1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "cnl-sst-dsp.h"
26 #include "skl-sst-ipc.h"
27 #include "skl.h"
28 #include "../common/sst-dsp.h"
29 #include "../common/sst-dsp-priv.h"
30 #include "skl-topology.h"
31 #include "skl-tplg-interface.h"
32 
33 static int skl_alloc_dma_buf(struct device *dev,
34 		struct snd_dma_buffer *dmab, size_t size)
35 {
36 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
37 	struct hdac_bus *bus = ebus_to_hbus(ebus);
38 
39 	if (!bus)
40 		return -ENODEV;
41 
42 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
43 }
44 
45 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 {
47 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
48 	struct hdac_bus *bus = ebus_to_hbus(ebus);
49 
50 	if (!bus)
51 		return -ENODEV;
52 
53 	bus->io_ops->dma_free_pages(bus, dmab);
54 
55 	return 0;
56 }
57 
58 #define NOTIFICATION_PARAM_ID 3
59 #define NOTIFICATION_MASK 0xf
60 
61 /* disable notfication for underruns/overruns from firmware module */
62 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
63 {
64 	struct notification_mask mask;
65 	struct skl_ipc_large_config_msg	msg = {0};
66 
67 	mask.notify = NOTIFICATION_MASK;
68 	mask.enable = enable;
69 
70 	msg.large_param_id = NOTIFICATION_PARAM_ID;
71 	msg.param_data_size = sizeof(mask);
72 
73 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
74 }
75 
76 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
77 				int stream_tag, int enable)
78 {
79 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
80 	struct hdac_bus *bus = ebus_to_hbus(ebus);
81 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
82 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
83 	struct hdac_ext_stream *estream;
84 
85 	if (!stream)
86 		return -EINVAL;
87 
88 	estream = stream_to_hdac_ext_stream(stream);
89 	/* enable/disable SPIB for this hdac stream */
90 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
91 
92 	/* set the spib value */
93 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
94 
95 	return 0;
96 }
97 
98 static int skl_dsp_prepare(struct device *dev, unsigned int format,
99 			unsigned int size, struct snd_dma_buffer *dmab)
100 {
101 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
102 	struct hdac_bus *bus = ebus_to_hbus(ebus);
103 	struct hdac_ext_stream *estream;
104 	struct hdac_stream *stream;
105 	struct snd_pcm_substream substream;
106 	int ret;
107 
108 	if (!bus)
109 		return -ENODEV;
110 
111 	memset(&substream, 0, sizeof(substream));
112 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
113 
114 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
115 					HDAC_EXT_STREAM_TYPE_HOST);
116 	if (!estream)
117 		return -ENODEV;
118 
119 	stream = hdac_stream(estream);
120 
121 	/* assign decouple host dma channel */
122 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
123 	if (ret < 0)
124 		return ret;
125 
126 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
127 
128 	return stream->stream_tag;
129 }
130 
131 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
132 {
133 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
134 	struct hdac_stream *stream;
135 	struct hdac_bus *bus = ebus_to_hbus(ebus);
136 
137 	if (!bus)
138 		return -ENODEV;
139 
140 	stream = snd_hdac_get_stream(bus,
141 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
142 	if (!stream)
143 		return -EINVAL;
144 
145 	snd_hdac_dsp_trigger(stream, start);
146 
147 	return 0;
148 }
149 
150 static int skl_dsp_cleanup(struct device *dev,
151 		struct snd_dma_buffer *dmab, int stream_tag)
152 {
153 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
154 	struct hdac_stream *stream;
155 	struct hdac_ext_stream *estream;
156 	struct hdac_bus *bus = ebus_to_hbus(ebus);
157 
158 	if (!bus)
159 		return -ENODEV;
160 
161 	stream = snd_hdac_get_stream(bus,
162 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
163 	if (!stream)
164 		return -EINVAL;
165 
166 	estream = stream_to_hdac_ext_stream(stream);
167 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
168 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
169 
170 	snd_hdac_dsp_cleanup(stream, dmab);
171 
172 	return 0;
173 }
174 
175 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
176 {
177 	struct skl_dsp_loader_ops loader_ops;
178 
179 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
180 
181 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
182 	loader_ops.free_dma_buf = skl_free_dma_buf;
183 
184 	return loader_ops;
185 };
186 
187 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
188 {
189 	struct skl_dsp_loader_ops loader_ops;
190 
191 	memset(&loader_ops, 0, sizeof(loader_ops));
192 
193 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
194 	loader_ops.free_dma_buf = skl_free_dma_buf;
195 	loader_ops.prepare = skl_dsp_prepare;
196 	loader_ops.trigger = skl_dsp_trigger;
197 	loader_ops.cleanup = skl_dsp_cleanup;
198 
199 	return loader_ops;
200 };
201 
202 static const struct skl_dsp_ops dsp_ops[] = {
203 	{
204 		.id = 0x9d70,
205 		.num_cores = 2,
206 		.loader_ops = skl_get_loader_ops,
207 		.init = skl_sst_dsp_init,
208 		.init_fw = skl_sst_init_fw,
209 		.cleanup = skl_sst_dsp_cleanup
210 	},
211 	{
212 		.id = 0x9d71,
213 		.num_cores = 2,
214 		.loader_ops = skl_get_loader_ops,
215 		.init = kbl_sst_dsp_init,
216 		.init_fw = skl_sst_init_fw,
217 		.cleanup = skl_sst_dsp_cleanup
218 	},
219 	{
220 		.id = 0x5a98,
221 		.num_cores = 2,
222 		.loader_ops = bxt_get_loader_ops,
223 		.init = bxt_sst_dsp_init,
224 		.init_fw = bxt_sst_init_fw,
225 		.cleanup = bxt_sst_dsp_cleanup
226 	},
227 	{
228 		.id = 0x3198,
229 		.num_cores = 2,
230 		.loader_ops = bxt_get_loader_ops,
231 		.init = bxt_sst_dsp_init,
232 		.init_fw = bxt_sst_init_fw,
233 		.cleanup = bxt_sst_dsp_cleanup
234 	},
235 	{
236 		.id = 0x9dc8,
237 		.num_cores = 4,
238 		.loader_ops = bxt_get_loader_ops,
239 		.init = cnl_sst_dsp_init,
240 		.init_fw = cnl_sst_init_fw,
241 		.cleanup = cnl_sst_dsp_cleanup
242 	},
243 };
244 
245 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
246 {
247 	int i;
248 
249 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
250 		if (dsp_ops[i].id == pci_id)
251 			return &dsp_ops[i];
252 	}
253 
254 	return NULL;
255 }
256 
257 int skl_init_dsp(struct skl *skl)
258 {
259 	void __iomem *mmio_base;
260 	struct hdac_ext_bus *ebus = &skl->ebus;
261 	struct hdac_bus *bus = ebus_to_hbus(ebus);
262 	struct skl_dsp_loader_ops loader_ops;
263 	int irq = bus->irq;
264 	const struct skl_dsp_ops *ops;
265 	struct skl_dsp_cores *cores;
266 	int ret;
267 
268 	/* enable ppcap interrupt */
269 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
270 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
271 
272 	/* read the BAR of the ADSP MMIO */
273 	mmio_base = pci_ioremap_bar(skl->pci, 4);
274 	if (mmio_base == NULL) {
275 		dev_err(bus->dev, "ioremap error\n");
276 		return -ENXIO;
277 	}
278 
279 	ops = skl_get_dsp_ops(skl->pci->device);
280 	if (!ops) {
281 		ret = -EIO;
282 		goto unmap_mmio;
283 	}
284 
285 	loader_ops = ops->loader_ops();
286 	ret = ops->init(bus->dev, mmio_base, irq,
287 				skl->fw_name, loader_ops,
288 				&skl->skl_sst);
289 
290 	if (ret < 0)
291 		goto unmap_mmio;
292 
293 	skl->skl_sst->dsp_ops = ops;
294 	cores = &skl->skl_sst->cores;
295 	cores->count = ops->num_cores;
296 
297 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
298 	if (!cores->state) {
299 		ret = -ENOMEM;
300 		goto unmap_mmio;
301 	}
302 
303 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
304 				     GFP_KERNEL);
305 	if (!cores->usage_count) {
306 		ret = -ENOMEM;
307 		goto free_core_state;
308 	}
309 
310 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
311 
312 	return 0;
313 
314 free_core_state:
315 	kfree(cores->state);
316 
317 unmap_mmio:
318 	iounmap(mmio_base);
319 
320 	return ret;
321 }
322 
323 int skl_free_dsp(struct skl *skl)
324 {
325 	struct hdac_ext_bus *ebus = &skl->ebus;
326 	struct hdac_bus *bus = ebus_to_hbus(ebus);
327 	struct skl_sst *ctx = skl->skl_sst;
328 
329 	/* disable  ppcap interrupt */
330 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
331 
332 	ctx->dsp_ops->cleanup(bus->dev, ctx);
333 
334 	kfree(ctx->cores.state);
335 	kfree(ctx->cores.usage_count);
336 
337 	if (ctx->dsp->addr.lpe)
338 		iounmap(ctx->dsp->addr.lpe);
339 
340 	return 0;
341 }
342 
343 /*
344  * In the case of "suspend_active" i.e, the Audio IP being active
345  * during system suspend, immediately excecute any pending D0i3 work
346  * before suspending. This is needed for the IP to work in low power
347  * mode during system suspend. In the case of normal suspend, cancel
348  * any pending D0i3 work.
349  */
350 int skl_suspend_late_dsp(struct skl *skl)
351 {
352 	struct skl_sst *ctx = skl->skl_sst;
353 	struct delayed_work *dwork;
354 
355 	if (!ctx)
356 		return 0;
357 
358 	dwork = &ctx->d0i3.work;
359 
360 	if (dwork->work.func) {
361 		if (skl->supend_active)
362 			flush_delayed_work(dwork);
363 		else
364 			cancel_delayed_work_sync(dwork);
365 	}
366 
367 	return 0;
368 }
369 
370 int skl_suspend_dsp(struct skl *skl)
371 {
372 	struct skl_sst *ctx = skl->skl_sst;
373 	int ret;
374 
375 	/* if ppcap is not supported return 0 */
376 	if (!skl->ebus.bus.ppcap)
377 		return 0;
378 
379 	ret = skl_dsp_sleep(ctx->dsp);
380 	if (ret < 0)
381 		return ret;
382 
383 	/* disable ppcap interrupt */
384 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
385 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
386 
387 	return 0;
388 }
389 
390 int skl_resume_dsp(struct skl *skl)
391 {
392 	struct skl_sst *ctx = skl->skl_sst;
393 	int ret;
394 
395 	/* if ppcap is not supported return 0 */
396 	if (!skl->ebus.bus.ppcap)
397 		return 0;
398 
399 	/* enable ppcap interrupt */
400 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
401 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
402 
403 	/* check if DSP 1st boot is done */
404 	if (skl->skl_sst->is_first_boot == true)
405 		return 0;
406 
407 	ret = skl_dsp_wake(ctx->dsp);
408 	if (ret < 0)
409 		return ret;
410 
411 	skl_dsp_enable_notification(skl->skl_sst, false);
412 	return ret;
413 }
414 
415 enum skl_bitdepth skl_get_bit_depth(int params)
416 {
417 	switch (params) {
418 	case 8:
419 		return SKL_DEPTH_8BIT;
420 
421 	case 16:
422 		return SKL_DEPTH_16BIT;
423 
424 	case 24:
425 		return SKL_DEPTH_24BIT;
426 
427 	case 32:
428 		return SKL_DEPTH_32BIT;
429 
430 	default:
431 		return SKL_DEPTH_INVALID;
432 
433 	}
434 }
435 
436 /*
437  * Each module in DSP expects a base module configuration, which consists of
438  * PCM format information, which we calculate in driver and resource values
439  * which are read from widget information passed through topology binary
440  * This is send when we create a module with INIT_INSTANCE IPC msg
441  */
442 static void skl_set_base_module_format(struct skl_sst *ctx,
443 			struct skl_module_cfg *mconfig,
444 			struct skl_base_cfg *base_cfg)
445 {
446 	struct skl_module *module = mconfig->module;
447 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
448 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
449 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
450 
451 	base_cfg->audio_fmt.number_of_channels = format->channels;
452 
453 	base_cfg->audio_fmt.s_freq = format->s_freq;
454 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
455 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
456 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
457 
458 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
459 			format->bit_depth, format->valid_bit_depth,
460 			format->ch_cfg);
461 
462 	base_cfg->audio_fmt.channel_map = format->ch_map;
463 
464 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
465 
466 	base_cfg->cps = res->cps;
467 	base_cfg->ibs = res->ibs;
468 	base_cfg->obs = res->obs;
469 	base_cfg->is_pages = res->is_pages;
470 }
471 
472 /*
473  * Copies copier capabilities into copier module and updates copier module
474  * config size.
475  */
476 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
477 				struct skl_cpr_cfg *cpr_mconfig)
478 {
479 	if (mconfig->formats_config.caps_size == 0)
480 		return;
481 
482 	memcpy(cpr_mconfig->gtw_cfg.config_data,
483 			mconfig->formats_config.caps,
484 			mconfig->formats_config.caps_size);
485 
486 	cpr_mconfig->gtw_cfg.config_length =
487 			(mconfig->formats_config.caps_size) / 4;
488 }
489 
490 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
491 /*
492  * Calculate the gatewat settings required for copier module, type of
493  * gateway and index of gateway to use
494  */
495 static u32 skl_get_node_id(struct skl_sst *ctx,
496 			struct skl_module_cfg *mconfig)
497 {
498 	union skl_connector_node_id node_id = {0};
499 	union skl_ssp_dma_node ssp_node  = {0};
500 	struct skl_pipe_params *params = mconfig->pipe->p_params;
501 
502 	switch (mconfig->dev_type) {
503 	case SKL_DEVICE_BT:
504 		node_id.node.dma_type =
505 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
506 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
507 			SKL_DMA_I2S_LINK_INPUT_CLASS;
508 		node_id.node.vindex = params->host_dma_id +
509 					(mconfig->vbus_id << 3);
510 		break;
511 
512 	case SKL_DEVICE_I2S:
513 		node_id.node.dma_type =
514 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
515 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
516 			SKL_DMA_I2S_LINK_INPUT_CLASS;
517 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
518 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
519 		node_id.node.vindex = ssp_node.val;
520 		break;
521 
522 	case SKL_DEVICE_DMIC:
523 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
524 		node_id.node.vindex = mconfig->vbus_id +
525 					 (mconfig->time_slot);
526 		break;
527 
528 	case SKL_DEVICE_HDALINK:
529 		node_id.node.dma_type =
530 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
531 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
532 			SKL_DMA_HDA_LINK_INPUT_CLASS;
533 		node_id.node.vindex = params->link_dma_id;
534 		break;
535 
536 	case SKL_DEVICE_HDAHOST:
537 		node_id.node.dma_type =
538 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
539 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
540 			SKL_DMA_HDA_HOST_INPUT_CLASS;
541 		node_id.node.vindex = params->host_dma_id;
542 		break;
543 
544 	default:
545 		node_id.val = 0xFFFFFFFF;
546 		break;
547 	}
548 
549 	return node_id.val;
550 }
551 
552 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
553 			struct skl_module_cfg *mconfig,
554 			struct skl_cpr_cfg *cpr_mconfig)
555 {
556 	u32 dma_io_buf;
557 	struct skl_module_res *res;
558 	int res_idx = mconfig->res_idx;
559 	struct skl *skl = get_skl_ctx(ctx->dev);
560 
561 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
562 
563 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
564 		cpr_mconfig->cpr_feature_mask = 0;
565 		return;
566 	}
567 
568 	if (skl->nr_modules) {
569 		res = &mconfig->module->resources[mconfig->res_idx];
570 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
571 		goto skip_buf_size_calc;
572 	} else {
573 		res = &mconfig->module->resources[res_idx];
574 	}
575 
576 	switch (mconfig->hw_conn_type) {
577 	case SKL_CONN_SOURCE:
578 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
579 			dma_io_buf =  res->ibs;
580 		else
581 			dma_io_buf =  res->obs;
582 		break;
583 
584 	case SKL_CONN_SINK:
585 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
586 			dma_io_buf =  res->obs;
587 		else
588 			dma_io_buf =  res->ibs;
589 		break;
590 
591 	default:
592 		dev_warn(ctx->dev, "wrong connection type: %d\n",
593 				mconfig->hw_conn_type);
594 		return;
595 	}
596 
597 	cpr_mconfig->gtw_cfg.dma_buffer_size =
598 				mconfig->dma_buffer_size * dma_io_buf;
599 
600 	/* fallback to 2ms default value */
601 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
602 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
603 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
604 		else
605 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
606 	}
607 
608 skip_buf_size_calc:
609 	cpr_mconfig->cpr_feature_mask = 0;
610 	cpr_mconfig->gtw_cfg.config_length  = 0;
611 
612 	skl_copy_copier_caps(mconfig, cpr_mconfig);
613 }
614 
615 #define DMA_CONTROL_ID 5
616 
617 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
618 {
619 	struct skl_dma_control *dma_ctrl;
620 	struct skl_ipc_large_config_msg msg = {0};
621 	int err = 0;
622 
623 
624 	/*
625 	 * if blob size zero, then return
626 	 */
627 	if (mconfig->formats_config.caps_size == 0)
628 		return 0;
629 
630 	msg.large_param_id = DMA_CONTROL_ID;
631 	msg.param_data_size = sizeof(struct skl_dma_control) +
632 				mconfig->formats_config.caps_size;
633 
634 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
635 	if (dma_ctrl == NULL)
636 		return -ENOMEM;
637 
638 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
639 
640 	/* size in dwords */
641 	dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
642 
643 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
644 				mconfig->formats_config.caps_size);
645 
646 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
647 
648 	kfree(dma_ctrl);
649 	return err;
650 }
651 
652 static void skl_setup_out_format(struct skl_sst *ctx,
653 			struct skl_module_cfg *mconfig,
654 			struct skl_audio_data_format *out_fmt)
655 {
656 	struct skl_module *module = mconfig->module;
657 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
658 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
659 
660 	out_fmt->number_of_channels = (u8)format->channels;
661 	out_fmt->s_freq = format->s_freq;
662 	out_fmt->bit_depth = format->bit_depth;
663 	out_fmt->valid_bit_depth = format->valid_bit_depth;
664 	out_fmt->ch_cfg = format->ch_cfg;
665 
666 	out_fmt->channel_map = format->ch_map;
667 	out_fmt->interleaving = format->interleaving_style;
668 	out_fmt->sample_type = format->sample_type;
669 
670 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
671 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
672 }
673 
674 /*
675  * DSP needs SRC module for frequency conversion, SRC takes base module
676  * configuration and the target frequency as extra parameter passed as src
677  * config
678  */
679 static void skl_set_src_format(struct skl_sst *ctx,
680 			struct skl_module_cfg *mconfig,
681 			struct skl_src_module_cfg *src_mconfig)
682 {
683 	struct skl_module *module = mconfig->module;
684 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
685 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
686 
687 	skl_set_base_module_format(ctx, mconfig,
688 		(struct skl_base_cfg *)src_mconfig);
689 
690 	src_mconfig->src_cfg = fmt->s_freq;
691 }
692 
693 /*
694  * DSP needs updown module to do channel conversion. updown module take base
695  * module configuration and channel configuration
696  * It also take coefficients and now we have defaults applied here
697  */
698 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
699 			struct skl_module_cfg *mconfig,
700 			struct skl_up_down_mixer_cfg *mixer_mconfig)
701 {
702 	struct skl_module *module = mconfig->module;
703 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
704 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
705 	int i = 0;
706 
707 	skl_set_base_module_format(ctx,	mconfig,
708 		(struct skl_base_cfg *)mixer_mconfig);
709 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
710 
711 	/* Select F/W default coefficient */
712 	mixer_mconfig->coeff_sel = 0x0;
713 
714 	/* User coeff, don't care since we are selecting F/W defaults */
715 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
716 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
717 }
718 
719 /*
720  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
721  * dma) or link (hda link, SSP, PDM)
722  * Here we calculate the copier module parameters, like PCM format, output
723  * format, gateway settings
724  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
725  */
726 static void skl_set_copier_format(struct skl_sst *ctx,
727 			struct skl_module_cfg *mconfig,
728 			struct skl_cpr_cfg *cpr_mconfig)
729 {
730 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
731 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
732 
733 	skl_set_base_module_format(ctx, mconfig, base_cfg);
734 
735 	skl_setup_out_format(ctx, mconfig, out_fmt);
736 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
737 }
738 
739 /*
740  * Algo module are DSP pre processing modules. Algo module take base module
741  * configuration and params
742  */
743 
744 static void skl_set_algo_format(struct skl_sst *ctx,
745 			struct skl_module_cfg *mconfig,
746 			struct skl_algo_cfg *algo_mcfg)
747 {
748 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
749 
750 	skl_set_base_module_format(ctx, mconfig, base_cfg);
751 
752 	if (mconfig->formats_config.caps_size == 0)
753 		return;
754 
755 	memcpy(algo_mcfg->params,
756 			mconfig->formats_config.caps,
757 			mconfig->formats_config.caps_size);
758 
759 }
760 
761 /*
762  * Mic select module allows selecting one or many input channels, thus
763  * acting as a demux.
764  *
765  * Mic select module take base module configuration and out-format
766  * configuration
767  */
768 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
769 			struct skl_module_cfg *mconfig,
770 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
771 {
772 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
773 	struct skl_base_cfg *base_cfg =
774 				(struct skl_base_cfg *)base_outfmt_mcfg;
775 
776 	skl_set_base_module_format(ctx, mconfig, base_cfg);
777 	skl_setup_out_format(ctx, mconfig, out_fmt);
778 }
779 
780 static u16 skl_get_module_param_size(struct skl_sst *ctx,
781 			struct skl_module_cfg *mconfig)
782 {
783 	u16 param_size;
784 
785 	switch (mconfig->m_type) {
786 	case SKL_MODULE_TYPE_COPIER:
787 		param_size = sizeof(struct skl_cpr_cfg);
788 		param_size += mconfig->formats_config.caps_size;
789 		return param_size;
790 
791 	case SKL_MODULE_TYPE_SRCINT:
792 		return sizeof(struct skl_src_module_cfg);
793 
794 	case SKL_MODULE_TYPE_UPDWMIX:
795 		return sizeof(struct skl_up_down_mixer_cfg);
796 
797 	case SKL_MODULE_TYPE_ALGO:
798 		param_size = sizeof(struct skl_base_cfg);
799 		param_size += mconfig->formats_config.caps_size;
800 		return param_size;
801 
802 	case SKL_MODULE_TYPE_BASE_OUTFMT:
803 	case SKL_MODULE_TYPE_MIC_SELECT:
804 	case SKL_MODULE_TYPE_KPB:
805 		return sizeof(struct skl_base_outfmt_cfg);
806 
807 	default:
808 		/*
809 		 * return only base cfg when no specific module type is
810 		 * specified
811 		 */
812 		return sizeof(struct skl_base_cfg);
813 	}
814 
815 	return 0;
816 }
817 
818 /*
819  * DSP firmware supports various modules like copier, SRC, updown etc.
820  * These modules required various parameters to be calculated and sent for
821  * the module initialization to DSP. By default a generic module needs only
822  * base module format configuration
823  */
824 
825 static int skl_set_module_format(struct skl_sst *ctx,
826 			struct skl_module_cfg *module_config,
827 			u16 *module_config_size,
828 			void **param_data)
829 {
830 	u16 param_size;
831 
832 	param_size  = skl_get_module_param_size(ctx, module_config);
833 
834 	*param_data = kzalloc(param_size, GFP_KERNEL);
835 	if (NULL == *param_data)
836 		return -ENOMEM;
837 
838 	*module_config_size = param_size;
839 
840 	switch (module_config->m_type) {
841 	case SKL_MODULE_TYPE_COPIER:
842 		skl_set_copier_format(ctx, module_config, *param_data);
843 		break;
844 
845 	case SKL_MODULE_TYPE_SRCINT:
846 		skl_set_src_format(ctx, module_config, *param_data);
847 		break;
848 
849 	case SKL_MODULE_TYPE_UPDWMIX:
850 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
851 		break;
852 
853 	case SKL_MODULE_TYPE_ALGO:
854 		skl_set_algo_format(ctx, module_config, *param_data);
855 		break;
856 
857 	case SKL_MODULE_TYPE_BASE_OUTFMT:
858 	case SKL_MODULE_TYPE_MIC_SELECT:
859 	case SKL_MODULE_TYPE_KPB:
860 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
861 		break;
862 
863 	default:
864 		skl_set_base_module_format(ctx, module_config, *param_data);
865 		break;
866 
867 	}
868 
869 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
870 			module_config->id.module_id, param_size);
871 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
872 			*param_data, param_size, false);
873 	return 0;
874 }
875 
876 static int skl_get_queue_index(struct skl_module_pin *mpin,
877 				struct skl_module_inst_id id, int max)
878 {
879 	int i;
880 
881 	for (i = 0; i < max; i++)  {
882 		if (mpin[i].id.module_id == id.module_id &&
883 			mpin[i].id.instance_id == id.instance_id)
884 			return i;
885 	}
886 
887 	return -EINVAL;
888 }
889 
890 /*
891  * Allocates queue for each module.
892  * if dynamic, the pin_index is allocated 0 to max_pin.
893  * In static, the pin_index is fixed based on module_id and instance id
894  */
895 static int skl_alloc_queue(struct skl_module_pin *mpin,
896 			struct skl_module_cfg *tgt_cfg, int max)
897 {
898 	int i;
899 	struct skl_module_inst_id id = tgt_cfg->id;
900 	/*
901 	 * if pin in dynamic, find first free pin
902 	 * otherwise find match module and instance id pin as topology will
903 	 * ensure a unique pin is assigned to this so no need to
904 	 * allocate/free
905 	 */
906 	for (i = 0; i < max; i++)  {
907 		if (mpin[i].is_dynamic) {
908 			if (!mpin[i].in_use &&
909 				mpin[i].pin_state == SKL_PIN_UNBIND) {
910 
911 				mpin[i].in_use = true;
912 				mpin[i].id.module_id = id.module_id;
913 				mpin[i].id.instance_id = id.instance_id;
914 				mpin[i].id.pvt_id = id.pvt_id;
915 				mpin[i].tgt_mcfg = tgt_cfg;
916 				return i;
917 			}
918 		} else {
919 			if (mpin[i].id.module_id == id.module_id &&
920 				mpin[i].id.instance_id == id.instance_id &&
921 				mpin[i].pin_state == SKL_PIN_UNBIND) {
922 
923 				mpin[i].tgt_mcfg = tgt_cfg;
924 				return i;
925 			}
926 		}
927 	}
928 
929 	return -EINVAL;
930 }
931 
932 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
933 {
934 	if (mpin[q_index].is_dynamic) {
935 		mpin[q_index].in_use = false;
936 		mpin[q_index].id.module_id = 0;
937 		mpin[q_index].id.instance_id = 0;
938 		mpin[q_index].id.pvt_id = 0;
939 	}
940 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
941 	mpin[q_index].tgt_mcfg = NULL;
942 }
943 
944 /* Module state will be set to unint, if all the out pin state is UNBIND */
945 
946 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
947 						struct skl_module_cfg *mcfg)
948 {
949 	int i;
950 	bool found = false;
951 
952 	for (i = 0; i < max; i++)  {
953 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
954 			continue;
955 		found = true;
956 		break;
957 	}
958 
959 	if (!found)
960 		mcfg->m_state = SKL_MODULE_INIT_DONE;
961 	return;
962 }
963 
964 /*
965  * A module needs to be instanataited in DSP. A mdoule is present in a
966  * collection of module referred as a PIPE.
967  * We first calculate the module format, based on module type and then
968  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
969  */
970 int skl_init_module(struct skl_sst *ctx,
971 			struct skl_module_cfg *mconfig)
972 {
973 	u16 module_config_size = 0;
974 	void *param_data = NULL;
975 	int ret;
976 	struct skl_ipc_init_instance_msg msg;
977 
978 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
979 		 mconfig->id.module_id, mconfig->id.pvt_id);
980 
981 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
982 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
983 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
984 		return -EIO;
985 	}
986 
987 	ret = skl_set_module_format(ctx, mconfig,
988 			&module_config_size, &param_data);
989 	if (ret < 0) {
990 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
991 		return ret;
992 	}
993 
994 	msg.module_id = mconfig->id.module_id;
995 	msg.instance_id = mconfig->id.pvt_id;
996 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
997 	msg.param_data_size = module_config_size;
998 	msg.core_id = mconfig->core_id;
999 	msg.domain = mconfig->domain;
1000 
1001 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1002 	if (ret < 0) {
1003 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1004 		kfree(param_data);
1005 		return ret;
1006 	}
1007 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1008 	kfree(param_data);
1009 	return ret;
1010 }
1011 
1012 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1013 	*src_module, struct skl_module_cfg *dst_module)
1014 {
1015 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1016 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1017 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1018 		 dst_module->id.module_id, dst_module->id.pvt_id);
1019 
1020 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1021 		src_module->m_state, dst_module->m_state);
1022 }
1023 
1024 /*
1025  * On module freeup, we need to unbind the module with modules
1026  * it is already bind.
1027  * Find the pin allocated and unbind then using bind_unbind IPC
1028  */
1029 int skl_unbind_modules(struct skl_sst *ctx,
1030 			struct skl_module_cfg *src_mcfg,
1031 			struct skl_module_cfg *dst_mcfg)
1032 {
1033 	int ret;
1034 	struct skl_ipc_bind_unbind_msg msg;
1035 	struct skl_module_inst_id src_id = src_mcfg->id;
1036 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1037 	int in_max = dst_mcfg->module->max_input_pins;
1038 	int out_max = src_mcfg->module->max_output_pins;
1039 	int src_index, dst_index, src_pin_state, dst_pin_state;
1040 
1041 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1042 
1043 	/* get src queue index */
1044 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1045 	if (src_index < 0)
1046 		return 0;
1047 
1048 	msg.src_queue = src_index;
1049 
1050 	/* get dst queue index */
1051 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1052 	if (dst_index < 0)
1053 		return 0;
1054 
1055 	msg.dst_queue = dst_index;
1056 
1057 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1058 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1059 
1060 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1061 		dst_pin_state != SKL_PIN_BIND_DONE)
1062 		return 0;
1063 
1064 	msg.module_id = src_mcfg->id.module_id;
1065 	msg.instance_id = src_mcfg->id.pvt_id;
1066 	msg.dst_module_id = dst_mcfg->id.module_id;
1067 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1068 	msg.bind = false;
1069 
1070 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1071 	if (!ret) {
1072 		/* free queue only if unbind is success */
1073 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1074 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1075 
1076 		/*
1077 		 * check only if src module bind state, bind is
1078 		 * always from src -> sink
1079 		 */
1080 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1087 				struct skl_module_fmt *format)
1088 {
1089 	pin_fmt->number_of_channels = format->channels;
1090 	pin_fmt->s_freq = format->s_freq;
1091 	pin_fmt->bit_depth = format->bit_depth;
1092 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1093 	pin_fmt->ch_cfg = format->ch_cfg;
1094 	pin_fmt->sample_type = format->sample_type;
1095 	pin_fmt->channel_map = format->ch_map;
1096 	pin_fmt->interleaving = format->interleaving_style;
1097 }
1098 
1099 #define CPR_SINK_FMT_PARAM_ID 2
1100 
1101 /*
1102  * Once a module is instantiated it need to be 'bind' with other modules in
1103  * the pipeline. For binding we need to find the module pins which are bind
1104  * together
1105  * This function finds the pins and then sends bund_unbind IPC message to
1106  * DSP using IPC helper
1107  */
1108 int skl_bind_modules(struct skl_sst *ctx,
1109 			struct skl_module_cfg *src_mcfg,
1110 			struct skl_module_cfg *dst_mcfg)
1111 {
1112 	int ret = 0;
1113 	struct skl_ipc_bind_unbind_msg msg;
1114 	int in_max = dst_mcfg->module->max_input_pins;
1115 	int out_max = src_mcfg->module->max_output_pins;
1116 	int src_index, dst_index;
1117 	struct skl_module_fmt *format;
1118 	struct skl_cpr_pin_fmt pin_fmt;
1119 	struct skl_module *module;
1120 	struct skl_module_iface *fmt;
1121 
1122 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1123 
1124 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1125 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1126 		return 0;
1127 
1128 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1129 	if (src_index < 0)
1130 		return -EINVAL;
1131 
1132 	msg.src_queue = src_index;
1133 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1134 	if (dst_index < 0) {
1135 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1136 		return -EINVAL;
1137 	}
1138 
1139 	/*
1140 	 * Copier module requires the separate large_config_set_ipc to
1141 	 * configure the pins other than 0
1142 	 */
1143 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1144 		pin_fmt.sink_id = src_index;
1145 		module = src_mcfg->module;
1146 		fmt = &module->formats[src_mcfg->fmt_idx];
1147 
1148 		/* Input fmt is same as that of src module input cfg */
1149 		format = &fmt->inputs[0].fmt;
1150 		fill_pin_params(&(pin_fmt.src_fmt), format);
1151 
1152 		format = &fmt->outputs[src_index].fmt;
1153 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1154 		ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1155 					sizeof(struct skl_cpr_pin_fmt),
1156 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1157 
1158 		if (ret < 0)
1159 			goto out;
1160 	}
1161 
1162 	msg.dst_queue = dst_index;
1163 
1164 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1165 			 msg.src_queue, msg.dst_queue);
1166 
1167 	msg.module_id = src_mcfg->id.module_id;
1168 	msg.instance_id = src_mcfg->id.pvt_id;
1169 	msg.dst_module_id = dst_mcfg->id.module_id;
1170 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1171 	msg.bind = true;
1172 
1173 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1174 
1175 	if (!ret) {
1176 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1177 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1178 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1179 		return ret;
1180 	}
1181 out:
1182 	/* error case , if IPC fails, clear the queue index */
1183 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1184 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1185 
1186 	return ret;
1187 }
1188 
1189 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1190 	enum skl_ipc_pipeline_state state)
1191 {
1192 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1193 
1194 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1195 }
1196 
1197 /*
1198  * A pipeline is a collection of modules. Before a module in instantiated a
1199  * pipeline needs to be created for it.
1200  * This function creates pipeline, by sending create pipeline IPC messages
1201  * to FW
1202  */
1203 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1204 {
1205 	int ret;
1206 
1207 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1208 
1209 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1210 				pipe->pipe_priority, pipe->ppl_id,
1211 				pipe->lp_mode);
1212 	if (ret < 0) {
1213 		dev_err(ctx->dev, "Failed to create pipeline\n");
1214 		return ret;
1215 	}
1216 
1217 	pipe->state = SKL_PIPE_CREATED;
1218 
1219 	return 0;
1220 }
1221 
1222 /*
1223  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1224  * pause the pipeline first and then delete it
1225  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1226  * DMA engines and releases resources
1227  */
1228 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1229 {
1230 	int ret;
1231 
1232 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1233 
1234 	/* If pipe is started, do stop the pipe in FW. */
1235 	if (pipe->state >= SKL_PIPE_STARTED) {
1236 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1237 		if (ret < 0) {
1238 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1239 			return ret;
1240 		}
1241 
1242 		pipe->state = SKL_PIPE_PAUSED;
1243 	}
1244 
1245 	/* If pipe was not created in FW, do not try to delete it */
1246 	if (pipe->state < SKL_PIPE_CREATED)
1247 		return 0;
1248 
1249 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1250 	if (ret < 0) {
1251 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1252 		return ret;
1253 	}
1254 
1255 	pipe->state = SKL_PIPE_INVALID;
1256 
1257 	return ret;
1258 }
1259 
1260 /*
1261  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1262  * For processing data the pipe need to be run by sending IPC set pipe state
1263  * to DSP
1264  */
1265 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1266 {
1267 	int ret;
1268 
1269 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1270 
1271 	/* If pipe was not created in FW, do not try to pause or delete */
1272 	if (pipe->state < SKL_PIPE_CREATED)
1273 		return 0;
1274 
1275 	/* Pipe has to be paused before it is started */
1276 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1277 	if (ret < 0) {
1278 		dev_err(ctx->dev, "Failed to pause pipe\n");
1279 		return ret;
1280 	}
1281 
1282 	pipe->state = SKL_PIPE_PAUSED;
1283 
1284 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1285 	if (ret < 0) {
1286 		dev_err(ctx->dev, "Failed to start pipe\n");
1287 		return ret;
1288 	}
1289 
1290 	pipe->state = SKL_PIPE_STARTED;
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Stop the pipeline by sending set pipe state IPC
1297  * DSP doesnt implement stop so we always send pause message
1298  */
1299 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1300 {
1301 	int ret;
1302 
1303 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1304 
1305 	/* If pipe was not created in FW, do not try to pause or delete */
1306 	if (pipe->state < SKL_PIPE_PAUSED)
1307 		return 0;
1308 
1309 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1310 	if (ret < 0) {
1311 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1312 		return ret;
1313 	}
1314 
1315 	pipe->state = SKL_PIPE_PAUSED;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1322  * from the DSP side
1323  */
1324 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1325 {
1326 	int ret;
1327 
1328 	/* If pipe was not created in FW, do not try to pause or delete */
1329 	if (pipe->state < SKL_PIPE_PAUSED)
1330 		return 0;
1331 
1332 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1333 	if (ret < 0) {
1334 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1335 		return ret;
1336 	}
1337 
1338 	pipe->state = SKL_PIPE_RESET;
1339 
1340 	return 0;
1341 }
1342 
1343 /* Algo parameter set helper function */
1344 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1345 				u32 param_id, struct skl_module_cfg *mcfg)
1346 {
1347 	struct skl_ipc_large_config_msg msg;
1348 
1349 	msg.module_id = mcfg->id.module_id;
1350 	msg.instance_id = mcfg->id.pvt_id;
1351 	msg.param_data_size = size;
1352 	msg.large_param_id = param_id;
1353 
1354 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1355 }
1356 
1357 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1358 			  u32 param_id, struct skl_module_cfg *mcfg)
1359 {
1360 	struct skl_ipc_large_config_msg msg;
1361 
1362 	msg.module_id = mcfg->id.module_id;
1363 	msg.instance_id = mcfg->id.pvt_id;
1364 	msg.param_data_size = size;
1365 	msg.large_param_id = param_id;
1366 
1367 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1368 }
1369