xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.init_fw = skl_sst_init_fw,
207 		.cleanup = skl_sst_dsp_cleanup
208 	},
209 	{
210 		.id = 0x9d71,
211 		.loader_ops = skl_get_loader_ops,
212 		.init = kbl_sst_dsp_init,
213 		.init_fw = skl_sst_init_fw,
214 		.cleanup = skl_sst_dsp_cleanup
215 	},
216 	{
217 		.id = 0x5a98,
218 		.loader_ops = bxt_get_loader_ops,
219 		.init = bxt_sst_dsp_init,
220 		.init_fw = bxt_sst_init_fw,
221 		.cleanup = bxt_sst_dsp_cleanup
222 	},
223 	{
224 		.id = 0x3198,
225 		.loader_ops = bxt_get_loader_ops,
226 		.init = bxt_sst_dsp_init,
227 		.init_fw = bxt_sst_init_fw,
228 		.cleanup = bxt_sst_dsp_cleanup
229 	},
230 };
231 
232 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
233 {
234 	int i;
235 
236 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
237 		if (dsp_ops[i].id == pci_id)
238 			return &dsp_ops[i];
239 	}
240 
241 	return NULL;
242 }
243 
244 int skl_init_dsp(struct skl *skl)
245 {
246 	void __iomem *mmio_base;
247 	struct hdac_ext_bus *ebus = &skl->ebus;
248 	struct hdac_bus *bus = ebus_to_hbus(ebus);
249 	struct skl_dsp_loader_ops loader_ops;
250 	int irq = bus->irq;
251 	const struct skl_dsp_ops *ops;
252 	int ret;
253 
254 	/* enable ppcap interrupt */
255 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
256 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
257 
258 	/* read the BAR of the ADSP MMIO */
259 	mmio_base = pci_ioremap_bar(skl->pci, 4);
260 	if (mmio_base == NULL) {
261 		dev_err(bus->dev, "ioremap error\n");
262 		return -ENXIO;
263 	}
264 
265 	ops = skl_get_dsp_ops(skl->pci->device);
266 	if (!ops)
267 		return -EIO;
268 
269 	loader_ops = ops->loader_ops();
270 	ret = ops->init(bus->dev, mmio_base, irq,
271 				skl->fw_name, loader_ops,
272 				&skl->skl_sst);
273 
274 	if (ret < 0)
275 		return ret;
276 
277 	skl->skl_sst->dsp_ops = ops;
278 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
279 
280 	return ret;
281 }
282 
283 int skl_free_dsp(struct skl *skl)
284 {
285 	struct hdac_ext_bus *ebus = &skl->ebus;
286 	struct hdac_bus *bus = ebus_to_hbus(ebus);
287 	struct skl_sst *ctx = skl->skl_sst;
288 
289 	/* disable  ppcap interrupt */
290 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
291 
292 	ctx->dsp_ops->cleanup(bus->dev, ctx);
293 
294 	if (ctx->dsp->addr.lpe)
295 		iounmap(ctx->dsp->addr.lpe);
296 
297 	return 0;
298 }
299 
300 /*
301  * In the case of "suspend_active" i.e, the Audio IP being active
302  * during system suspend, immediately excecute any pending D0i3 work
303  * before suspending. This is needed for the IP to work in low power
304  * mode during system suspend. In the case of normal suspend, cancel
305  * any pending D0i3 work.
306  */
307 int skl_suspend_late_dsp(struct skl *skl)
308 {
309 	struct skl_sst *ctx = skl->skl_sst;
310 	struct delayed_work *dwork;
311 
312 	if (!ctx)
313 		return 0;
314 
315 	dwork = &ctx->d0i3.work;
316 
317 	if (dwork->work.func) {
318 		if (skl->supend_active)
319 			flush_delayed_work(dwork);
320 		else
321 			cancel_delayed_work_sync(dwork);
322 	}
323 
324 	return 0;
325 }
326 
327 int skl_suspend_dsp(struct skl *skl)
328 {
329 	struct skl_sst *ctx = skl->skl_sst;
330 	int ret;
331 
332 	/* if ppcap is not supported return 0 */
333 	if (!skl->ebus.bus.ppcap)
334 		return 0;
335 
336 	ret = skl_dsp_sleep(ctx->dsp);
337 	if (ret < 0)
338 		return ret;
339 
340 	/* disable ppcap interrupt */
341 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
342 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
343 
344 	return 0;
345 }
346 
347 int skl_resume_dsp(struct skl *skl)
348 {
349 	struct skl_sst *ctx = skl->skl_sst;
350 	int ret;
351 
352 	/* if ppcap is not supported return 0 */
353 	if (!skl->ebus.bus.ppcap)
354 		return 0;
355 
356 	/* enable ppcap interrupt */
357 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
358 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
359 
360 	/* check if DSP 1st boot is done */
361 	if (skl->skl_sst->is_first_boot == true)
362 		return 0;
363 
364 	ret = skl_dsp_wake(ctx->dsp);
365 	if (ret < 0)
366 		return ret;
367 
368 	skl_dsp_enable_notification(skl->skl_sst, false);
369 	return ret;
370 }
371 
372 enum skl_bitdepth skl_get_bit_depth(int params)
373 {
374 	switch (params) {
375 	case 8:
376 		return SKL_DEPTH_8BIT;
377 
378 	case 16:
379 		return SKL_DEPTH_16BIT;
380 
381 	case 24:
382 		return SKL_DEPTH_24BIT;
383 
384 	case 32:
385 		return SKL_DEPTH_32BIT;
386 
387 	default:
388 		return SKL_DEPTH_INVALID;
389 
390 	}
391 }
392 
393 /*
394  * Each module in DSP expects a base module configuration, which consists of
395  * PCM format information, which we calculate in driver and resource values
396  * which are read from widget information passed through topology binary
397  * This is send when we create a module with INIT_INSTANCE IPC msg
398  */
399 static void skl_set_base_module_format(struct skl_sst *ctx,
400 			struct skl_module_cfg *mconfig,
401 			struct skl_base_cfg *base_cfg)
402 {
403 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
404 
405 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
406 
407 	base_cfg->audio_fmt.s_freq = format->s_freq;
408 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
409 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
410 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
411 
412 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
413 			format->bit_depth, format->valid_bit_depth,
414 			format->ch_cfg);
415 
416 	base_cfg->audio_fmt.channel_map = format->ch_map;
417 
418 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
419 
420 	base_cfg->cps = mconfig->mcps;
421 	base_cfg->ibs = mconfig->ibs;
422 	base_cfg->obs = mconfig->obs;
423 	base_cfg->is_pages = mconfig->mem_pages;
424 }
425 
426 /*
427  * Copies copier capabilities into copier module and updates copier module
428  * config size.
429  */
430 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
431 				struct skl_cpr_cfg *cpr_mconfig)
432 {
433 	if (mconfig->formats_config.caps_size == 0)
434 		return;
435 
436 	memcpy(cpr_mconfig->gtw_cfg.config_data,
437 			mconfig->formats_config.caps,
438 			mconfig->formats_config.caps_size);
439 
440 	cpr_mconfig->gtw_cfg.config_length =
441 			(mconfig->formats_config.caps_size) / 4;
442 }
443 
444 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
445 /*
446  * Calculate the gatewat settings required for copier module, type of
447  * gateway and index of gateway to use
448  */
449 static u32 skl_get_node_id(struct skl_sst *ctx,
450 			struct skl_module_cfg *mconfig)
451 {
452 	union skl_connector_node_id node_id = {0};
453 	union skl_ssp_dma_node ssp_node  = {0};
454 	struct skl_pipe_params *params = mconfig->pipe->p_params;
455 
456 	switch (mconfig->dev_type) {
457 	case SKL_DEVICE_BT:
458 		node_id.node.dma_type =
459 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
460 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
461 			SKL_DMA_I2S_LINK_INPUT_CLASS;
462 		node_id.node.vindex = params->host_dma_id +
463 					(mconfig->vbus_id << 3);
464 		break;
465 
466 	case SKL_DEVICE_I2S:
467 		node_id.node.dma_type =
468 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
469 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
470 			SKL_DMA_I2S_LINK_INPUT_CLASS;
471 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
472 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
473 		node_id.node.vindex = ssp_node.val;
474 		break;
475 
476 	case SKL_DEVICE_DMIC:
477 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
478 		node_id.node.vindex = mconfig->vbus_id +
479 					 (mconfig->time_slot);
480 		break;
481 
482 	case SKL_DEVICE_HDALINK:
483 		node_id.node.dma_type =
484 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
485 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
486 			SKL_DMA_HDA_LINK_INPUT_CLASS;
487 		node_id.node.vindex = params->link_dma_id;
488 		break;
489 
490 	case SKL_DEVICE_HDAHOST:
491 		node_id.node.dma_type =
492 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
493 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
494 			SKL_DMA_HDA_HOST_INPUT_CLASS;
495 		node_id.node.vindex = params->host_dma_id;
496 		break;
497 
498 	default:
499 		node_id.val = 0xFFFFFFFF;
500 		break;
501 	}
502 
503 	return node_id.val;
504 }
505 
506 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
507 			struct skl_module_cfg *mconfig,
508 			struct skl_cpr_cfg *cpr_mconfig)
509 {
510 	u32 dma_io_buf;
511 
512 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
513 
514 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
515 		cpr_mconfig->cpr_feature_mask = 0;
516 		return;
517 	}
518 
519 	switch (mconfig->hw_conn_type) {
520 	case SKL_CONN_SOURCE:
521 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
522 			dma_io_buf =  mconfig->ibs;
523 		else
524 			dma_io_buf =  mconfig->obs;
525 		break;
526 
527 	case SKL_CONN_SINK:
528 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
529 			dma_io_buf =  mconfig->obs;
530 		else
531 			dma_io_buf =  mconfig->ibs;
532 		break;
533 
534 	default:
535 		dev_warn(ctx->dev, "wrong connection type: %d\n",
536 				mconfig->hw_conn_type);
537 		return;
538 	}
539 
540 	cpr_mconfig->gtw_cfg.dma_buffer_size =
541 				mconfig->dma_buffer_size * dma_io_buf;
542 
543 	cpr_mconfig->cpr_feature_mask = 0;
544 	cpr_mconfig->gtw_cfg.config_length  = 0;
545 
546 	skl_copy_copier_caps(mconfig, cpr_mconfig);
547 }
548 
549 #define DMA_CONTROL_ID 5
550 
551 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
552 {
553 	struct skl_dma_control *dma_ctrl;
554 	struct skl_ipc_large_config_msg msg = {0};
555 	int err = 0;
556 
557 
558 	/*
559 	 * if blob size zero, then return
560 	 */
561 	if (mconfig->formats_config.caps_size == 0)
562 		return 0;
563 
564 	msg.large_param_id = DMA_CONTROL_ID;
565 	msg.param_data_size = sizeof(struct skl_dma_control) +
566 				mconfig->formats_config.caps_size;
567 
568 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
569 	if (dma_ctrl == NULL)
570 		return -ENOMEM;
571 
572 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
573 
574 	/* size in dwords */
575 	dma_ctrl->config_length = mconfig->formats_config.caps_size / 4;
576 
577 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
578 				mconfig->formats_config.caps_size);
579 
580 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
581 
582 	kfree(dma_ctrl);
583 	return err;
584 }
585 
586 static void skl_setup_out_format(struct skl_sst *ctx,
587 			struct skl_module_cfg *mconfig,
588 			struct skl_audio_data_format *out_fmt)
589 {
590 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
591 
592 	out_fmt->number_of_channels = (u8)format->channels;
593 	out_fmt->s_freq = format->s_freq;
594 	out_fmt->bit_depth = format->bit_depth;
595 	out_fmt->valid_bit_depth = format->valid_bit_depth;
596 	out_fmt->ch_cfg = format->ch_cfg;
597 
598 	out_fmt->channel_map = format->ch_map;
599 	out_fmt->interleaving = format->interleaving_style;
600 	out_fmt->sample_type = format->sample_type;
601 
602 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
603 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
604 }
605 
606 /*
607  * DSP needs SRC module for frequency conversion, SRC takes base module
608  * configuration and the target frequency as extra parameter passed as src
609  * config
610  */
611 static void skl_set_src_format(struct skl_sst *ctx,
612 			struct skl_module_cfg *mconfig,
613 			struct skl_src_module_cfg *src_mconfig)
614 {
615 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
616 
617 	skl_set_base_module_format(ctx, mconfig,
618 		(struct skl_base_cfg *)src_mconfig);
619 
620 	src_mconfig->src_cfg = fmt->s_freq;
621 }
622 
623 /*
624  * DSP needs updown module to do channel conversion. updown module take base
625  * module configuration and channel configuration
626  * It also take coefficients and now we have defaults applied here
627  */
628 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
629 			struct skl_module_cfg *mconfig,
630 			struct skl_up_down_mixer_cfg *mixer_mconfig)
631 {
632 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
633 	int i = 0;
634 
635 	skl_set_base_module_format(ctx,	mconfig,
636 		(struct skl_base_cfg *)mixer_mconfig);
637 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
638 
639 	/* Select F/W default coefficient */
640 	mixer_mconfig->coeff_sel = 0x0;
641 
642 	/* User coeff, don't care since we are selecting F/W defaults */
643 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
644 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
645 }
646 
647 /*
648  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
649  * dma) or link (hda link, SSP, PDM)
650  * Here we calculate the copier module parameters, like PCM format, output
651  * format, gateway settings
652  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
653  */
654 static void skl_set_copier_format(struct skl_sst *ctx,
655 			struct skl_module_cfg *mconfig,
656 			struct skl_cpr_cfg *cpr_mconfig)
657 {
658 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
659 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
660 
661 	skl_set_base_module_format(ctx, mconfig, base_cfg);
662 
663 	skl_setup_out_format(ctx, mconfig, out_fmt);
664 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
665 }
666 
667 /*
668  * Algo module are DSP pre processing modules. Algo module take base module
669  * configuration and params
670  */
671 
672 static void skl_set_algo_format(struct skl_sst *ctx,
673 			struct skl_module_cfg *mconfig,
674 			struct skl_algo_cfg *algo_mcfg)
675 {
676 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
677 
678 	skl_set_base_module_format(ctx, mconfig, base_cfg);
679 
680 	if (mconfig->formats_config.caps_size == 0)
681 		return;
682 
683 	memcpy(algo_mcfg->params,
684 			mconfig->formats_config.caps,
685 			mconfig->formats_config.caps_size);
686 
687 }
688 
689 /*
690  * Mic select module allows selecting one or many input channels, thus
691  * acting as a demux.
692  *
693  * Mic select module take base module configuration and out-format
694  * configuration
695  */
696 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
697 			struct skl_module_cfg *mconfig,
698 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
699 {
700 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
701 	struct skl_base_cfg *base_cfg =
702 				(struct skl_base_cfg *)base_outfmt_mcfg;
703 
704 	skl_set_base_module_format(ctx, mconfig, base_cfg);
705 	skl_setup_out_format(ctx, mconfig, out_fmt);
706 }
707 
708 static u16 skl_get_module_param_size(struct skl_sst *ctx,
709 			struct skl_module_cfg *mconfig)
710 {
711 	u16 param_size;
712 
713 	switch (mconfig->m_type) {
714 	case SKL_MODULE_TYPE_COPIER:
715 		param_size = sizeof(struct skl_cpr_cfg);
716 		param_size += mconfig->formats_config.caps_size;
717 		return param_size;
718 
719 	case SKL_MODULE_TYPE_SRCINT:
720 		return sizeof(struct skl_src_module_cfg);
721 
722 	case SKL_MODULE_TYPE_UPDWMIX:
723 		return sizeof(struct skl_up_down_mixer_cfg);
724 
725 	case SKL_MODULE_TYPE_ALGO:
726 		param_size = sizeof(struct skl_base_cfg);
727 		param_size += mconfig->formats_config.caps_size;
728 		return param_size;
729 
730 	case SKL_MODULE_TYPE_BASE_OUTFMT:
731 	case SKL_MODULE_TYPE_MIC_SELECT:
732 	case SKL_MODULE_TYPE_KPB:
733 		return sizeof(struct skl_base_outfmt_cfg);
734 
735 	default:
736 		/*
737 		 * return only base cfg when no specific module type is
738 		 * specified
739 		 */
740 		return sizeof(struct skl_base_cfg);
741 	}
742 
743 	return 0;
744 }
745 
746 /*
747  * DSP firmware supports various modules like copier, SRC, updown etc.
748  * These modules required various parameters to be calculated and sent for
749  * the module initialization to DSP. By default a generic module needs only
750  * base module format configuration
751  */
752 
753 static int skl_set_module_format(struct skl_sst *ctx,
754 			struct skl_module_cfg *module_config,
755 			u16 *module_config_size,
756 			void **param_data)
757 {
758 	u16 param_size;
759 
760 	param_size  = skl_get_module_param_size(ctx, module_config);
761 
762 	*param_data = kzalloc(param_size, GFP_KERNEL);
763 	if (NULL == *param_data)
764 		return -ENOMEM;
765 
766 	*module_config_size = param_size;
767 
768 	switch (module_config->m_type) {
769 	case SKL_MODULE_TYPE_COPIER:
770 		skl_set_copier_format(ctx, module_config, *param_data);
771 		break;
772 
773 	case SKL_MODULE_TYPE_SRCINT:
774 		skl_set_src_format(ctx, module_config, *param_data);
775 		break;
776 
777 	case SKL_MODULE_TYPE_UPDWMIX:
778 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
779 		break;
780 
781 	case SKL_MODULE_TYPE_ALGO:
782 		skl_set_algo_format(ctx, module_config, *param_data);
783 		break;
784 
785 	case SKL_MODULE_TYPE_BASE_OUTFMT:
786 	case SKL_MODULE_TYPE_MIC_SELECT:
787 	case SKL_MODULE_TYPE_KPB:
788 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
789 		break;
790 
791 	default:
792 		skl_set_base_module_format(ctx, module_config, *param_data);
793 		break;
794 
795 	}
796 
797 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
798 			module_config->id.module_id, param_size);
799 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
800 			*param_data, param_size, false);
801 	return 0;
802 }
803 
804 static int skl_get_queue_index(struct skl_module_pin *mpin,
805 				struct skl_module_inst_id id, int max)
806 {
807 	int i;
808 
809 	for (i = 0; i < max; i++)  {
810 		if (mpin[i].id.module_id == id.module_id &&
811 			mpin[i].id.instance_id == id.instance_id)
812 			return i;
813 	}
814 
815 	return -EINVAL;
816 }
817 
818 /*
819  * Allocates queue for each module.
820  * if dynamic, the pin_index is allocated 0 to max_pin.
821  * In static, the pin_index is fixed based on module_id and instance id
822  */
823 static int skl_alloc_queue(struct skl_module_pin *mpin,
824 			struct skl_module_cfg *tgt_cfg, int max)
825 {
826 	int i;
827 	struct skl_module_inst_id id = tgt_cfg->id;
828 	/*
829 	 * if pin in dynamic, find first free pin
830 	 * otherwise find match module and instance id pin as topology will
831 	 * ensure a unique pin is assigned to this so no need to
832 	 * allocate/free
833 	 */
834 	for (i = 0; i < max; i++)  {
835 		if (mpin[i].is_dynamic) {
836 			if (!mpin[i].in_use &&
837 				mpin[i].pin_state == SKL_PIN_UNBIND) {
838 
839 				mpin[i].in_use = true;
840 				mpin[i].id.module_id = id.module_id;
841 				mpin[i].id.instance_id = id.instance_id;
842 				mpin[i].id.pvt_id = id.pvt_id;
843 				mpin[i].tgt_mcfg = tgt_cfg;
844 				return i;
845 			}
846 		} else {
847 			if (mpin[i].id.module_id == id.module_id &&
848 				mpin[i].id.instance_id == id.instance_id &&
849 				mpin[i].pin_state == SKL_PIN_UNBIND) {
850 
851 				mpin[i].tgt_mcfg = tgt_cfg;
852 				return i;
853 			}
854 		}
855 	}
856 
857 	return -EINVAL;
858 }
859 
860 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
861 {
862 	if (mpin[q_index].is_dynamic) {
863 		mpin[q_index].in_use = false;
864 		mpin[q_index].id.module_id = 0;
865 		mpin[q_index].id.instance_id = 0;
866 		mpin[q_index].id.pvt_id = 0;
867 	}
868 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
869 	mpin[q_index].tgt_mcfg = NULL;
870 }
871 
872 /* Module state will be set to unint, if all the out pin state is UNBIND */
873 
874 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
875 						struct skl_module_cfg *mcfg)
876 {
877 	int i;
878 	bool found = false;
879 
880 	for (i = 0; i < max; i++)  {
881 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
882 			continue;
883 		found = true;
884 		break;
885 	}
886 
887 	if (!found)
888 		mcfg->m_state = SKL_MODULE_INIT_DONE;
889 	return;
890 }
891 
892 /*
893  * A module needs to be instanataited in DSP. A mdoule is present in a
894  * collection of module referred as a PIPE.
895  * We first calculate the module format, based on module type and then
896  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
897  */
898 int skl_init_module(struct skl_sst *ctx,
899 			struct skl_module_cfg *mconfig)
900 {
901 	u16 module_config_size = 0;
902 	void *param_data = NULL;
903 	int ret;
904 	struct skl_ipc_init_instance_msg msg;
905 
906 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
907 		 mconfig->id.module_id, mconfig->id.pvt_id);
908 
909 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
910 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
911 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
912 		return -EIO;
913 	}
914 
915 	ret = skl_set_module_format(ctx, mconfig,
916 			&module_config_size, &param_data);
917 	if (ret < 0) {
918 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
919 		return ret;
920 	}
921 
922 	msg.module_id = mconfig->id.module_id;
923 	msg.instance_id = mconfig->id.pvt_id;
924 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
925 	msg.param_data_size = module_config_size;
926 	msg.core_id = mconfig->core_id;
927 	msg.domain = mconfig->domain;
928 
929 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
930 	if (ret < 0) {
931 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
932 		kfree(param_data);
933 		return ret;
934 	}
935 	mconfig->m_state = SKL_MODULE_INIT_DONE;
936 	kfree(param_data);
937 	return ret;
938 }
939 
940 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
941 	*src_module, struct skl_module_cfg *dst_module)
942 {
943 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
944 		__func__, src_module->id.module_id, src_module->id.pvt_id);
945 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
946 		 dst_module->id.module_id, dst_module->id.pvt_id);
947 
948 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
949 		src_module->m_state, dst_module->m_state);
950 }
951 
952 /*
953  * On module freeup, we need to unbind the module with modules
954  * it is already bind.
955  * Find the pin allocated and unbind then using bind_unbind IPC
956  */
957 int skl_unbind_modules(struct skl_sst *ctx,
958 			struct skl_module_cfg *src_mcfg,
959 			struct skl_module_cfg *dst_mcfg)
960 {
961 	int ret;
962 	struct skl_ipc_bind_unbind_msg msg;
963 	struct skl_module_inst_id src_id = src_mcfg->id;
964 	struct skl_module_inst_id dst_id = dst_mcfg->id;
965 	int in_max = dst_mcfg->max_in_queue;
966 	int out_max = src_mcfg->max_out_queue;
967 	int src_index, dst_index, src_pin_state, dst_pin_state;
968 
969 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
970 
971 	/* get src queue index */
972 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
973 	if (src_index < 0)
974 		return 0;
975 
976 	msg.src_queue = src_index;
977 
978 	/* get dst queue index */
979 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
980 	if (dst_index < 0)
981 		return 0;
982 
983 	msg.dst_queue = dst_index;
984 
985 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
986 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
987 
988 	if (src_pin_state != SKL_PIN_BIND_DONE ||
989 		dst_pin_state != SKL_PIN_BIND_DONE)
990 		return 0;
991 
992 	msg.module_id = src_mcfg->id.module_id;
993 	msg.instance_id = src_mcfg->id.pvt_id;
994 	msg.dst_module_id = dst_mcfg->id.module_id;
995 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
996 	msg.bind = false;
997 
998 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
999 	if (!ret) {
1000 		/* free queue only if unbind is success */
1001 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1002 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1003 
1004 		/*
1005 		 * check only if src module bind state, bind is
1006 		 * always from src -> sink
1007 		 */
1008 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 /*
1015  * Once a module is instantiated it need to be 'bind' with other modules in
1016  * the pipeline. For binding we need to find the module pins which are bind
1017  * together
1018  * This function finds the pins and then sends bund_unbind IPC message to
1019  * DSP using IPC helper
1020  */
1021 int skl_bind_modules(struct skl_sst *ctx,
1022 			struct skl_module_cfg *src_mcfg,
1023 			struct skl_module_cfg *dst_mcfg)
1024 {
1025 	int ret;
1026 	struct skl_ipc_bind_unbind_msg msg;
1027 	int in_max = dst_mcfg->max_in_queue;
1028 	int out_max = src_mcfg->max_out_queue;
1029 	int src_index, dst_index;
1030 
1031 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1032 
1033 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1034 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1035 		return 0;
1036 
1037 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1038 	if (src_index < 0)
1039 		return -EINVAL;
1040 
1041 	msg.src_queue = src_index;
1042 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1043 	if (dst_index < 0) {
1044 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1045 		return -EINVAL;
1046 	}
1047 
1048 	msg.dst_queue = dst_index;
1049 
1050 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1051 			 msg.src_queue, msg.dst_queue);
1052 
1053 	msg.module_id = src_mcfg->id.module_id;
1054 	msg.instance_id = src_mcfg->id.pvt_id;
1055 	msg.dst_module_id = dst_mcfg->id.module_id;
1056 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1057 	msg.bind = true;
1058 
1059 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1060 
1061 	if (!ret) {
1062 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1063 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1064 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1065 	} else {
1066 		/* error case , if IPC fails, clear the queue index */
1067 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1068 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1069 	}
1070 
1071 	return ret;
1072 }
1073 
1074 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1075 	enum skl_ipc_pipeline_state state)
1076 {
1077 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1078 
1079 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1080 }
1081 
1082 /*
1083  * A pipeline is a collection of modules. Before a module in instantiated a
1084  * pipeline needs to be created for it.
1085  * This function creates pipeline, by sending create pipeline IPC messages
1086  * to FW
1087  */
1088 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1089 {
1090 	int ret;
1091 
1092 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1093 
1094 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1095 				pipe->pipe_priority, pipe->ppl_id,
1096 				pipe->lp_mode);
1097 	if (ret < 0) {
1098 		dev_err(ctx->dev, "Failed to create pipeline\n");
1099 		return ret;
1100 	}
1101 
1102 	pipe->state = SKL_PIPE_CREATED;
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1109  * pause the pipeline first and then delete it
1110  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1111  * DMA engines and releases resources
1112  */
1113 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1114 {
1115 	int ret;
1116 
1117 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1118 
1119 	/* If pipe is started, do stop the pipe in FW. */
1120 	if (pipe->state >= SKL_PIPE_STARTED) {
1121 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1122 		if (ret < 0) {
1123 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1124 			return ret;
1125 		}
1126 
1127 		pipe->state = SKL_PIPE_PAUSED;
1128 	}
1129 
1130 	/* If pipe was not created in FW, do not try to delete it */
1131 	if (pipe->state < SKL_PIPE_CREATED)
1132 		return 0;
1133 
1134 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1135 	if (ret < 0) {
1136 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1137 		return ret;
1138 	}
1139 
1140 	pipe->state = SKL_PIPE_INVALID;
1141 
1142 	return ret;
1143 }
1144 
1145 /*
1146  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1147  * For processing data the pipe need to be run by sending IPC set pipe state
1148  * to DSP
1149  */
1150 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1151 {
1152 	int ret;
1153 
1154 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1155 
1156 	/* If pipe was not created in FW, do not try to pause or delete */
1157 	if (pipe->state < SKL_PIPE_CREATED)
1158 		return 0;
1159 
1160 	/* Pipe has to be paused before it is started */
1161 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1162 	if (ret < 0) {
1163 		dev_err(ctx->dev, "Failed to pause pipe\n");
1164 		return ret;
1165 	}
1166 
1167 	pipe->state = SKL_PIPE_PAUSED;
1168 
1169 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1170 	if (ret < 0) {
1171 		dev_err(ctx->dev, "Failed to start pipe\n");
1172 		return ret;
1173 	}
1174 
1175 	pipe->state = SKL_PIPE_STARTED;
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * Stop the pipeline by sending set pipe state IPC
1182  * DSP doesnt implement stop so we always send pause message
1183  */
1184 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1185 {
1186 	int ret;
1187 
1188 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1189 
1190 	/* If pipe was not created in FW, do not try to pause or delete */
1191 	if (pipe->state < SKL_PIPE_PAUSED)
1192 		return 0;
1193 
1194 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1195 	if (ret < 0) {
1196 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1197 		return ret;
1198 	}
1199 
1200 	pipe->state = SKL_PIPE_PAUSED;
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1207  * from the DSP side
1208  */
1209 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1210 {
1211 	int ret;
1212 
1213 	/* If pipe was not created in FW, do not try to pause or delete */
1214 	if (pipe->state < SKL_PIPE_PAUSED)
1215 		return 0;
1216 
1217 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1218 	if (ret < 0) {
1219 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1220 		return ret;
1221 	}
1222 
1223 	pipe->state = SKL_PIPE_RESET;
1224 
1225 	return 0;
1226 }
1227 
1228 /* Algo parameter set helper function */
1229 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1230 				u32 param_id, struct skl_module_cfg *mcfg)
1231 {
1232 	struct skl_ipc_large_config_msg msg;
1233 
1234 	msg.module_id = mcfg->id.module_id;
1235 	msg.instance_id = mcfg->id.pvt_id;
1236 	msg.param_data_size = size;
1237 	msg.large_param_id = param_id;
1238 
1239 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1240 }
1241 
1242 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1243 			  u32 param_id, struct skl_module_cfg *mcfg)
1244 {
1245 	struct skl_ipc_large_config_msg msg;
1246 
1247 	msg.module_id = mcfg->id.module_id;
1248 	msg.instance_id = mcfg->id.pvt_id;
1249 	msg.param_data_size = size;
1250 	msg.large_param_id = param_id;
1251 
1252 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1253 }
1254