1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld 4 * 5 * Copyright (C) 2013-14 Intel Corp 6 * Author: Omair Mohammed Abdullah <omair.m.abdullah@intel.com> 7 * Vinod Koul <vinod.koul@intel.com> 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active 11 * we forward the settings and parameters, rest we keep the values in 12 * driver and forward when DAPM enables them 13 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/slab.h> 18 #include <sound/soc.h> 19 #include <sound/tlv.h> 20 #include "sst-mfld-platform.h" 21 #include "sst-atom-controls.h" 22 23 static int sst_fill_byte_control(struct sst_data *drv, 24 u8 ipc_msg, u8 block, 25 u8 task_id, u8 pipe_id, 26 u16 len, void *cmd_data) 27 { 28 struct snd_sst_bytes_v2 *byte_data = drv->byte_stream; 29 30 byte_data->type = SST_CMD_BYTES_SET; 31 byte_data->ipc_msg = ipc_msg; 32 byte_data->block = block; 33 byte_data->task_id = task_id; 34 byte_data->pipe_id = pipe_id; 35 36 if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) { 37 dev_err(&drv->pdev->dev, "command length too big (%u)", len); 38 return -EINVAL; 39 } 40 byte_data->len = len; 41 memcpy(byte_data->bytes, cmd_data, len); 42 print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET, 43 byte_data, len + sizeof(*byte_data)); 44 return 0; 45 } 46 47 static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv, 48 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, 49 void *cmd_data, u16 len) 50 { 51 int ret = 0; 52 53 WARN_ON(!mutex_is_locked(&drv->lock)); 54 55 ret = sst_fill_byte_control(drv, ipc_msg, 56 block, task_id, pipe_id, len, cmd_data); 57 if (ret < 0) 58 return ret; 59 return sst->ops->send_byte_stream(sst->dev, drv->byte_stream); 60 } 61 62 /** 63 * sst_fill_and_send_cmd - generate the IPC message and send it to the FW 64 * @drv: sst_data 65 * @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS) 66 * @block: block index 67 * @task_id: task index 68 * @pipe_id: pipe index 69 * @cmd_data: the IPC payload 70 * @len: length of data to be sent 71 */ 72 static int sst_fill_and_send_cmd(struct sst_data *drv, 73 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, 74 void *cmd_data, u16 len) 75 { 76 int ret; 77 78 mutex_lock(&drv->lock); 79 ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block, 80 task_id, pipe_id, cmd_data, len); 81 mutex_unlock(&drv->lock); 82 83 return ret; 84 } 85 86 /* 87 * tx map value is a bitfield where each bit represents a FW channel 88 * 89 * 3 2 1 0 # 0 = codec0, 1 = codec1 90 * RLRLRLRL # 3, 4 = reserved 91 * 92 * e.g. slot 0 rx map = 00001100b -> data from slot 0 goes into codec_in1 L,R 93 */ 94 static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = { 95 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */ 96 }; 97 98 /* 99 * rx map value is a bitfield where each bit represents a slot 100 * 101 * 76543210 # 0 = slot 0, 1 = slot 1 102 * 103 * e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2 104 */ 105 static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = { 106 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */ 107 }; 108 109 /* 110 * NOTE: this is invoked with lock held 111 */ 112 static int sst_send_slot_map(struct sst_data *drv) 113 { 114 struct sst_param_sba_ssp_slot_map cmd; 115 116 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 117 cmd.header.command_id = SBA_SET_SSP_SLOT_MAP; 118 cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map) 119 - sizeof(struct sst_dsp_header); 120 121 cmd.param_id = SBA_SET_SSP_SLOT_MAP; 122 cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map) 123 + sizeof(cmd.ssp_index); 124 cmd.ssp_index = SSP_CODEC; 125 126 memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map)); 127 memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map)); 128 129 return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 130 SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, 131 sizeof(cmd.header) + cmd.header.length); 132 } 133 134 static int sst_slot_enum_info(struct snd_kcontrol *kcontrol, 135 struct snd_ctl_elem_info *uinfo) 136 { 137 struct sst_enum *e = (struct sst_enum *)kcontrol->private_value; 138 139 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 140 uinfo->count = 1; 141 uinfo->value.enumerated.items = e->max; 142 143 if (uinfo->value.enumerated.item > e->max - 1) 144 uinfo->value.enumerated.item = e->max - 1; 145 strcpy(uinfo->value.enumerated.name, 146 e->texts[uinfo->value.enumerated.item]); 147 148 return 0; 149 } 150 151 /** 152 * sst_slot_get - get the status of the interleaver/deinterleaver control 153 * @kcontrol: control pointer 154 * @ucontrol: User data 155 * Searches the map where the control status is stored, and gets the 156 * channel/slot which is currently set for this enumerated control. Since it is 157 * an enumerated control, there is only one possible value. 158 */ 159 static int sst_slot_get(struct snd_kcontrol *kcontrol, 160 struct snd_ctl_elem_value *ucontrol) 161 { 162 struct sst_enum *e = (void *)kcontrol->private_value; 163 struct snd_soc_component *c = snd_kcontrol_chip(kcontrol); 164 struct sst_data *drv = snd_soc_component_get_drvdata(c); 165 unsigned int ctl_no = e->reg; 166 unsigned int is_tx = e->tx; 167 unsigned int val, mux; 168 u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; 169 170 mutex_lock(&drv->lock); 171 val = 1 << ctl_no; 172 /* search which slot/channel has this bit set - there should be only one */ 173 for (mux = e->max; mux > 0; mux--) 174 if (map[mux - 1] & val) 175 break; 176 177 ucontrol->value.enumerated.item[0] = mux; 178 mutex_unlock(&drv->lock); 179 180 dev_dbg(c->dev, "%s - %s map = %#x\n", 181 is_tx ? "tx channel" : "rx slot", 182 e->texts[mux], mux ? map[mux - 1] : -1); 183 return 0; 184 } 185 186 /* sst_check_and_send_slot_map - helper for checking power state and sending 187 * slot map cmd 188 * 189 * called with lock held 190 */ 191 static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol) 192 { 193 struct sst_enum *e = (void *)kcontrol->private_value; 194 int ret = 0; 195 196 if (e->w && e->w->power) 197 ret = sst_send_slot_map(drv); 198 else if (!e->w) 199 dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n", 200 kcontrol->id.name); 201 return ret; 202 } 203 204 /** 205 * sst_slot_put - set the status of interleaver/deinterleaver control 206 * @kcontrol: control pointer 207 * @ucontrol: User data 208 * (de)interleaver controls are defined in opposite sense to be user-friendly 209 * 210 * Instead of the enum value being the value written to the register, it is the 211 * register address; and the kcontrol number (register num) is the value written 212 * to the register. This is so that there can be only one value for each 213 * slot/channel since there is only one control for each slot/channel. 214 * 215 * This means that whenever an enum is set, we need to clear the bit 216 * for that kcontrol_no for all the interleaver OR deinterleaver registers 217 */ 218 static int sst_slot_put(struct snd_kcontrol *kcontrol, 219 struct snd_ctl_elem_value *ucontrol) 220 { 221 struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol); 222 struct sst_data *drv = snd_soc_component_get_drvdata(c); 223 struct sst_enum *e = (void *)kcontrol->private_value; 224 int i, ret = 0; 225 unsigned int ctl_no = e->reg; 226 unsigned int is_tx = e->tx; 227 unsigned int slot_channel_no; 228 unsigned int val, mux; 229 u8 *map; 230 231 map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; 232 233 val = 1 << ctl_no; 234 mux = ucontrol->value.enumerated.item[0]; 235 if (mux > e->max - 1) 236 return -EINVAL; 237 238 mutex_lock(&drv->lock); 239 /* first clear all registers of this bit */ 240 for (i = 0; i < e->max; i++) 241 map[i] &= ~val; 242 243 if (mux == 0) { 244 /* kctl set to 'none' and we reset the bits so send IPC */ 245 ret = sst_check_and_send_slot_map(drv, kcontrol); 246 247 mutex_unlock(&drv->lock); 248 return ret; 249 } 250 251 /* offset by one to take "None" into account */ 252 slot_channel_no = mux - 1; 253 map[slot_channel_no] |= val; 254 255 dev_dbg(c->dev, "%s %s map = %#x\n", 256 is_tx ? "tx channel" : "rx slot", 257 e->texts[mux], map[slot_channel_no]); 258 259 ret = sst_check_and_send_slot_map(drv, kcontrol); 260 261 mutex_unlock(&drv->lock); 262 return ret; 263 } 264 265 static int sst_send_algo_cmd(struct sst_data *drv, 266 struct sst_algo_control *bc) 267 { 268 int len, ret = 0; 269 struct sst_cmd_set_params *cmd; 270 271 /*bc->max includes sizeof algos + length field*/ 272 len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max; 273 274 cmd = kzalloc(len, GFP_KERNEL); 275 if (cmd == NULL) 276 return -ENOMEM; 277 278 SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id); 279 cmd->command_id = bc->cmd_id; 280 memcpy(cmd->params, bc->params, bc->max); 281 282 ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 283 SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len); 284 kfree(cmd); 285 return ret; 286 } 287 288 /** 289 * sst_find_and_send_pipe_algo - send all the algo parameters for a pipe 290 * @drv: sst_data 291 * @pipe: string identifier 292 * @ids: list of algorithms 293 * The algos which are in each pipeline are sent to the firmware one by one 294 * 295 * Called with lock held 296 */ 297 static int sst_find_and_send_pipe_algo(struct sst_data *drv, 298 const char *pipe, struct sst_ids *ids) 299 { 300 int ret = 0; 301 struct sst_algo_control *bc; 302 struct sst_module *algo; 303 304 dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe); 305 306 list_for_each_entry(algo, &ids->algo_list, node) { 307 bc = (void *)algo->kctl->private_value; 308 309 dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n", 310 algo->kctl->id.name, pipe); 311 ret = sst_send_algo_cmd(drv, bc); 312 if (ret) 313 return ret; 314 } 315 return ret; 316 } 317 318 static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol, 319 struct snd_ctl_elem_info *uinfo) 320 { 321 struct sst_algo_control *bc = (void *)kcontrol->private_value; 322 323 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 324 uinfo->count = bc->max; 325 326 return 0; 327 } 328 329 static int sst_algo_control_get(struct snd_kcontrol *kcontrol, 330 struct snd_ctl_elem_value *ucontrol) 331 { 332 struct sst_algo_control *bc = (void *)kcontrol->private_value; 333 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 334 335 switch (bc->type) { 336 case SST_ALGO_PARAMS: 337 memcpy(ucontrol->value.bytes.data, bc->params, bc->max); 338 break; 339 default: 340 dev_err(component->dev, "Invalid Input- algo type:%d\n", 341 bc->type); 342 return -EINVAL; 343 344 } 345 return 0; 346 } 347 348 static int sst_algo_control_set(struct snd_kcontrol *kcontrol, 349 struct snd_ctl_elem_value *ucontrol) 350 { 351 int ret = 0; 352 struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); 353 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 354 struct sst_algo_control *bc = (void *)kcontrol->private_value; 355 356 dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name); 357 mutex_lock(&drv->lock); 358 switch (bc->type) { 359 case SST_ALGO_PARAMS: 360 memcpy(bc->params, ucontrol->value.bytes.data, bc->max); 361 break; 362 default: 363 mutex_unlock(&drv->lock); 364 dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n", 365 bc->type); 366 return -EINVAL; 367 } 368 /*if pipe is enabled, need to send the algo params from here*/ 369 if (bc->w && bc->w->power) 370 ret = sst_send_algo_cmd(drv, bc); 371 mutex_unlock(&drv->lock); 372 373 return ret; 374 } 375 376 static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol, 377 struct snd_ctl_elem_info *uinfo) 378 { 379 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 380 381 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 382 uinfo->count = mc->stereo ? 2 : 1; 383 uinfo->value.integer.min = mc->min; 384 uinfo->value.integer.max = mc->max; 385 386 return 0; 387 } 388 389 /** 390 * sst_send_gain_cmd - send the gain algorithm IPC to the FW 391 * @drv: sst_data 392 * @gv:the stored value of gain (also contains rampduration) 393 * @task_id: task index 394 * @loc_id: location/position index 395 * @module_id: module index 396 * @mute: flag that indicates whether this was called from the 397 * digital_mute callback or directly. If called from the 398 * digital_mute callback, module will be muted/unmuted based on this 399 * flag. The flag is always 0 if called directly. 400 * 401 * Called with sst_data.lock held 402 * 403 * The user-set gain value is sent only if the user-controllable 'mute' control 404 * is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is 405 * sent. 406 */ 407 static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv, 408 u16 task_id, u16 loc_id, u16 module_id, int mute) 409 { 410 struct sst_cmd_set_gain_dual cmd; 411 412 dev_dbg(&drv->pdev->dev, "Enter\n"); 413 414 cmd.header.command_id = MMX_SET_GAIN; 415 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 416 cmd.gain_cell_num = 1; 417 418 if (mute || gv->mute) { 419 cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE; 420 cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE; 421 } else { 422 cmd.cell_gains[0].cell_gain_left = gv->l_gain; 423 cmd.cell_gains[0].cell_gain_right = gv->r_gain; 424 } 425 426 SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest, 427 loc_id, module_id); 428 cmd.cell_gains[0].gain_time_constant = gv->ramp_duration; 429 430 cmd.header.length = sizeof(struct sst_cmd_set_gain_dual) 431 - sizeof(struct sst_dsp_header); 432 433 /* we are with lock held, so call the unlocked api to send */ 434 return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 435 SST_FLAG_BLOCKED, task_id, 0, &cmd, 436 sizeof(cmd.header) + cmd.header.length); 437 } 438 439 static int sst_gain_get(struct snd_kcontrol *kcontrol, 440 struct snd_ctl_elem_value *ucontrol) 441 { 442 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 443 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 444 struct sst_gain_value *gv = mc->gain_val; 445 446 switch (mc->type) { 447 case SST_GAIN_TLV: 448 ucontrol->value.integer.value[0] = gv->l_gain; 449 ucontrol->value.integer.value[1] = gv->r_gain; 450 break; 451 452 case SST_GAIN_MUTE: 453 ucontrol->value.integer.value[0] = gv->mute ? 0 : 1; 454 break; 455 456 case SST_GAIN_RAMP_DURATION: 457 ucontrol->value.integer.value[0] = gv->ramp_duration; 458 break; 459 460 default: 461 dev_err(component->dev, "Invalid Input- gain type:%d\n", 462 mc->type); 463 return -EINVAL; 464 } 465 466 return 0; 467 } 468 469 static int sst_gain_put(struct snd_kcontrol *kcontrol, 470 struct snd_ctl_elem_value *ucontrol) 471 { 472 int ret = 0; 473 struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); 474 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 475 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 476 struct sst_gain_value *gv = mc->gain_val; 477 478 mutex_lock(&drv->lock); 479 480 switch (mc->type) { 481 case SST_GAIN_TLV: 482 gv->l_gain = ucontrol->value.integer.value[0]; 483 gv->r_gain = ucontrol->value.integer.value[1]; 484 dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n", 485 mc->pname, gv->l_gain, gv->r_gain); 486 break; 487 488 case SST_GAIN_MUTE: 489 gv->mute = !ucontrol->value.integer.value[0]; 490 dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute); 491 break; 492 493 case SST_GAIN_RAMP_DURATION: 494 gv->ramp_duration = ucontrol->value.integer.value[0]; 495 dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n", 496 mc->pname, gv->ramp_duration); 497 break; 498 499 default: 500 mutex_unlock(&drv->lock); 501 dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n", 502 mc->type); 503 return -EINVAL; 504 } 505 506 if (mc->w && mc->w->power) 507 ret = sst_send_gain_cmd(drv, gv, mc->task_id, 508 mc->pipe_id | mc->instance_id, mc->module_id, 0); 509 mutex_unlock(&drv->lock); 510 511 return ret; 512 } 513 514 static int sst_set_pipe_gain(struct sst_ids *ids, 515 struct sst_data *drv, int mute); 516 517 static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w, 518 struct snd_kcontrol *kcontrol) 519 { 520 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 521 struct sst_data *drv = snd_soc_component_get_drvdata(c); 522 struct sst_ids *ids = w->priv; 523 524 mutex_lock(&drv->lock); 525 sst_find_and_send_pipe_algo(drv, w->name, ids); 526 sst_set_pipe_gain(ids, drv, 0); 527 mutex_unlock(&drv->lock); 528 529 return 0; 530 } 531 532 static int sst_generic_modules_event(struct snd_soc_dapm_widget *w, 533 struct snd_kcontrol *k, int event) 534 { 535 if (SND_SOC_DAPM_EVENT_ON(event)) 536 return sst_send_pipe_module_params(w, k); 537 return 0; 538 } 539 540 static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0); 541 542 /* Look up table to convert MIXER SW bit regs to SWM inputs */ 543 static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = { 544 [SST_IP_MODEM] = SST_SWM_IN_MODEM, 545 [SST_IP_CODEC0] = SST_SWM_IN_CODEC0, 546 [SST_IP_CODEC1] = SST_SWM_IN_CODEC1, 547 [SST_IP_LOOP0] = SST_SWM_IN_SPROT_LOOP, 548 [SST_IP_LOOP1] = SST_SWM_IN_MEDIA_LOOP1, 549 [SST_IP_LOOP2] = SST_SWM_IN_MEDIA_LOOP2, 550 [SST_IP_PCM0] = SST_SWM_IN_PCM0, 551 [SST_IP_PCM1] = SST_SWM_IN_PCM1, 552 [SST_IP_MEDIA0] = SST_SWM_IN_MEDIA0, 553 [SST_IP_MEDIA1] = SST_SWM_IN_MEDIA1, 554 [SST_IP_MEDIA2] = SST_SWM_IN_MEDIA2, 555 [SST_IP_MEDIA3] = SST_SWM_IN_MEDIA3, 556 }; 557 558 /** 559 * fill_swm_input - fill in the SWM input ids given the register 560 * @cmpnt: ASoC component 561 * @swm_input: array of swm_input_ids 562 * @reg: the register value is a bit-field inicated which mixer inputs are ON. 563 * 564 * Use the lookup table to get the input-id and fill it in the 565 * structure. 566 */ 567 static int fill_swm_input(struct snd_soc_component *cmpnt, 568 struct swm_input_ids *swm_input, unsigned int reg) 569 { 570 uint i, is_set, nb_inputs = 0; 571 u16 input_loc_id; 572 573 dev_dbg(cmpnt->dev, "reg: %#x\n", reg); 574 for (i = 0; i < SST_SWM_INPUT_COUNT; i++) { 575 is_set = reg & BIT(i); 576 if (!is_set) 577 continue; 578 579 input_loc_id = swm_mixer_input_ids[i]; 580 SST_FILL_DESTINATION(2, swm_input->input_id, 581 input_loc_id, SST_DEFAULT_MODULE_ID); 582 nb_inputs++; 583 swm_input++; 584 dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n", 585 input_loc_id, nb_inputs); 586 587 if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) { 588 dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached"); 589 break; 590 } 591 } 592 return nb_inputs; 593 } 594 595 596 /* 597 * called with lock held 598 */ 599 static int sst_set_pipe_gain(struct sst_ids *ids, 600 struct sst_data *drv, int mute) 601 { 602 int ret = 0; 603 struct sst_gain_mixer_control *mc; 604 struct sst_gain_value *gv; 605 struct sst_module *gain; 606 607 list_for_each_entry(gain, &ids->gain_list, node) { 608 struct snd_kcontrol *kctl = gain->kctl; 609 610 dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name); 611 mc = (void *)kctl->private_value; 612 gv = mc->gain_val; 613 614 ret = sst_send_gain_cmd(drv, gv, mc->task_id, 615 mc->pipe_id | mc->instance_id, mc->module_id, mute); 616 if (ret) 617 return ret; 618 } 619 return ret; 620 } 621 622 static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w, 623 struct snd_kcontrol *k, int event) 624 { 625 struct sst_cmd_set_swm cmd; 626 struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); 627 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 628 struct sst_ids *ids = w->priv; 629 bool set_mixer = false; 630 struct soc_mixer_control *mc; 631 int val = 0; 632 int i = 0; 633 634 dev_dbg(cmpnt->dev, "widget = %s\n", w->name); 635 /* 636 * Identify which mixer input is on and send the bitmap of the 637 * inputs as an IPC to the DSP. 638 */ 639 for (i = 0; i < w->num_kcontrols; i++) { 640 if (dapm_kcontrol_get_value(w->kcontrols[i])) { 641 mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value; 642 val |= 1 << mc->shift; 643 } 644 } 645 dev_dbg(cmpnt->dev, "val = %#x\n", val); 646 647 switch (event) { 648 case SND_SOC_DAPM_PRE_PMU: 649 case SND_SOC_DAPM_POST_PMD: 650 set_mixer = true; 651 break; 652 case SND_SOC_DAPM_POST_REG: 653 if (w->power) 654 set_mixer = true; 655 break; 656 default: 657 set_mixer = false; 658 } 659 660 if (!set_mixer) 661 return 0; 662 663 if (SND_SOC_DAPM_EVENT_ON(event) || 664 event == SND_SOC_DAPM_POST_REG) 665 cmd.switch_state = SST_SWM_ON; 666 else 667 cmd.switch_state = SST_SWM_OFF; 668 669 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 670 /* MMX_SET_SWM == SBA_SET_SWM */ 671 cmd.header.command_id = SBA_SET_SWM; 672 673 SST_FILL_DESTINATION(2, cmd.output_id, 674 ids->location_id, SST_DEFAULT_MODULE_ID); 675 cmd.nb_inputs = fill_swm_input(cmpnt, &cmd.input[0], val); 676 cmd.header.length = offsetof(struct sst_cmd_set_swm, input) 677 - sizeof(struct sst_dsp_header) 678 + (cmd.nb_inputs * sizeof(cmd.input[0])); 679 680 return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 681 ids->task_id, 0, &cmd, 682 sizeof(cmd.header) + cmd.header.length); 683 } 684 685 /* SBA mixers - 16 inputs */ 686 #define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name) \ 687 static const struct snd_kcontrol_new kctl_name[] = { \ 688 SOC_DAPM_SINGLE("modem_in Switch", SND_SOC_NOPM, SST_IP_MODEM, 1, 0), \ 689 SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0), \ 690 SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0), \ 691 SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0), \ 692 SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0), \ 693 SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0), \ 694 SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0), \ 695 SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0), \ 696 } 697 698 #define SST_SBA_MIXER_GRAPH_MAP(mix_name) \ 699 { mix_name, "modem_in Switch", "modem_in" }, \ 700 { mix_name, "codec_in0 Switch", "codec_in0" }, \ 701 { mix_name, "codec_in1 Switch", "codec_in1" }, \ 702 { mix_name, "sprot_loop_in Switch", "sprot_loop_in" }, \ 703 { mix_name, "media_loop1_in Switch", "media_loop1_in" }, \ 704 { mix_name, "media_loop2_in Switch", "media_loop2_in" }, \ 705 { mix_name, "pcm0_in Switch", "pcm0_in" }, \ 706 { mix_name, "pcm1_in Switch", "pcm1_in" } 707 708 #define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name) \ 709 static const struct snd_kcontrol_new kctl_name[] = { \ 710 SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0), \ 711 SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0), \ 712 SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0), \ 713 SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0), \ 714 } 715 716 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls); 717 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls); 718 719 /* 18 SBA mixers */ 720 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls); 721 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls); 722 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls); 723 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls); 724 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls); 725 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls); 726 SST_SBA_DECLARE_MIX_CONTROLS(__maybe_unused sst_mix_voip_controls); 727 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls); 728 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls); 729 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_modem_controls); 730 731 /* 732 * sst_handle_vb_timer - Start/Stop the DSP scheduler 733 * 734 * The DSP expects first cmd to be SBA_VB_START, so at first startup send 735 * that. 736 * DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that. 737 * 738 * Do refcount internally so that we send command only at first start 739 * and last end. Since SST driver does its own ref count, invoke sst's 740 * power ops always! 741 */ 742 int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable) 743 { 744 int ret = 0; 745 struct sst_cmd_generic cmd; 746 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 747 static int timer_usage; 748 749 if (enable) 750 cmd.header.command_id = SBA_VB_START; 751 else 752 cmd.header.command_id = SBA_IDLE; 753 dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage); 754 755 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 756 cmd.header.length = 0; 757 758 if (enable) { 759 ret = sst->ops->power(sst->dev, true); 760 if (ret < 0) 761 return ret; 762 } 763 764 mutex_lock(&drv->lock); 765 if (enable) 766 timer_usage++; 767 else 768 timer_usage--; 769 770 /* 771 * Send the command only if this call is the first enable or last 772 * disable 773 */ 774 if ((enable && (timer_usage == 1)) || 775 (!enable && (timer_usage == 0))) { 776 ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD, 777 SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, 778 sizeof(cmd.header) + cmd.header.length); 779 if (ret && enable) { 780 timer_usage--; 781 enable = false; 782 } 783 } 784 mutex_unlock(&drv->lock); 785 786 if (!enable) 787 sst->ops->power(sst->dev, false); 788 return ret; 789 } 790 791 int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask, 792 unsigned int rx_mask, int slots, int slot_width) 793 { 794 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 795 796 ctx->ssp_cmd.nb_slots = slots; 797 ctx->ssp_cmd.active_tx_slot_map = tx_mask; 798 ctx->ssp_cmd.active_rx_slot_map = rx_mask; 799 ctx->ssp_cmd.nb_bits_per_slots = slot_width; 800 801 return 0; 802 } 803 804 static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai, 805 unsigned int fmt) 806 { 807 int format; 808 809 format = fmt & SND_SOC_DAIFMT_INV_MASK; 810 dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); 811 812 switch (format) { 813 case SND_SOC_DAIFMT_NB_NF: 814 case SND_SOC_DAIFMT_IB_NF: 815 return SSP_FS_ACTIVE_HIGH; 816 case SND_SOC_DAIFMT_NB_IF: 817 case SND_SOC_DAIFMT_IB_IF: 818 return SSP_FS_ACTIVE_LOW; 819 default: 820 dev_err(dai->dev, "Invalid frame sync polarity %d\n", format); 821 } 822 823 return -EINVAL; 824 } 825 826 static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt) 827 { 828 int format; 829 830 format = (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK); 831 dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); 832 833 switch (format) { 834 case SND_SOC_DAIFMT_CBC_CFC: 835 return SSP_MODE_PROVIDER; 836 case SND_SOC_DAIFMT_CBP_CFP: 837 return SSP_MODE_CONSUMER; 838 default: 839 dev_err(dai->dev, "Invalid ssp protocol: %d\n", format); 840 } 841 842 return -EINVAL; 843 } 844 845 846 int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt) 847 { 848 unsigned int mode; 849 int fs_polarity; 850 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 851 852 mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 853 854 switch (mode) { 855 case SND_SOC_DAIFMT_DSP_B: 856 ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; 857 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); 858 ctx->ssp_cmd.start_delay = 0; 859 ctx->ssp_cmd.data_polarity = 1; 860 ctx->ssp_cmd.frame_sync_width = 1; 861 break; 862 863 case SND_SOC_DAIFMT_DSP_A: 864 ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; 865 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); 866 ctx->ssp_cmd.start_delay = 1; 867 ctx->ssp_cmd.data_polarity = 1; 868 ctx->ssp_cmd.frame_sync_width = 1; 869 break; 870 871 case SND_SOC_DAIFMT_I2S: 872 ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; 873 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); 874 ctx->ssp_cmd.start_delay = 1; 875 ctx->ssp_cmd.data_polarity = 0; 876 ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; 877 break; 878 879 case SND_SOC_DAIFMT_LEFT_J: 880 ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; 881 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); 882 ctx->ssp_cmd.start_delay = 0; 883 ctx->ssp_cmd.data_polarity = 0; 884 ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; 885 break; 886 887 default: 888 dev_dbg(dai->dev, "using default ssp configs\n"); 889 } 890 891 fs_polarity = sst_get_frame_sync_polarity(dai, fmt); 892 if (fs_polarity < 0) 893 return fs_polarity; 894 895 ctx->ssp_cmd.frame_sync_polarity = fs_polarity; 896 897 return 0; 898 } 899 900 /* 901 * sst_ssp_config - contains SSP configuration for media UC 902 * this can be overwritten by set_dai_xxx APIs 903 */ 904 static const struct sst_ssp_config sst_ssp_configs = { 905 .ssp_id = SSP_CODEC, 906 .bits_per_slot = 24, 907 .slots = 4, 908 .ssp_mode = SSP_MODE_PROVIDER, 909 .pcm_mode = SSP_PCM_MODE_NETWORK, 910 .duplex = SSP_DUPLEX, 911 .ssp_protocol = SSP_MODE_PCM, 912 .fs_width = 1, 913 .fs_frequency = SSP_FS_48_KHZ, 914 .active_slot_map = 0xF, 915 .start_delay = 0, 916 .frame_sync_polarity = SSP_FS_ACTIVE_HIGH, 917 .data_polarity = 1, 918 }; 919 920 void sst_fill_ssp_defaults(struct snd_soc_dai *dai) 921 { 922 const struct sst_ssp_config *config; 923 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 924 925 config = &sst_ssp_configs; 926 927 ctx->ssp_cmd.selection = config->ssp_id; 928 ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot; 929 ctx->ssp_cmd.nb_slots = config->slots; 930 ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1); 931 ctx->ssp_cmd.duplex = config->duplex; 932 ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map; 933 ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map; 934 ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency; 935 ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity; 936 ctx->ssp_cmd.data_polarity = config->data_polarity; 937 ctx->ssp_cmd.frame_sync_width = config->fs_width; 938 ctx->ssp_cmd.ssp_protocol = config->ssp_protocol; 939 ctx->ssp_cmd.start_delay = config->start_delay; 940 ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF; 941 } 942 943 int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable) 944 { 945 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 946 int ssp_id; 947 948 dev_dbg(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id); 949 950 if (strcmp(id, "ssp0-port") == 0) 951 ssp_id = SSP_MODEM; 952 else if (strcmp(id, "ssp2-port") == 0) 953 ssp_id = SSP_CODEC; 954 else { 955 dev_dbg(dai->dev, "port %s is not supported\n", id); 956 return -1; 957 } 958 959 SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst); 960 drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP; 961 drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp) 962 - sizeof(struct sst_dsp_header); 963 964 drv->ssp_cmd.selection = ssp_id; 965 dev_dbg(dai->dev, "ssp_id: %u\n", ssp_id); 966 967 if (enable) 968 drv->ssp_cmd.switch_state = SST_SWITCH_ON; 969 else 970 drv->ssp_cmd.switch_state = SST_SWITCH_OFF; 971 972 return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 973 SST_TASK_SBA, 0, &drv->ssp_cmd, 974 sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length); 975 } 976 977 static int sst_set_be_modules(struct snd_soc_dapm_widget *w, 978 struct snd_kcontrol *k, int event) 979 { 980 int ret = 0; 981 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 982 struct sst_data *drv = snd_soc_component_get_drvdata(c); 983 984 dev_dbg(c->dev, "Enter: widget=%s\n", w->name); 985 986 if (SND_SOC_DAPM_EVENT_ON(event)) { 987 mutex_lock(&drv->lock); 988 ret = sst_send_slot_map(drv); 989 mutex_unlock(&drv->lock); 990 if (ret) 991 return ret; 992 ret = sst_send_pipe_module_params(w, k); 993 } 994 return ret; 995 } 996 997 static int sst_set_media_path(struct snd_soc_dapm_widget *w, 998 struct snd_kcontrol *k, int event) 999 { 1000 int ret = 0; 1001 struct sst_cmd_set_media_path cmd; 1002 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 1003 struct sst_data *drv = snd_soc_component_get_drvdata(c); 1004 struct sst_ids *ids = w->priv; 1005 1006 dev_dbg(c->dev, "widget=%s\n", w->name); 1007 dev_dbg(c->dev, "task=%u, location=%#x\n", 1008 ids->task_id, ids->location_id); 1009 1010 if (SND_SOC_DAPM_EVENT_ON(event)) 1011 cmd.switch_state = SST_PATH_ON; 1012 else 1013 cmd.switch_state = SST_PATH_OFF; 1014 1015 SST_FILL_DESTINATION(2, cmd.header.dst, 1016 ids->location_id, SST_DEFAULT_MODULE_ID); 1017 1018 /* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */ 1019 cmd.header.command_id = MMX_SET_MEDIA_PATH; 1020 cmd.header.length = sizeof(struct sst_cmd_set_media_path) 1021 - sizeof(struct sst_dsp_header); 1022 1023 ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 1024 ids->task_id, 0, &cmd, 1025 sizeof(cmd.header) + cmd.header.length); 1026 if (ret) 1027 return ret; 1028 1029 if (SND_SOC_DAPM_EVENT_ON(event)) 1030 ret = sst_send_pipe_module_params(w, k); 1031 return ret; 1032 } 1033 1034 static int sst_set_media_loop(struct snd_soc_dapm_widget *w, 1035 struct snd_kcontrol *k, int event) 1036 { 1037 int ret = 0; 1038 struct sst_cmd_sba_set_media_loop_map cmd; 1039 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 1040 struct sst_data *drv = snd_soc_component_get_drvdata(c); 1041 struct sst_ids *ids = w->priv; 1042 1043 dev_dbg(c->dev, "Enter:widget=%s\n", w->name); 1044 if (SND_SOC_DAPM_EVENT_ON(event)) 1045 cmd.switch_state = SST_SWITCH_ON; 1046 else 1047 cmd.switch_state = SST_SWITCH_OFF; 1048 1049 SST_FILL_DESTINATION(2, cmd.header.dst, 1050 ids->location_id, SST_DEFAULT_MODULE_ID); 1051 1052 cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP; 1053 cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map) 1054 - sizeof(struct sst_dsp_header); 1055 cmd.param.part.cfg.rate = 2; /* 48khz */ 1056 1057 cmd.param.part.cfg.format = ids->format; /* stereo/Mono */ 1058 cmd.param.part.cfg.s_length = 1; /* 24bit left justified */ 1059 cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */ 1060 1061 ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 1062 SST_TASK_SBA, 0, &cmd, 1063 sizeof(cmd.header) + cmd.header.length); 1064 if (ret) 1065 return ret; 1066 1067 if (SND_SOC_DAPM_EVENT_ON(event)) 1068 ret = sst_send_pipe_module_params(w, k); 1069 return ret; 1070 } 1071 1072 static const struct snd_soc_dapm_widget sst_dapm_widgets[] = { 1073 SST_AIF_IN("modem_in", sst_set_be_modules), 1074 SST_AIF_IN("codec_in0", sst_set_be_modules), 1075 SST_AIF_IN("codec_in1", sst_set_be_modules), 1076 SST_AIF_OUT("modem_out", sst_set_be_modules), 1077 SST_AIF_OUT("codec_out0", sst_set_be_modules), 1078 SST_AIF_OUT("codec_out1", sst_set_be_modules), 1079 1080 /* Media Paths */ 1081 /* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */ 1082 SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event), 1083 SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL), 1084 SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path), 1085 SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL), 1086 SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path), 1087 SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path), 1088 1089 /* SBA PCM Paths */ 1090 SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path), 1091 SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path), 1092 SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path), 1093 SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path), 1094 SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path), 1095 1096 /* SBA Loops */ 1097 SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL), 1098 SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL), 1099 SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL), 1100 SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_STEREO, sst_set_media_loop), 1101 SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_STEREO, sst_set_media_loop), 1102 SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop), 1103 1104 /* Media Mixers */ 1105 SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0, 1106 sst_mix_media0_controls, sst_swm_mixer_event), 1107 SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1, 1108 sst_mix_media1_controls, sst_swm_mixer_event), 1109 1110 /* SBA PCM mixers */ 1111 SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0, 1112 sst_mix_pcm0_controls, sst_swm_mixer_event), 1113 SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1, 1114 sst_mix_pcm1_controls, sst_swm_mixer_event), 1115 SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2, 1116 sst_mix_pcm2_controls, sst_swm_mixer_event), 1117 1118 /* SBA Loop mixers */ 1119 SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, 1120 sst_mix_sprot_l0_controls, sst_swm_mixer_event), 1121 SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, 1122 sst_mix_media_l1_controls, sst_swm_mixer_event), 1123 SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, 1124 sst_mix_media_l2_controls, sst_swm_mixer_event), 1125 1126 /* SBA Backend mixers */ 1127 SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0, 1128 sst_mix_codec0_controls, sst_swm_mixer_event), 1129 SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1, 1130 sst_mix_codec1_controls, sst_swm_mixer_event), 1131 SST_SWM_MIXER("modem_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MODEM, 1132 sst_mix_modem_controls, sst_swm_mixer_event), 1133 1134 }; 1135 1136 static const struct snd_soc_dapm_route intercon[] = { 1137 {"media0_in", NULL, "Compress Playback"}, 1138 {"media1_in", NULL, "Headset Playback"}, 1139 {"media2_in", NULL, "pcm0_out"}, 1140 {"media3_in", NULL, "Deepbuffer Playback"}, 1141 1142 {"media0_out mix 0", "media0_in Switch", "media0_in"}, 1143 {"media0_out mix 0", "media1_in Switch", "media1_in"}, 1144 {"media0_out mix 0", "media2_in Switch", "media2_in"}, 1145 {"media0_out mix 0", "media3_in Switch", "media3_in"}, 1146 {"media1_out mix 0", "media0_in Switch", "media0_in"}, 1147 {"media1_out mix 0", "media1_in Switch", "media1_in"}, 1148 {"media1_out mix 0", "media2_in Switch", "media2_in"}, 1149 {"media1_out mix 0", "media3_in Switch", "media3_in"}, 1150 1151 {"media0_out", NULL, "media0_out mix 0"}, 1152 {"media1_out", NULL, "media1_out mix 0"}, 1153 {"pcm0_in", NULL, "media0_out"}, 1154 {"pcm1_in", NULL, "media1_out"}, 1155 1156 {"Headset Capture", NULL, "pcm1_out"}, 1157 {"Headset Capture", NULL, "pcm2_out"}, 1158 {"pcm0_out", NULL, "pcm0_out mix 0"}, 1159 SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"), 1160 {"pcm1_out", NULL, "pcm1_out mix 0"}, 1161 SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"), 1162 {"pcm2_out", NULL, "pcm2_out mix 0"}, 1163 SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"), 1164 1165 {"media_loop1_in", NULL, "media_loop1_out"}, 1166 {"media_loop1_out", NULL, "media_loop1_out mix 0"}, 1167 SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"), 1168 {"media_loop2_in", NULL, "media_loop2_out"}, 1169 {"media_loop2_out", NULL, "media_loop2_out mix 0"}, 1170 SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"), 1171 {"sprot_loop_in", NULL, "sprot_loop_out"}, 1172 {"sprot_loop_out", NULL, "sprot_loop_out mix 0"}, 1173 SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"), 1174 1175 {"codec_out0", NULL, "codec_out0 mix 0"}, 1176 SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"), 1177 {"codec_out1", NULL, "codec_out1 mix 0"}, 1178 SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"), 1179 {"modem_out", NULL, "modem_out mix 0"}, 1180 SST_SBA_MIXER_GRAPH_MAP("modem_out mix 0"), 1181 1182 1183 }; 1184 static const char * const slot_names[] = { 1185 "none", 1186 "slot 0", "slot 1", "slot 2", "slot 3", 1187 "slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */ 1188 }; 1189 1190 static const char * const channel_names[] = { 1191 "none", 1192 "codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1", 1193 "codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */ 1194 }; 1195 1196 #define SST_INTERLEAVER(xpname, slot_name, slotno) \ 1197 SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \ 1198 channel_names, sst_slot_get, sst_slot_put) 1199 1200 #define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \ 1201 SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \ 1202 slot_names, sst_slot_get, sst_slot_put) 1203 1204 static const struct snd_kcontrol_new sst_slot_controls[] = { 1205 SST_INTERLEAVER("codec_out", "slot 0", 0), 1206 SST_INTERLEAVER("codec_out", "slot 1", 1), 1207 SST_INTERLEAVER("codec_out", "slot 2", 2), 1208 SST_INTERLEAVER("codec_out", "slot 3", 3), 1209 SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0), 1210 SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1), 1211 SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2), 1212 SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3), 1213 }; 1214 1215 /* Gain helper with min/max set */ 1216 #define SST_GAIN(name, path_id, task_id, instance, gain_var) \ 1217 SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ 1218 SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ 1219 sst_gain_get, sst_gain_put, \ 1220 SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id, \ 1221 sst_gain_tlv_common, gain_var) 1222 1223 #define SST_VOLUME(name, path_id, task_id, instance, gain_var) \ 1224 SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ 1225 SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ 1226 sst_gain_get, sst_gain_put, \ 1227 SST_MODULE_ID_VOLUME, path_id, instance, task_id, \ 1228 sst_gain_tlv_common, gain_var) 1229 1230 static struct sst_gain_value sst_gains[]; 1231 1232 static const struct snd_kcontrol_new sst_gain_controls[] = { 1233 SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]), 1234 SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]), 1235 SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]), 1236 SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]), 1237 1238 SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]), 1239 SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]), 1240 SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]), 1241 SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]), 1242 1243 SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]), 1244 SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]), 1245 SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]), 1246 SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]), 1247 SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]), 1248 SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]), 1249 SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]), 1250 SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]), 1251 SST_GAIN("modem_in", SST_PATH_INDEX_MODEM_IN, SST_TASK_SBA, 0, &sst_gains[16]), 1252 SST_GAIN("modem_out", SST_PATH_INDEX_MODEM_OUT, SST_TASK_SBA, 0, &sst_gains[17]), 1253 1254 }; 1255 1256 #define SST_GAIN_NUM_CONTROLS 3 1257 /* the SST_GAIN macro above will create three alsa controls for each 1258 * instance invoked, gain, mute and ramp duration, which use the same gain 1259 * cell sst_gain to keep track of data 1260 * To calculate number of gain cell instances we need to device by 3 in 1261 * below caulcation for gain cell memory. 1262 * This gets rid of static number and issues while adding new controls 1263 */ 1264 static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS]; 1265 1266 static const struct snd_kcontrol_new sst_algo_controls[] = { 1267 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24, 1268 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), 1269 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24, 1270 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1271 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP, 1272 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), 1273 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24, 1274 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), 1275 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24, 1276 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1277 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP, 1278 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), 1279 SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT, 1280 SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO), 1281 SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR, 1282 SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1283 SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR, 1284 SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1285 1286 }; 1287 1288 static int sst_algo_control_init(struct device *dev) 1289 { 1290 int i = 0; 1291 struct sst_algo_control *bc; 1292 /*allocate space to cache the algo parameters in the driver*/ 1293 for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) { 1294 bc = (struct sst_algo_control *)sst_algo_controls[i].private_value; 1295 bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL); 1296 if (bc->params == NULL) 1297 return -ENOMEM; 1298 } 1299 return 0; 1300 } 1301 1302 static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w) 1303 { 1304 switch (w->id) { 1305 case snd_soc_dapm_pga: 1306 case snd_soc_dapm_aif_in: 1307 case snd_soc_dapm_aif_out: 1308 case snd_soc_dapm_input: 1309 case snd_soc_dapm_output: 1310 case snd_soc_dapm_mixer: 1311 return true; 1312 default: 1313 return false; 1314 } 1315 } 1316 1317 /** 1318 * sst_send_pipe_gains - send gains for the front-end DAIs 1319 * @dai: front-end dai 1320 * @stream: direction 1321 * @mute: boolean indicating mute status 1322 * 1323 * The gains in the pipes connected to the front-ends are muted/unmuted 1324 * automatically via the digital_mute() DAPM callback. This function sends the 1325 * gains for the front-end pipes. 1326 */ 1327 int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute) 1328 { 1329 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 1330 struct snd_soc_dapm_widget *w; 1331 struct snd_soc_dapm_path *p = NULL; 1332 1333 dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream); 1334 1335 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1336 dev_dbg(dai->dev, "Stream name=%s\n", 1337 dai->playback_widget->name); 1338 w = dai->playback_widget; 1339 snd_soc_dapm_widget_for_each_sink_path(w, p) { 1340 if (p->connected && !p->connected(w, p->sink)) 1341 continue; 1342 1343 if (p->connect && p->sink->power && 1344 is_sst_dapm_widget(p->sink)) { 1345 struct sst_ids *ids = p->sink->priv; 1346 1347 dev_dbg(dai->dev, "send gains for widget=%s\n", 1348 p->sink->name); 1349 mutex_lock(&drv->lock); 1350 sst_set_pipe_gain(ids, drv, mute); 1351 mutex_unlock(&drv->lock); 1352 } 1353 } 1354 } else { 1355 dev_dbg(dai->dev, "Stream name=%s\n", 1356 dai->capture_widget->name); 1357 w = dai->capture_widget; 1358 snd_soc_dapm_widget_for_each_source_path(w, p) { 1359 if (p->connected && !p->connected(w, p->source)) 1360 continue; 1361 1362 if (p->connect && p->source->power && 1363 is_sst_dapm_widget(p->source)) { 1364 struct sst_ids *ids = p->source->priv; 1365 1366 dev_dbg(dai->dev, "send gain for widget=%s\n", 1367 p->source->name); 1368 mutex_lock(&drv->lock); 1369 sst_set_pipe_gain(ids, drv, mute); 1370 mutex_unlock(&drv->lock); 1371 } 1372 } 1373 } 1374 return 0; 1375 } 1376 1377 /** 1378 * sst_fill_module_list - populate the list of modules/gains for a pipe 1379 * @kctl: kcontrol pointer 1380 * @w: dapm widget 1381 * @type: widget type 1382 * 1383 * Fills the widget pointer in the kcontrol private data, and also fills the 1384 * kcontrol pointer in the widget private data. 1385 * 1386 * Widget pointer is used to send the algo/gain in the .put() handler if the 1387 * widget is powerd on. 1388 * 1389 * Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF 1390 * event handler. Each widget (pipe) has multiple algos stored in the algo_list. 1391 */ 1392 static int sst_fill_module_list(struct snd_kcontrol *kctl, 1393 struct snd_soc_dapm_widget *w, int type) 1394 { 1395 struct sst_module *module = NULL; 1396 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 1397 struct sst_ids *ids = w->priv; 1398 int ret = 0; 1399 1400 module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL); 1401 if (!module) 1402 return -ENOMEM; 1403 1404 if (type == SST_MODULE_GAIN) { 1405 struct sst_gain_mixer_control *mc = (void *)kctl->private_value; 1406 1407 mc->w = w; 1408 module->kctl = kctl; 1409 list_add_tail(&module->node, &ids->gain_list); 1410 } else if (type == SST_MODULE_ALGO) { 1411 struct sst_algo_control *bc = (void *)kctl->private_value; 1412 1413 bc->w = w; 1414 module->kctl = kctl; 1415 list_add_tail(&module->node, &ids->algo_list); 1416 } else { 1417 dev_err(c->dev, "invoked for unknown type %d module %s", 1418 type, kctl->id.name); 1419 ret = -EINVAL; 1420 } 1421 1422 return ret; 1423 } 1424 1425 /** 1426 * sst_fill_widget_module_info - fill list of gains/algos for the pipe 1427 * @w: pipe modeled as a DAPM widget 1428 * @component: ASoC component 1429 * 1430 * Fill the list of gains/algos for the widget by looking at all the card 1431 * controls and comparing the name of the widget with the first part of control 1432 * name. First part of control name contains the pipe name (widget name). 1433 */ 1434 static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w, 1435 struct snd_soc_component *component) 1436 { 1437 struct snd_kcontrol *kctl; 1438 int index, ret = 0; 1439 struct snd_card *card = component->card->snd_card; 1440 char *idx; 1441 1442 down_read(&card->controls_rwsem); 1443 1444 list_for_each_entry(kctl, &card->controls, list) { 1445 idx = strchr(kctl->id.name, ' '); 1446 if (idx == NULL) 1447 continue; 1448 index = idx - (char*)kctl->id.name; 1449 if (strncmp(kctl->id.name, w->name, index)) 1450 continue; 1451 1452 if (strstr(kctl->id.name, "Volume")) 1453 ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN); 1454 1455 else if (strstr(kctl->id.name, "params")) 1456 ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO); 1457 1458 else if (strstr(kctl->id.name, "Switch") && 1459 strstr(kctl->id.name, "Gain")) { 1460 struct sst_gain_mixer_control *mc = 1461 (void *)kctl->private_value; 1462 1463 mc->w = w; 1464 1465 } else if (strstr(kctl->id.name, "interleaver")) { 1466 struct sst_enum *e = (void *)kctl->private_value; 1467 1468 e->w = w; 1469 1470 } else if (strstr(kctl->id.name, "deinterleaver")) { 1471 struct sst_enum *e = (void *)kctl->private_value; 1472 1473 e->w = w; 1474 } 1475 1476 if (ret < 0) { 1477 up_read(&card->controls_rwsem); 1478 return ret; 1479 } 1480 } 1481 1482 up_read(&card->controls_rwsem); 1483 return 0; 1484 } 1485 1486 /** 1487 * sst_fill_linked_widgets - fill the parent pointer for the linked widget 1488 * @component: ASoC component 1489 * @ids: sst_ids array 1490 */ 1491 static void sst_fill_linked_widgets(struct snd_soc_component *component, 1492 struct sst_ids *ids) 1493 { 1494 struct snd_soc_dapm_widget *w; 1495 unsigned int len = strlen(ids->parent_wname); 1496 1497 list_for_each_entry(w, &component->card->widgets, list) { 1498 if (!strncmp(ids->parent_wname, w->name, len)) { 1499 ids->parent_w = w; 1500 break; 1501 } 1502 } 1503 } 1504 1505 /** 1506 * sst_map_modules_to_pipe - fill algo/gains list for all pipes 1507 * @component: ASoC component 1508 */ 1509 static int sst_map_modules_to_pipe(struct snd_soc_component *component) 1510 { 1511 struct snd_soc_dapm_widget *w; 1512 int ret = 0; 1513 1514 list_for_each_entry(w, &component->card->widgets, list) { 1515 if (is_sst_dapm_widget(w) && (w->priv)) { 1516 struct sst_ids *ids = w->priv; 1517 1518 dev_dbg(component->dev, "widget type=%d name=%s\n", 1519 w->id, w->name); 1520 INIT_LIST_HEAD(&ids->algo_list); 1521 INIT_LIST_HEAD(&ids->gain_list); 1522 ret = sst_fill_widget_module_info(w, component); 1523 1524 if (ret < 0) 1525 return ret; 1526 1527 /* fill linked widgets */ 1528 if (ids->parent_wname != NULL) 1529 sst_fill_linked_widgets(component, ids); 1530 } 1531 } 1532 return 0; 1533 } 1534 1535 int sst_dsp_init_v2_dpcm(struct snd_soc_component *component) 1536 { 1537 int i, ret = 0; 1538 struct snd_soc_dapm_context *dapm = 1539 snd_soc_component_get_dapm(component); 1540 struct sst_data *drv = snd_soc_component_get_drvdata(component); 1541 unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3; 1542 1543 drv->byte_stream = devm_kzalloc(component->dev, 1544 SST_MAX_BIN_BYTES, GFP_KERNEL); 1545 if (!drv->byte_stream) 1546 return -ENOMEM; 1547 1548 snd_soc_dapm_new_controls(dapm, sst_dapm_widgets, 1549 ARRAY_SIZE(sst_dapm_widgets)); 1550 snd_soc_dapm_add_routes(dapm, intercon, 1551 ARRAY_SIZE(intercon)); 1552 snd_soc_dapm_new_widgets(dapm->card); 1553 1554 for (i = 0; i < gains; i++) { 1555 sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT; 1556 sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT; 1557 sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT; 1558 sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT; 1559 } 1560 1561 ret = snd_soc_add_component_controls(component, sst_gain_controls, 1562 ARRAY_SIZE(sst_gain_controls)); 1563 if (ret) 1564 return ret; 1565 1566 /* Initialize algo control params */ 1567 ret = sst_algo_control_init(component->dev); 1568 if (ret) 1569 return ret; 1570 ret = snd_soc_add_component_controls(component, sst_algo_controls, 1571 ARRAY_SIZE(sst_algo_controls)); 1572 if (ret) 1573 return ret; 1574 1575 ret = snd_soc_add_component_controls(component, sst_slot_controls, 1576 ARRAY_SIZE(sst_slot_controls)); 1577 if (ret) 1578 return ret; 1579 1580 ret = sst_map_modules_to_pipe(component); 1581 1582 return ret; 1583 } 1584