1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.init_fw = skl_sst_init_fw,
207 		.cleanup = skl_sst_dsp_cleanup
208 	},
209 	{
210 		.id = 0x9d71,
211 		.loader_ops = skl_get_loader_ops,
212 		.init = kbl_sst_dsp_init,
213 		.init_fw = skl_sst_init_fw,
214 		.cleanup = skl_sst_dsp_cleanup
215 	},
216 	{
217 		.id = 0x5a98,
218 		.loader_ops = bxt_get_loader_ops,
219 		.init = bxt_sst_dsp_init,
220 		.init_fw = bxt_sst_init_fw,
221 		.cleanup = bxt_sst_dsp_cleanup
222 	},
223 	{
224 		.id = 0x3198,
225 		.loader_ops = bxt_get_loader_ops,
226 		.init = bxt_sst_dsp_init,
227 		.init_fw = bxt_sst_init_fw,
228 		.cleanup = bxt_sst_dsp_cleanup
229 	},
230 };
231 
232 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
233 {
234 	int i;
235 
236 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
237 		if (dsp_ops[i].id == pci_id)
238 			return &dsp_ops[i];
239 	}
240 
241 	return NULL;
242 }
243 
244 int skl_init_dsp(struct skl *skl)
245 {
246 	void __iomem *mmio_base;
247 	struct hdac_ext_bus *ebus = &skl->ebus;
248 	struct hdac_bus *bus = ebus_to_hbus(ebus);
249 	struct skl_dsp_loader_ops loader_ops;
250 	int irq = bus->irq;
251 	const struct skl_dsp_ops *ops;
252 	int ret;
253 
254 	/* enable ppcap interrupt */
255 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
256 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
257 
258 	/* read the BAR of the ADSP MMIO */
259 	mmio_base = pci_ioremap_bar(skl->pci, 4);
260 	if (mmio_base == NULL) {
261 		dev_err(bus->dev, "ioremap error\n");
262 		return -ENXIO;
263 	}
264 
265 	ops = skl_get_dsp_ops(skl->pci->device);
266 	if (!ops)
267 		return -EIO;
268 
269 	loader_ops = ops->loader_ops();
270 	ret = ops->init(bus->dev, mmio_base, irq,
271 				skl->fw_name, loader_ops,
272 				&skl->skl_sst);
273 
274 	if (ret < 0)
275 		return ret;
276 
277 	skl->skl_sst->dsp_ops = ops;
278 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
279 
280 	return ret;
281 }
282 
283 int skl_free_dsp(struct skl *skl)
284 {
285 	struct hdac_ext_bus *ebus = &skl->ebus;
286 	struct hdac_bus *bus = ebus_to_hbus(ebus);
287 	struct skl_sst *ctx = skl->skl_sst;
288 
289 	/* disable  ppcap interrupt */
290 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
291 
292 	ctx->dsp_ops->cleanup(bus->dev, ctx);
293 
294 	if (ctx->dsp->addr.lpe)
295 		iounmap(ctx->dsp->addr.lpe);
296 
297 	return 0;
298 }
299 
300 /*
301  * In the case of "suspend_active" i.e, the Audio IP being active
302  * during system suspend, immediately excecute any pending D0i3 work
303  * before suspending. This is needed for the IP to work in low power
304  * mode during system suspend. In the case of normal suspend, cancel
305  * any pending D0i3 work.
306  */
307 int skl_suspend_late_dsp(struct skl *skl)
308 {
309 	struct skl_sst *ctx = skl->skl_sst;
310 	struct delayed_work *dwork;
311 
312 	if (!ctx)
313 		return 0;
314 
315 	dwork = &ctx->d0i3.work;
316 
317 	if (dwork->work.func) {
318 		if (skl->supend_active)
319 			flush_delayed_work(dwork);
320 		else
321 			cancel_delayed_work_sync(dwork);
322 	}
323 
324 	return 0;
325 }
326 
327 int skl_suspend_dsp(struct skl *skl)
328 {
329 	struct skl_sst *ctx = skl->skl_sst;
330 	int ret;
331 
332 	/* if ppcap is not supported return 0 */
333 	if (!skl->ebus.bus.ppcap)
334 		return 0;
335 
336 	ret = skl_dsp_sleep(ctx->dsp);
337 	if (ret < 0)
338 		return ret;
339 
340 	/* disable ppcap interrupt */
341 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
342 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
343 
344 	return 0;
345 }
346 
347 int skl_resume_dsp(struct skl *skl)
348 {
349 	struct skl_sst *ctx = skl->skl_sst;
350 	int ret;
351 
352 	/* if ppcap is not supported return 0 */
353 	if (!skl->ebus.bus.ppcap)
354 		return 0;
355 
356 	/* enable ppcap interrupt */
357 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
358 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
359 
360 	/* check if DSP 1st boot is done */
361 	if (skl->skl_sst->is_first_boot == true)
362 		return 0;
363 
364 	ret = skl_dsp_wake(ctx->dsp);
365 	if (ret < 0)
366 		return ret;
367 
368 	skl_dsp_enable_notification(skl->skl_sst, false);
369 	return ret;
370 }
371 
372 enum skl_bitdepth skl_get_bit_depth(int params)
373 {
374 	switch (params) {
375 	case 8:
376 		return SKL_DEPTH_8BIT;
377 
378 	case 16:
379 		return SKL_DEPTH_16BIT;
380 
381 	case 24:
382 		return SKL_DEPTH_24BIT;
383 
384 	case 32:
385 		return SKL_DEPTH_32BIT;
386 
387 	default:
388 		return SKL_DEPTH_INVALID;
389 
390 	}
391 }
392 
393 /*
394  * Each module in DSP expects a base module configuration, which consists of
395  * PCM format information, which we calculate in driver and resource values
396  * which are read from widget information passed through topology binary
397  * This is send when we create a module with INIT_INSTANCE IPC msg
398  */
399 static void skl_set_base_module_format(struct skl_sst *ctx,
400 			struct skl_module_cfg *mconfig,
401 			struct skl_base_cfg *base_cfg)
402 {
403 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
404 
405 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
406 
407 	base_cfg->audio_fmt.s_freq = format->s_freq;
408 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
409 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
410 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
411 
412 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
413 			format->bit_depth, format->valid_bit_depth,
414 			format->ch_cfg);
415 
416 	base_cfg->audio_fmt.channel_map = format->ch_map;
417 
418 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
419 
420 	base_cfg->cps = mconfig->mcps;
421 	base_cfg->ibs = mconfig->ibs;
422 	base_cfg->obs = mconfig->obs;
423 	base_cfg->is_pages = mconfig->mem_pages;
424 }
425 
426 /*
427  * Copies copier capabilities into copier module and updates copier module
428  * config size.
429  */
430 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
431 				struct skl_cpr_cfg *cpr_mconfig)
432 {
433 	if (mconfig->formats_config.caps_size == 0)
434 		return;
435 
436 	memcpy(cpr_mconfig->gtw_cfg.config_data,
437 			mconfig->formats_config.caps,
438 			mconfig->formats_config.caps_size);
439 
440 	cpr_mconfig->gtw_cfg.config_length =
441 			(mconfig->formats_config.caps_size) / 4;
442 }
443 
444 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
445 /*
446  * Calculate the gatewat settings required for copier module, type of
447  * gateway and index of gateway to use
448  */
449 static u32 skl_get_node_id(struct skl_sst *ctx,
450 			struct skl_module_cfg *mconfig)
451 {
452 	union skl_connector_node_id node_id = {0};
453 	union skl_ssp_dma_node ssp_node  = {0};
454 	struct skl_pipe_params *params = mconfig->pipe->p_params;
455 
456 	switch (mconfig->dev_type) {
457 	case SKL_DEVICE_BT:
458 		node_id.node.dma_type =
459 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
460 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
461 			SKL_DMA_I2S_LINK_INPUT_CLASS;
462 		node_id.node.vindex = params->host_dma_id +
463 					(mconfig->vbus_id << 3);
464 		break;
465 
466 	case SKL_DEVICE_I2S:
467 		node_id.node.dma_type =
468 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
469 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
470 			SKL_DMA_I2S_LINK_INPUT_CLASS;
471 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
472 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
473 		node_id.node.vindex = ssp_node.val;
474 		break;
475 
476 	case SKL_DEVICE_DMIC:
477 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
478 		node_id.node.vindex = mconfig->vbus_id +
479 					 (mconfig->time_slot);
480 		break;
481 
482 	case SKL_DEVICE_HDALINK:
483 		node_id.node.dma_type =
484 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
485 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
486 			SKL_DMA_HDA_LINK_INPUT_CLASS;
487 		node_id.node.vindex = params->link_dma_id;
488 		break;
489 
490 	case SKL_DEVICE_HDAHOST:
491 		node_id.node.dma_type =
492 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
493 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
494 			SKL_DMA_HDA_HOST_INPUT_CLASS;
495 		node_id.node.vindex = params->host_dma_id;
496 		break;
497 
498 	default:
499 		node_id.val = 0xFFFFFFFF;
500 		break;
501 	}
502 
503 	return node_id.val;
504 }
505 
506 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
507 			struct skl_module_cfg *mconfig,
508 			struct skl_cpr_cfg *cpr_mconfig)
509 {
510 	u32 dma_io_buf;
511 
512 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
513 
514 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
515 		cpr_mconfig->cpr_feature_mask = 0;
516 		return;
517 	}
518 
519 	switch (mconfig->hw_conn_type) {
520 	case SKL_CONN_SOURCE:
521 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
522 			dma_io_buf =  mconfig->ibs;
523 		else
524 			dma_io_buf =  mconfig->obs;
525 		break;
526 
527 	case SKL_CONN_SINK:
528 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
529 			dma_io_buf =  mconfig->obs;
530 		else
531 			dma_io_buf =  mconfig->ibs;
532 		break;
533 
534 	default:
535 		dev_warn(ctx->dev, "wrong connection type: %d\n",
536 				mconfig->hw_conn_type);
537 		return;
538 	}
539 
540 	cpr_mconfig->gtw_cfg.dma_buffer_size =
541 				mconfig->dma_buffer_size * dma_io_buf;
542 
543 	/* fallback to 2ms default value */
544 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
545 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
546 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
547 		else
548 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
549 	}
550 
551 	cpr_mconfig->cpr_feature_mask = 0;
552 	cpr_mconfig->gtw_cfg.config_length  = 0;
553 
554 	skl_copy_copier_caps(mconfig, cpr_mconfig);
555 }
556 
557 #define DMA_CONTROL_ID 5
558 
559 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
560 {
561 	struct skl_dma_control *dma_ctrl;
562 	struct skl_ipc_large_config_msg msg = {0};
563 	int err = 0;
564 
565 
566 	/*
567 	 * if blob size zero, then return
568 	 */
569 	if (mconfig->formats_config.caps_size == 0)
570 		return 0;
571 
572 	msg.large_param_id = DMA_CONTROL_ID;
573 	msg.param_data_size = sizeof(struct skl_dma_control) +
574 				mconfig->formats_config.caps_size;
575 
576 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
577 	if (dma_ctrl == NULL)
578 		return -ENOMEM;
579 
580 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
581 
582 	/* size in dwords */
583 	dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
584 
585 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
586 				mconfig->formats_config.caps_size);
587 
588 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
589 
590 	kfree(dma_ctrl);
591 	return err;
592 }
593 
594 static void skl_setup_out_format(struct skl_sst *ctx,
595 			struct skl_module_cfg *mconfig,
596 			struct skl_audio_data_format *out_fmt)
597 {
598 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
599 
600 	out_fmt->number_of_channels = (u8)format->channels;
601 	out_fmt->s_freq = format->s_freq;
602 	out_fmt->bit_depth = format->bit_depth;
603 	out_fmt->valid_bit_depth = format->valid_bit_depth;
604 	out_fmt->ch_cfg = format->ch_cfg;
605 
606 	out_fmt->channel_map = format->ch_map;
607 	out_fmt->interleaving = format->interleaving_style;
608 	out_fmt->sample_type = format->sample_type;
609 
610 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
611 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
612 }
613 
614 /*
615  * DSP needs SRC module for frequency conversion, SRC takes base module
616  * configuration and the target frequency as extra parameter passed as src
617  * config
618  */
619 static void skl_set_src_format(struct skl_sst *ctx,
620 			struct skl_module_cfg *mconfig,
621 			struct skl_src_module_cfg *src_mconfig)
622 {
623 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
624 
625 	skl_set_base_module_format(ctx, mconfig,
626 		(struct skl_base_cfg *)src_mconfig);
627 
628 	src_mconfig->src_cfg = fmt->s_freq;
629 }
630 
631 /*
632  * DSP needs updown module to do channel conversion. updown module take base
633  * module configuration and channel configuration
634  * It also take coefficients and now we have defaults applied here
635  */
636 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
637 			struct skl_module_cfg *mconfig,
638 			struct skl_up_down_mixer_cfg *mixer_mconfig)
639 {
640 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
641 	int i = 0;
642 
643 	skl_set_base_module_format(ctx,	mconfig,
644 		(struct skl_base_cfg *)mixer_mconfig);
645 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
646 
647 	/* Select F/W default coefficient */
648 	mixer_mconfig->coeff_sel = 0x0;
649 
650 	/* User coeff, don't care since we are selecting F/W defaults */
651 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
652 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
653 }
654 
655 /*
656  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
657  * dma) or link (hda link, SSP, PDM)
658  * Here we calculate the copier module parameters, like PCM format, output
659  * format, gateway settings
660  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
661  */
662 static void skl_set_copier_format(struct skl_sst *ctx,
663 			struct skl_module_cfg *mconfig,
664 			struct skl_cpr_cfg *cpr_mconfig)
665 {
666 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
667 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
668 
669 	skl_set_base_module_format(ctx, mconfig, base_cfg);
670 
671 	skl_setup_out_format(ctx, mconfig, out_fmt);
672 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
673 }
674 
675 /*
676  * Algo module are DSP pre processing modules. Algo module take base module
677  * configuration and params
678  */
679 
680 static void skl_set_algo_format(struct skl_sst *ctx,
681 			struct skl_module_cfg *mconfig,
682 			struct skl_algo_cfg *algo_mcfg)
683 {
684 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
685 
686 	skl_set_base_module_format(ctx, mconfig, base_cfg);
687 
688 	if (mconfig->formats_config.caps_size == 0)
689 		return;
690 
691 	memcpy(algo_mcfg->params,
692 			mconfig->formats_config.caps,
693 			mconfig->formats_config.caps_size);
694 
695 }
696 
697 /*
698  * Mic select module allows selecting one or many input channels, thus
699  * acting as a demux.
700  *
701  * Mic select module take base module configuration and out-format
702  * configuration
703  */
704 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
705 			struct skl_module_cfg *mconfig,
706 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
707 {
708 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
709 	struct skl_base_cfg *base_cfg =
710 				(struct skl_base_cfg *)base_outfmt_mcfg;
711 
712 	skl_set_base_module_format(ctx, mconfig, base_cfg);
713 	skl_setup_out_format(ctx, mconfig, out_fmt);
714 }
715 
716 static u16 skl_get_module_param_size(struct skl_sst *ctx,
717 			struct skl_module_cfg *mconfig)
718 {
719 	u16 param_size;
720 
721 	switch (mconfig->m_type) {
722 	case SKL_MODULE_TYPE_COPIER:
723 		param_size = sizeof(struct skl_cpr_cfg);
724 		param_size += mconfig->formats_config.caps_size;
725 		return param_size;
726 
727 	case SKL_MODULE_TYPE_SRCINT:
728 		return sizeof(struct skl_src_module_cfg);
729 
730 	case SKL_MODULE_TYPE_UPDWMIX:
731 		return sizeof(struct skl_up_down_mixer_cfg);
732 
733 	case SKL_MODULE_TYPE_ALGO:
734 		param_size = sizeof(struct skl_base_cfg);
735 		param_size += mconfig->formats_config.caps_size;
736 		return param_size;
737 
738 	case SKL_MODULE_TYPE_BASE_OUTFMT:
739 	case SKL_MODULE_TYPE_MIC_SELECT:
740 	case SKL_MODULE_TYPE_KPB:
741 		return sizeof(struct skl_base_outfmt_cfg);
742 
743 	default:
744 		/*
745 		 * return only base cfg when no specific module type is
746 		 * specified
747 		 */
748 		return sizeof(struct skl_base_cfg);
749 	}
750 
751 	return 0;
752 }
753 
754 /*
755  * DSP firmware supports various modules like copier, SRC, updown etc.
756  * These modules required various parameters to be calculated and sent for
757  * the module initialization to DSP. By default a generic module needs only
758  * base module format configuration
759  */
760 
761 static int skl_set_module_format(struct skl_sst *ctx,
762 			struct skl_module_cfg *module_config,
763 			u16 *module_config_size,
764 			void **param_data)
765 {
766 	u16 param_size;
767 
768 	param_size  = skl_get_module_param_size(ctx, module_config);
769 
770 	*param_data = kzalloc(param_size, GFP_KERNEL);
771 	if (NULL == *param_data)
772 		return -ENOMEM;
773 
774 	*module_config_size = param_size;
775 
776 	switch (module_config->m_type) {
777 	case SKL_MODULE_TYPE_COPIER:
778 		skl_set_copier_format(ctx, module_config, *param_data);
779 		break;
780 
781 	case SKL_MODULE_TYPE_SRCINT:
782 		skl_set_src_format(ctx, module_config, *param_data);
783 		break;
784 
785 	case SKL_MODULE_TYPE_UPDWMIX:
786 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
787 		break;
788 
789 	case SKL_MODULE_TYPE_ALGO:
790 		skl_set_algo_format(ctx, module_config, *param_data);
791 		break;
792 
793 	case SKL_MODULE_TYPE_BASE_OUTFMT:
794 	case SKL_MODULE_TYPE_MIC_SELECT:
795 	case SKL_MODULE_TYPE_KPB:
796 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
797 		break;
798 
799 	default:
800 		skl_set_base_module_format(ctx, module_config, *param_data);
801 		break;
802 
803 	}
804 
805 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
806 			module_config->id.module_id, param_size);
807 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
808 			*param_data, param_size, false);
809 	return 0;
810 }
811 
812 static int skl_get_queue_index(struct skl_module_pin *mpin,
813 				struct skl_module_inst_id id, int max)
814 {
815 	int i;
816 
817 	for (i = 0; i < max; i++)  {
818 		if (mpin[i].id.module_id == id.module_id &&
819 			mpin[i].id.instance_id == id.instance_id)
820 			return i;
821 	}
822 
823 	return -EINVAL;
824 }
825 
826 /*
827  * Allocates queue for each module.
828  * if dynamic, the pin_index is allocated 0 to max_pin.
829  * In static, the pin_index is fixed based on module_id and instance id
830  */
831 static int skl_alloc_queue(struct skl_module_pin *mpin,
832 			struct skl_module_cfg *tgt_cfg, int max)
833 {
834 	int i;
835 	struct skl_module_inst_id id = tgt_cfg->id;
836 	/*
837 	 * if pin in dynamic, find first free pin
838 	 * otherwise find match module and instance id pin as topology will
839 	 * ensure a unique pin is assigned to this so no need to
840 	 * allocate/free
841 	 */
842 	for (i = 0; i < max; i++)  {
843 		if (mpin[i].is_dynamic) {
844 			if (!mpin[i].in_use &&
845 				mpin[i].pin_state == SKL_PIN_UNBIND) {
846 
847 				mpin[i].in_use = true;
848 				mpin[i].id.module_id = id.module_id;
849 				mpin[i].id.instance_id = id.instance_id;
850 				mpin[i].id.pvt_id = id.pvt_id;
851 				mpin[i].tgt_mcfg = tgt_cfg;
852 				return i;
853 			}
854 		} else {
855 			if (mpin[i].id.module_id == id.module_id &&
856 				mpin[i].id.instance_id == id.instance_id &&
857 				mpin[i].pin_state == SKL_PIN_UNBIND) {
858 
859 				mpin[i].tgt_mcfg = tgt_cfg;
860 				return i;
861 			}
862 		}
863 	}
864 
865 	return -EINVAL;
866 }
867 
868 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
869 {
870 	if (mpin[q_index].is_dynamic) {
871 		mpin[q_index].in_use = false;
872 		mpin[q_index].id.module_id = 0;
873 		mpin[q_index].id.instance_id = 0;
874 		mpin[q_index].id.pvt_id = 0;
875 	}
876 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
877 	mpin[q_index].tgt_mcfg = NULL;
878 }
879 
880 /* Module state will be set to unint, if all the out pin state is UNBIND */
881 
882 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
883 						struct skl_module_cfg *mcfg)
884 {
885 	int i;
886 	bool found = false;
887 
888 	for (i = 0; i < max; i++)  {
889 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
890 			continue;
891 		found = true;
892 		break;
893 	}
894 
895 	if (!found)
896 		mcfg->m_state = SKL_MODULE_INIT_DONE;
897 	return;
898 }
899 
900 /*
901  * A module needs to be instanataited in DSP. A mdoule is present in a
902  * collection of module referred as a PIPE.
903  * We first calculate the module format, based on module type and then
904  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
905  */
906 int skl_init_module(struct skl_sst *ctx,
907 			struct skl_module_cfg *mconfig)
908 {
909 	u16 module_config_size = 0;
910 	void *param_data = NULL;
911 	int ret;
912 	struct skl_ipc_init_instance_msg msg;
913 
914 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
915 		 mconfig->id.module_id, mconfig->id.pvt_id);
916 
917 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
918 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
919 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
920 		return -EIO;
921 	}
922 
923 	ret = skl_set_module_format(ctx, mconfig,
924 			&module_config_size, &param_data);
925 	if (ret < 0) {
926 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
927 		return ret;
928 	}
929 
930 	msg.module_id = mconfig->id.module_id;
931 	msg.instance_id = mconfig->id.pvt_id;
932 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
933 	msg.param_data_size = module_config_size;
934 	msg.core_id = mconfig->core_id;
935 	msg.domain = mconfig->domain;
936 
937 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
938 	if (ret < 0) {
939 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
940 		kfree(param_data);
941 		return ret;
942 	}
943 	mconfig->m_state = SKL_MODULE_INIT_DONE;
944 	kfree(param_data);
945 	return ret;
946 }
947 
948 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
949 	*src_module, struct skl_module_cfg *dst_module)
950 {
951 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
952 		__func__, src_module->id.module_id, src_module->id.pvt_id);
953 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
954 		 dst_module->id.module_id, dst_module->id.pvt_id);
955 
956 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
957 		src_module->m_state, dst_module->m_state);
958 }
959 
960 /*
961  * On module freeup, we need to unbind the module with modules
962  * it is already bind.
963  * Find the pin allocated and unbind then using bind_unbind IPC
964  */
965 int skl_unbind_modules(struct skl_sst *ctx,
966 			struct skl_module_cfg *src_mcfg,
967 			struct skl_module_cfg *dst_mcfg)
968 {
969 	int ret;
970 	struct skl_ipc_bind_unbind_msg msg;
971 	struct skl_module_inst_id src_id = src_mcfg->id;
972 	struct skl_module_inst_id dst_id = dst_mcfg->id;
973 	int in_max = dst_mcfg->max_in_queue;
974 	int out_max = src_mcfg->max_out_queue;
975 	int src_index, dst_index, src_pin_state, dst_pin_state;
976 
977 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
978 
979 	/* get src queue index */
980 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
981 	if (src_index < 0)
982 		return 0;
983 
984 	msg.src_queue = src_index;
985 
986 	/* get dst queue index */
987 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
988 	if (dst_index < 0)
989 		return 0;
990 
991 	msg.dst_queue = dst_index;
992 
993 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
994 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
995 
996 	if (src_pin_state != SKL_PIN_BIND_DONE ||
997 		dst_pin_state != SKL_PIN_BIND_DONE)
998 		return 0;
999 
1000 	msg.module_id = src_mcfg->id.module_id;
1001 	msg.instance_id = src_mcfg->id.pvt_id;
1002 	msg.dst_module_id = dst_mcfg->id.module_id;
1003 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1004 	msg.bind = false;
1005 
1006 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1007 	if (!ret) {
1008 		/* free queue only if unbind is success */
1009 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1010 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1011 
1012 		/*
1013 		 * check only if src module bind state, bind is
1014 		 * always from src -> sink
1015 		 */
1016 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 /*
1023  * Once a module is instantiated it need to be 'bind' with other modules in
1024  * the pipeline. For binding we need to find the module pins which are bind
1025  * together
1026  * This function finds the pins and then sends bund_unbind IPC message to
1027  * DSP using IPC helper
1028  */
1029 int skl_bind_modules(struct skl_sst *ctx,
1030 			struct skl_module_cfg *src_mcfg,
1031 			struct skl_module_cfg *dst_mcfg)
1032 {
1033 	int ret;
1034 	struct skl_ipc_bind_unbind_msg msg;
1035 	int in_max = dst_mcfg->max_in_queue;
1036 	int out_max = src_mcfg->max_out_queue;
1037 	int src_index, dst_index;
1038 
1039 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1040 
1041 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1042 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1043 		return 0;
1044 
1045 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1046 	if (src_index < 0)
1047 		return -EINVAL;
1048 
1049 	msg.src_queue = src_index;
1050 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1051 	if (dst_index < 0) {
1052 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1053 		return -EINVAL;
1054 	}
1055 
1056 	msg.dst_queue = dst_index;
1057 
1058 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1059 			 msg.src_queue, msg.dst_queue);
1060 
1061 	msg.module_id = src_mcfg->id.module_id;
1062 	msg.instance_id = src_mcfg->id.pvt_id;
1063 	msg.dst_module_id = dst_mcfg->id.module_id;
1064 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1065 	msg.bind = true;
1066 
1067 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1068 
1069 	if (!ret) {
1070 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1071 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1072 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1073 	} else {
1074 		/* error case , if IPC fails, clear the queue index */
1075 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1076 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1077 	}
1078 
1079 	return ret;
1080 }
1081 
1082 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1083 	enum skl_ipc_pipeline_state state)
1084 {
1085 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1086 
1087 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1088 }
1089 
1090 /*
1091  * A pipeline is a collection of modules. Before a module in instantiated a
1092  * pipeline needs to be created for it.
1093  * This function creates pipeline, by sending create pipeline IPC messages
1094  * to FW
1095  */
1096 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1097 {
1098 	int ret;
1099 
1100 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1101 
1102 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1103 				pipe->pipe_priority, pipe->ppl_id,
1104 				pipe->lp_mode);
1105 	if (ret < 0) {
1106 		dev_err(ctx->dev, "Failed to create pipeline\n");
1107 		return ret;
1108 	}
1109 
1110 	pipe->state = SKL_PIPE_CREATED;
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1117  * pause the pipeline first and then delete it
1118  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1119  * DMA engines and releases resources
1120  */
1121 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1122 {
1123 	int ret;
1124 
1125 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1126 
1127 	/* If pipe is started, do stop the pipe in FW. */
1128 	if (pipe->state >= SKL_PIPE_STARTED) {
1129 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1130 		if (ret < 0) {
1131 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1132 			return ret;
1133 		}
1134 
1135 		pipe->state = SKL_PIPE_PAUSED;
1136 	}
1137 
1138 	/* If pipe was not created in FW, do not try to delete it */
1139 	if (pipe->state < SKL_PIPE_CREATED)
1140 		return 0;
1141 
1142 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1143 	if (ret < 0) {
1144 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1145 		return ret;
1146 	}
1147 
1148 	pipe->state = SKL_PIPE_INVALID;
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1155  * For processing data the pipe need to be run by sending IPC set pipe state
1156  * to DSP
1157  */
1158 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1159 {
1160 	int ret;
1161 
1162 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1163 
1164 	/* If pipe was not created in FW, do not try to pause or delete */
1165 	if (pipe->state < SKL_PIPE_CREATED)
1166 		return 0;
1167 
1168 	/* Pipe has to be paused before it is started */
1169 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1170 	if (ret < 0) {
1171 		dev_err(ctx->dev, "Failed to pause pipe\n");
1172 		return ret;
1173 	}
1174 
1175 	pipe->state = SKL_PIPE_PAUSED;
1176 
1177 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1178 	if (ret < 0) {
1179 		dev_err(ctx->dev, "Failed to start pipe\n");
1180 		return ret;
1181 	}
1182 
1183 	pipe->state = SKL_PIPE_STARTED;
1184 
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Stop the pipeline by sending set pipe state IPC
1190  * DSP doesnt implement stop so we always send pause message
1191  */
1192 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1193 {
1194 	int ret;
1195 
1196 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1197 
1198 	/* If pipe was not created in FW, do not try to pause or delete */
1199 	if (pipe->state < SKL_PIPE_PAUSED)
1200 		return 0;
1201 
1202 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1203 	if (ret < 0) {
1204 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1205 		return ret;
1206 	}
1207 
1208 	pipe->state = SKL_PIPE_PAUSED;
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1215  * from the DSP side
1216  */
1217 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1218 {
1219 	int ret;
1220 
1221 	/* If pipe was not created in FW, do not try to pause or delete */
1222 	if (pipe->state < SKL_PIPE_PAUSED)
1223 		return 0;
1224 
1225 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1226 	if (ret < 0) {
1227 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1228 		return ret;
1229 	}
1230 
1231 	pipe->state = SKL_PIPE_RESET;
1232 
1233 	return 0;
1234 }
1235 
1236 /* Algo parameter set helper function */
1237 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1238 				u32 param_id, struct skl_module_cfg *mcfg)
1239 {
1240 	struct skl_ipc_large_config_msg msg;
1241 
1242 	msg.module_id = mcfg->id.module_id;
1243 	msg.instance_id = mcfg->id.pvt_id;
1244 	msg.param_data_size = size;
1245 	msg.large_param_id = param_id;
1246 
1247 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1248 }
1249 
1250 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1251 			  u32 param_id, struct skl_module_cfg *mcfg)
1252 {
1253 	struct skl_ipc_large_config_msg msg;
1254 
1255 	msg.module_id = mcfg->id.module_id;
1256 	msg.instance_id = mcfg->id.pvt_id;
1257 	msg.param_data_size = size;
1258 	msg.large_param_id = param_id;
1259 
1260 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1261 }
1262