1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *	   Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31 
32 static int skl_alloc_dma_buf(struct device *dev,
33 		struct snd_dma_buffer *dmab, size_t size)
34 {
35 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 	struct hdac_bus *bus = ebus_to_hbus(ebus);
37 
38 	if (!bus)
39 		return -ENODEV;
40 
41 	return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43 
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 	struct hdac_bus *bus = ebus_to_hbus(ebus);
48 
49 	if (!bus)
50 		return -ENODEV;
51 
52 	bus->io_ops->dma_free_pages(bus, dmab);
53 
54 	return 0;
55 }
56 
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59 
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 	struct notification_mask mask;
64 	struct skl_ipc_large_config_msg	msg = {0};
65 
66 	mask.notify = NOTIFICATION_MASK;
67 	mask.enable = enable;
68 
69 	msg.large_param_id = NOTIFICATION_PARAM_ID;
70 	msg.param_data_size = sizeof(mask);
71 
72 	skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74 
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 				int stream_tag, int enable)
77 {
78 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 	struct hdac_bus *bus = ebus_to_hbus(ebus);
80 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 	struct hdac_ext_stream *estream;
83 
84 	if (!stream)
85 		return -EINVAL;
86 
87 	estream = stream_to_hdac_ext_stream(stream);
88 	/* enable/disable SPIB for this hdac stream */
89 	snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90 
91 	/* set the spib value */
92 	snd_hdac_ext_stream_set_spib(ebus, estream, size);
93 
94 	return 0;
95 }
96 
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 			unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 	struct hdac_bus *bus = ebus_to_hbus(ebus);
102 	struct hdac_ext_stream *estream;
103 	struct hdac_stream *stream;
104 	struct snd_pcm_substream substream;
105 	int ret;
106 
107 	if (!bus)
108 		return -ENODEV;
109 
110 	memset(&substream, 0, sizeof(substream));
111 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112 
113 	estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 					HDAC_EXT_STREAM_TYPE_HOST);
115 	if (!estream)
116 		return -ENODEV;
117 
118 	stream = hdac_stream(estream);
119 
120 	/* assign decouple host dma channel */
121 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 	if (ret < 0)
123 		return ret;
124 
125 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126 
127 	return stream->stream_tag;
128 }
129 
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 	struct hdac_stream *stream;
134 	struct hdac_bus *bus = ebus_to_hbus(ebus);
135 
136 	if (!bus)
137 		return -ENODEV;
138 
139 	stream = snd_hdac_get_stream(bus,
140 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 	if (!stream)
142 		return -EINVAL;
143 
144 	snd_hdac_dsp_trigger(stream, start);
145 
146 	return 0;
147 }
148 
149 static int skl_dsp_cleanup(struct device *dev,
150 		struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 	struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 	struct hdac_stream *stream;
154 	struct hdac_ext_stream *estream;
155 	struct hdac_bus *bus = ebus_to_hbus(ebus);
156 
157 	if (!bus)
158 		return -ENODEV;
159 
160 	stream = snd_hdac_get_stream(bus,
161 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 	if (!stream)
163 		return -EINVAL;
164 
165 	estream = stream_to_hdac_ext_stream(stream);
166 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168 
169 	snd_hdac_dsp_cleanup(stream, dmab);
170 
171 	return 0;
172 }
173 
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 	struct skl_dsp_loader_ops loader_ops;
177 
178 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179 
180 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 	loader_ops.free_dma_buf = skl_free_dma_buf;
182 
183 	return loader_ops;
184 };
185 
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 	struct skl_dsp_loader_ops loader_ops;
189 
190 	memset(&loader_ops, 0, sizeof(loader_ops));
191 
192 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 	loader_ops.free_dma_buf = skl_free_dma_buf;
194 	loader_ops.prepare = skl_dsp_prepare;
195 	loader_ops.trigger = skl_dsp_trigger;
196 	loader_ops.cleanup = skl_dsp_cleanup;
197 
198 	return loader_ops;
199 };
200 
201 static const struct skl_dsp_ops dsp_ops[] = {
202 	{
203 		.id = 0x9d70,
204 		.loader_ops = skl_get_loader_ops,
205 		.init = skl_sst_dsp_init,
206 		.cleanup = skl_sst_dsp_cleanup
207 	},
208 	{
209 		.id = 0x5a98,
210 		.loader_ops = bxt_get_loader_ops,
211 		.init = bxt_sst_dsp_init,
212 		.cleanup = bxt_sst_dsp_cleanup
213 	},
214 };
215 
216 static int skl_get_dsp_ops(int pci_id)
217 {
218 	int i;
219 
220 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
221 		if (dsp_ops[i].id == pci_id)
222 			return i;
223 	}
224 
225 	return -EINVAL;
226 }
227 
228 int skl_init_dsp(struct skl *skl)
229 {
230 	void __iomem *mmio_base;
231 	struct hdac_ext_bus *ebus = &skl->ebus;
232 	struct hdac_bus *bus = ebus_to_hbus(ebus);
233 	struct skl_dsp_loader_ops loader_ops;
234 	int irq = bus->irq;
235 	int ret, index;
236 
237 	/* enable ppcap interrupt */
238 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
239 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
240 
241 	/* read the BAR of the ADSP MMIO */
242 	mmio_base = pci_ioremap_bar(skl->pci, 4);
243 	if (mmio_base == NULL) {
244 		dev_err(bus->dev, "ioremap error\n");
245 		return -ENXIO;
246 	}
247 
248 	index  = skl_get_dsp_ops(skl->pci->device);
249 	if (index  < 0)
250 		return -EINVAL;
251 
252 	loader_ops = dsp_ops[index].loader_ops();
253 	ret = dsp_ops[index].init(bus->dev, mmio_base, irq,
254 			skl->fw_name, loader_ops, &skl->skl_sst);
255 
256 	if (ret < 0)
257 		return ret;
258 
259 	skl_dsp_enable_notification(skl->skl_sst, false);
260 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
261 
262 	return ret;
263 }
264 
265 int skl_free_dsp(struct skl *skl)
266 {
267 	struct hdac_ext_bus *ebus = &skl->ebus;
268 	struct hdac_bus *bus = ebus_to_hbus(ebus);
269 	struct skl_sst *ctx = skl->skl_sst;
270 	int index;
271 
272 	/* disable  ppcap interrupt */
273 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
274 
275 	index = skl_get_dsp_ops(skl->pci->device);
276 	if (index  < 0)
277 		return -EIO;
278 
279 	dsp_ops[index].cleanup(bus->dev, ctx);
280 
281 	if (ctx->dsp->addr.lpe)
282 		iounmap(ctx->dsp->addr.lpe);
283 
284 	return 0;
285 }
286 
287 int skl_suspend_dsp(struct skl *skl)
288 {
289 	struct skl_sst *ctx = skl->skl_sst;
290 	int ret;
291 
292 	/* if ppcap is not supported return 0 */
293 	if (!skl->ebus.ppcap)
294 		return 0;
295 
296 	ret = skl_dsp_sleep(ctx->dsp);
297 	if (ret < 0)
298 		return ret;
299 
300 	/* disable ppcap interrupt */
301 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
302 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
303 
304 	return 0;
305 }
306 
307 int skl_resume_dsp(struct skl *skl)
308 {
309 	struct skl_sst *ctx = skl->skl_sst;
310 	int ret;
311 
312 	/* if ppcap is not supported return 0 */
313 	if (!skl->ebus.ppcap)
314 		return 0;
315 
316 	/* enable ppcap interrupt */
317 	snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
318 	snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
319 
320 	ret = skl_dsp_wake(ctx->dsp);
321 	if (ret < 0)
322 		return ret;
323 
324 	skl_dsp_enable_notification(skl->skl_sst, false);
325 	return ret;
326 }
327 
328 enum skl_bitdepth skl_get_bit_depth(int params)
329 {
330 	switch (params) {
331 	case 8:
332 		return SKL_DEPTH_8BIT;
333 
334 	case 16:
335 		return SKL_DEPTH_16BIT;
336 
337 	case 24:
338 		return SKL_DEPTH_24BIT;
339 
340 	case 32:
341 		return SKL_DEPTH_32BIT;
342 
343 	default:
344 		return SKL_DEPTH_INVALID;
345 
346 	}
347 }
348 
349 /*
350  * Each module in DSP expects a base module configuration, which consists of
351  * PCM format information, which we calculate in driver and resource values
352  * which are read from widget information passed through topology binary
353  * This is send when we create a module with INIT_INSTANCE IPC msg
354  */
355 static void skl_set_base_module_format(struct skl_sst *ctx,
356 			struct skl_module_cfg *mconfig,
357 			struct skl_base_cfg *base_cfg)
358 {
359 	struct skl_module_fmt *format = &mconfig->in_fmt[0];
360 
361 	base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
362 
363 	base_cfg->audio_fmt.s_freq = format->s_freq;
364 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
365 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
366 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
367 
368 	dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
369 			format->bit_depth, format->valid_bit_depth,
370 			format->ch_cfg);
371 
372 	base_cfg->audio_fmt.channel_map = format->ch_map;
373 
374 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
375 
376 	base_cfg->cps = mconfig->mcps;
377 	base_cfg->ibs = mconfig->ibs;
378 	base_cfg->obs = mconfig->obs;
379 	base_cfg->is_pages = mconfig->mem_pages;
380 }
381 
382 /*
383  * Copies copier capabilities into copier module and updates copier module
384  * config size.
385  */
386 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
387 				struct skl_cpr_cfg *cpr_mconfig)
388 {
389 	if (mconfig->formats_config.caps_size == 0)
390 		return;
391 
392 	memcpy(cpr_mconfig->gtw_cfg.config_data,
393 			mconfig->formats_config.caps,
394 			mconfig->formats_config.caps_size);
395 
396 	cpr_mconfig->gtw_cfg.config_length =
397 			(mconfig->formats_config.caps_size) / 4;
398 }
399 
400 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
401 /*
402  * Calculate the gatewat settings required for copier module, type of
403  * gateway and index of gateway to use
404  */
405 static u32 skl_get_node_id(struct skl_sst *ctx,
406 			struct skl_module_cfg *mconfig)
407 {
408 	union skl_connector_node_id node_id = {0};
409 	union skl_ssp_dma_node ssp_node  = {0};
410 	struct skl_pipe_params *params = mconfig->pipe->p_params;
411 
412 	switch (mconfig->dev_type) {
413 	case SKL_DEVICE_BT:
414 		node_id.node.dma_type =
415 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
416 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
417 			SKL_DMA_I2S_LINK_INPUT_CLASS;
418 		node_id.node.vindex = params->host_dma_id +
419 					(mconfig->vbus_id << 3);
420 		break;
421 
422 	case SKL_DEVICE_I2S:
423 		node_id.node.dma_type =
424 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
425 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
426 			SKL_DMA_I2S_LINK_INPUT_CLASS;
427 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
428 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
429 		node_id.node.vindex = ssp_node.val;
430 		break;
431 
432 	case SKL_DEVICE_DMIC:
433 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
434 		node_id.node.vindex = mconfig->vbus_id +
435 					 (mconfig->time_slot);
436 		break;
437 
438 	case SKL_DEVICE_HDALINK:
439 		node_id.node.dma_type =
440 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
441 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
442 			SKL_DMA_HDA_LINK_INPUT_CLASS;
443 		node_id.node.vindex = params->link_dma_id;
444 		break;
445 
446 	case SKL_DEVICE_HDAHOST:
447 		node_id.node.dma_type =
448 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
449 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
450 			SKL_DMA_HDA_HOST_INPUT_CLASS;
451 		node_id.node.vindex = params->host_dma_id;
452 		break;
453 
454 	default:
455 		node_id.val = 0xFFFFFFFF;
456 		break;
457 	}
458 
459 	return node_id.val;
460 }
461 
462 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
463 			struct skl_module_cfg *mconfig,
464 			struct skl_cpr_cfg *cpr_mconfig)
465 {
466 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
467 
468 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
469 		cpr_mconfig->cpr_feature_mask = 0;
470 		return;
471 	}
472 
473 	if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
474 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
475 	else
476 		cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
477 
478 	cpr_mconfig->cpr_feature_mask = 0;
479 	cpr_mconfig->gtw_cfg.config_length  = 0;
480 
481 	skl_copy_copier_caps(mconfig, cpr_mconfig);
482 }
483 
484 #define DMA_CONTROL_ID 5
485 
486 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
487 {
488 	struct skl_dma_control *dma_ctrl;
489 	struct skl_i2s_config_blob config_blob;
490 	struct skl_ipc_large_config_msg msg = {0};
491 	int err = 0;
492 
493 
494 	/*
495 	 * if blob size is same as capablity size, then no dma control
496 	 * present so return
497 	 */
498 	if (mconfig->formats_config.caps_size == sizeof(config_blob))
499 		return 0;
500 
501 	msg.large_param_id = DMA_CONTROL_ID;
502 	msg.param_data_size = sizeof(struct skl_dma_control) +
503 				mconfig->formats_config.caps_size;
504 
505 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
506 	if (dma_ctrl == NULL)
507 		return -ENOMEM;
508 
509 	dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
510 
511 	/* size in dwords */
512 	dma_ctrl->config_length = sizeof(config_blob) / 4;
513 
514 	memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
515 				mconfig->formats_config.caps_size);
516 
517 	err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
518 
519 	kfree(dma_ctrl);
520 
521 	return err;
522 }
523 
524 static void skl_setup_out_format(struct skl_sst *ctx,
525 			struct skl_module_cfg *mconfig,
526 			struct skl_audio_data_format *out_fmt)
527 {
528 	struct skl_module_fmt *format = &mconfig->out_fmt[0];
529 
530 	out_fmt->number_of_channels = (u8)format->channels;
531 	out_fmt->s_freq = format->s_freq;
532 	out_fmt->bit_depth = format->bit_depth;
533 	out_fmt->valid_bit_depth = format->valid_bit_depth;
534 	out_fmt->ch_cfg = format->ch_cfg;
535 
536 	out_fmt->channel_map = format->ch_map;
537 	out_fmt->interleaving = format->interleaving_style;
538 	out_fmt->sample_type = format->sample_type;
539 
540 	dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
541 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
542 }
543 
544 /*
545  * DSP needs SRC module for frequency conversion, SRC takes base module
546  * configuration and the target frequency as extra parameter passed as src
547  * config
548  */
549 static void skl_set_src_format(struct skl_sst *ctx,
550 			struct skl_module_cfg *mconfig,
551 			struct skl_src_module_cfg *src_mconfig)
552 {
553 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
554 
555 	skl_set_base_module_format(ctx, mconfig,
556 		(struct skl_base_cfg *)src_mconfig);
557 
558 	src_mconfig->src_cfg = fmt->s_freq;
559 }
560 
561 /*
562  * DSP needs updown module to do channel conversion. updown module take base
563  * module configuration and channel configuration
564  * It also take coefficients and now we have defaults applied here
565  */
566 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
567 			struct skl_module_cfg *mconfig,
568 			struct skl_up_down_mixer_cfg *mixer_mconfig)
569 {
570 	struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
571 	int i = 0;
572 
573 	skl_set_base_module_format(ctx,	mconfig,
574 		(struct skl_base_cfg *)mixer_mconfig);
575 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
576 
577 	/* Select F/W default coefficient */
578 	mixer_mconfig->coeff_sel = 0x0;
579 
580 	/* User coeff, don't care since we are selecting F/W defaults */
581 	for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
582 		mixer_mconfig->coeff[i] = 0xDEADBEEF;
583 }
584 
585 /*
586  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
587  * dma) or link (hda link, SSP, PDM)
588  * Here we calculate the copier module parameters, like PCM format, output
589  * format, gateway settings
590  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
591  */
592 static void skl_set_copier_format(struct skl_sst *ctx,
593 			struct skl_module_cfg *mconfig,
594 			struct skl_cpr_cfg *cpr_mconfig)
595 {
596 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
597 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
598 
599 	skl_set_base_module_format(ctx, mconfig, base_cfg);
600 
601 	skl_setup_out_format(ctx, mconfig, out_fmt);
602 	skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
603 }
604 
605 /*
606  * Algo module are DSP pre processing modules. Algo module take base module
607  * configuration and params
608  */
609 
610 static void skl_set_algo_format(struct skl_sst *ctx,
611 			struct skl_module_cfg *mconfig,
612 			struct skl_algo_cfg *algo_mcfg)
613 {
614 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
615 
616 	skl_set_base_module_format(ctx, mconfig, base_cfg);
617 
618 	if (mconfig->formats_config.caps_size == 0)
619 		return;
620 
621 	memcpy(algo_mcfg->params,
622 			mconfig->formats_config.caps,
623 			mconfig->formats_config.caps_size);
624 
625 }
626 
627 /*
628  * Mic select module allows selecting one or many input channels, thus
629  * acting as a demux.
630  *
631  * Mic select module take base module configuration and out-format
632  * configuration
633  */
634 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
635 			struct skl_module_cfg *mconfig,
636 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
637 {
638 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
639 	struct skl_base_cfg *base_cfg =
640 				(struct skl_base_cfg *)base_outfmt_mcfg;
641 
642 	skl_set_base_module_format(ctx, mconfig, base_cfg);
643 	skl_setup_out_format(ctx, mconfig, out_fmt);
644 }
645 
646 static u16 skl_get_module_param_size(struct skl_sst *ctx,
647 			struct skl_module_cfg *mconfig)
648 {
649 	u16 param_size;
650 
651 	switch (mconfig->m_type) {
652 	case SKL_MODULE_TYPE_COPIER:
653 		param_size = sizeof(struct skl_cpr_cfg);
654 		param_size += mconfig->formats_config.caps_size;
655 		return param_size;
656 
657 	case SKL_MODULE_TYPE_SRCINT:
658 		return sizeof(struct skl_src_module_cfg);
659 
660 	case SKL_MODULE_TYPE_UPDWMIX:
661 		return sizeof(struct skl_up_down_mixer_cfg);
662 
663 	case SKL_MODULE_TYPE_ALGO:
664 		param_size = sizeof(struct skl_base_cfg);
665 		param_size += mconfig->formats_config.caps_size;
666 		return param_size;
667 
668 	case SKL_MODULE_TYPE_BASE_OUTFMT:
669 		return sizeof(struct skl_base_outfmt_cfg);
670 
671 	default:
672 		/*
673 		 * return only base cfg when no specific module type is
674 		 * specified
675 		 */
676 		return sizeof(struct skl_base_cfg);
677 	}
678 
679 	return 0;
680 }
681 
682 /*
683  * DSP firmware supports various modules like copier, SRC, updown etc.
684  * These modules required various parameters to be calculated and sent for
685  * the module initialization to DSP. By default a generic module needs only
686  * base module format configuration
687  */
688 
689 static int skl_set_module_format(struct skl_sst *ctx,
690 			struct skl_module_cfg *module_config,
691 			u16 *module_config_size,
692 			void **param_data)
693 {
694 	u16 param_size;
695 
696 	param_size  = skl_get_module_param_size(ctx, module_config);
697 
698 	*param_data = kzalloc(param_size, GFP_KERNEL);
699 	if (NULL == *param_data)
700 		return -ENOMEM;
701 
702 	*module_config_size = param_size;
703 
704 	switch (module_config->m_type) {
705 	case SKL_MODULE_TYPE_COPIER:
706 		skl_set_copier_format(ctx, module_config, *param_data);
707 		break;
708 
709 	case SKL_MODULE_TYPE_SRCINT:
710 		skl_set_src_format(ctx, module_config, *param_data);
711 		break;
712 
713 	case SKL_MODULE_TYPE_UPDWMIX:
714 		skl_set_updown_mixer_format(ctx, module_config, *param_data);
715 		break;
716 
717 	case SKL_MODULE_TYPE_ALGO:
718 		skl_set_algo_format(ctx, module_config, *param_data);
719 		break;
720 
721 	case SKL_MODULE_TYPE_BASE_OUTFMT:
722 		skl_set_base_outfmt_format(ctx, module_config, *param_data);
723 		break;
724 
725 	default:
726 		skl_set_base_module_format(ctx, module_config, *param_data);
727 		break;
728 
729 	}
730 
731 	dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
732 			module_config->id.module_id, param_size);
733 	print_hex_dump(KERN_DEBUG, "Module params:", DUMP_PREFIX_OFFSET, 8, 4,
734 			*param_data, param_size, false);
735 	return 0;
736 }
737 
738 static int skl_get_queue_index(struct skl_module_pin *mpin,
739 				struct skl_module_inst_id id, int max)
740 {
741 	int i;
742 
743 	for (i = 0; i < max; i++)  {
744 		if (mpin[i].id.module_id == id.module_id &&
745 			mpin[i].id.instance_id == id.instance_id)
746 			return i;
747 	}
748 
749 	return -EINVAL;
750 }
751 
752 /*
753  * Allocates queue for each module.
754  * if dynamic, the pin_index is allocated 0 to max_pin.
755  * In static, the pin_index is fixed based on module_id and instance id
756  */
757 static int skl_alloc_queue(struct skl_module_pin *mpin,
758 			struct skl_module_cfg *tgt_cfg, int max)
759 {
760 	int i;
761 	struct skl_module_inst_id id = tgt_cfg->id;
762 	/*
763 	 * if pin in dynamic, find first free pin
764 	 * otherwise find match module and instance id pin as topology will
765 	 * ensure a unique pin is assigned to this so no need to
766 	 * allocate/free
767 	 */
768 	for (i = 0; i < max; i++)  {
769 		if (mpin[i].is_dynamic) {
770 			if (!mpin[i].in_use &&
771 				mpin[i].pin_state == SKL_PIN_UNBIND) {
772 
773 				mpin[i].in_use = true;
774 				mpin[i].id.module_id = id.module_id;
775 				mpin[i].id.instance_id = id.instance_id;
776 				mpin[i].tgt_mcfg = tgt_cfg;
777 				return i;
778 			}
779 		} else {
780 			if (mpin[i].id.module_id == id.module_id &&
781 				mpin[i].id.instance_id == id.instance_id &&
782 				mpin[i].pin_state == SKL_PIN_UNBIND) {
783 
784 				mpin[i].tgt_mcfg = tgt_cfg;
785 				return i;
786 			}
787 		}
788 	}
789 
790 	return -EINVAL;
791 }
792 
793 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
794 {
795 	if (mpin[q_index].is_dynamic) {
796 		mpin[q_index].in_use = false;
797 		mpin[q_index].id.module_id = 0;
798 		mpin[q_index].id.instance_id = 0;
799 	}
800 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
801 	mpin[q_index].tgt_mcfg = NULL;
802 }
803 
804 /* Module state will be set to unint, if all the out pin state is UNBIND */
805 
806 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
807 						struct skl_module_cfg *mcfg)
808 {
809 	int i;
810 	bool found = false;
811 
812 	for (i = 0; i < max; i++)  {
813 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
814 			continue;
815 		found = true;
816 		break;
817 	}
818 
819 	if (!found)
820 		mcfg->m_state = SKL_MODULE_UNINIT;
821 	return;
822 }
823 
824 /*
825  * A module needs to be instanataited in DSP. A mdoule is present in a
826  * collection of module referred as a PIPE.
827  * We first calculate the module format, based on module type and then
828  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
829  */
830 int skl_init_module(struct skl_sst *ctx,
831 			struct skl_module_cfg *mconfig)
832 {
833 	u16 module_config_size = 0;
834 	void *param_data = NULL;
835 	int ret;
836 	struct skl_ipc_init_instance_msg msg;
837 
838 	dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
839 		 mconfig->id.module_id, mconfig->id.instance_id);
840 
841 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
842 		dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
843 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
844 		return -EIO;
845 	}
846 
847 	ret = skl_set_module_format(ctx, mconfig,
848 			&module_config_size, &param_data);
849 	if (ret < 0) {
850 		dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
851 		return ret;
852 	}
853 
854 	msg.module_id = mconfig->id.module_id;
855 	msg.instance_id = mconfig->id.instance_id;
856 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
857 	msg.param_data_size = module_config_size;
858 	msg.core_id = mconfig->core_id;
859 
860 	ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
861 	if (ret < 0) {
862 		dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
863 		kfree(param_data);
864 		return ret;
865 	}
866 	mconfig->m_state = SKL_MODULE_INIT_DONE;
867 	kfree(param_data);
868 	return ret;
869 }
870 
871 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
872 	*src_module, struct skl_module_cfg *dst_module)
873 {
874 	dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
875 		__func__, src_module->id.module_id, src_module->id.instance_id);
876 	dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
877 		 dst_module->id.module_id, dst_module->id.instance_id);
878 
879 	dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
880 		src_module->m_state, dst_module->m_state);
881 }
882 
883 /*
884  * On module freeup, we need to unbind the module with modules
885  * it is already bind.
886  * Find the pin allocated and unbind then using bind_unbind IPC
887  */
888 int skl_unbind_modules(struct skl_sst *ctx,
889 			struct skl_module_cfg *src_mcfg,
890 			struct skl_module_cfg *dst_mcfg)
891 {
892 	int ret;
893 	struct skl_ipc_bind_unbind_msg msg;
894 	struct skl_module_inst_id src_id = src_mcfg->id;
895 	struct skl_module_inst_id dst_id = dst_mcfg->id;
896 	int in_max = dst_mcfg->max_in_queue;
897 	int out_max = src_mcfg->max_out_queue;
898 	int src_index, dst_index, src_pin_state, dst_pin_state;
899 
900 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
901 
902 	/* get src queue index */
903 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
904 	if (src_index < 0)
905 		return 0;
906 
907 	msg.src_queue = src_index;
908 
909 	/* get dst queue index */
910 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
911 	if (dst_index < 0)
912 		return 0;
913 
914 	msg.dst_queue = dst_index;
915 
916 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
917 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
918 
919 	if (src_pin_state != SKL_PIN_BIND_DONE ||
920 		dst_pin_state != SKL_PIN_BIND_DONE)
921 		return 0;
922 
923 	msg.module_id = src_mcfg->id.module_id;
924 	msg.instance_id = src_mcfg->id.instance_id;
925 	msg.dst_module_id = dst_mcfg->id.module_id;
926 	msg.dst_instance_id = dst_mcfg->id.instance_id;
927 	msg.bind = false;
928 
929 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
930 	if (!ret) {
931 		/* free queue only if unbind is success */
932 		skl_free_queue(src_mcfg->m_out_pin, src_index);
933 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
934 
935 		/*
936 		 * check only if src module bind state, bind is
937 		 * always from src -> sink
938 		 */
939 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
940 	}
941 
942 	return ret;
943 }
944 
945 /*
946  * Once a module is instantiated it need to be 'bind' with other modules in
947  * the pipeline. For binding we need to find the module pins which are bind
948  * together
949  * This function finds the pins and then sends bund_unbind IPC message to
950  * DSP using IPC helper
951  */
952 int skl_bind_modules(struct skl_sst *ctx,
953 			struct skl_module_cfg *src_mcfg,
954 			struct skl_module_cfg *dst_mcfg)
955 {
956 	int ret;
957 	struct skl_ipc_bind_unbind_msg msg;
958 	int in_max = dst_mcfg->max_in_queue;
959 	int out_max = src_mcfg->max_out_queue;
960 	int src_index, dst_index;
961 
962 	skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
963 
964 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
965 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
966 		return 0;
967 
968 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
969 	if (src_index < 0)
970 		return -EINVAL;
971 
972 	msg.src_queue = src_index;
973 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
974 	if (dst_index < 0) {
975 		skl_free_queue(src_mcfg->m_out_pin, src_index);
976 		return -EINVAL;
977 	}
978 
979 	msg.dst_queue = dst_index;
980 
981 	dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
982 			 msg.src_queue, msg.dst_queue);
983 
984 	msg.module_id = src_mcfg->id.module_id;
985 	msg.instance_id = src_mcfg->id.instance_id;
986 	msg.dst_module_id = dst_mcfg->id.module_id;
987 	msg.dst_instance_id = dst_mcfg->id.instance_id;
988 	msg.bind = true;
989 
990 	ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
991 
992 	if (!ret) {
993 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
994 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
995 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
996 	} else {
997 		/* error case , if IPC fails, clear the queue index */
998 		skl_free_queue(src_mcfg->m_out_pin, src_index);
999 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1006 	enum skl_ipc_pipeline_state state)
1007 {
1008 	dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1009 
1010 	return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1011 }
1012 
1013 /*
1014  * A pipeline is a collection of modules. Before a module in instantiated a
1015  * pipeline needs to be created for it.
1016  * This function creates pipeline, by sending create pipeline IPC messages
1017  * to FW
1018  */
1019 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1020 {
1021 	int ret;
1022 
1023 	dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1024 
1025 	ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1026 				pipe->pipe_priority, pipe->ppl_id);
1027 	if (ret < 0) {
1028 		dev_err(ctx->dev, "Failed to create pipeline\n");
1029 		return ret;
1030 	}
1031 
1032 	pipe->state = SKL_PIPE_CREATED;
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1039  * pause the pipeline first and then delete it
1040  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1041  * DMA engines and releases resources
1042  */
1043 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1044 {
1045 	int ret;
1046 
1047 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1048 
1049 	/* If pipe is not started, do not try to stop the pipe in FW. */
1050 	if (pipe->state > SKL_PIPE_STARTED) {
1051 		ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1052 		if (ret < 0) {
1053 			dev_err(ctx->dev, "Failed to stop pipeline\n");
1054 			return ret;
1055 		}
1056 
1057 		pipe->state = SKL_PIPE_PAUSED;
1058 	} else {
1059 		/* If pipe was not created in FW, do not try to delete it */
1060 		if (pipe->state < SKL_PIPE_CREATED)
1061 			return 0;
1062 
1063 		ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1064 		if (ret < 0)
1065 			dev_err(ctx->dev, "Failed to delete pipeline\n");
1066 
1067 		pipe->state = SKL_PIPE_INVALID;
1068 	}
1069 
1070 	return ret;
1071 }
1072 
1073 /*
1074  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1075  * For processing data the pipe need to be run by sending IPC set pipe state
1076  * to DSP
1077  */
1078 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1079 {
1080 	int ret;
1081 
1082 	dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1083 
1084 	/* If pipe was not created in FW, do not try to pause or delete */
1085 	if (pipe->state < SKL_PIPE_CREATED)
1086 		return 0;
1087 
1088 	/* Pipe has to be paused before it is started */
1089 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1090 	if (ret < 0) {
1091 		dev_err(ctx->dev, "Failed to pause pipe\n");
1092 		return ret;
1093 	}
1094 
1095 	pipe->state = SKL_PIPE_PAUSED;
1096 
1097 	ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1098 	if (ret < 0) {
1099 		dev_err(ctx->dev, "Failed to start pipe\n");
1100 		return ret;
1101 	}
1102 
1103 	pipe->state = SKL_PIPE_STARTED;
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Stop the pipeline by sending set pipe state IPC
1110  * DSP doesnt implement stop so we always send pause message
1111  */
1112 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1113 {
1114 	int ret;
1115 
1116 	dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1117 
1118 	/* If pipe was not created in FW, do not try to pause or delete */
1119 	if (pipe->state < SKL_PIPE_PAUSED)
1120 		return 0;
1121 
1122 	ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1123 	if (ret < 0) {
1124 		dev_dbg(ctx->dev, "Failed to stop pipe\n");
1125 		return ret;
1126 	}
1127 
1128 	pipe->state = SKL_PIPE_CREATED;
1129 
1130 	return 0;
1131 }
1132 
1133 /* Algo parameter set helper function */
1134 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1135 				u32 param_id, struct skl_module_cfg *mcfg)
1136 {
1137 	struct skl_ipc_large_config_msg msg;
1138 
1139 	msg.module_id = mcfg->id.module_id;
1140 	msg.instance_id = mcfg->id.instance_id;
1141 	msg.param_data_size = size;
1142 	msg.large_param_id = param_id;
1143 
1144 	return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1145 }
1146 
1147 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1148 			  u32 param_id, struct skl_module_cfg *mcfg)
1149 {
1150 	struct skl_ipc_large_config_msg msg;
1151 
1152 	msg.module_id = mcfg->id.module_id;
1153 	msg.instance_id = mcfg->id.instance_id;
1154 	msg.param_data_size = size;
1155 	msg.large_param_id = param_id;
1156 
1157 	return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1158 }
1159