xref: /openbmc/linux/sound/soc/intel/skylake/skl-messages.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
4  *  configurations
5  *
6  *  Copyright (C) 2015 Intel Corp
7  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
8  *	   Jeeja KP <jeeja.kp@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/pci.h>
14 #include <sound/core.h>
15 #include <sound/pcm.h>
16 #include <uapi/sound/skl-tplg-interface.h>
17 #include "skl-sst-dsp.h"
18 #include "cnl-sst-dsp.h"
19 #include "skl-sst-ipc.h"
20 #include "skl.h"
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
23 #include "skl-topology.h"
24 
25 static int skl_alloc_dma_buf(struct device *dev,
26 		struct snd_dma_buffer *dmab, size_t size)
27 {
28 	return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab);
29 }
30 
31 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
32 {
33 	snd_dma_free_pages(dmab);
34 	return 0;
35 }
36 
37 #define SKL_ASTATE_PARAM_ID	4
38 
39 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data)
40 {
41 	struct skl_ipc_large_config_msg	msg = {0};
42 
43 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
44 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
45 				sizeof(cnt));
46 
47 	skl_ipc_set_large_config(&skl->ipc, &msg, data);
48 }
49 
50 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
51 				int stream_tag, int enable)
52 {
53 	struct hdac_bus *bus = dev_get_drvdata(dev);
54 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
55 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
56 
57 	if (!stream)
58 		return -EINVAL;
59 
60 	/* enable/disable SPIB for this hdac stream */
61 	snd_hdac_stream_spbcap_enable(bus, enable, stream->index);
62 
63 	/* set the spib value */
64 	snd_hdac_stream_set_spib(bus, stream, size);
65 
66 	return 0;
67 }
68 
69 static int skl_dsp_prepare(struct device *dev, unsigned int format,
70 			unsigned int size, struct snd_dma_buffer *dmab)
71 {
72 	struct hdac_bus *bus = dev_get_drvdata(dev);
73 	struct hdac_ext_stream *estream;
74 	struct hdac_stream *stream;
75 	struct snd_pcm_substream substream;
76 	int ret;
77 
78 	if (!bus)
79 		return -ENODEV;
80 
81 	memset(&substream, 0, sizeof(substream));
82 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
83 
84 	estream = snd_hdac_ext_stream_assign(bus, &substream,
85 					HDAC_EXT_STREAM_TYPE_HOST);
86 	if (!estream)
87 		return -ENODEV;
88 
89 	stream = hdac_stream(estream);
90 
91 	/* assign decouple host dma channel */
92 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
93 	if (ret < 0)
94 		return ret;
95 
96 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
97 
98 	return stream->stream_tag;
99 }
100 
101 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
102 {
103 	struct hdac_bus *bus = dev_get_drvdata(dev);
104 	struct hdac_stream *stream;
105 
106 	if (!bus)
107 		return -ENODEV;
108 
109 	stream = snd_hdac_get_stream(bus,
110 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
111 	if (!stream)
112 		return -EINVAL;
113 
114 	snd_hdac_dsp_trigger(stream, start);
115 
116 	return 0;
117 }
118 
119 static int skl_dsp_cleanup(struct device *dev,
120 		struct snd_dma_buffer *dmab, int stream_tag)
121 {
122 	struct hdac_bus *bus = dev_get_drvdata(dev);
123 	struct hdac_stream *stream;
124 	struct hdac_ext_stream *estream;
125 
126 	if (!bus)
127 		return -ENODEV;
128 
129 	stream = snd_hdac_get_stream(bus,
130 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
131 	if (!stream)
132 		return -EINVAL;
133 
134 	estream = stream_to_hdac_ext_stream(stream);
135 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
136 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
137 
138 	snd_hdac_dsp_cleanup(stream, dmab);
139 
140 	return 0;
141 }
142 
143 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
144 {
145 	struct skl_dsp_loader_ops loader_ops;
146 
147 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
148 
149 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
150 	loader_ops.free_dma_buf = skl_free_dma_buf;
151 
152 	return loader_ops;
153 };
154 
155 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
156 {
157 	struct skl_dsp_loader_ops loader_ops;
158 
159 	memset(&loader_ops, 0, sizeof(loader_ops));
160 
161 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
162 	loader_ops.free_dma_buf = skl_free_dma_buf;
163 	loader_ops.prepare = skl_dsp_prepare;
164 	loader_ops.trigger = skl_dsp_trigger;
165 	loader_ops.cleanup = skl_dsp_cleanup;
166 
167 	return loader_ops;
168 };
169 
170 static const struct skl_dsp_ops dsp_ops[] = {
171 	{
172 		.id = 0x9d70,
173 		.num_cores = 2,
174 		.loader_ops = skl_get_loader_ops,
175 		.init = skl_sst_dsp_init,
176 		.init_fw = skl_sst_init_fw,
177 		.cleanup = skl_sst_dsp_cleanup
178 	},
179 	{
180 		.id = 0x9d71,
181 		.num_cores = 2,
182 		.loader_ops = skl_get_loader_ops,
183 		.init = skl_sst_dsp_init,
184 		.init_fw = skl_sst_init_fw,
185 		.cleanup = skl_sst_dsp_cleanup
186 	},
187 	{
188 		.id = 0x5a98,
189 		.num_cores = 2,
190 		.loader_ops = bxt_get_loader_ops,
191 		.init = bxt_sst_dsp_init,
192 		.init_fw = bxt_sst_init_fw,
193 		.cleanup = bxt_sst_dsp_cleanup
194 	},
195 	{
196 		.id = 0x3198,
197 		.num_cores = 2,
198 		.loader_ops = bxt_get_loader_ops,
199 		.init = bxt_sst_dsp_init,
200 		.init_fw = bxt_sst_init_fw,
201 		.cleanup = bxt_sst_dsp_cleanup
202 	},
203 	{
204 		.id = 0x9dc8,
205 		.num_cores = 4,
206 		.loader_ops = bxt_get_loader_ops,
207 		.init = cnl_sst_dsp_init,
208 		.init_fw = cnl_sst_init_fw,
209 		.cleanup = cnl_sst_dsp_cleanup
210 	},
211 	{
212 		.id = 0xa348,
213 		.num_cores = 4,
214 		.loader_ops = bxt_get_loader_ops,
215 		.init = cnl_sst_dsp_init,
216 		.init_fw = cnl_sst_init_fw,
217 		.cleanup = cnl_sst_dsp_cleanup
218 	},
219 	{
220 		.id = 0x02c8,
221 		.num_cores = 4,
222 		.loader_ops = bxt_get_loader_ops,
223 		.init = cnl_sst_dsp_init,
224 		.init_fw = cnl_sst_init_fw,
225 		.cleanup = cnl_sst_dsp_cleanup
226 	},
227 	{
228 		.id = 0x06c8,
229 		.num_cores = 4,
230 		.loader_ops = bxt_get_loader_ops,
231 		.init = cnl_sst_dsp_init,
232 		.init_fw = cnl_sst_init_fw,
233 		.cleanup = cnl_sst_dsp_cleanup
234 	},
235 };
236 
237 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
238 {
239 	int i;
240 
241 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
242 		if (dsp_ops[i].id == pci_id)
243 			return &dsp_ops[i];
244 	}
245 
246 	return NULL;
247 }
248 
249 int skl_init_dsp(struct skl_dev *skl)
250 {
251 	void __iomem *mmio_base;
252 	struct hdac_bus *bus = skl_to_bus(skl);
253 	struct skl_dsp_loader_ops loader_ops;
254 	int irq = bus->irq;
255 	const struct skl_dsp_ops *ops;
256 	struct skl_dsp_cores *cores;
257 	int ret;
258 
259 	/* enable ppcap interrupt */
260 	snd_hdac_ext_bus_ppcap_enable(bus, true);
261 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
262 
263 	/* read the BAR of the ADSP MMIO */
264 	mmio_base = pci_ioremap_bar(skl->pci, 4);
265 	if (mmio_base == NULL) {
266 		dev_err(bus->dev, "ioremap error\n");
267 		return -ENXIO;
268 	}
269 
270 	ops = skl_get_dsp_ops(skl->pci->device);
271 	if (!ops) {
272 		ret = -EIO;
273 		goto unmap_mmio;
274 	}
275 
276 	loader_ops = ops->loader_ops();
277 	ret = ops->init(bus->dev, mmio_base, irq,
278 				skl->fw_name, loader_ops,
279 				&skl);
280 
281 	if (ret < 0)
282 		goto unmap_mmio;
283 
284 	skl->dsp_ops = ops;
285 	cores = &skl->cores;
286 	cores->count = ops->num_cores;
287 
288 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
289 	if (!cores->state) {
290 		ret = -ENOMEM;
291 		goto unmap_mmio;
292 	}
293 
294 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
295 				     GFP_KERNEL);
296 	if (!cores->usage_count) {
297 		ret = -ENOMEM;
298 		goto free_core_state;
299 	}
300 
301 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
302 
303 	return 0;
304 
305 free_core_state:
306 	kfree(cores->state);
307 
308 unmap_mmio:
309 	iounmap(mmio_base);
310 
311 	return ret;
312 }
313 
314 int skl_free_dsp(struct skl_dev *skl)
315 {
316 	struct hdac_bus *bus = skl_to_bus(skl);
317 
318 	/* disable  ppcap interrupt */
319 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
320 
321 	skl->dsp_ops->cleanup(bus->dev, skl);
322 
323 	kfree(skl->cores.state);
324 	kfree(skl->cores.usage_count);
325 
326 	if (skl->dsp->addr.lpe)
327 		iounmap(skl->dsp->addr.lpe);
328 
329 	return 0;
330 }
331 
332 /*
333  * In the case of "suspend_active" i.e, the Audio IP being active
334  * during system suspend, immediately excecute any pending D0i3 work
335  * before suspending. This is needed for the IP to work in low power
336  * mode during system suspend. In the case of normal suspend, cancel
337  * any pending D0i3 work.
338  */
339 int skl_suspend_late_dsp(struct skl_dev *skl)
340 {
341 	struct delayed_work *dwork;
342 
343 	if (!skl)
344 		return 0;
345 
346 	dwork = &skl->d0i3.work;
347 
348 	if (dwork->work.func) {
349 		if (skl->supend_active)
350 			flush_delayed_work(dwork);
351 		else
352 			cancel_delayed_work_sync(dwork);
353 	}
354 
355 	return 0;
356 }
357 
358 int skl_suspend_dsp(struct skl_dev *skl)
359 {
360 	struct hdac_bus *bus = skl_to_bus(skl);
361 	int ret;
362 
363 	/* if ppcap is not supported return 0 */
364 	if (!bus->ppcap)
365 		return 0;
366 
367 	ret = skl_dsp_sleep(skl->dsp);
368 	if (ret < 0)
369 		return ret;
370 
371 	/* disable ppcap interrupt */
372 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
373 	snd_hdac_ext_bus_ppcap_enable(bus, false);
374 
375 	return 0;
376 }
377 
378 int skl_resume_dsp(struct skl_dev *skl)
379 {
380 	struct hdac_bus *bus = skl_to_bus(skl);
381 	int ret;
382 
383 	/* if ppcap is not supported return 0 */
384 	if (!bus->ppcap)
385 		return 0;
386 
387 	/* enable ppcap interrupt */
388 	snd_hdac_ext_bus_ppcap_enable(bus, true);
389 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
390 
391 	/* check if DSP 1st boot is done */
392 	if (skl->is_first_boot)
393 		return 0;
394 
395 	/*
396 	 * Disable dynamic clock and power gating during firmware
397 	 * and library download
398 	 */
399 	skl->enable_miscbdcge(skl->dev, false);
400 	skl->clock_power_gating(skl->dev, false);
401 
402 	ret = skl_dsp_wake(skl->dsp);
403 	skl->enable_miscbdcge(skl->dev, true);
404 	skl->clock_power_gating(skl->dev, true);
405 	if (ret < 0)
406 		return ret;
407 
408 	if (skl->cfg.astate_cfg != NULL) {
409 		skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count,
410 					skl->cfg.astate_cfg);
411 	}
412 	return ret;
413 }
414 
415 enum skl_bitdepth skl_get_bit_depth(int params)
416 {
417 	switch (params) {
418 	case 8:
419 		return SKL_DEPTH_8BIT;
420 
421 	case 16:
422 		return SKL_DEPTH_16BIT;
423 
424 	case 24:
425 		return SKL_DEPTH_24BIT;
426 
427 	case 32:
428 		return SKL_DEPTH_32BIT;
429 
430 	default:
431 		return SKL_DEPTH_INVALID;
432 
433 	}
434 }
435 
436 /*
437  * Each module in DSP expects a base module configuration, which consists of
438  * PCM format information, which we calculate in driver and resource values
439  * which are read from widget information passed through topology binary
440  * This is send when we create a module with INIT_INSTANCE IPC msg
441  */
442 static void skl_set_base_module_format(struct skl_dev *skl,
443 			struct skl_module_cfg *mconfig,
444 			struct skl_base_cfg *base_cfg)
445 {
446 	struct skl_module *module = mconfig->module;
447 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
448 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
449 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
450 
451 	base_cfg->audio_fmt.number_of_channels = format->channels;
452 
453 	base_cfg->audio_fmt.s_freq = format->s_freq;
454 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
455 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
456 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
457 	base_cfg->audio_fmt.sample_type = format->sample_type;
458 
459 	dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
460 			format->bit_depth, format->valid_bit_depth,
461 			format->ch_cfg);
462 
463 	base_cfg->audio_fmt.channel_map = format->ch_map;
464 
465 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
466 
467 	base_cfg->cpc = res->cpc;
468 	base_cfg->ibs = res->ibs;
469 	base_cfg->obs = res->obs;
470 	base_cfg->is_pages = res->is_pages;
471 }
472 
473 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
474 			    struct skl_module_fmt *format)
475 {
476 	pin_fmt->number_of_channels = format->channels;
477 	pin_fmt->s_freq = format->s_freq;
478 	pin_fmt->bit_depth = format->bit_depth;
479 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
480 	pin_fmt->ch_cfg = format->ch_cfg;
481 	pin_fmt->sample_type = format->sample_type;
482 	pin_fmt->channel_map = format->ch_map;
483 	pin_fmt->interleaving = format->interleaving_style;
484 }
485 
486 /*
487  * Any module configuration begins with a base module configuration but
488  * can be followed by a generic extension containing audio format for all
489  * module's pins that are in use.
490  */
491 static void skl_set_base_ext_module_format(struct skl_dev *skl,
492 					   struct skl_module_cfg *mconfig,
493 					   struct skl_base_cfg_ext *base_cfg_ext)
494 {
495 	struct skl_module *module = mconfig->module;
496 	struct skl_module_pin_resources *pin_res;
497 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
498 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
499 	struct skl_module_fmt *format;
500 	struct skl_pin_format *pin_fmt;
501 	char *params;
502 	int i;
503 
504 	base_cfg_ext->nr_input_pins = res->nr_input_pins;
505 	base_cfg_ext->nr_output_pins = res->nr_output_pins;
506 	base_cfg_ext->priv_param_length =
507 		mconfig->formats_config[SKL_PARAM_INIT].caps_size;
508 
509 	for (i = 0; i < res->nr_input_pins; i++) {
510 		pin_res = &res->input[i];
511 		pin_fmt = &base_cfg_ext->pins_fmt[i];
512 
513 		pin_fmt->pin_idx = pin_res->pin_index;
514 		pin_fmt->buf_size = pin_res->buf_size;
515 
516 		format = &fmt->inputs[pin_res->pin_index].fmt;
517 		fill_pin_params(&pin_fmt->audio_fmt, format);
518 	}
519 
520 	for (i = 0; i < res->nr_output_pins; i++) {
521 		pin_res = &res->output[i];
522 		pin_fmt = &base_cfg_ext->pins_fmt[res->nr_input_pins + i];
523 
524 		pin_fmt->pin_idx = pin_res->pin_index;
525 		pin_fmt->buf_size = pin_res->buf_size;
526 
527 		format = &fmt->outputs[pin_res->pin_index].fmt;
528 		fill_pin_params(&pin_fmt->audio_fmt, format);
529 	}
530 
531 	if (!base_cfg_ext->priv_param_length)
532 		return;
533 
534 	params = (char *)base_cfg_ext + sizeof(struct skl_base_cfg_ext);
535 	params += (base_cfg_ext->nr_input_pins + base_cfg_ext->nr_output_pins) *
536 		  sizeof(struct skl_pin_format);
537 
538 	memcpy(params, mconfig->formats_config[SKL_PARAM_INIT].caps,
539 	       mconfig->formats_config[SKL_PARAM_INIT].caps_size);
540 }
541 
542 /*
543  * Copies copier capabilities into copier module and updates copier module
544  * config size.
545  */
546 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
547 				struct skl_cpr_cfg *cpr_mconfig)
548 {
549 	if (mconfig->formats_config[SKL_PARAM_INIT].caps_size == 0)
550 		return;
551 
552 	memcpy(&cpr_mconfig->gtw_cfg.config_data,
553 			mconfig->formats_config[SKL_PARAM_INIT].caps,
554 			mconfig->formats_config[SKL_PARAM_INIT].caps_size);
555 
556 	cpr_mconfig->gtw_cfg.config_length =
557 			(mconfig->formats_config[SKL_PARAM_INIT].caps_size) / 4;
558 }
559 
560 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
561 /*
562  * Calculate the gatewat settings required for copier module, type of
563  * gateway and index of gateway to use
564  */
565 static u32 skl_get_node_id(struct skl_dev *skl,
566 			struct skl_module_cfg *mconfig)
567 {
568 	union skl_connector_node_id node_id = {0};
569 	union skl_ssp_dma_node ssp_node  = {0};
570 	struct skl_pipe_params *params = mconfig->pipe->p_params;
571 
572 	switch (mconfig->dev_type) {
573 	case SKL_DEVICE_BT:
574 		node_id.node.dma_type =
575 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
576 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
577 			SKL_DMA_I2S_LINK_INPUT_CLASS;
578 		node_id.node.vindex = params->host_dma_id +
579 					(mconfig->vbus_id << 3);
580 		break;
581 
582 	case SKL_DEVICE_I2S:
583 		node_id.node.dma_type =
584 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
585 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
586 			SKL_DMA_I2S_LINK_INPUT_CLASS;
587 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
588 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
589 		node_id.node.vindex = ssp_node.val;
590 		break;
591 
592 	case SKL_DEVICE_DMIC:
593 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
594 		node_id.node.vindex = mconfig->vbus_id +
595 					 (mconfig->time_slot);
596 		break;
597 
598 	case SKL_DEVICE_HDALINK:
599 		node_id.node.dma_type =
600 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
601 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
602 			SKL_DMA_HDA_LINK_INPUT_CLASS;
603 		node_id.node.vindex = params->link_dma_id;
604 		break;
605 
606 	case SKL_DEVICE_HDAHOST:
607 		node_id.node.dma_type =
608 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
609 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
610 			SKL_DMA_HDA_HOST_INPUT_CLASS;
611 		node_id.node.vindex = params->host_dma_id;
612 		break;
613 
614 	default:
615 		node_id.val = 0xFFFFFFFF;
616 		break;
617 	}
618 
619 	return node_id.val;
620 }
621 
622 static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl,
623 			struct skl_module_cfg *mconfig,
624 			struct skl_cpr_cfg *cpr_mconfig)
625 {
626 	u32 dma_io_buf;
627 	struct skl_module_res *res;
628 	int res_idx = mconfig->res_idx;
629 
630 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig);
631 
632 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
633 		cpr_mconfig->cpr_feature_mask = 0;
634 		return;
635 	}
636 
637 	if (skl->nr_modules) {
638 		res = &mconfig->module->resources[mconfig->res_idx];
639 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
640 		goto skip_buf_size_calc;
641 	} else {
642 		res = &mconfig->module->resources[res_idx];
643 	}
644 
645 	switch (mconfig->hw_conn_type) {
646 	case SKL_CONN_SOURCE:
647 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
648 			dma_io_buf =  res->ibs;
649 		else
650 			dma_io_buf =  res->obs;
651 		break;
652 
653 	case SKL_CONN_SINK:
654 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
655 			dma_io_buf =  res->obs;
656 		else
657 			dma_io_buf =  res->ibs;
658 		break;
659 
660 	default:
661 		dev_warn(skl->dev, "wrong connection type: %d\n",
662 				mconfig->hw_conn_type);
663 		return;
664 	}
665 
666 	cpr_mconfig->gtw_cfg.dma_buffer_size =
667 				mconfig->dma_buffer_size * dma_io_buf;
668 
669 	/* fallback to 2ms default value */
670 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
671 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
672 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
673 		else
674 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
675 	}
676 
677 skip_buf_size_calc:
678 	cpr_mconfig->cpr_feature_mask = 0;
679 	cpr_mconfig->gtw_cfg.config_length  = 0;
680 
681 	skl_copy_copier_caps(mconfig, cpr_mconfig);
682 }
683 
684 #define DMA_CONTROL_ID 5
685 #define DMA_I2S_BLOB_SIZE 21
686 
687 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps,
688 				u32 caps_size, u32 node_id)
689 {
690 	struct skl_dma_control *dma_ctrl;
691 	struct skl_ipc_large_config_msg msg = {0};
692 	int err = 0;
693 
694 
695 	/*
696 	 * if blob size zero, then return
697 	 */
698 	if (caps_size == 0)
699 		return 0;
700 
701 	msg.large_param_id = DMA_CONTROL_ID;
702 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
703 
704 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
705 	if (dma_ctrl == NULL)
706 		return -ENOMEM;
707 
708 	dma_ctrl->node_id = node_id;
709 
710 	/*
711 	 * NHLT blob may contain additional configs along with i2s blob.
712 	 * firmware expects only the i2s blob size as the config_length.
713 	 * So fix to i2s blob size.
714 	 * size in dwords.
715 	 */
716 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
717 
718 	memcpy(dma_ctrl->config_data, caps, caps_size);
719 
720 	err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl);
721 
722 	kfree(dma_ctrl);
723 	return err;
724 }
725 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
726 
727 static void skl_setup_out_format(struct skl_dev *skl,
728 			struct skl_module_cfg *mconfig,
729 			struct skl_audio_data_format *out_fmt)
730 {
731 	struct skl_module *module = mconfig->module;
732 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
733 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
734 
735 	out_fmt->number_of_channels = (u8)format->channels;
736 	out_fmt->s_freq = format->s_freq;
737 	out_fmt->bit_depth = format->bit_depth;
738 	out_fmt->valid_bit_depth = format->valid_bit_depth;
739 	out_fmt->ch_cfg = format->ch_cfg;
740 
741 	out_fmt->channel_map = format->ch_map;
742 	out_fmt->interleaving = format->interleaving_style;
743 	out_fmt->sample_type = format->sample_type;
744 
745 	dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
746 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
747 }
748 
749 /*
750  * DSP needs SRC module for frequency conversion, SRC takes base module
751  * configuration and the target frequency as extra parameter passed as src
752  * config
753  */
754 static void skl_set_src_format(struct skl_dev *skl,
755 			struct skl_module_cfg *mconfig,
756 			struct skl_src_module_cfg *src_mconfig)
757 {
758 	struct skl_module *module = mconfig->module;
759 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
760 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
761 
762 	skl_set_base_module_format(skl, mconfig,
763 		(struct skl_base_cfg *)src_mconfig);
764 
765 	src_mconfig->src_cfg = fmt->s_freq;
766 }
767 
768 /*
769  * DSP needs updown module to do channel conversion. updown module take base
770  * module configuration and channel configuration
771  * It also take coefficients and now we have defaults applied here
772  */
773 static void skl_set_updown_mixer_format(struct skl_dev *skl,
774 			struct skl_module_cfg *mconfig,
775 			struct skl_up_down_mixer_cfg *mixer_mconfig)
776 {
777 	struct skl_module *module = mconfig->module;
778 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
779 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
780 
781 	skl_set_base_module_format(skl,	mconfig,
782 		(struct skl_base_cfg *)mixer_mconfig);
783 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
784 	mixer_mconfig->ch_map = fmt->ch_map;
785 }
786 
787 /*
788  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
789  * dma) or link (hda link, SSP, PDM)
790  * Here we calculate the copier module parameters, like PCM format, output
791  * format, gateway settings
792  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
793  */
794 static void skl_set_copier_format(struct skl_dev *skl,
795 			struct skl_module_cfg *mconfig,
796 			struct skl_cpr_cfg *cpr_mconfig)
797 {
798 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
799 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
800 
801 	skl_set_base_module_format(skl, mconfig, base_cfg);
802 
803 	skl_setup_out_format(skl, mconfig, out_fmt);
804 	skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig);
805 }
806 
807 /*
808  * Mic select module allows selecting one or many input channels, thus
809  * acting as a demux.
810  *
811  * Mic select module take base module configuration and out-format
812  * configuration
813  */
814 static void skl_set_base_outfmt_format(struct skl_dev *skl,
815 			struct skl_module_cfg *mconfig,
816 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
817 {
818 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
819 	struct skl_base_cfg *base_cfg =
820 				(struct skl_base_cfg *)base_outfmt_mcfg;
821 
822 	skl_set_base_module_format(skl, mconfig, base_cfg);
823 	skl_setup_out_format(skl, mconfig, out_fmt);
824 }
825 
826 static u16 skl_get_module_param_size(struct skl_dev *skl,
827 			struct skl_module_cfg *mconfig)
828 {
829 	struct skl_module_res *res;
830 	struct skl_module *module = mconfig->module;
831 	u16 param_size;
832 
833 	switch (mconfig->m_type) {
834 	case SKL_MODULE_TYPE_COPIER:
835 		param_size = sizeof(struct skl_cpr_cfg);
836 		param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size;
837 		return param_size;
838 
839 	case SKL_MODULE_TYPE_SRCINT:
840 		return sizeof(struct skl_src_module_cfg);
841 
842 	case SKL_MODULE_TYPE_UPDWMIX:
843 		return sizeof(struct skl_up_down_mixer_cfg);
844 
845 	case SKL_MODULE_TYPE_BASE_OUTFMT:
846 	case SKL_MODULE_TYPE_MIC_SELECT:
847 		return sizeof(struct skl_base_outfmt_cfg);
848 
849 	case SKL_MODULE_TYPE_MIXER:
850 	case SKL_MODULE_TYPE_KPB:
851 		return sizeof(struct skl_base_cfg);
852 
853 	case SKL_MODULE_TYPE_ALGO:
854 	default:
855 		res = &module->resources[mconfig->res_idx];
856 
857 		param_size = sizeof(struct skl_base_cfg) + sizeof(struct skl_base_cfg_ext);
858 		param_size += (res->nr_input_pins + res->nr_output_pins) *
859 			      sizeof(struct skl_pin_format);
860 		param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size;
861 
862 		return param_size;
863 	}
864 
865 	return 0;
866 }
867 
868 /*
869  * DSP firmware supports various modules like copier, SRC, updown etc.
870  * These modules required various parameters to be calculated and sent for
871  * the module initialization to DSP. By default a generic module needs only
872  * base module format configuration
873  */
874 
875 static int skl_set_module_format(struct skl_dev *skl,
876 			struct skl_module_cfg *module_config,
877 			u16 *module_config_size,
878 			void **param_data)
879 {
880 	u16 param_size;
881 
882 	param_size  = skl_get_module_param_size(skl, module_config);
883 
884 	*param_data = kzalloc(param_size, GFP_KERNEL);
885 	if (NULL == *param_data)
886 		return -ENOMEM;
887 
888 	*module_config_size = param_size;
889 
890 	switch (module_config->m_type) {
891 	case SKL_MODULE_TYPE_COPIER:
892 		skl_set_copier_format(skl, module_config, *param_data);
893 		break;
894 
895 	case SKL_MODULE_TYPE_SRCINT:
896 		skl_set_src_format(skl, module_config, *param_data);
897 		break;
898 
899 	case SKL_MODULE_TYPE_UPDWMIX:
900 		skl_set_updown_mixer_format(skl, module_config, *param_data);
901 		break;
902 
903 	case SKL_MODULE_TYPE_BASE_OUTFMT:
904 	case SKL_MODULE_TYPE_MIC_SELECT:
905 		skl_set_base_outfmt_format(skl, module_config, *param_data);
906 		break;
907 
908 	case SKL_MODULE_TYPE_MIXER:
909 	case SKL_MODULE_TYPE_KPB:
910 		skl_set_base_module_format(skl, module_config, *param_data);
911 		break;
912 
913 	case SKL_MODULE_TYPE_ALGO:
914 	default:
915 		skl_set_base_module_format(skl, module_config, *param_data);
916 		skl_set_base_ext_module_format(skl, module_config,
917 					       *param_data +
918 					       sizeof(struct skl_base_cfg));
919 		break;
920 	}
921 
922 	dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n",
923 			module_config->m_type, module_config->id.module_id,
924 			param_size);
925 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
926 			*param_data, param_size, false);
927 	return 0;
928 }
929 
930 static int skl_get_queue_index(struct skl_module_pin *mpin,
931 				struct skl_module_inst_id id, int max)
932 {
933 	int i;
934 
935 	for (i = 0; i < max; i++)  {
936 		if (mpin[i].id.module_id == id.module_id &&
937 			mpin[i].id.instance_id == id.instance_id)
938 			return i;
939 	}
940 
941 	return -EINVAL;
942 }
943 
944 /*
945  * Allocates queue for each module.
946  * if dynamic, the pin_index is allocated 0 to max_pin.
947  * In static, the pin_index is fixed based on module_id and instance id
948  */
949 static int skl_alloc_queue(struct skl_module_pin *mpin,
950 			struct skl_module_cfg *tgt_cfg, int max)
951 {
952 	int i;
953 	struct skl_module_inst_id id = tgt_cfg->id;
954 	/*
955 	 * if pin in dynamic, find first free pin
956 	 * otherwise find match module and instance id pin as topology will
957 	 * ensure a unique pin is assigned to this so no need to
958 	 * allocate/free
959 	 */
960 	for (i = 0; i < max; i++)  {
961 		if (mpin[i].is_dynamic) {
962 			if (!mpin[i].in_use &&
963 				mpin[i].pin_state == SKL_PIN_UNBIND) {
964 
965 				mpin[i].in_use = true;
966 				mpin[i].id.module_id = id.module_id;
967 				mpin[i].id.instance_id = id.instance_id;
968 				mpin[i].id.pvt_id = id.pvt_id;
969 				mpin[i].tgt_mcfg = tgt_cfg;
970 				return i;
971 			}
972 		} else {
973 			if (mpin[i].id.module_id == id.module_id &&
974 				mpin[i].id.instance_id == id.instance_id &&
975 				mpin[i].pin_state == SKL_PIN_UNBIND) {
976 
977 				mpin[i].tgt_mcfg = tgt_cfg;
978 				return i;
979 			}
980 		}
981 	}
982 
983 	return -EINVAL;
984 }
985 
986 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
987 {
988 	if (mpin[q_index].is_dynamic) {
989 		mpin[q_index].in_use = false;
990 		mpin[q_index].id.module_id = 0;
991 		mpin[q_index].id.instance_id = 0;
992 		mpin[q_index].id.pvt_id = 0;
993 	}
994 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
995 	mpin[q_index].tgt_mcfg = NULL;
996 }
997 
998 /* Module state will be set to unint, if all the out pin state is UNBIND */
999 
1000 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
1001 						struct skl_module_cfg *mcfg)
1002 {
1003 	int i;
1004 	bool found = false;
1005 
1006 	for (i = 0; i < max; i++)  {
1007 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
1008 			continue;
1009 		found = true;
1010 		break;
1011 	}
1012 
1013 	if (!found)
1014 		mcfg->m_state = SKL_MODULE_INIT_DONE;
1015 	return;
1016 }
1017 
1018 /*
1019  * A module needs to be instanataited in DSP. A mdoule is present in a
1020  * collection of module referred as a PIPE.
1021  * We first calculate the module format, based on module type and then
1022  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
1023  */
1024 int skl_init_module(struct skl_dev *skl,
1025 			struct skl_module_cfg *mconfig)
1026 {
1027 	u16 module_config_size = 0;
1028 	void *param_data = NULL;
1029 	int ret;
1030 	struct skl_ipc_init_instance_msg msg;
1031 
1032 	dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__,
1033 		 mconfig->id.module_id, mconfig->id.pvt_id);
1034 
1035 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1036 		dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n",
1037 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
1038 		return -EIO;
1039 	}
1040 
1041 	ret = skl_set_module_format(skl, mconfig,
1042 			&module_config_size, &param_data);
1043 	if (ret < 0) {
1044 		dev_err(skl->dev, "Failed to set module format ret=%d\n", ret);
1045 		return ret;
1046 	}
1047 
1048 	msg.module_id = mconfig->id.module_id;
1049 	msg.instance_id = mconfig->id.pvt_id;
1050 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
1051 	msg.param_data_size = module_config_size;
1052 	msg.core_id = mconfig->core_id;
1053 	msg.domain = mconfig->domain;
1054 
1055 	ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data);
1056 	if (ret < 0) {
1057 		dev_err(skl->dev, "Failed to init instance ret=%d\n", ret);
1058 		kfree(param_data);
1059 		return ret;
1060 	}
1061 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1062 	kfree(param_data);
1063 	return ret;
1064 }
1065 
1066 static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg
1067 	*src_module, struct skl_module_cfg *dst_module)
1068 {
1069 	dev_dbg(skl->dev, "%s: src module_id = %d  src_instance=%d\n",
1070 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1071 	dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1072 		 dst_module->id.module_id, dst_module->id.pvt_id);
1073 
1074 	dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n",
1075 		src_module->m_state, dst_module->m_state);
1076 }
1077 
1078 /*
1079  * On module freeup, we need to unbind the module with modules
1080  * it is already bind.
1081  * Find the pin allocated and unbind then using bind_unbind IPC
1082  */
1083 int skl_unbind_modules(struct skl_dev *skl,
1084 			struct skl_module_cfg *src_mcfg,
1085 			struct skl_module_cfg *dst_mcfg)
1086 {
1087 	int ret;
1088 	struct skl_ipc_bind_unbind_msg msg;
1089 	struct skl_module_inst_id src_id = src_mcfg->id;
1090 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1091 	int in_max = dst_mcfg->module->max_input_pins;
1092 	int out_max = src_mcfg->module->max_output_pins;
1093 	int src_index, dst_index, src_pin_state, dst_pin_state;
1094 
1095 	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1096 
1097 	/* get src queue index */
1098 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1099 	if (src_index < 0)
1100 		return 0;
1101 
1102 	msg.src_queue = src_index;
1103 
1104 	/* get dst queue index */
1105 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1106 	if (dst_index < 0)
1107 		return 0;
1108 
1109 	msg.dst_queue = dst_index;
1110 
1111 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1112 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1113 
1114 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1115 		dst_pin_state != SKL_PIN_BIND_DONE)
1116 		return 0;
1117 
1118 	msg.module_id = src_mcfg->id.module_id;
1119 	msg.instance_id = src_mcfg->id.pvt_id;
1120 	msg.dst_module_id = dst_mcfg->id.module_id;
1121 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1122 	msg.bind = false;
1123 
1124 	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1125 	if (!ret) {
1126 		/* free queue only if unbind is success */
1127 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1128 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1129 
1130 		/*
1131 		 * check only if src module bind state, bind is
1132 		 * always from src -> sink
1133 		 */
1134 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1135 	}
1136 
1137 	return ret;
1138 }
1139 
1140 #define CPR_SINK_FMT_PARAM_ID 2
1141 
1142 /*
1143  * Once a module is instantiated it need to be 'bind' with other modules in
1144  * the pipeline. For binding we need to find the module pins which are bind
1145  * together
1146  * This function finds the pins and then sends bund_unbind IPC message to
1147  * DSP using IPC helper
1148  */
1149 int skl_bind_modules(struct skl_dev *skl,
1150 			struct skl_module_cfg *src_mcfg,
1151 			struct skl_module_cfg *dst_mcfg)
1152 {
1153 	int ret = 0;
1154 	struct skl_ipc_bind_unbind_msg msg;
1155 	int in_max = dst_mcfg->module->max_input_pins;
1156 	int out_max = src_mcfg->module->max_output_pins;
1157 	int src_index, dst_index;
1158 	struct skl_module_fmt *format;
1159 	struct skl_cpr_pin_fmt pin_fmt;
1160 	struct skl_module *module;
1161 	struct skl_module_iface *fmt;
1162 
1163 	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1164 
1165 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1166 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1167 		return 0;
1168 
1169 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1170 	if (src_index < 0)
1171 		return -EINVAL;
1172 
1173 	msg.src_queue = src_index;
1174 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1175 	if (dst_index < 0) {
1176 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1177 		return -EINVAL;
1178 	}
1179 
1180 	/*
1181 	 * Copier module requires the separate large_config_set_ipc to
1182 	 * configure the pins other than 0
1183 	 */
1184 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1185 		pin_fmt.sink_id = src_index;
1186 		module = src_mcfg->module;
1187 		fmt = &module->formats[src_mcfg->fmt_idx];
1188 
1189 		/* Input fmt is same as that of src module input cfg */
1190 		format = &fmt->inputs[0].fmt;
1191 		fill_pin_params(&(pin_fmt.src_fmt), format);
1192 
1193 		format = &fmt->outputs[src_index].fmt;
1194 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1195 		ret = skl_set_module_params(skl, (void *)&pin_fmt,
1196 					sizeof(struct skl_cpr_pin_fmt),
1197 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1198 
1199 		if (ret < 0)
1200 			goto out;
1201 	}
1202 
1203 	msg.dst_queue = dst_index;
1204 
1205 	dev_dbg(skl->dev, "src queue = %d dst queue =%d\n",
1206 			 msg.src_queue, msg.dst_queue);
1207 
1208 	msg.module_id = src_mcfg->id.module_id;
1209 	msg.instance_id = src_mcfg->id.pvt_id;
1210 	msg.dst_module_id = dst_mcfg->id.module_id;
1211 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1212 	msg.bind = true;
1213 
1214 	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1215 
1216 	if (!ret) {
1217 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1218 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1219 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1220 		return ret;
1221 	}
1222 out:
1223 	/* error case , if IPC fails, clear the queue index */
1224 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1225 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1226 
1227 	return ret;
1228 }
1229 
1230 static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe,
1231 	enum skl_ipc_pipeline_state state)
1232 {
1233 	dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state);
1234 
1235 	return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state);
1236 }
1237 
1238 /*
1239  * A pipeline is a collection of modules. Before a module in instantiated a
1240  * pipeline needs to be created for it.
1241  * This function creates pipeline, by sending create pipeline IPC messages
1242  * to FW
1243  */
1244 int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe)
1245 {
1246 	int ret;
1247 
1248 	dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1249 
1250 	ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages,
1251 				pipe->pipe_priority, pipe->ppl_id,
1252 				pipe->lp_mode);
1253 	if (ret < 0) {
1254 		dev_err(skl->dev, "Failed to create pipeline\n");
1255 		return ret;
1256 	}
1257 
1258 	pipe->state = SKL_PIPE_CREATED;
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * A pipeline needs to be deleted on cleanup. If a pipeline is running,
1265  * then pause it first. Before actual deletion, pipeline should enter
1266  * reset state. Finish the procedure by sending delete pipeline IPC.
1267  * DSP will stop the DMA engines and release resources
1268  */
1269 int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1270 {
1271 	int ret;
1272 
1273 	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1274 
1275 	/* If pipe was not created in FW, do not try to delete it */
1276 	if (pipe->state < SKL_PIPE_CREATED)
1277 		return 0;
1278 
1279 	/* If pipe is started, do stop the pipe in FW. */
1280 	if (pipe->state >= SKL_PIPE_STARTED) {
1281 		ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1282 		if (ret < 0) {
1283 			dev_err(skl->dev, "Failed to stop pipeline\n");
1284 			return ret;
1285 		}
1286 
1287 		pipe->state = SKL_PIPE_PAUSED;
1288 	}
1289 
1290 	/* reset pipe state before deletion */
1291 	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1292 	if (ret < 0) {
1293 		dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1294 		return ret;
1295 	}
1296 
1297 	pipe->state = SKL_PIPE_RESET;
1298 
1299 	ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id);
1300 	if (ret < 0) {
1301 		dev_err(skl->dev, "Failed to delete pipeline\n");
1302 		return ret;
1303 	}
1304 
1305 	pipe->state = SKL_PIPE_INVALID;
1306 
1307 	return ret;
1308 }
1309 
1310 /*
1311  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1312  * For processing data the pipe need to be run by sending IPC set pipe state
1313  * to DSP
1314  */
1315 int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1316 {
1317 	int ret;
1318 
1319 	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1320 
1321 	/* If pipe was not created in FW, do not try to pause or delete */
1322 	if (pipe->state < SKL_PIPE_CREATED)
1323 		return 0;
1324 
1325 	/* Pipe has to be paused before it is started */
1326 	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1327 	if (ret < 0) {
1328 		dev_err(skl->dev, "Failed to pause pipe\n");
1329 		return ret;
1330 	}
1331 
1332 	pipe->state = SKL_PIPE_PAUSED;
1333 
1334 	ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING);
1335 	if (ret < 0) {
1336 		dev_err(skl->dev, "Failed to start pipe\n");
1337 		return ret;
1338 	}
1339 
1340 	pipe->state = SKL_PIPE_STARTED;
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Stop the pipeline by sending set pipe state IPC
1347  * DSP doesnt implement stop so we always send pause message
1348  */
1349 int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1350 {
1351 	int ret;
1352 
1353 	dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1354 
1355 	/* If pipe was not created in FW, do not try to pause or delete */
1356 	if (pipe->state < SKL_PIPE_PAUSED)
1357 		return 0;
1358 
1359 	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1360 	if (ret < 0) {
1361 		dev_dbg(skl->dev, "Failed to stop pipe\n");
1362 		return ret;
1363 	}
1364 
1365 	pipe->state = SKL_PIPE_PAUSED;
1366 
1367 	return 0;
1368 }
1369 
1370 /*
1371  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1372  * from the DSP side
1373  */
1374 int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1375 {
1376 	int ret;
1377 
1378 	/* If pipe was not created in FW, do not try to pause or delete */
1379 	if (pipe->state < SKL_PIPE_PAUSED)
1380 		return 0;
1381 
1382 	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1383 	if (ret < 0) {
1384 		dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1385 		return ret;
1386 	}
1387 
1388 	pipe->state = SKL_PIPE_RESET;
1389 
1390 	return 0;
1391 }
1392 
1393 /* Algo parameter set helper function */
1394 int skl_set_module_params(struct skl_dev *skl, u32 *params, int size,
1395 				u32 param_id, struct skl_module_cfg *mcfg)
1396 {
1397 	struct skl_ipc_large_config_msg msg;
1398 
1399 	msg.module_id = mcfg->id.module_id;
1400 	msg.instance_id = mcfg->id.pvt_id;
1401 	msg.param_data_size = size;
1402 	msg.large_param_id = param_id;
1403 
1404 	return skl_ipc_set_large_config(&skl->ipc, &msg, params);
1405 }
1406 
1407 int skl_get_module_params(struct skl_dev *skl, u32 *params, int size,
1408 			  u32 param_id, struct skl_module_cfg *mcfg)
1409 {
1410 	struct skl_ipc_large_config_msg msg;
1411 	size_t bytes = size;
1412 
1413 	msg.module_id = mcfg->id.module_id;
1414 	msg.instance_id = mcfg->id.pvt_id;
1415 	msg.param_data_size = size;
1416 	msg.large_param_id = param_id;
1417 
1418 	return skl_ipc_get_large_config(&skl->ipc, &msg, &params, &bytes);
1419 }
1420