1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module 4 * configurations 5 * 6 * Copyright (C) 2015 Intel Corp 7 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com> 8 * Jeeja KP <jeeja.kp@intel.com> 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/pci.h> 14 #include <sound/core.h> 15 #include <sound/pcm.h> 16 #include <uapi/sound/skl-tplg-interface.h> 17 #include "skl-sst-dsp.h" 18 #include "cnl-sst-dsp.h" 19 #include "skl-sst-ipc.h" 20 #include "skl.h" 21 #include "../common/sst-dsp.h" 22 #include "../common/sst-dsp-priv.h" 23 #include "skl-topology.h" 24 25 static int skl_alloc_dma_buf(struct device *dev, 26 struct snd_dma_buffer *dmab, size_t size) 27 { 28 return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab); 29 } 30 31 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) 32 { 33 snd_dma_free_pages(dmab); 34 return 0; 35 } 36 37 #define SKL_ASTATE_PARAM_ID 4 38 39 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data) 40 { 41 struct skl_ipc_large_config_msg msg = {0}; 42 43 msg.large_param_id = SKL_ASTATE_PARAM_ID; 44 msg.param_data_size = (cnt * sizeof(struct skl_astate_param) + 45 sizeof(cnt)); 46 47 skl_ipc_set_large_config(&skl->ipc, &msg, data); 48 } 49 50 static int skl_dsp_setup_spib(struct device *dev, unsigned int size, 51 int stream_tag, int enable) 52 { 53 struct hdac_bus *bus = dev_get_drvdata(dev); 54 struct hdac_stream *stream = snd_hdac_get_stream(bus, 55 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 56 struct hdac_ext_stream *estream; 57 58 if (!stream) 59 return -EINVAL; 60 61 estream = stream_to_hdac_ext_stream(stream); 62 /* enable/disable SPIB for this hdac stream */ 63 snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index); 64 65 /* set the spib value */ 66 snd_hdac_ext_stream_set_spib(bus, estream, size); 67 68 return 0; 69 } 70 71 static int skl_dsp_prepare(struct device *dev, unsigned int format, 72 unsigned int size, struct snd_dma_buffer *dmab) 73 { 74 struct hdac_bus *bus = dev_get_drvdata(dev); 75 struct hdac_ext_stream *estream; 76 struct hdac_stream *stream; 77 struct snd_pcm_substream substream; 78 int ret; 79 80 if (!bus) 81 return -ENODEV; 82 83 memset(&substream, 0, sizeof(substream)); 84 substream.stream = SNDRV_PCM_STREAM_PLAYBACK; 85 86 estream = snd_hdac_ext_stream_assign(bus, &substream, 87 HDAC_EXT_STREAM_TYPE_HOST); 88 if (!estream) 89 return -ENODEV; 90 91 stream = hdac_stream(estream); 92 93 /* assign decouple host dma channel */ 94 ret = snd_hdac_dsp_prepare(stream, format, size, dmab); 95 if (ret < 0) 96 return ret; 97 98 skl_dsp_setup_spib(dev, size, stream->stream_tag, true); 99 100 return stream->stream_tag; 101 } 102 103 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) 104 { 105 struct hdac_bus *bus = dev_get_drvdata(dev); 106 struct hdac_stream *stream; 107 108 if (!bus) 109 return -ENODEV; 110 111 stream = snd_hdac_get_stream(bus, 112 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 113 if (!stream) 114 return -EINVAL; 115 116 snd_hdac_dsp_trigger(stream, start); 117 118 return 0; 119 } 120 121 static int skl_dsp_cleanup(struct device *dev, 122 struct snd_dma_buffer *dmab, int stream_tag) 123 { 124 struct hdac_bus *bus = dev_get_drvdata(dev); 125 struct hdac_stream *stream; 126 struct hdac_ext_stream *estream; 127 128 if (!bus) 129 return -ENODEV; 130 131 stream = snd_hdac_get_stream(bus, 132 SNDRV_PCM_STREAM_PLAYBACK, stream_tag); 133 if (!stream) 134 return -EINVAL; 135 136 estream = stream_to_hdac_ext_stream(stream); 137 skl_dsp_setup_spib(dev, 0, stream_tag, false); 138 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); 139 140 snd_hdac_dsp_cleanup(stream, dmab); 141 142 return 0; 143 } 144 145 static struct skl_dsp_loader_ops skl_get_loader_ops(void) 146 { 147 struct skl_dsp_loader_ops loader_ops; 148 149 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); 150 151 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 152 loader_ops.free_dma_buf = skl_free_dma_buf; 153 154 return loader_ops; 155 }; 156 157 static struct skl_dsp_loader_ops bxt_get_loader_ops(void) 158 { 159 struct skl_dsp_loader_ops loader_ops; 160 161 memset(&loader_ops, 0, sizeof(loader_ops)); 162 163 loader_ops.alloc_dma_buf = skl_alloc_dma_buf; 164 loader_ops.free_dma_buf = skl_free_dma_buf; 165 loader_ops.prepare = skl_dsp_prepare; 166 loader_ops.trigger = skl_dsp_trigger; 167 loader_ops.cleanup = skl_dsp_cleanup; 168 169 return loader_ops; 170 }; 171 172 static const struct skl_dsp_ops dsp_ops[] = { 173 { 174 .id = 0x9d70, 175 .num_cores = 2, 176 .loader_ops = skl_get_loader_ops, 177 .init = skl_sst_dsp_init, 178 .init_fw = skl_sst_init_fw, 179 .cleanup = skl_sst_dsp_cleanup 180 }, 181 { 182 .id = 0x9d71, 183 .num_cores = 2, 184 .loader_ops = skl_get_loader_ops, 185 .init = skl_sst_dsp_init, 186 .init_fw = skl_sst_init_fw, 187 .cleanup = skl_sst_dsp_cleanup 188 }, 189 { 190 .id = 0x5a98, 191 .num_cores = 2, 192 .loader_ops = bxt_get_loader_ops, 193 .init = bxt_sst_dsp_init, 194 .init_fw = bxt_sst_init_fw, 195 .cleanup = bxt_sst_dsp_cleanup 196 }, 197 { 198 .id = 0x3198, 199 .num_cores = 2, 200 .loader_ops = bxt_get_loader_ops, 201 .init = bxt_sst_dsp_init, 202 .init_fw = bxt_sst_init_fw, 203 .cleanup = bxt_sst_dsp_cleanup 204 }, 205 { 206 .id = 0x9dc8, 207 .num_cores = 4, 208 .loader_ops = bxt_get_loader_ops, 209 .init = cnl_sst_dsp_init, 210 .init_fw = cnl_sst_init_fw, 211 .cleanup = cnl_sst_dsp_cleanup 212 }, 213 { 214 .id = 0xa348, 215 .num_cores = 4, 216 .loader_ops = bxt_get_loader_ops, 217 .init = cnl_sst_dsp_init, 218 .init_fw = cnl_sst_init_fw, 219 .cleanup = cnl_sst_dsp_cleanup 220 }, 221 { 222 .id = 0x02c8, 223 .num_cores = 4, 224 .loader_ops = bxt_get_loader_ops, 225 .init = cnl_sst_dsp_init, 226 .init_fw = cnl_sst_init_fw, 227 .cleanup = cnl_sst_dsp_cleanup 228 }, 229 { 230 .id = 0x06c8, 231 .num_cores = 4, 232 .loader_ops = bxt_get_loader_ops, 233 .init = cnl_sst_dsp_init, 234 .init_fw = cnl_sst_init_fw, 235 .cleanup = cnl_sst_dsp_cleanup 236 }, 237 }; 238 239 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) 240 { 241 int i; 242 243 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { 244 if (dsp_ops[i].id == pci_id) 245 return &dsp_ops[i]; 246 } 247 248 return NULL; 249 } 250 251 int skl_init_dsp(struct skl_dev *skl) 252 { 253 void __iomem *mmio_base; 254 struct hdac_bus *bus = skl_to_bus(skl); 255 struct skl_dsp_loader_ops loader_ops; 256 int irq = bus->irq; 257 const struct skl_dsp_ops *ops; 258 struct skl_dsp_cores *cores; 259 int ret; 260 261 /* enable ppcap interrupt */ 262 snd_hdac_ext_bus_ppcap_enable(bus, true); 263 snd_hdac_ext_bus_ppcap_int_enable(bus, true); 264 265 /* read the BAR of the ADSP MMIO */ 266 mmio_base = pci_ioremap_bar(skl->pci, 4); 267 if (mmio_base == NULL) { 268 dev_err(bus->dev, "ioremap error\n"); 269 return -ENXIO; 270 } 271 272 ops = skl_get_dsp_ops(skl->pci->device); 273 if (!ops) { 274 ret = -EIO; 275 goto unmap_mmio; 276 } 277 278 loader_ops = ops->loader_ops(); 279 ret = ops->init(bus->dev, mmio_base, irq, 280 skl->fw_name, loader_ops, 281 &skl); 282 283 if (ret < 0) 284 goto unmap_mmio; 285 286 skl->dsp_ops = ops; 287 cores = &skl->cores; 288 cores->count = ops->num_cores; 289 290 cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL); 291 if (!cores->state) { 292 ret = -ENOMEM; 293 goto unmap_mmio; 294 } 295 296 cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count), 297 GFP_KERNEL); 298 if (!cores->usage_count) { 299 ret = -ENOMEM; 300 goto free_core_state; 301 } 302 303 dev_dbg(bus->dev, "dsp registration status=%d\n", ret); 304 305 return 0; 306 307 free_core_state: 308 kfree(cores->state); 309 310 unmap_mmio: 311 iounmap(mmio_base); 312 313 return ret; 314 } 315 316 int skl_free_dsp(struct skl_dev *skl) 317 { 318 struct hdac_bus *bus = skl_to_bus(skl); 319 320 /* disable ppcap interrupt */ 321 snd_hdac_ext_bus_ppcap_int_enable(bus, false); 322 323 skl->dsp_ops->cleanup(bus->dev, skl); 324 325 kfree(skl->cores.state); 326 kfree(skl->cores.usage_count); 327 328 if (skl->dsp->addr.lpe) 329 iounmap(skl->dsp->addr.lpe); 330 331 return 0; 332 } 333 334 /* 335 * In the case of "suspend_active" i.e, the Audio IP being active 336 * during system suspend, immediately excecute any pending D0i3 work 337 * before suspending. This is needed for the IP to work in low power 338 * mode during system suspend. In the case of normal suspend, cancel 339 * any pending D0i3 work. 340 */ 341 int skl_suspend_late_dsp(struct skl_dev *skl) 342 { 343 struct delayed_work *dwork; 344 345 if (!skl) 346 return 0; 347 348 dwork = &skl->d0i3.work; 349 350 if (dwork->work.func) { 351 if (skl->supend_active) 352 flush_delayed_work(dwork); 353 else 354 cancel_delayed_work_sync(dwork); 355 } 356 357 return 0; 358 } 359 360 int skl_suspend_dsp(struct skl_dev *skl) 361 { 362 struct hdac_bus *bus = skl_to_bus(skl); 363 int ret; 364 365 /* if ppcap is not supported return 0 */ 366 if (!bus->ppcap) 367 return 0; 368 369 ret = skl_dsp_sleep(skl->dsp); 370 if (ret < 0) 371 return ret; 372 373 /* disable ppcap interrupt */ 374 snd_hdac_ext_bus_ppcap_int_enable(bus, false); 375 snd_hdac_ext_bus_ppcap_enable(bus, false); 376 377 return 0; 378 } 379 380 int skl_resume_dsp(struct skl_dev *skl) 381 { 382 struct hdac_bus *bus = skl_to_bus(skl); 383 int ret; 384 385 /* if ppcap is not supported return 0 */ 386 if (!bus->ppcap) 387 return 0; 388 389 /* enable ppcap interrupt */ 390 snd_hdac_ext_bus_ppcap_enable(bus, true); 391 snd_hdac_ext_bus_ppcap_int_enable(bus, true); 392 393 /* check if DSP 1st boot is done */ 394 if (skl->is_first_boot) 395 return 0; 396 397 /* 398 * Disable dynamic clock and power gating during firmware 399 * and library download 400 */ 401 skl->enable_miscbdcge(skl->dev, false); 402 skl->clock_power_gating(skl->dev, false); 403 404 ret = skl_dsp_wake(skl->dsp); 405 skl->enable_miscbdcge(skl->dev, true); 406 skl->clock_power_gating(skl->dev, true); 407 if (ret < 0) 408 return ret; 409 410 if (skl->cfg.astate_cfg != NULL) { 411 skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count, 412 skl->cfg.astate_cfg); 413 } 414 return ret; 415 } 416 417 enum skl_bitdepth skl_get_bit_depth(int params) 418 { 419 switch (params) { 420 case 8: 421 return SKL_DEPTH_8BIT; 422 423 case 16: 424 return SKL_DEPTH_16BIT; 425 426 case 24: 427 return SKL_DEPTH_24BIT; 428 429 case 32: 430 return SKL_DEPTH_32BIT; 431 432 default: 433 return SKL_DEPTH_INVALID; 434 435 } 436 } 437 438 /* 439 * Each module in DSP expects a base module configuration, which consists of 440 * PCM format information, which we calculate in driver and resource values 441 * which are read from widget information passed through topology binary 442 * This is send when we create a module with INIT_INSTANCE IPC msg 443 */ 444 static void skl_set_base_module_format(struct skl_dev *skl, 445 struct skl_module_cfg *mconfig, 446 struct skl_base_cfg *base_cfg) 447 { 448 struct skl_module *module = mconfig->module; 449 struct skl_module_res *res = &module->resources[mconfig->res_idx]; 450 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; 451 struct skl_module_fmt *format = &fmt->inputs[0].fmt; 452 453 base_cfg->audio_fmt.number_of_channels = format->channels; 454 455 base_cfg->audio_fmt.s_freq = format->s_freq; 456 base_cfg->audio_fmt.bit_depth = format->bit_depth; 457 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; 458 base_cfg->audio_fmt.ch_cfg = format->ch_cfg; 459 base_cfg->audio_fmt.sample_type = format->sample_type; 460 461 dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", 462 format->bit_depth, format->valid_bit_depth, 463 format->ch_cfg); 464 465 base_cfg->audio_fmt.channel_map = format->ch_map; 466 467 base_cfg->audio_fmt.interleaving = format->interleaving_style; 468 469 base_cfg->cpc = res->cpc; 470 base_cfg->ibs = res->ibs; 471 base_cfg->obs = res->obs; 472 base_cfg->is_pages = res->is_pages; 473 } 474 475 static void fill_pin_params(struct skl_audio_data_format *pin_fmt, 476 struct skl_module_fmt *format) 477 { 478 pin_fmt->number_of_channels = format->channels; 479 pin_fmt->s_freq = format->s_freq; 480 pin_fmt->bit_depth = format->bit_depth; 481 pin_fmt->valid_bit_depth = format->valid_bit_depth; 482 pin_fmt->ch_cfg = format->ch_cfg; 483 pin_fmt->sample_type = format->sample_type; 484 pin_fmt->channel_map = format->ch_map; 485 pin_fmt->interleaving = format->interleaving_style; 486 } 487 488 /* 489 * Any module configuration begins with a base module configuration but 490 * can be followed by a generic extension containing audio format for all 491 * module's pins that are in use. 492 */ 493 static void skl_set_base_ext_module_format(struct skl_dev *skl, 494 struct skl_module_cfg *mconfig, 495 struct skl_base_cfg_ext *base_cfg_ext) 496 { 497 struct skl_module *module = mconfig->module; 498 struct skl_module_pin_resources *pin_res; 499 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; 500 struct skl_module_res *res = &module->resources[mconfig->res_idx]; 501 struct skl_module_fmt *format; 502 struct skl_pin_format *pin_fmt; 503 char *params; 504 int i; 505 506 base_cfg_ext->nr_input_pins = res->nr_input_pins; 507 base_cfg_ext->nr_output_pins = res->nr_output_pins; 508 base_cfg_ext->priv_param_length = 509 mconfig->formats_config[SKL_PARAM_INIT].caps_size; 510 511 for (i = 0; i < res->nr_input_pins; i++) { 512 pin_res = &res->input[i]; 513 pin_fmt = &base_cfg_ext->pins_fmt[i]; 514 515 pin_fmt->pin_idx = pin_res->pin_index; 516 pin_fmt->buf_size = pin_res->buf_size; 517 518 format = &fmt->inputs[pin_res->pin_index].fmt; 519 fill_pin_params(&pin_fmt->audio_fmt, format); 520 } 521 522 for (i = 0; i < res->nr_output_pins; i++) { 523 pin_res = &res->output[i]; 524 pin_fmt = &base_cfg_ext->pins_fmt[res->nr_input_pins + i]; 525 526 pin_fmt->pin_idx = pin_res->pin_index; 527 pin_fmt->buf_size = pin_res->buf_size; 528 529 format = &fmt->outputs[pin_res->pin_index].fmt; 530 fill_pin_params(&pin_fmt->audio_fmt, format); 531 } 532 533 if (!base_cfg_ext->priv_param_length) 534 return; 535 536 params = (char *)base_cfg_ext + sizeof(struct skl_base_cfg_ext); 537 params += (base_cfg_ext->nr_input_pins + base_cfg_ext->nr_output_pins) * 538 sizeof(struct skl_pin_format); 539 540 memcpy(params, mconfig->formats_config[SKL_PARAM_INIT].caps, 541 mconfig->formats_config[SKL_PARAM_INIT].caps_size); 542 } 543 544 /* 545 * Copies copier capabilities into copier module and updates copier module 546 * config size. 547 */ 548 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, 549 struct skl_cpr_cfg *cpr_mconfig) 550 { 551 if (mconfig->formats_config[SKL_PARAM_INIT].caps_size == 0) 552 return; 553 554 memcpy(cpr_mconfig->gtw_cfg.config_data, 555 mconfig->formats_config[SKL_PARAM_INIT].caps, 556 mconfig->formats_config[SKL_PARAM_INIT].caps_size); 557 558 cpr_mconfig->gtw_cfg.config_length = 559 (mconfig->formats_config[SKL_PARAM_INIT].caps_size) / 4; 560 } 561 562 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF 563 /* 564 * Calculate the gatewat settings required for copier module, type of 565 * gateway and index of gateway to use 566 */ 567 static u32 skl_get_node_id(struct skl_dev *skl, 568 struct skl_module_cfg *mconfig) 569 { 570 union skl_connector_node_id node_id = {0}; 571 union skl_ssp_dma_node ssp_node = {0}; 572 struct skl_pipe_params *params = mconfig->pipe->p_params; 573 574 switch (mconfig->dev_type) { 575 case SKL_DEVICE_BT: 576 node_id.node.dma_type = 577 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 578 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 579 SKL_DMA_I2S_LINK_INPUT_CLASS; 580 node_id.node.vindex = params->host_dma_id + 581 (mconfig->vbus_id << 3); 582 break; 583 584 case SKL_DEVICE_I2S: 585 node_id.node.dma_type = 586 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 587 SKL_DMA_I2S_LINK_OUTPUT_CLASS : 588 SKL_DMA_I2S_LINK_INPUT_CLASS; 589 ssp_node.dma_node.time_slot_index = mconfig->time_slot; 590 ssp_node.dma_node.i2s_instance = mconfig->vbus_id; 591 node_id.node.vindex = ssp_node.val; 592 break; 593 594 case SKL_DEVICE_DMIC: 595 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; 596 node_id.node.vindex = mconfig->vbus_id + 597 (mconfig->time_slot); 598 break; 599 600 case SKL_DEVICE_HDALINK: 601 node_id.node.dma_type = 602 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 603 SKL_DMA_HDA_LINK_OUTPUT_CLASS : 604 SKL_DMA_HDA_LINK_INPUT_CLASS; 605 node_id.node.vindex = params->link_dma_id; 606 break; 607 608 case SKL_DEVICE_HDAHOST: 609 node_id.node.dma_type = 610 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? 611 SKL_DMA_HDA_HOST_OUTPUT_CLASS : 612 SKL_DMA_HDA_HOST_INPUT_CLASS; 613 node_id.node.vindex = params->host_dma_id; 614 break; 615 616 default: 617 node_id.val = 0xFFFFFFFF; 618 break; 619 } 620 621 return node_id.val; 622 } 623 624 static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl, 625 struct skl_module_cfg *mconfig, 626 struct skl_cpr_cfg *cpr_mconfig) 627 { 628 u32 dma_io_buf; 629 struct skl_module_res *res; 630 int res_idx = mconfig->res_idx; 631 632 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig); 633 634 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { 635 cpr_mconfig->cpr_feature_mask = 0; 636 return; 637 } 638 639 if (skl->nr_modules) { 640 res = &mconfig->module->resources[mconfig->res_idx]; 641 cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size; 642 goto skip_buf_size_calc; 643 } else { 644 res = &mconfig->module->resources[res_idx]; 645 } 646 647 switch (mconfig->hw_conn_type) { 648 case SKL_CONN_SOURCE: 649 if (mconfig->dev_type == SKL_DEVICE_HDAHOST) 650 dma_io_buf = res->ibs; 651 else 652 dma_io_buf = res->obs; 653 break; 654 655 case SKL_CONN_SINK: 656 if (mconfig->dev_type == SKL_DEVICE_HDAHOST) 657 dma_io_buf = res->obs; 658 else 659 dma_io_buf = res->ibs; 660 break; 661 662 default: 663 dev_warn(skl->dev, "wrong connection type: %d\n", 664 mconfig->hw_conn_type); 665 return; 666 } 667 668 cpr_mconfig->gtw_cfg.dma_buffer_size = 669 mconfig->dma_buffer_size * dma_io_buf; 670 671 /* fallback to 2ms default value */ 672 if (!cpr_mconfig->gtw_cfg.dma_buffer_size) { 673 if (mconfig->hw_conn_type == SKL_CONN_SOURCE) 674 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs; 675 else 676 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs; 677 } 678 679 skip_buf_size_calc: 680 cpr_mconfig->cpr_feature_mask = 0; 681 cpr_mconfig->gtw_cfg.config_length = 0; 682 683 skl_copy_copier_caps(mconfig, cpr_mconfig); 684 } 685 686 #define DMA_CONTROL_ID 5 687 #define DMA_I2S_BLOB_SIZE 21 688 689 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps, 690 u32 caps_size, u32 node_id) 691 { 692 struct skl_dma_control *dma_ctrl; 693 struct skl_ipc_large_config_msg msg = {0}; 694 int err = 0; 695 696 697 /* 698 * if blob size zero, then return 699 */ 700 if (caps_size == 0) 701 return 0; 702 703 msg.large_param_id = DMA_CONTROL_ID; 704 msg.param_data_size = sizeof(struct skl_dma_control) + caps_size; 705 706 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); 707 if (dma_ctrl == NULL) 708 return -ENOMEM; 709 710 dma_ctrl->node_id = node_id; 711 712 /* 713 * NHLT blob may contain additional configs along with i2s blob. 714 * firmware expects only the i2s blob size as the config_length. 715 * So fix to i2s blob size. 716 * size in dwords. 717 */ 718 dma_ctrl->config_length = DMA_I2S_BLOB_SIZE; 719 720 memcpy(dma_ctrl->config_data, caps, caps_size); 721 722 err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl); 723 724 kfree(dma_ctrl); 725 return err; 726 } 727 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control); 728 729 static void skl_setup_out_format(struct skl_dev *skl, 730 struct skl_module_cfg *mconfig, 731 struct skl_audio_data_format *out_fmt) 732 { 733 struct skl_module *module = mconfig->module; 734 struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; 735 struct skl_module_fmt *format = &fmt->outputs[0].fmt; 736 737 out_fmt->number_of_channels = (u8)format->channels; 738 out_fmt->s_freq = format->s_freq; 739 out_fmt->bit_depth = format->bit_depth; 740 out_fmt->valid_bit_depth = format->valid_bit_depth; 741 out_fmt->ch_cfg = format->ch_cfg; 742 743 out_fmt->channel_map = format->ch_map; 744 out_fmt->interleaving = format->interleaving_style; 745 out_fmt->sample_type = format->sample_type; 746 747 dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", 748 out_fmt->number_of_channels, format->s_freq, format->bit_depth); 749 } 750 751 /* 752 * DSP needs SRC module for frequency conversion, SRC takes base module 753 * configuration and the target frequency as extra parameter passed as src 754 * config 755 */ 756 static void skl_set_src_format(struct skl_dev *skl, 757 struct skl_module_cfg *mconfig, 758 struct skl_src_module_cfg *src_mconfig) 759 { 760 struct skl_module *module = mconfig->module; 761 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; 762 struct skl_module_fmt *fmt = &iface->outputs[0].fmt; 763 764 skl_set_base_module_format(skl, mconfig, 765 (struct skl_base_cfg *)src_mconfig); 766 767 src_mconfig->src_cfg = fmt->s_freq; 768 } 769 770 /* 771 * DSP needs updown module to do channel conversion. updown module take base 772 * module configuration and channel configuration 773 * It also take coefficients and now we have defaults applied here 774 */ 775 static void skl_set_updown_mixer_format(struct skl_dev *skl, 776 struct skl_module_cfg *mconfig, 777 struct skl_up_down_mixer_cfg *mixer_mconfig) 778 { 779 struct skl_module *module = mconfig->module; 780 struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; 781 struct skl_module_fmt *fmt = &iface->outputs[0].fmt; 782 783 skl_set_base_module_format(skl, mconfig, 784 (struct skl_base_cfg *)mixer_mconfig); 785 mixer_mconfig->out_ch_cfg = fmt->ch_cfg; 786 mixer_mconfig->ch_map = fmt->ch_map; 787 } 788 789 /* 790 * 'copier' is DSP internal module which copies data from Host DMA (HDA host 791 * dma) or link (hda link, SSP, PDM) 792 * Here we calculate the copier module parameters, like PCM format, output 793 * format, gateway settings 794 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg 795 */ 796 static void skl_set_copier_format(struct skl_dev *skl, 797 struct skl_module_cfg *mconfig, 798 struct skl_cpr_cfg *cpr_mconfig) 799 { 800 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; 801 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; 802 803 skl_set_base_module_format(skl, mconfig, base_cfg); 804 805 skl_setup_out_format(skl, mconfig, out_fmt); 806 skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig); 807 } 808 809 /* 810 * Mic select module allows selecting one or many input channels, thus 811 * acting as a demux. 812 * 813 * Mic select module take base module configuration and out-format 814 * configuration 815 */ 816 static void skl_set_base_outfmt_format(struct skl_dev *skl, 817 struct skl_module_cfg *mconfig, 818 struct skl_base_outfmt_cfg *base_outfmt_mcfg) 819 { 820 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; 821 struct skl_base_cfg *base_cfg = 822 (struct skl_base_cfg *)base_outfmt_mcfg; 823 824 skl_set_base_module_format(skl, mconfig, base_cfg); 825 skl_setup_out_format(skl, mconfig, out_fmt); 826 } 827 828 static u16 skl_get_module_param_size(struct skl_dev *skl, 829 struct skl_module_cfg *mconfig) 830 { 831 struct skl_module_res *res; 832 struct skl_module *module = mconfig->module; 833 u16 param_size; 834 835 switch (mconfig->m_type) { 836 case SKL_MODULE_TYPE_COPIER: 837 param_size = sizeof(struct skl_cpr_cfg); 838 param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; 839 return param_size; 840 841 case SKL_MODULE_TYPE_SRCINT: 842 return sizeof(struct skl_src_module_cfg); 843 844 case SKL_MODULE_TYPE_UPDWMIX: 845 return sizeof(struct skl_up_down_mixer_cfg); 846 847 case SKL_MODULE_TYPE_BASE_OUTFMT: 848 case SKL_MODULE_TYPE_MIC_SELECT: 849 return sizeof(struct skl_base_outfmt_cfg); 850 851 case SKL_MODULE_TYPE_MIXER: 852 case SKL_MODULE_TYPE_KPB: 853 return sizeof(struct skl_base_cfg); 854 855 case SKL_MODULE_TYPE_ALGO: 856 default: 857 res = &module->resources[mconfig->res_idx]; 858 859 param_size = sizeof(struct skl_base_cfg) + sizeof(struct skl_base_cfg_ext); 860 param_size += (res->nr_input_pins + res->nr_output_pins) * 861 sizeof(struct skl_pin_format); 862 param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; 863 864 return param_size; 865 } 866 867 return 0; 868 } 869 870 /* 871 * DSP firmware supports various modules like copier, SRC, updown etc. 872 * These modules required various parameters to be calculated and sent for 873 * the module initialization to DSP. By default a generic module needs only 874 * base module format configuration 875 */ 876 877 static int skl_set_module_format(struct skl_dev *skl, 878 struct skl_module_cfg *module_config, 879 u16 *module_config_size, 880 void **param_data) 881 { 882 u16 param_size; 883 884 param_size = skl_get_module_param_size(skl, module_config); 885 886 *param_data = kzalloc(param_size, GFP_KERNEL); 887 if (NULL == *param_data) 888 return -ENOMEM; 889 890 *module_config_size = param_size; 891 892 switch (module_config->m_type) { 893 case SKL_MODULE_TYPE_COPIER: 894 skl_set_copier_format(skl, module_config, *param_data); 895 break; 896 897 case SKL_MODULE_TYPE_SRCINT: 898 skl_set_src_format(skl, module_config, *param_data); 899 break; 900 901 case SKL_MODULE_TYPE_UPDWMIX: 902 skl_set_updown_mixer_format(skl, module_config, *param_data); 903 break; 904 905 case SKL_MODULE_TYPE_BASE_OUTFMT: 906 case SKL_MODULE_TYPE_MIC_SELECT: 907 skl_set_base_outfmt_format(skl, module_config, *param_data); 908 break; 909 910 case SKL_MODULE_TYPE_MIXER: 911 case SKL_MODULE_TYPE_KPB: 912 skl_set_base_module_format(skl, module_config, *param_data); 913 break; 914 915 case SKL_MODULE_TYPE_ALGO: 916 default: 917 skl_set_base_module_format(skl, module_config, *param_data); 918 skl_set_base_ext_module_format(skl, module_config, 919 *param_data + 920 sizeof(struct skl_base_cfg)); 921 break; 922 } 923 924 dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n", 925 module_config->m_type, module_config->id.module_id, 926 param_size); 927 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, 928 *param_data, param_size, false); 929 return 0; 930 } 931 932 static int skl_get_queue_index(struct skl_module_pin *mpin, 933 struct skl_module_inst_id id, int max) 934 { 935 int i; 936 937 for (i = 0; i < max; i++) { 938 if (mpin[i].id.module_id == id.module_id && 939 mpin[i].id.instance_id == id.instance_id) 940 return i; 941 } 942 943 return -EINVAL; 944 } 945 946 /* 947 * Allocates queue for each module. 948 * if dynamic, the pin_index is allocated 0 to max_pin. 949 * In static, the pin_index is fixed based on module_id and instance id 950 */ 951 static int skl_alloc_queue(struct skl_module_pin *mpin, 952 struct skl_module_cfg *tgt_cfg, int max) 953 { 954 int i; 955 struct skl_module_inst_id id = tgt_cfg->id; 956 /* 957 * if pin in dynamic, find first free pin 958 * otherwise find match module and instance id pin as topology will 959 * ensure a unique pin is assigned to this so no need to 960 * allocate/free 961 */ 962 for (i = 0; i < max; i++) { 963 if (mpin[i].is_dynamic) { 964 if (!mpin[i].in_use && 965 mpin[i].pin_state == SKL_PIN_UNBIND) { 966 967 mpin[i].in_use = true; 968 mpin[i].id.module_id = id.module_id; 969 mpin[i].id.instance_id = id.instance_id; 970 mpin[i].id.pvt_id = id.pvt_id; 971 mpin[i].tgt_mcfg = tgt_cfg; 972 return i; 973 } 974 } else { 975 if (mpin[i].id.module_id == id.module_id && 976 mpin[i].id.instance_id == id.instance_id && 977 mpin[i].pin_state == SKL_PIN_UNBIND) { 978 979 mpin[i].tgt_mcfg = tgt_cfg; 980 return i; 981 } 982 } 983 } 984 985 return -EINVAL; 986 } 987 988 static void skl_free_queue(struct skl_module_pin *mpin, int q_index) 989 { 990 if (mpin[q_index].is_dynamic) { 991 mpin[q_index].in_use = false; 992 mpin[q_index].id.module_id = 0; 993 mpin[q_index].id.instance_id = 0; 994 mpin[q_index].id.pvt_id = 0; 995 } 996 mpin[q_index].pin_state = SKL_PIN_UNBIND; 997 mpin[q_index].tgt_mcfg = NULL; 998 } 999 1000 /* Module state will be set to unint, if all the out pin state is UNBIND */ 1001 1002 static void skl_clear_module_state(struct skl_module_pin *mpin, int max, 1003 struct skl_module_cfg *mcfg) 1004 { 1005 int i; 1006 bool found = false; 1007 1008 for (i = 0; i < max; i++) { 1009 if (mpin[i].pin_state == SKL_PIN_UNBIND) 1010 continue; 1011 found = true; 1012 break; 1013 } 1014 1015 if (!found) 1016 mcfg->m_state = SKL_MODULE_INIT_DONE; 1017 return; 1018 } 1019 1020 /* 1021 * A module needs to be instanataited in DSP. A mdoule is present in a 1022 * collection of module referred as a PIPE. 1023 * We first calculate the module format, based on module type and then 1024 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper 1025 */ 1026 int skl_init_module(struct skl_dev *skl, 1027 struct skl_module_cfg *mconfig) 1028 { 1029 u16 module_config_size = 0; 1030 void *param_data = NULL; 1031 int ret; 1032 struct skl_ipc_init_instance_msg msg; 1033 1034 dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__, 1035 mconfig->id.module_id, mconfig->id.pvt_id); 1036 1037 if (mconfig->pipe->state != SKL_PIPE_CREATED) { 1038 dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n", 1039 mconfig->pipe->state, mconfig->pipe->ppl_id); 1040 return -EIO; 1041 } 1042 1043 ret = skl_set_module_format(skl, mconfig, 1044 &module_config_size, ¶m_data); 1045 if (ret < 0) { 1046 dev_err(skl->dev, "Failed to set module format ret=%d\n", ret); 1047 return ret; 1048 } 1049 1050 msg.module_id = mconfig->id.module_id; 1051 msg.instance_id = mconfig->id.pvt_id; 1052 msg.ppl_instance_id = mconfig->pipe->ppl_id; 1053 msg.param_data_size = module_config_size; 1054 msg.core_id = mconfig->core_id; 1055 msg.domain = mconfig->domain; 1056 1057 ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data); 1058 if (ret < 0) { 1059 dev_err(skl->dev, "Failed to init instance ret=%d\n", ret); 1060 kfree(param_data); 1061 return ret; 1062 } 1063 mconfig->m_state = SKL_MODULE_INIT_DONE; 1064 kfree(param_data); 1065 return ret; 1066 } 1067 1068 static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg 1069 *src_module, struct skl_module_cfg *dst_module) 1070 { 1071 dev_dbg(skl->dev, "%s: src module_id = %d src_instance=%d\n", 1072 __func__, src_module->id.module_id, src_module->id.pvt_id); 1073 dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__, 1074 dst_module->id.module_id, dst_module->id.pvt_id); 1075 1076 dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n", 1077 src_module->m_state, dst_module->m_state); 1078 } 1079 1080 /* 1081 * On module freeup, we need to unbind the module with modules 1082 * it is already bind. 1083 * Find the pin allocated and unbind then using bind_unbind IPC 1084 */ 1085 int skl_unbind_modules(struct skl_dev *skl, 1086 struct skl_module_cfg *src_mcfg, 1087 struct skl_module_cfg *dst_mcfg) 1088 { 1089 int ret; 1090 struct skl_ipc_bind_unbind_msg msg; 1091 struct skl_module_inst_id src_id = src_mcfg->id; 1092 struct skl_module_inst_id dst_id = dst_mcfg->id; 1093 int in_max = dst_mcfg->module->max_input_pins; 1094 int out_max = src_mcfg->module->max_output_pins; 1095 int src_index, dst_index, src_pin_state, dst_pin_state; 1096 1097 skl_dump_bind_info(skl, src_mcfg, dst_mcfg); 1098 1099 /* get src queue index */ 1100 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); 1101 if (src_index < 0) 1102 return 0; 1103 1104 msg.src_queue = src_index; 1105 1106 /* get dst queue index */ 1107 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); 1108 if (dst_index < 0) 1109 return 0; 1110 1111 msg.dst_queue = dst_index; 1112 1113 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; 1114 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; 1115 1116 if (src_pin_state != SKL_PIN_BIND_DONE || 1117 dst_pin_state != SKL_PIN_BIND_DONE) 1118 return 0; 1119 1120 msg.module_id = src_mcfg->id.module_id; 1121 msg.instance_id = src_mcfg->id.pvt_id; 1122 msg.dst_module_id = dst_mcfg->id.module_id; 1123 msg.dst_instance_id = dst_mcfg->id.pvt_id; 1124 msg.bind = false; 1125 1126 ret = skl_ipc_bind_unbind(&skl->ipc, &msg); 1127 if (!ret) { 1128 /* free queue only if unbind is success */ 1129 skl_free_queue(src_mcfg->m_out_pin, src_index); 1130 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 1131 1132 /* 1133 * check only if src module bind state, bind is 1134 * always from src -> sink 1135 */ 1136 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); 1137 } 1138 1139 return ret; 1140 } 1141 1142 #define CPR_SINK_FMT_PARAM_ID 2 1143 1144 /* 1145 * Once a module is instantiated it need to be 'bind' with other modules in 1146 * the pipeline. For binding we need to find the module pins which are bind 1147 * together 1148 * This function finds the pins and then sends bund_unbind IPC message to 1149 * DSP using IPC helper 1150 */ 1151 int skl_bind_modules(struct skl_dev *skl, 1152 struct skl_module_cfg *src_mcfg, 1153 struct skl_module_cfg *dst_mcfg) 1154 { 1155 int ret = 0; 1156 struct skl_ipc_bind_unbind_msg msg; 1157 int in_max = dst_mcfg->module->max_input_pins; 1158 int out_max = src_mcfg->module->max_output_pins; 1159 int src_index, dst_index; 1160 struct skl_module_fmt *format; 1161 struct skl_cpr_pin_fmt pin_fmt; 1162 struct skl_module *module; 1163 struct skl_module_iface *fmt; 1164 1165 skl_dump_bind_info(skl, src_mcfg, dst_mcfg); 1166 1167 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || 1168 dst_mcfg->m_state < SKL_MODULE_INIT_DONE) 1169 return 0; 1170 1171 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); 1172 if (src_index < 0) 1173 return -EINVAL; 1174 1175 msg.src_queue = src_index; 1176 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); 1177 if (dst_index < 0) { 1178 skl_free_queue(src_mcfg->m_out_pin, src_index); 1179 return -EINVAL; 1180 } 1181 1182 /* 1183 * Copier module requires the separate large_config_set_ipc to 1184 * configure the pins other than 0 1185 */ 1186 if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) { 1187 pin_fmt.sink_id = src_index; 1188 module = src_mcfg->module; 1189 fmt = &module->formats[src_mcfg->fmt_idx]; 1190 1191 /* Input fmt is same as that of src module input cfg */ 1192 format = &fmt->inputs[0].fmt; 1193 fill_pin_params(&(pin_fmt.src_fmt), format); 1194 1195 format = &fmt->outputs[src_index].fmt; 1196 fill_pin_params(&(pin_fmt.dst_fmt), format); 1197 ret = skl_set_module_params(skl, (void *)&pin_fmt, 1198 sizeof(struct skl_cpr_pin_fmt), 1199 CPR_SINK_FMT_PARAM_ID, src_mcfg); 1200 1201 if (ret < 0) 1202 goto out; 1203 } 1204 1205 msg.dst_queue = dst_index; 1206 1207 dev_dbg(skl->dev, "src queue = %d dst queue =%d\n", 1208 msg.src_queue, msg.dst_queue); 1209 1210 msg.module_id = src_mcfg->id.module_id; 1211 msg.instance_id = src_mcfg->id.pvt_id; 1212 msg.dst_module_id = dst_mcfg->id.module_id; 1213 msg.dst_instance_id = dst_mcfg->id.pvt_id; 1214 msg.bind = true; 1215 1216 ret = skl_ipc_bind_unbind(&skl->ipc, &msg); 1217 1218 if (!ret) { 1219 src_mcfg->m_state = SKL_MODULE_BIND_DONE; 1220 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; 1221 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; 1222 return ret; 1223 } 1224 out: 1225 /* error case , if IPC fails, clear the queue index */ 1226 skl_free_queue(src_mcfg->m_out_pin, src_index); 1227 skl_free_queue(dst_mcfg->m_in_pin, dst_index); 1228 1229 return ret; 1230 } 1231 1232 static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe, 1233 enum skl_ipc_pipeline_state state) 1234 { 1235 dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state); 1236 1237 return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state); 1238 } 1239 1240 /* 1241 * A pipeline is a collection of modules. Before a module in instantiated a 1242 * pipeline needs to be created for it. 1243 * This function creates pipeline, by sending create pipeline IPC messages 1244 * to FW 1245 */ 1246 int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe) 1247 { 1248 int ret; 1249 1250 dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); 1251 1252 ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages, 1253 pipe->pipe_priority, pipe->ppl_id, 1254 pipe->lp_mode); 1255 if (ret < 0) { 1256 dev_err(skl->dev, "Failed to create pipeline\n"); 1257 return ret; 1258 } 1259 1260 pipe->state = SKL_PIPE_CREATED; 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * A pipeline needs to be deleted on cleanup. If a pipeline is running, 1267 * then pause it first. Before actual deletion, pipeline should enter 1268 * reset state. Finish the procedure by sending delete pipeline IPC. 1269 * DSP will stop the DMA engines and release resources 1270 */ 1271 int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1272 { 1273 int ret; 1274 1275 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1276 1277 /* If pipe was not created in FW, do not try to delete it */ 1278 if (pipe->state < SKL_PIPE_CREATED) 1279 return 0; 1280 1281 /* If pipe is started, do stop the pipe in FW. */ 1282 if (pipe->state >= SKL_PIPE_STARTED) { 1283 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1284 if (ret < 0) { 1285 dev_err(skl->dev, "Failed to stop pipeline\n"); 1286 return ret; 1287 } 1288 1289 pipe->state = SKL_PIPE_PAUSED; 1290 } 1291 1292 /* reset pipe state before deletion */ 1293 ret = skl_set_pipe_state(skl, pipe, PPL_RESET); 1294 if (ret < 0) { 1295 dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret); 1296 return ret; 1297 } 1298 1299 pipe->state = SKL_PIPE_RESET; 1300 1301 ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id); 1302 if (ret < 0) { 1303 dev_err(skl->dev, "Failed to delete pipeline\n"); 1304 return ret; 1305 } 1306 1307 pipe->state = SKL_PIPE_INVALID; 1308 1309 return ret; 1310 } 1311 1312 /* 1313 * A pipeline is also a scheduling entity in DSP which can be run, stopped 1314 * For processing data the pipe need to be run by sending IPC set pipe state 1315 * to DSP 1316 */ 1317 int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1318 { 1319 int ret; 1320 1321 dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); 1322 1323 /* If pipe was not created in FW, do not try to pause or delete */ 1324 if (pipe->state < SKL_PIPE_CREATED) 1325 return 0; 1326 1327 /* Pipe has to be paused before it is started */ 1328 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1329 if (ret < 0) { 1330 dev_err(skl->dev, "Failed to pause pipe\n"); 1331 return ret; 1332 } 1333 1334 pipe->state = SKL_PIPE_PAUSED; 1335 1336 ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING); 1337 if (ret < 0) { 1338 dev_err(skl->dev, "Failed to start pipe\n"); 1339 return ret; 1340 } 1341 1342 pipe->state = SKL_PIPE_STARTED; 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * Stop the pipeline by sending set pipe state IPC 1349 * DSP doesnt implement stop so we always send pause message 1350 */ 1351 int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1352 { 1353 int ret; 1354 1355 dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); 1356 1357 /* If pipe was not created in FW, do not try to pause or delete */ 1358 if (pipe->state < SKL_PIPE_PAUSED) 1359 return 0; 1360 1361 ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); 1362 if (ret < 0) { 1363 dev_dbg(skl->dev, "Failed to stop pipe\n"); 1364 return ret; 1365 } 1366 1367 pipe->state = SKL_PIPE_PAUSED; 1368 1369 return 0; 1370 } 1371 1372 /* 1373 * Reset the pipeline by sending set pipe state IPC this will reset the DMA 1374 * from the DSP side 1375 */ 1376 int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe) 1377 { 1378 int ret; 1379 1380 /* If pipe was not created in FW, do not try to pause or delete */ 1381 if (pipe->state < SKL_PIPE_PAUSED) 1382 return 0; 1383 1384 ret = skl_set_pipe_state(skl, pipe, PPL_RESET); 1385 if (ret < 0) { 1386 dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret); 1387 return ret; 1388 } 1389 1390 pipe->state = SKL_PIPE_RESET; 1391 1392 return 0; 1393 } 1394 1395 /* Algo parameter set helper function */ 1396 int skl_set_module_params(struct skl_dev *skl, u32 *params, int size, 1397 u32 param_id, struct skl_module_cfg *mcfg) 1398 { 1399 struct skl_ipc_large_config_msg msg; 1400 1401 msg.module_id = mcfg->id.module_id; 1402 msg.instance_id = mcfg->id.pvt_id; 1403 msg.param_data_size = size; 1404 msg.large_param_id = param_id; 1405 1406 return skl_ipc_set_large_config(&skl->ipc, &msg, params); 1407 } 1408 1409 int skl_get_module_params(struct skl_dev *skl, u32 *params, int size, 1410 u32 param_id, struct skl_module_cfg *mcfg) 1411 { 1412 struct skl_ipc_large_config_msg msg; 1413 size_t bytes = size; 1414 1415 msg.module_id = mcfg->id.module_id; 1416 msg.instance_id = mcfg->id.pvt_id; 1417 msg.param_data_size = size; 1418 msg.large_param_id = param_id; 1419 1420 return skl_ipc_get_large_config(&skl->ipc, &msg, ¶ms, &bytes); 1421 } 1422