1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.cleanup = skl_sst_dsp_cleanup
207 	},
208 	{
209 		.id = 0x9d71,
210 		.loader_ops = skl_get_loader_ops,
211 		.init = skl_sst_dsp_init,
212 		.cleanup = skl_sst_dsp_cleanup
213 	},
214 	{
215 		.id = 0x5a98,
216 		.loader_ops = bxt_get_loader_ops,
217 		.init = bxt_sst_dsp_init,
218 		.cleanup = bxt_sst_dsp_cleanup
219 	},
220 };
221 
222 static int skl_get_dsp_ops(int pci_id)
223 {
224 	int i;
225 
226 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
227 		if (dsp_ops[i].id == pci_id)
228 			return i;
229 	}
230 
231 	return -EINVAL;
232 }
233 
234 int skl_init_dsp(struct skl *skl)
235 {
236 	void __iomem *mmio_base;
237 	struct hdac_ext_bus *ebus = &skl->ebus;
238 	struct hdac_bus *bus = ebus_to_hbus(ebus);
239 	struct skl_dsp_loader_ops loader_ops;
240 	int irq = bus->irq;
241 	int ret, index;
242 
243 	/* enable ppcap interrupt */
244 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
245 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
246 
247 	/* read the BAR of the ADSP MMIO */
248 	mmio_base = pci_ioremap_bar(skl->pci, 4);
249 	if (mmio_base == NULL) {
250 		dev_err(bus->dev, "ioremap error\n");
251 		return -ENXIO;
252 	}
253 
254 	index  = skl_get_dsp_ops(skl->pci->device);
255 	if (index  < 0)
256 		return -EINVAL;
257 
258 	loader_ops = dsp_ops[index].loader_ops();
259 	ret = dsp_ops[index].init(bus->dev, mmio_base, irq,
260 			skl->fw_name, loader_ops, &skl->skl_sst);
261 
262 	if (ret < 0)
263 		return ret;
264 
265 	skl_dsp_enable_notification(skl->skl_sst, false);
266 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
267 
268 	return ret;
269 }
270 
271 int skl_free_dsp(struct skl *skl)
272 {
273 	struct hdac_ext_bus *ebus = &skl->ebus;
274 	struct hdac_bus *bus = ebus_to_hbus(ebus);
275 	struct skl_sst *ctx = skl->skl_sst;
276 	int index;
277 
278 	/* disable  ppcap interrupt */
279 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
280 
281 	index = skl_get_dsp_ops(skl->pci->device);
282 	if (index  < 0)
283 		return -EIO;
284 
285 	dsp_ops[index].cleanup(bus->dev, ctx);
286 
287 	if (ctx->dsp->addr.lpe)
288 		iounmap(ctx->dsp->addr.lpe);
289 
290 	return 0;
291 }
292 
293 int skl_suspend_dsp(struct skl *skl)
294 {
295 	struct skl_sst *ctx = skl->skl_sst;
296 	int ret;
297 
298 	/* if ppcap is not supported return 0 */
299 	if (!skl->ebus.ppcap)
300 		return 0;
301 
302 	ret = skl_dsp_sleep(ctx->dsp);
303 	if (ret < 0)
304 		return ret;
305 
306 	/* disable ppcap interrupt */
307 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
308 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
309 
310 	return 0;
311 }
312 
313 int skl_resume_dsp(struct skl *skl)
314 {
315 	struct skl_sst *ctx = skl->skl_sst;
316 	int ret;
317 
318 	/* if ppcap is not supported return 0 */
319 	if (!skl->ebus.ppcap)
320 		return 0;
321 
322 	/* enable ppcap interrupt */
323 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
324 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
325 
326 	ret = skl_dsp_wake(ctx->dsp);
327 	if (ret < 0)
328 		return ret;
329 
330 	skl_dsp_enable_notification(skl->skl_sst, false);
331 	return ret;
332 }
333 
334 enum skl_bitdepth skl_get_bit_depth(int params)
335 {
336 	switch (params) {
337 	case 8:
338 		return SKL_DEPTH_8BIT;
339 
340 	case 16:
341 		return SKL_DEPTH_16BIT;
342 
343 	case 24:
344 		return SKL_DEPTH_24BIT;
345 
346 	case 32:
347 		return SKL_DEPTH_32BIT;
348 
349 	default:
350 		return SKL_DEPTH_INVALID;
351 
352 	}
353 }
354 
355 /*
356  * Each module in DSP expects a base module configuration, which consists of
357  * PCM format information, which we calculate in driver and resource values
358  * which are read from widget information passed through topology binary
359  * This is send when we create a module with INIT_INSTANCE IPC msg
360  */
361 static void skl_set_base_module_format(struct skl_sst *ctx,
362 			struct skl_module_cfg *mconfig,
363 			struct skl_base_cfg *base_cfg)
364 {
365 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
366 
367 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
368 
369 	base_cfg->audio_fmt.s_freq = format->s_freq;
370 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
371 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
372 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
373 
374 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
375 			format->bit_depth, format->valid_bit_depth,
376 			format->ch_cfg);
377 
378 	base_cfg->audio_fmt.channel_map = format->ch_map;
379 
380 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
381 
382 	base_cfg->cps = mconfig->mcps;
383 	base_cfg->ibs = mconfig->ibs;
384 	base_cfg->obs = mconfig->obs;
385 	base_cfg->is_pages = mconfig->mem_pages;
386 }
387 
388 /*
389  * Copies copier capabilities into copier module and updates copier module
390  * config size.
391  */
392 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
393 				struct skl_cpr_cfg *cpr_mconfig)
394 {
395 	if (mconfig->formats_config.caps_size == 0)
396 		return;
397 
398 	memcpy(cpr_mconfig->gtw_cfg.config_data,
399 			mconfig->formats_config.caps,
400 			mconfig->formats_config.caps_size);
401 
402 	cpr_mconfig->gtw_cfg.config_length =
403 			(mconfig->formats_config.caps_size) / 4;
404 }
405 
406 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
407 /*
408  * Calculate the gatewat settings required for copier module, type of
409  * gateway and index of gateway to use
410  */
411 static u32 skl_get_node_id(struct skl_sst *ctx,
412 			struct skl_module_cfg *mconfig)
413 {
414 	union skl_connector_node_id node_id = {0};
415 	union skl_ssp_dma_node ssp_node  = {0};
416 	struct skl_pipe_params *params = mconfig->pipe->p_params;
417 
418 	switch (mconfig->dev_type) {
419 	case SKL_DEVICE_BT:
420 		node_id.node.dma_type =
421 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
422 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
423 			SKL_DMA_I2S_LINK_INPUT_CLASS;
424 		node_id.node.vindex = params->host_dma_id +
425 					(mconfig->vbus_id << 3);
426 		break;
427 
428 	case SKL_DEVICE_I2S:
429 		node_id.node.dma_type =
430 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
431 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
432 			SKL_DMA_I2S_LINK_INPUT_CLASS;
433 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
434 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
435 		node_id.node.vindex = ssp_node.val;
436 		break;
437 
438 	case SKL_DEVICE_DMIC:
439 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
440 		node_id.node.vindex = mconfig->vbus_id +
441 					 (mconfig->time_slot);
442 		break;
443 
444 	case SKL_DEVICE_HDALINK:
445 		node_id.node.dma_type =
446 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
447 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
448 			SKL_DMA_HDA_LINK_INPUT_CLASS;
449 		node_id.node.vindex = params->link_dma_id;
450 		break;
451 
452 	case SKL_DEVICE_HDAHOST:
453 		node_id.node.dma_type =
454 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
455 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
456 			SKL_DMA_HDA_HOST_INPUT_CLASS;
457 		node_id.node.vindex = params->host_dma_id;
458 		break;
459 
460 	default:
461 		node_id.val = 0xFFFFFFFF;
462 		break;
463 	}
464 
465 	return node_id.val;
466 }
467 
468 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
469 			struct skl_module_cfg *mconfig,
470 			struct skl_cpr_cfg *cpr_mconfig)
471 {
472 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
473 
474 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
475 		cpr_mconfig->cpr_feature_mask = 0;
476 		return;
477 	}
478 
479 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
480 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
481 	else
482 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
483 
484 	cpr_mconfig->cpr_feature_mask = 0;
485 	cpr_mconfig->gtw_cfg.config_length  = 0;
486 
487 	skl_copy_copier_caps(mconfig, cpr_mconfig);
488 }
489 
490 #define DMA_CONTROL_ID 5
491 
492 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
493 {
494 	struct skl_dma_control *dma_ctrl;
495 	struct skl_i2s_config_blob config_blob;
496 	struct skl_ipc_large_config_msg msg = {0};
497 	int err = 0;
498 
499 
500 	/*
501 	 * if blob size is same as capablity size, then no dma control
502 	 * present so return
503 	 */
504 	if (mconfig->formats_config.caps_size == sizeof(config_blob))
505 		return 0;
506 
507 	msg.large_param_id = DMA_CONTROL_ID;
508 	msg.param_data_size = sizeof(struct skl_dma_control) +
509 				mconfig->formats_config.caps_size;
510 
511 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
512 	if (dma_ctrl == NULL)
513 		return -ENOMEM;
514 
515 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
516 
517 	/* size in dwords */
518 	dma_ctrl->config_length = sizeof(config_blob) / 4;
519 
520 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
521 				mconfig->formats_config.caps_size);
522 
523 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
524 
525 	kfree(dma_ctrl);
526 
527 	return err;
528 }
529 
530 static void skl_setup_out_format(struct skl_sst *ctx,
531 			struct skl_module_cfg *mconfig,
532 			struct skl_audio_data_format *out_fmt)
533 {
534 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
535 
536 	out_fmt->number_of_channels = (u8)format->channels;
537 	out_fmt->s_freq = format->s_freq;
538 	out_fmt->bit_depth = format->bit_depth;
539 	out_fmt->valid_bit_depth = format->valid_bit_depth;
540 	out_fmt->ch_cfg = format->ch_cfg;
541 
542 	out_fmt->channel_map = format->ch_map;
543 	out_fmt->interleaving = format->interleaving_style;
544 	out_fmt->sample_type = format->sample_type;
545 
546 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
547 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
548 }
549 
550 /*
551  * DSP needs SRC module for frequency conversion, SRC takes base module
552  * configuration and the target frequency as extra parameter passed as src
553  * config
554  */
555 static void skl_set_src_format(struct skl_sst *ctx,
556 			struct skl_module_cfg *mconfig,
557 			struct skl_src_module_cfg *src_mconfig)
558 {
559 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
560 
561 	skl_set_base_module_format(ctx, mconfig,
562 		(struct skl_base_cfg *)src_mconfig);
563 
564 	src_mconfig->src_cfg = fmt->s_freq;
565 }
566 
567 /*
568  * DSP needs updown module to do channel conversion. updown module take base
569  * module configuration and channel configuration
570  * It also take coefficients and now we have defaults applied here
571  */
572 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
573 			struct skl_module_cfg *mconfig,
574 			struct skl_up_down_mixer_cfg *mixer_mconfig)
575 {
576 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
577 	int i = 0;
578 
579 	skl_set_base_module_format(ctx,	mconfig,
580 		(struct skl_base_cfg *)mixer_mconfig);
581 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
582 
583 	/* Select F/W default coefficient */
584 	mixer_mconfig->coeff_sel = 0x0;
585 
586 	/* User coeff, don't care since we are selecting F/W defaults */
587 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
588 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
589 }
590 
591 /*
592  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
593  * dma) or link (hda link, SSP, PDM)
594  * Here we calculate the copier module parameters, like PCM format, output
595  * format, gateway settings
596  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
597  */
598 static void skl_set_copier_format(struct skl_sst *ctx,
599 			struct skl_module_cfg *mconfig,
600 			struct skl_cpr_cfg *cpr_mconfig)
601 {
602 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
603 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
604 
605 	skl_set_base_module_format(ctx, mconfig, base_cfg);
606 
607 	skl_setup_out_format(ctx, mconfig, out_fmt);
608 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
609 }
610 
611 /*
612  * Algo module are DSP pre processing modules. Algo module take base module
613  * configuration and params
614  */
615 
616 static void skl_set_algo_format(struct skl_sst *ctx,
617 			struct skl_module_cfg *mconfig,
618 			struct skl_algo_cfg *algo_mcfg)
619 {
620 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
621 
622 	skl_set_base_module_format(ctx, mconfig, base_cfg);
623 
624 	if (mconfig->formats_config.caps_size == 0)
625 		return;
626 
627 	memcpy(algo_mcfg->params,
628 			mconfig->formats_config.caps,
629 			mconfig->formats_config.caps_size);
630 
631 }
632 
633 /*
634  * Mic select module allows selecting one or many input channels, thus
635  * acting as a demux.
636  *
637  * Mic select module take base module configuration and out-format
638  * configuration
639  */
640 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
641 			struct skl_module_cfg *mconfig,
642 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
643 {
644 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
645 	struct skl_base_cfg *base_cfg =
646 				(struct skl_base_cfg *)base_outfmt_mcfg;
647 
648 	skl_set_base_module_format(ctx, mconfig, base_cfg);
649 	skl_setup_out_format(ctx, mconfig, out_fmt);
650 }
651 
652 static u16 skl_get_module_param_size(struct skl_sst *ctx,
653 			struct skl_module_cfg *mconfig)
654 {
655 	u16 param_size;
656 
657 	switch (mconfig->m_type) {
658 	case SKL_MODULE_TYPE_COPIER:
659 		param_size = sizeof(struct skl_cpr_cfg);
660 		param_size += mconfig->formats_config.caps_size;
661 		return param_size;
662 
663 	case SKL_MODULE_TYPE_SRCINT:
664 		return sizeof(struct skl_src_module_cfg);
665 
666 	case SKL_MODULE_TYPE_UPDWMIX:
667 		return sizeof(struct skl_up_down_mixer_cfg);
668 
669 	case SKL_MODULE_TYPE_ALGO:
670 		param_size = sizeof(struct skl_base_cfg);
671 		param_size += mconfig->formats_config.caps_size;
672 		return param_size;
673 
674 	case SKL_MODULE_TYPE_BASE_OUTFMT:
675 		return sizeof(struct skl_base_outfmt_cfg);
676 
677 	default:
678 		/*
679 		 * return only base cfg when no specific module type is
680 		 * specified
681 		 */
682 		return sizeof(struct skl_base_cfg);
683 	}
684 
685 	return 0;
686 }
687 
688 /*
689  * DSP firmware supports various modules like copier, SRC, updown etc.
690  * These modules required various parameters to be calculated and sent for
691  * the module initialization to DSP. By default a generic module needs only
692  * base module format configuration
693  */
694 
695 static int skl_set_module_format(struct skl_sst *ctx,
696 			struct skl_module_cfg *module_config,
697 			u16 *module_config_size,
698 			void **param_data)
699 {
700 	u16 param_size;
701 
702 	param_size  = skl_get_module_param_size(ctx, module_config);
703 
704 	*param_data = kzalloc(param_size, GFP_KERNEL);
705 	if (NULL == *param_data)
706 		return -ENOMEM;
707 
708 	*module_config_size = param_size;
709 
710 	switch (module_config->m_type) {
711 	case SKL_MODULE_TYPE_COPIER:
712 		skl_set_copier_format(ctx, module_config, *param_data);
713 		break;
714 
715 	case SKL_MODULE_TYPE_SRCINT:
716 		skl_set_src_format(ctx, module_config, *param_data);
717 		break;
718 
719 	case SKL_MODULE_TYPE_UPDWMIX:
720 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
721 		break;
722 
723 	case SKL_MODULE_TYPE_ALGO:
724 		skl_set_algo_format(ctx, module_config, *param_data);
725 		break;
726 
727 	case SKL_MODULE_TYPE_BASE_OUTFMT:
728 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
729 		break;
730 
731 	default:
732 		skl_set_base_module_format(ctx, module_config, *param_data);
733 		break;
734 
735 	}
736 
737 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
738 			module_config->id.module_id, param_size);
739 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
740 			*param_data, param_size, false);
741 	return 0;
742 }
743 
744 static int skl_get_queue_index(struct skl_module_pin *mpin,
745 				struct skl_module_inst_id id, int max)
746 {
747 	int i;
748 
749 	for (i = 0; i < max; i++)  {
750 		if (mpin[i].id.module_id == id.module_id &&
751 			mpin[i].id.instance_id == id.instance_id)
752 			return i;
753 	}
754 
755 	return -EINVAL;
756 }
757 
758 /*
759  * Allocates queue for each module.
760  * if dynamic, the pin_index is allocated 0 to max_pin.
761  * In static, the pin_index is fixed based on module_id and instance id
762  */
763 static int skl_alloc_queue(struct skl_module_pin *mpin,
764 			struct skl_module_cfg *tgt_cfg, int max)
765 {
766 	int i;
767 	struct skl_module_inst_id id = tgt_cfg->id;
768 	/*
769 	 * if pin in dynamic, find first free pin
770 	 * otherwise find match module and instance id pin as topology will
771 	 * ensure a unique pin is assigned to this so no need to
772 	 * allocate/free
773 	 */
774 	for (i = 0; i < max; i++)  {
775 		if (mpin[i].is_dynamic) {
776 			if (!mpin[i].in_use &&
777 				mpin[i].pin_state == SKL_PIN_UNBIND) {
778 
779 				mpin[i].in_use = true;
780 				mpin[i].id.module_id = id.module_id;
781 				mpin[i].id.instance_id = id.instance_id;
782 				mpin[i].tgt_mcfg = tgt_cfg;
783 				return i;
784 			}
785 		} else {
786 			if (mpin[i].id.module_id == id.module_id &&
787 				mpin[i].id.instance_id == id.instance_id &&
788 				mpin[i].pin_state == SKL_PIN_UNBIND) {
789 
790 				mpin[i].tgt_mcfg = tgt_cfg;
791 				return i;
792 			}
793 		}
794 	}
795 
796 	return -EINVAL;
797 }
798 
799 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
800 {
801 	if (mpin[q_index].is_dynamic) {
802 		mpin[q_index].in_use = false;
803 		mpin[q_index].id.module_id = 0;
804 		mpin[q_index].id.instance_id = 0;
805 	}
806 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
807 	mpin[q_index].tgt_mcfg = NULL;
808 }
809 
810 /* Module state will be set to unint, if all the out pin state is UNBIND */
811 
812 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
813 						struct skl_module_cfg *mcfg)
814 {
815 	int i;
816 	bool found = false;
817 
818 	for (i = 0; i < max; i++)  {
819 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
820 			continue;
821 		found = true;
822 		break;
823 	}
824 
825 	if (!found)
826 		mcfg->m_state = SKL_MODULE_UNINIT;
827 	return;
828 }
829 
830 /*
831  * A module needs to be instanataited in DSP. A mdoule is present in a
832  * collection of module referred as a PIPE.
833  * We first calculate the module format, based on module type and then
834  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
835  */
836 int skl_init_module(struct skl_sst *ctx,
837 			struct skl_module_cfg *mconfig)
838 {
839 	u16 module_config_size = 0;
840 	void *param_data = NULL;
841 	int ret;
842 	struct skl_ipc_init_instance_msg msg;
843 
844 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
845 		 mconfig->id.module_id, mconfig->id.instance_id);
846 
847 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
848 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
849 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
850 		return -EIO;
851 	}
852 
853 	ret = skl_set_module_format(ctx, mconfig,
854 			&module_config_size, &param_data);
855 	if (ret < 0) {
856 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
857 		return ret;
858 	}
859 
860 	msg.module_id = mconfig->id.module_id;
861 	msg.instance_id = mconfig->id.instance_id;
862 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
863 	msg.param_data_size = module_config_size;
864 	msg.core_id = mconfig->core_id;
865 
866 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
867 	if (ret < 0) {
868 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
869 		kfree(param_data);
870 		return ret;
871 	}
872 	mconfig->m_state = SKL_MODULE_INIT_DONE;
873 	kfree(param_data);
874 	return ret;
875 }
876 
877 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
878 	*src_module, struct skl_module_cfg *dst_module)
879 {
880 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
881 		__func__, src_module->id.module_id, src_module->id.instance_id);
882 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
883 		 dst_module->id.module_id, dst_module->id.instance_id);
884 
885 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
886 		src_module->m_state, dst_module->m_state);
887 }
888 
889 /*
890  * On module freeup, we need to unbind the module with modules
891  * it is already bind.
892  * Find the pin allocated and unbind then using bind_unbind IPC
893  */
894 int skl_unbind_modules(struct skl_sst *ctx,
895 			struct skl_module_cfg *src_mcfg,
896 			struct skl_module_cfg *dst_mcfg)
897 {
898 	int ret;
899 	struct skl_ipc_bind_unbind_msg msg;
900 	struct skl_module_inst_id src_id = src_mcfg->id;
901 	struct skl_module_inst_id dst_id = dst_mcfg->id;
902 	int in_max = dst_mcfg->max_in_queue;
903 	int out_max = src_mcfg->max_out_queue;
904 	int src_index, dst_index, src_pin_state, dst_pin_state;
905 
906 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
907 
908 	/* get src queue index */
909 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
910 	if (src_index < 0)
911 		return 0;
912 
913 	msg.src_queue = src_index;
914 
915 	/* get dst queue index */
916 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
917 	if (dst_index < 0)
918 		return 0;
919 
920 	msg.dst_queue = dst_index;
921 
922 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
923 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
924 
925 	if (src_pin_state != SKL_PIN_BIND_DONE ||
926 		dst_pin_state != SKL_PIN_BIND_DONE)
927 		return 0;
928 
929 	msg.module_id = src_mcfg->id.module_id;
930 	msg.instance_id = src_mcfg->id.instance_id;
931 	msg.dst_module_id = dst_mcfg->id.module_id;
932 	msg.dst_instance_id = dst_mcfg->id.instance_id;
933 	msg.bind = false;
934 
935 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
936 	if (!ret) {
937 		/* free queue only if unbind is success */
938 		skl_free_queue(src_mcfg->m_out_pin, src_index);
939 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
940 
941 		/*
942 		 * check only if src module bind state, bind is
943 		 * always from src -> sink
944 		 */
945 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
946 	}
947 
948 	return ret;
949 }
950 
951 /*
952  * Once a module is instantiated it need to be 'bind' with other modules in
953  * the pipeline. For binding we need to find the module pins which are bind
954  * together
955  * This function finds the pins and then sends bund_unbind IPC message to
956  * DSP using IPC helper
957  */
958 int skl_bind_modules(struct skl_sst *ctx,
959 			struct skl_module_cfg *src_mcfg,
960 			struct skl_module_cfg *dst_mcfg)
961 {
962 	int ret;
963 	struct skl_ipc_bind_unbind_msg msg;
964 	int in_max = dst_mcfg->max_in_queue;
965 	int out_max = src_mcfg->max_out_queue;
966 	int src_index, dst_index;
967 
968 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
969 
970 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
971 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
972 		return 0;
973 
974 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
975 	if (src_index < 0)
976 		return -EINVAL;
977 
978 	msg.src_queue = src_index;
979 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
980 	if (dst_index < 0) {
981 		skl_free_queue(src_mcfg->m_out_pin, src_index);
982 		return -EINVAL;
983 	}
984 
985 	msg.dst_queue = dst_index;
986 
987 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
988 			 msg.src_queue, msg.dst_queue);
989 
990 	msg.module_id = src_mcfg->id.module_id;
991 	msg.instance_id = src_mcfg->id.instance_id;
992 	msg.dst_module_id = dst_mcfg->id.module_id;
993 	msg.dst_instance_id = dst_mcfg->id.instance_id;
994 	msg.bind = true;
995 
996 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
997 
998 	if (!ret) {
999 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1000 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1001 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1002 	} else {
1003 		/* error case , if IPC fails, clear the queue index */
1004 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1005 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1006 	}
1007 
1008 	return ret;
1009 }
1010 
1011 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1012 	enum skl_ipc_pipeline_state state)
1013 {
1014 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1015 
1016 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1017 }
1018 
1019 /*
1020  * A pipeline is a collection of modules. Before a module in instantiated a
1021  * pipeline needs to be created for it.
1022  * This function creates pipeline, by sending create pipeline IPC messages
1023  * to FW
1024  */
1025 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1026 {
1027 	int ret;
1028 
1029 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1030 
1031 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1032 				pipe->pipe_priority, pipe->ppl_id);
1033 	if (ret < 0) {
1034 		dev_err(ctx->dev, "Failed to create pipeline\n");
1035 		return ret;
1036 	}
1037 
1038 	pipe->state = SKL_PIPE_CREATED;
1039 
1040 	return 0;
1041 }
1042 
1043 /*
1044  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1045  * pause the pipeline first and then delete it
1046  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1047  * DMA engines and releases resources
1048  */
1049 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1050 {
1051 	int ret;
1052 
1053 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1054 
1055 	/* If pipe is started, do stop the pipe in FW. */
1056 	if (pipe->state > SKL_PIPE_STARTED) {
1057 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1058 		if (ret < 0) {
1059 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1060 			return ret;
1061 		}
1062 
1063 		pipe->state = SKL_PIPE_PAUSED;
1064 	}
1065 
1066 	/* If pipe was not created in FW, do not try to delete it */
1067 	if (pipe->state < SKL_PIPE_CREATED)
1068 		return 0;
1069 
1070 	ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1071 	if (ret < 0) {
1072 		dev_err(ctx->dev, "Failed to delete pipeline\n");
1073 		return ret;
1074 	}
1075 
1076 	pipe->state = SKL_PIPE_INVALID;
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1083  * For processing data the pipe need to be run by sending IPC set pipe state
1084  * to DSP
1085  */
1086 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1087 {
1088 	int ret;
1089 
1090 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1091 
1092 	/* If pipe was not created in FW, do not try to pause or delete */
1093 	if (pipe->state < SKL_PIPE_CREATED)
1094 		return 0;
1095 
1096 	/* Pipe has to be paused before it is started */
1097 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1098 	if (ret < 0) {
1099 		dev_err(ctx->dev, "Failed to pause pipe\n");
1100 		return ret;
1101 	}
1102 
1103 	pipe->state = SKL_PIPE_PAUSED;
1104 
1105 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1106 	if (ret < 0) {
1107 		dev_err(ctx->dev, "Failed to start pipe\n");
1108 		return ret;
1109 	}
1110 
1111 	pipe->state = SKL_PIPE_STARTED;
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Stop the pipeline by sending set pipe state IPC
1118  * DSP doesnt implement stop so we always send pause message
1119  */
1120 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1121 {
1122 	int ret;
1123 
1124 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1125 
1126 	/* If pipe was not created in FW, do not try to pause or delete */
1127 	if (pipe->state < SKL_PIPE_PAUSED)
1128 		return 0;
1129 
1130 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1131 	if (ret < 0) {
1132 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1133 		return ret;
1134 	}
1135 
1136 	pipe->state = SKL_PIPE_PAUSED;
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1143  * from the DSP side
1144  */
1145 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1146 {
1147 	int ret;
1148 
1149 	/* If pipe was not created in FW, do not try to pause or delete */
1150 	if (pipe->state < SKL_PIPE_PAUSED)
1151 		return 0;
1152 
1153 	ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1154 	if (ret < 0) {
1155 		dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1156 		return ret;
1157 	}
1158 
1159 	pipe->state = SKL_PIPE_RESET;
1160 
1161 	return 0;
1162 }
1163 
1164 /* Algo parameter set helper function */
1165 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1166 				u32 param_id, struct skl_module_cfg *mcfg)
1167 {
1168 	struct skl_ipc_large_config_msg msg;
1169 
1170 	msg.module_id = mcfg->id.module_id;
1171 	msg.instance_id = mcfg->id.instance_id;
1172 	msg.param_data_size = size;
1173 	msg.large_param_id = param_id;
1174 
1175 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1176 }
1177 
1178 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1179 			  u32 param_id, struct skl_module_cfg *mcfg)
1180 {
1181 	struct skl_ipc_large_config_msg msg;
1182 
1183 	msg.module_id = mcfg->id.module_id;
1184 	msg.instance_id = mcfg->id.instance_id;
1185 	msg.param_data_size = size;
1186 	msg.large_param_id = param_id;
1187 
1188 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1189 }
1190