppl_id, 1213 pipe->lp_mode); 1214 if (ret < 0) { 1215 dev_err(skl->dev, "Failed to create pipeline\n"); 1216 return ret; 1217 } 1218 1219 pipe->state = SKL_PIPE_CREATED; 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * A pipeline needs to be deleted on cleanup. If a pipeline is running, 1226 * then pause it first. Before actual deletion, pipeline should enter 1227 * reset state. Finish the procedure by sending delete pipeline IPC. 1228 * DSP will stop the DMA engines and release resources 1229 */ 1230 int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1231 { 1232 int ret; 1233 1234 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1235 1236 /* If pipe was not created in FW, do not try to delete it */ 1237 if (pipe->state < SKL_PIPE_CREATED) 1238 return 0; 1239 1240 /* If pipe is started, do stop the pipe in FW. */ 1241 if (pipe->state >= SKL_PIPE_STARTED) { 1242 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1243 if (ret < 0) { 1244 dev_err(skl->dev, "Failed to stop pipeline\n"); 1245 return ret; 1246 } 1247 1248 pipe->state = SKL_PIPE_PAUSED; 1249 } 1250 1251 /* reset pipe state before deletion */ 1252 ret = skl_set_pipe_state(skl, pipe, PPL_RESET); 1253 if (ret < 0) { 1254 dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret); 1255 return ret; 1256 } 1257 1258 pipe->state = SKL_PIPE_RESET; 1259 1260 ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id); 1261 if (ret < 0) { 1262 dev_err(skl->dev, "Failed to delete pipeline\n"); 1263 return ret; 1264 } 1265 1266 pipe->state = SKL_PIPE_INVALID; 1267 1268 return ret; 1269 } 1270 1271 /* 1272 * A pipeline is also a scheduling entity in DSP which can be run, stopped 1273 * For processing data the pipe need to be run by sending IPC set pipe state 1274 * to DSP 1275 */ 1276 int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1277 { 1278 int ret; 1279 1280 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1281 1282 /* If pipe was not created in FW, do not try to pause or delete */ 1283 if (pipe->state < SKL_PIPE_CREATED) 1284 return 0; 1285 1286 /* Pipe has to be paused before it is started */ 1287 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1288 if (ret < 0) { 1289 dev_err(skl->dev, "Failed to pause pipe\n"); 1290 return ret; 1291 } 1292 1293 pipe->state = SKL_PIPE_PAUSED; 1294 1295 ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING); 1296 if (ret < 0) { 1297 dev_err(skl->dev, "Failed to start pipe\n"); 1298 return ret; 1299 } 1300 1301 pipe->state = SKL_PIPE_STARTED; 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * Stop the pipeline by sending set pipe state IPC 1308 * DSP doesnt implement stop so we always send pause message 1309 */ 1310 int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1311 { 1312 int ret; 1313 1314 dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); 1315 1316 /* If pipe was not created in FW, do not try to pause or delete */ 1317 if (pipe->state < SKL_PIPE_PAUSED) 1318 return 0; 1319 1320 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1321 if (ret < 0) { 1322 dev_dbg(skl->dev, "Failed to stop pipe\n"); 1323 return ret; 1324 } 1325 1326 pipe->state = SKL_PIPE_PAUSED; 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * Reset the pipeline by sending set pipe state IPC this will reset the DMA 1333 * from the DSP side 1334 */ 1335 int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1336 { 1337 int ret; 1338 1339 /* If pipe was not created in FW, do not try to pause or delete */ 1340 if (pipe->state < SKL_PIPE_PAUSED) 1341 return 0; 1342 1343 ret = skl_set_pipe_state(skl, pipe, PPL_RESET); 1344 if (ret < 0) { 1345 dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret); 1346 return ret; 1347 } 1348 1349 pipe->state = SKL_PIPE_RESET; 1350 1351 return 0; 1352 } 1353 1354 /* Algo parameter set helper function */ 1355 int skl_set_module_params(struct skl_dev *skl, u32 *params, int size, 1356 u32 param_id, struct skl_module_cfg *mcfg) 1357 { 1358 struct skl_ipc_large_config_msg msg; 1359 1360 msg.module_id = mcfg->id.module_id; 1361 msg.instance_id = mcfg->id.pvt_id; 1362 msg.param_data_size = size; 1363 msg.large_param_id = param_id; 1364 1365 return skl_ipc_set_large_config(&skl->ipc, &msg, params); 1366 } 1367 1368 int skl_get_module_params(struct skl_dev *skl, u32 *params, int size, 1369 u32 param_id, struct skl_module_cfg *mcfg) 1370 { 1371 struct skl_ipc_large_config_msg msg; 1372 size_t bytes = size; 1373 1374 msg.module_id = mcfg->id.module_id; 1375 msg.instance_id = mcfg->id.pvt_id; 1376 msg.param_data_size = size; 1377 msg.large_param_id = param_id; 1378 1379 return skl_ipc_get_large_config(&skl->ipc, &msg, ¶ms, &bytes); 1380 } 1381