1 /* 2 * sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld 3 * 4 * Copyright (C) 2013-14 Intel Corp 5 * Author: Omair Mohammed Abdullah <omair.m.abdullah@intel.com> 6 * Vinod Koul <vinod.koul@intel.com> 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; version 2 of the License. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active 19 * we forward the settings and parameters, rest we keep the values in 20 * driver and forward when DAPM enables them 21 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/slab.h> 26 #include <sound/soc.h> 27 #include <sound/tlv.h> 28 #include "sst-mfld-platform.h" 29 #include "sst-atom-controls.h" 30 31 static int sst_fill_byte_control(struct sst_data *drv, 32 u8 ipc_msg, u8 block, 33 u8 task_id, u8 pipe_id, 34 u16 len, void *cmd_data) 35 { 36 struct snd_sst_bytes_v2 *byte_data = drv->byte_stream; 37 38 byte_data->type = SST_CMD_BYTES_SET; 39 byte_data->ipc_msg = ipc_msg; 40 byte_data->block = block; 41 byte_data->task_id = task_id; 42 byte_data->pipe_id = pipe_id; 43 44 if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) { 45 dev_err(&drv->pdev->dev, "command length too big (%u)", len); 46 return -EINVAL; 47 } 48 byte_data->len = len; 49 memcpy(byte_data->bytes, cmd_data, len); 50 print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET, 51 byte_data, len + sizeof(*byte_data)); 52 return 0; 53 } 54 55 static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv, 56 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, 57 void *cmd_data, u16 len) 58 { 59 int ret = 0; 60 61 ret = sst_fill_byte_control(drv, ipc_msg, 62 block, task_id, pipe_id, len, cmd_data); 63 if (ret < 0) 64 return ret; 65 return sst->ops->send_byte_stream(sst->dev, drv->byte_stream); 66 } 67 68 /** 69 * sst_fill_and_send_cmd - generate the IPC message and send it to the FW 70 * @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS) 71 * @cmd_data: the IPC payload 72 */ 73 static int sst_fill_and_send_cmd(struct sst_data *drv, 74 u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id, 75 void *cmd_data, u16 len) 76 { 77 int ret; 78 79 mutex_lock(&drv->lock); 80 ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block, 81 task_id, pipe_id, cmd_data, len); 82 mutex_unlock(&drv->lock); 83 84 return ret; 85 } 86 87 /** 88 * tx map value is a bitfield where each bit represents a FW channel 89 * 90 * 3 2 1 0 # 0 = codec0, 1 = codec1 91 * RLRLRLRL # 3, 4 = reserved 92 * 93 * e.g. slot 0 rx map = 00001100b -> data from slot 0 goes into codec_in1 L,R 94 */ 95 static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = { 96 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */ 97 }; 98 99 /** 100 * rx map value is a bitfield where each bit represents a slot 101 * 102 * 76543210 # 0 = slot 0, 1 = slot 1 103 * 104 * e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2 105 */ 106 static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = { 107 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */ 108 }; 109 110 /** 111 * NOTE: this is invoked with lock held 112 */ 113 static int sst_send_slot_map(struct sst_data *drv) 114 { 115 struct sst_param_sba_ssp_slot_map cmd; 116 117 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 118 cmd.header.command_id = SBA_SET_SSP_SLOT_MAP; 119 cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map) 120 - sizeof(struct sst_dsp_header); 121 122 cmd.param_id = SBA_SET_SSP_SLOT_MAP; 123 cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map) 124 + sizeof(cmd.ssp_index); 125 cmd.ssp_index = SSP_CODEC; 126 127 memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map)); 128 memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map)); 129 130 return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 131 SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, 132 sizeof(cmd.header) + cmd.header.length); 133 } 134 135 static int sst_slot_enum_info(struct snd_kcontrol *kcontrol, 136 struct snd_ctl_elem_info *uinfo) 137 { 138 struct sst_enum *e = (struct sst_enum *)kcontrol->private_value; 139 140 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 141 uinfo->count = 1; 142 uinfo->value.enumerated.items = e->max; 143 144 if (uinfo->value.enumerated.item > e->max - 1) 145 uinfo->value.enumerated.item = e->max - 1; 146 strcpy(uinfo->value.enumerated.name, 147 e->texts[uinfo->value.enumerated.item]); 148 149 return 0; 150 } 151 152 /** 153 * sst_slot_get - get the status of the interleaver/deinterleaver control 154 * 155 * Searches the map where the control status is stored, and gets the 156 * channel/slot which is currently set for this enumerated control. Since it is 157 * an enumerated control, there is only one possible value. 158 */ 159 static int sst_slot_get(struct snd_kcontrol *kcontrol, 160 struct snd_ctl_elem_value *ucontrol) 161 { 162 struct sst_enum *e = (void *)kcontrol->private_value; 163 struct snd_soc_component *c = snd_kcontrol_chip(kcontrol); 164 struct sst_data *drv = snd_soc_component_get_drvdata(c); 165 unsigned int ctl_no = e->reg; 166 unsigned int is_tx = e->tx; 167 unsigned int val, mux; 168 u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; 169 170 mutex_lock(&drv->lock); 171 val = 1 << ctl_no; 172 /* search which slot/channel has this bit set - there should be only one */ 173 for (mux = e->max; mux > 0; mux--) 174 if (map[mux - 1] & val) 175 break; 176 177 ucontrol->value.enumerated.item[0] = mux; 178 mutex_unlock(&drv->lock); 179 180 dev_dbg(c->dev, "%s - %s map = %#x\n", 181 is_tx ? "tx channel" : "rx slot", 182 e->texts[mux], mux ? map[mux - 1] : -1); 183 return 0; 184 } 185 186 /* sst_check_and_send_slot_map - helper for checking power state and sending 187 * slot map cmd 188 * 189 * called with lock held 190 */ 191 static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol) 192 { 193 struct sst_enum *e = (void *)kcontrol->private_value; 194 int ret = 0; 195 196 if (e->w && e->w->power) 197 ret = sst_send_slot_map(drv); 198 else 199 dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n", 200 kcontrol->id.name); 201 return ret; 202 } 203 204 /** 205 * sst_slot_put - set the status of interleaver/deinterleaver control 206 * 207 * (de)interleaver controls are defined in opposite sense to be user-friendly 208 * 209 * Instead of the enum value being the value written to the register, it is the 210 * register address; and the kcontrol number (register num) is the value written 211 * to the register. This is so that there can be only one value for each 212 * slot/channel since there is only one control for each slot/channel. 213 * 214 * This means that whenever an enum is set, we need to clear the bit 215 * for that kcontrol_no for all the interleaver OR deinterleaver registers 216 */ 217 static int sst_slot_put(struct snd_kcontrol *kcontrol, 218 struct snd_ctl_elem_value *ucontrol) 219 { 220 struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol); 221 struct sst_data *drv = snd_soc_component_get_drvdata(c); 222 struct sst_enum *e = (void *)kcontrol->private_value; 223 int i, ret = 0; 224 unsigned int ctl_no = e->reg; 225 unsigned int is_tx = e->tx; 226 unsigned int slot_channel_no; 227 unsigned int val, mux; 228 u8 *map; 229 230 map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map; 231 232 val = 1 << ctl_no; 233 mux = ucontrol->value.enumerated.item[0]; 234 if (mux > e->max - 1) 235 return -EINVAL; 236 237 mutex_lock(&drv->lock); 238 /* first clear all registers of this bit */ 239 for (i = 0; i < e->max; i++) 240 map[i] &= ~val; 241 242 if (mux == 0) { 243 /* kctl set to 'none' and we reset the bits so send IPC */ 244 ret = sst_check_and_send_slot_map(drv, kcontrol); 245 246 mutex_unlock(&drv->lock); 247 return ret; 248 } 249 250 /* offset by one to take "None" into account */ 251 slot_channel_no = mux - 1; 252 map[slot_channel_no] |= val; 253 254 dev_dbg(c->dev, "%s %s map = %#x\n", 255 is_tx ? "tx channel" : "rx slot", 256 e->texts[mux], map[slot_channel_no]); 257 258 ret = sst_check_and_send_slot_map(drv, kcontrol); 259 260 mutex_unlock(&drv->lock); 261 return ret; 262 } 263 264 static int sst_send_algo_cmd(struct sst_data *drv, 265 struct sst_algo_control *bc) 266 { 267 int len, ret = 0; 268 struct sst_cmd_set_params *cmd; 269 270 /*bc->max includes sizeof algos + length field*/ 271 len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max; 272 273 cmd = kzalloc(len, GFP_KERNEL); 274 if (cmd == NULL) 275 return -ENOMEM; 276 277 SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id); 278 cmd->command_id = bc->cmd_id; 279 memcpy(cmd->params, bc->params, bc->max); 280 281 ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 282 SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len); 283 kfree(cmd); 284 return ret; 285 } 286 287 /** 288 * sst_find_and_send_pipe_algo - send all the algo parameters for a pipe 289 * 290 * The algos which are in each pipeline are sent to the firmware one by one 291 * 292 * Called with lock held 293 */ 294 static int sst_find_and_send_pipe_algo(struct sst_data *drv, 295 const char *pipe, struct sst_ids *ids) 296 { 297 int ret = 0; 298 struct sst_algo_control *bc; 299 struct sst_module *algo = NULL; 300 301 dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe); 302 303 list_for_each_entry(algo, &ids->algo_list, node) { 304 bc = (void *)algo->kctl->private_value; 305 306 dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n", 307 algo->kctl->id.name, pipe); 308 ret = sst_send_algo_cmd(drv, bc); 309 if (ret) 310 return ret; 311 } 312 return ret; 313 } 314 315 static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol, 316 struct snd_ctl_elem_info *uinfo) 317 { 318 struct sst_algo_control *bc = (void *)kcontrol->private_value; 319 320 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 321 uinfo->count = bc->max; 322 323 return 0; 324 } 325 326 static int sst_algo_control_get(struct snd_kcontrol *kcontrol, 327 struct snd_ctl_elem_value *ucontrol) 328 { 329 struct sst_algo_control *bc = (void *)kcontrol->private_value; 330 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 331 332 switch (bc->type) { 333 case SST_ALGO_PARAMS: 334 memcpy(ucontrol->value.bytes.data, bc->params, bc->max); 335 break; 336 default: 337 dev_err(component->dev, "Invalid Input- algo type:%d\n", 338 bc->type); 339 return -EINVAL; 340 341 } 342 return 0; 343 } 344 345 static int sst_algo_control_set(struct snd_kcontrol *kcontrol, 346 struct snd_ctl_elem_value *ucontrol) 347 { 348 int ret = 0; 349 struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); 350 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 351 struct sst_algo_control *bc = (void *)kcontrol->private_value; 352 353 dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name); 354 mutex_lock(&drv->lock); 355 switch (bc->type) { 356 case SST_ALGO_PARAMS: 357 memcpy(bc->params, ucontrol->value.bytes.data, bc->max); 358 break; 359 default: 360 mutex_unlock(&drv->lock); 361 dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n", 362 bc->type); 363 return -EINVAL; 364 } 365 /*if pipe is enabled, need to send the algo params from here*/ 366 if (bc->w && bc->w->power) 367 ret = sst_send_algo_cmd(drv, bc); 368 mutex_unlock(&drv->lock); 369 370 return ret; 371 } 372 373 static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol, 374 struct snd_ctl_elem_info *uinfo) 375 { 376 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 377 378 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 379 uinfo->count = mc->stereo ? 2 : 1; 380 uinfo->value.integer.min = mc->min; 381 uinfo->value.integer.max = mc->max; 382 383 return 0; 384 } 385 386 /** 387 * sst_send_gain_cmd - send the gain algorithm IPC to the FW 388 * @gv: the stored value of gain (also contains rampduration) 389 * @mute: flag that indicates whether this was called from the 390 * digital_mute callback or directly. If called from the 391 * digital_mute callback, module will be muted/unmuted based on this 392 * flag. The flag is always 0 if called directly. 393 * 394 * Called with sst_data.lock held 395 * 396 * The user-set gain value is sent only if the user-controllable 'mute' control 397 * is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is 398 * sent. 399 */ 400 static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv, 401 u16 task_id, u16 loc_id, u16 module_id, int mute) 402 { 403 struct sst_cmd_set_gain_dual cmd; 404 405 dev_dbg(&drv->pdev->dev, "Enter\n"); 406 407 cmd.header.command_id = MMX_SET_GAIN; 408 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 409 cmd.gain_cell_num = 1; 410 411 if (mute || gv->mute) { 412 cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE; 413 cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE; 414 } else { 415 cmd.cell_gains[0].cell_gain_left = gv->l_gain; 416 cmd.cell_gains[0].cell_gain_right = gv->r_gain; 417 } 418 419 SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest, 420 loc_id, module_id); 421 cmd.cell_gains[0].gain_time_constant = gv->ramp_duration; 422 423 cmd.header.length = sizeof(struct sst_cmd_set_gain_dual) 424 - sizeof(struct sst_dsp_header); 425 426 /* we are with lock held, so call the unlocked api to send */ 427 return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS, 428 SST_FLAG_BLOCKED, task_id, 0, &cmd, 429 sizeof(cmd.header) + cmd.header.length); 430 } 431 432 static int sst_gain_get(struct snd_kcontrol *kcontrol, 433 struct snd_ctl_elem_value *ucontrol) 434 { 435 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 436 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 437 struct sst_gain_value *gv = mc->gain_val; 438 439 switch (mc->type) { 440 case SST_GAIN_TLV: 441 ucontrol->value.integer.value[0] = gv->l_gain; 442 ucontrol->value.integer.value[1] = gv->r_gain; 443 break; 444 445 case SST_GAIN_MUTE: 446 ucontrol->value.integer.value[0] = gv->mute ? 1 : 0; 447 break; 448 449 case SST_GAIN_RAMP_DURATION: 450 ucontrol->value.integer.value[0] = gv->ramp_duration; 451 break; 452 453 default: 454 dev_err(component->dev, "Invalid Input- gain type:%d\n", 455 mc->type); 456 return -EINVAL; 457 } 458 459 return 0; 460 } 461 462 static int sst_gain_put(struct snd_kcontrol *kcontrol, 463 struct snd_ctl_elem_value *ucontrol) 464 { 465 int ret = 0; 466 struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); 467 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 468 struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value; 469 struct sst_gain_value *gv = mc->gain_val; 470 471 mutex_lock(&drv->lock); 472 473 switch (mc->type) { 474 case SST_GAIN_TLV: 475 gv->l_gain = ucontrol->value.integer.value[0]; 476 gv->r_gain = ucontrol->value.integer.value[1]; 477 dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n", 478 mc->pname, gv->l_gain, gv->r_gain); 479 break; 480 481 case SST_GAIN_MUTE: 482 gv->mute = !!ucontrol->value.integer.value[0]; 483 dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute); 484 break; 485 486 case SST_GAIN_RAMP_DURATION: 487 gv->ramp_duration = ucontrol->value.integer.value[0]; 488 dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n", 489 mc->pname, gv->ramp_duration); 490 break; 491 492 default: 493 mutex_unlock(&drv->lock); 494 dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n", 495 mc->type); 496 return -EINVAL; 497 } 498 499 if (mc->w && mc->w->power) 500 ret = sst_send_gain_cmd(drv, gv, mc->task_id, 501 mc->pipe_id | mc->instance_id, mc->module_id, 0); 502 mutex_unlock(&drv->lock); 503 504 return ret; 505 } 506 507 static int sst_set_pipe_gain(struct sst_ids *ids, 508 struct sst_data *drv, int mute); 509 510 static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w, 511 struct snd_kcontrol *kcontrol) 512 { 513 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 514 struct sst_data *drv = snd_soc_component_get_drvdata(c); 515 struct sst_ids *ids = w->priv; 516 517 mutex_lock(&drv->lock); 518 sst_find_and_send_pipe_algo(drv, w->name, ids); 519 sst_set_pipe_gain(ids, drv, 0); 520 mutex_unlock(&drv->lock); 521 522 return 0; 523 } 524 525 static int sst_generic_modules_event(struct snd_soc_dapm_widget *w, 526 struct snd_kcontrol *k, int event) 527 { 528 if (SND_SOC_DAPM_EVENT_ON(event)) 529 return sst_send_pipe_module_params(w, k); 530 return 0; 531 } 532 533 static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0); 534 535 /* Look up table to convert MIXER SW bit regs to SWM inputs */ 536 static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = { 537 [SST_IP_CODEC0] = SST_SWM_IN_CODEC0, 538 [SST_IP_CODEC1] = SST_SWM_IN_CODEC1, 539 [SST_IP_LOOP0] = SST_SWM_IN_SPROT_LOOP, 540 [SST_IP_LOOP1] = SST_SWM_IN_MEDIA_LOOP1, 541 [SST_IP_LOOP2] = SST_SWM_IN_MEDIA_LOOP2, 542 [SST_IP_PCM0] = SST_SWM_IN_PCM0, 543 [SST_IP_PCM1] = SST_SWM_IN_PCM1, 544 [SST_IP_MEDIA0] = SST_SWM_IN_MEDIA0, 545 [SST_IP_MEDIA1] = SST_SWM_IN_MEDIA1, 546 [SST_IP_MEDIA2] = SST_SWM_IN_MEDIA2, 547 [SST_IP_MEDIA3] = SST_SWM_IN_MEDIA3, 548 }; 549 550 /** 551 * fill_swm_input - fill in the SWM input ids given the register 552 * 553 * The register value is a bit-field inicated which mixer inputs are ON. Use the 554 * lookup table to get the input-id and fill it in the structure. 555 */ 556 static int fill_swm_input(struct snd_soc_component *cmpnt, 557 struct swm_input_ids *swm_input, unsigned int reg) 558 { 559 uint i, is_set, nb_inputs = 0; 560 u16 input_loc_id; 561 562 dev_dbg(cmpnt->dev, "reg: %#x\n", reg); 563 for (i = 0; i < SST_SWM_INPUT_COUNT; i++) { 564 is_set = reg & BIT(i); 565 if (!is_set) 566 continue; 567 568 input_loc_id = swm_mixer_input_ids[i]; 569 SST_FILL_DESTINATION(2, swm_input->input_id, 570 input_loc_id, SST_DEFAULT_MODULE_ID); 571 nb_inputs++; 572 swm_input++; 573 dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n", 574 input_loc_id, nb_inputs); 575 576 if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) { 577 dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached"); 578 break; 579 } 580 } 581 return nb_inputs; 582 } 583 584 585 /** 586 * called with lock held 587 */ 588 static int sst_set_pipe_gain(struct sst_ids *ids, 589 struct sst_data *drv, int mute) 590 { 591 int ret = 0; 592 struct sst_gain_mixer_control *mc; 593 struct sst_gain_value *gv; 594 struct sst_module *gain = NULL; 595 596 list_for_each_entry(gain, &ids->gain_list, node) { 597 struct snd_kcontrol *kctl = gain->kctl; 598 599 dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name); 600 mc = (void *)kctl->private_value; 601 gv = mc->gain_val; 602 603 ret = sst_send_gain_cmd(drv, gv, mc->task_id, 604 mc->pipe_id | mc->instance_id, mc->module_id, mute); 605 if (ret) 606 return ret; 607 } 608 return ret; 609 } 610 611 static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w, 612 struct snd_kcontrol *k, int event) 613 { 614 struct sst_cmd_set_swm cmd; 615 struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm); 616 struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt); 617 struct sst_ids *ids = w->priv; 618 bool set_mixer = false; 619 struct soc_mixer_control *mc; 620 int val = 0; 621 int i = 0; 622 623 dev_dbg(cmpnt->dev, "widget = %s\n", w->name); 624 /* 625 * Identify which mixer input is on and send the bitmap of the 626 * inputs as an IPC to the DSP. 627 */ 628 for (i = 0; i < w->num_kcontrols; i++) { 629 if (dapm_kcontrol_get_value(w->kcontrols[i])) { 630 mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value; 631 val |= 1 << mc->shift; 632 } 633 } 634 dev_dbg(cmpnt->dev, "val = %#x\n", val); 635 636 switch (event) { 637 case SND_SOC_DAPM_PRE_PMU: 638 case SND_SOC_DAPM_POST_PMD: 639 set_mixer = true; 640 break; 641 case SND_SOC_DAPM_POST_REG: 642 if (w->power) 643 set_mixer = true; 644 break; 645 default: 646 set_mixer = false; 647 } 648 649 if (set_mixer == false) 650 return 0; 651 652 if (SND_SOC_DAPM_EVENT_ON(event) || 653 event == SND_SOC_DAPM_POST_REG) 654 cmd.switch_state = SST_SWM_ON; 655 else 656 cmd.switch_state = SST_SWM_OFF; 657 658 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 659 /* MMX_SET_SWM == SBA_SET_SWM */ 660 cmd.header.command_id = SBA_SET_SWM; 661 662 SST_FILL_DESTINATION(2, cmd.output_id, 663 ids->location_id, SST_DEFAULT_MODULE_ID); 664 cmd.nb_inputs = fill_swm_input(cmpnt, &cmd.input[0], val); 665 cmd.header.length = offsetof(struct sst_cmd_set_swm, input) 666 - sizeof(struct sst_dsp_header) 667 + (cmd.nb_inputs * sizeof(cmd.input[0])); 668 669 return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 670 ids->task_id, 0, &cmd, 671 sizeof(cmd.header) + cmd.header.length); 672 } 673 674 /* SBA mixers - 16 inputs */ 675 #define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name) \ 676 static const struct snd_kcontrol_new kctl_name[] = { \ 677 SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0), \ 678 SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0), \ 679 SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0), \ 680 SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0), \ 681 SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0), \ 682 SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0), \ 683 SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0), \ 684 } 685 686 #define SST_SBA_MIXER_GRAPH_MAP(mix_name) \ 687 { mix_name, "codec_in0 Switch", "codec_in0" }, \ 688 { mix_name, "codec_in1 Switch", "codec_in1" }, \ 689 { mix_name, "sprot_loop_in Switch", "sprot_loop_in" }, \ 690 { mix_name, "media_loop1_in Switch", "media_loop1_in" }, \ 691 { mix_name, "media_loop2_in Switch", "media_loop2_in" }, \ 692 { mix_name, "pcm0_in Switch", "pcm0_in" }, \ 693 { mix_name, "pcm1_in Switch", "pcm1_in" } 694 695 #define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name) \ 696 static const struct snd_kcontrol_new kctl_name[] = { \ 697 SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0), \ 698 SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0), \ 699 SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0), \ 700 SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0), \ 701 } 702 703 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls); 704 SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls); 705 706 /* 18 SBA mixers */ 707 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls); 708 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls); 709 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls); 710 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls); 711 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls); 712 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls); 713 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_voip_controls); 714 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls); 715 SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls); 716 717 /* 718 * sst_handle_vb_timer - Start/Stop the DSP scheduler 719 * 720 * The DSP expects first cmd to be SBA_VB_START, so at first startup send 721 * that. 722 * DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that. 723 * 724 * Do refcount internally so that we send command only at first start 725 * and last end. Since SST driver does its own ref count, invoke sst's 726 * power ops always! 727 */ 728 int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable) 729 { 730 int ret = 0; 731 struct sst_cmd_generic cmd; 732 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 733 static int timer_usage; 734 735 if (enable) 736 cmd.header.command_id = SBA_VB_START; 737 else 738 cmd.header.command_id = SBA_IDLE; 739 dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage); 740 741 SST_FILL_DEFAULT_DESTINATION(cmd.header.dst); 742 cmd.header.length = 0; 743 744 if (enable) { 745 ret = sst->ops->power(sst->dev, true); 746 if (ret < 0) 747 return ret; 748 } 749 750 mutex_lock(&drv->lock); 751 if (enable) 752 timer_usage++; 753 else 754 timer_usage--; 755 756 /* 757 * Send the command only if this call is the first enable or last 758 * disable 759 */ 760 if ((enable && (timer_usage == 1)) || 761 (!enable && (timer_usage == 0))) { 762 ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD, 763 SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd, 764 sizeof(cmd.header) + cmd.header.length); 765 if (ret && enable) { 766 timer_usage--; 767 enable = false; 768 } 769 } 770 mutex_unlock(&drv->lock); 771 772 if (!enable) 773 sst->ops->power(sst->dev, false); 774 return ret; 775 } 776 777 int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask, 778 unsigned int rx_mask, int slots, int slot_width) 779 { 780 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 781 782 ctx->ssp_cmd.nb_slots = slots; 783 ctx->ssp_cmd.active_tx_slot_map = tx_mask; 784 ctx->ssp_cmd.active_rx_slot_map = rx_mask; 785 ctx->ssp_cmd.nb_bits_per_slots = slot_width; 786 787 return 0; 788 } 789 790 static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai, 791 unsigned int fmt) 792 { 793 int format; 794 795 format = fmt & SND_SOC_DAIFMT_INV_MASK; 796 dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); 797 798 switch (format) { 799 case SND_SOC_DAIFMT_NB_NF: 800 return SSP_FS_ACTIVE_LOW; 801 case SND_SOC_DAIFMT_NB_IF: 802 return SSP_FS_ACTIVE_HIGH; 803 case SND_SOC_DAIFMT_IB_IF: 804 return SSP_FS_ACTIVE_LOW; 805 case SND_SOC_DAIFMT_IB_NF: 806 return SSP_FS_ACTIVE_HIGH; 807 default: 808 dev_err(dai->dev, "Invalid frame sync polarity %d\n", format); 809 } 810 811 return -EINVAL; 812 } 813 814 static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt) 815 { 816 int format; 817 818 format = (fmt & SND_SOC_DAIFMT_MASTER_MASK); 819 dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format); 820 821 switch (format) { 822 case SND_SOC_DAIFMT_CBS_CFS: 823 return SSP_MODE_MASTER; 824 case SND_SOC_DAIFMT_CBM_CFM: 825 return SSP_MODE_SLAVE; 826 default: 827 dev_err(dai->dev, "Invalid ssp protocol: %d\n", format); 828 } 829 830 return -EINVAL; 831 } 832 833 834 int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt) 835 { 836 unsigned int mode; 837 int fs_polarity; 838 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 839 840 mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 841 842 switch (mode) { 843 case SND_SOC_DAIFMT_DSP_B: 844 ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; 845 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); 846 ctx->ssp_cmd.start_delay = 0; 847 ctx->ssp_cmd.data_polarity = 1; 848 ctx->ssp_cmd.frame_sync_width = 1; 849 break; 850 851 case SND_SOC_DAIFMT_DSP_A: 852 ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM; 853 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1); 854 ctx->ssp_cmd.start_delay = 1; 855 ctx->ssp_cmd.data_polarity = 1; 856 ctx->ssp_cmd.frame_sync_width = 1; 857 break; 858 859 case SND_SOC_DAIFMT_I2S: 860 ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; 861 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); 862 ctx->ssp_cmd.start_delay = 1; 863 ctx->ssp_cmd.data_polarity = 0; 864 ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; 865 break; 866 867 case SND_SOC_DAIFMT_LEFT_J: 868 ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S; 869 ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1); 870 ctx->ssp_cmd.start_delay = 0; 871 ctx->ssp_cmd.data_polarity = 0; 872 ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots; 873 break; 874 875 default: 876 dev_dbg(dai->dev, "using default ssp configs\n"); 877 } 878 879 fs_polarity = sst_get_frame_sync_polarity(dai, fmt); 880 if (fs_polarity < 0) 881 return fs_polarity; 882 883 ctx->ssp_cmd.frame_sync_polarity = fs_polarity; 884 885 return 0; 886 } 887 888 /** 889 * sst_ssp_config - contains SSP configuration for media UC 890 * this can be overwritten by set_dai_xxx APIs 891 */ 892 static const struct sst_ssp_config sst_ssp_configs = { 893 .ssp_id = SSP_CODEC, 894 .bits_per_slot = 24, 895 .slots = 4, 896 .ssp_mode = SSP_MODE_MASTER, 897 .pcm_mode = SSP_PCM_MODE_NETWORK, 898 .duplex = SSP_DUPLEX, 899 .ssp_protocol = SSP_MODE_PCM, 900 .fs_width = 1, 901 .fs_frequency = SSP_FS_48_KHZ, 902 .active_slot_map = 0xF, 903 .start_delay = 0, 904 .frame_sync_polarity = SSP_FS_ACTIVE_HIGH, 905 .data_polarity = 1, 906 }; 907 908 void sst_fill_ssp_defaults(struct snd_soc_dai *dai) 909 { 910 const struct sst_ssp_config *config; 911 struct sst_data *ctx = snd_soc_dai_get_drvdata(dai); 912 913 config = &sst_ssp_configs; 914 915 ctx->ssp_cmd.selection = config->ssp_id; 916 ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot; 917 ctx->ssp_cmd.nb_slots = config->slots; 918 ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1); 919 ctx->ssp_cmd.duplex = config->duplex; 920 ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map; 921 ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map; 922 ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency; 923 ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity; 924 ctx->ssp_cmd.data_polarity = config->data_polarity; 925 ctx->ssp_cmd.frame_sync_width = config->fs_width; 926 ctx->ssp_cmd.ssp_protocol = config->ssp_protocol; 927 ctx->ssp_cmd.start_delay = config->start_delay; 928 ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF; 929 } 930 931 int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable) 932 { 933 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 934 const struct sst_ssp_config *config; 935 936 dev_info(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id); 937 938 SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst); 939 drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP; 940 drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp) 941 - sizeof(struct sst_dsp_header); 942 943 config = &sst_ssp_configs; 944 dev_dbg(dai->dev, "ssp_id: %u\n", config->ssp_id); 945 946 if (enable) 947 drv->ssp_cmd.switch_state = SST_SWITCH_ON; 948 else 949 drv->ssp_cmd.switch_state = SST_SWITCH_OFF; 950 951 return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 952 SST_TASK_SBA, 0, &drv->ssp_cmd, 953 sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length); 954 } 955 956 static int sst_set_be_modules(struct snd_soc_dapm_widget *w, 957 struct snd_kcontrol *k, int event) 958 { 959 int ret = 0; 960 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 961 struct sst_data *drv = snd_soc_component_get_drvdata(c); 962 963 dev_dbg(c->dev, "Enter: widget=%s\n", w->name); 964 965 if (SND_SOC_DAPM_EVENT_ON(event)) { 966 ret = sst_send_slot_map(drv); 967 if (ret) 968 return ret; 969 ret = sst_send_pipe_module_params(w, k); 970 } 971 return ret; 972 } 973 974 static int sst_set_media_path(struct snd_soc_dapm_widget *w, 975 struct snd_kcontrol *k, int event) 976 { 977 int ret = 0; 978 struct sst_cmd_set_media_path cmd; 979 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 980 struct sst_data *drv = snd_soc_component_get_drvdata(c); 981 struct sst_ids *ids = w->priv; 982 983 dev_dbg(c->dev, "widget=%s\n", w->name); 984 dev_dbg(c->dev, "task=%u, location=%#x\n", 985 ids->task_id, ids->location_id); 986 987 if (SND_SOC_DAPM_EVENT_ON(event)) 988 cmd.switch_state = SST_PATH_ON; 989 else 990 cmd.switch_state = SST_PATH_OFF; 991 992 SST_FILL_DESTINATION(2, cmd.header.dst, 993 ids->location_id, SST_DEFAULT_MODULE_ID); 994 995 /* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */ 996 cmd.header.command_id = MMX_SET_MEDIA_PATH; 997 cmd.header.length = sizeof(struct sst_cmd_set_media_path) 998 - sizeof(struct sst_dsp_header); 999 1000 ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 1001 ids->task_id, 0, &cmd, 1002 sizeof(cmd.header) + cmd.header.length); 1003 if (ret) 1004 return ret; 1005 1006 if (SND_SOC_DAPM_EVENT_ON(event)) 1007 ret = sst_send_pipe_module_params(w, k); 1008 return ret; 1009 } 1010 1011 static int sst_set_media_loop(struct snd_soc_dapm_widget *w, 1012 struct snd_kcontrol *k, int event) 1013 { 1014 int ret = 0; 1015 struct sst_cmd_sba_set_media_loop_map cmd; 1016 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 1017 struct sst_data *drv = snd_soc_component_get_drvdata(c); 1018 struct sst_ids *ids = w->priv; 1019 1020 dev_dbg(c->dev, "Enter:widget=%s\n", w->name); 1021 if (SND_SOC_DAPM_EVENT_ON(event)) 1022 cmd.switch_state = SST_SWITCH_ON; 1023 else 1024 cmd.switch_state = SST_SWITCH_OFF; 1025 1026 SST_FILL_DESTINATION(2, cmd.header.dst, 1027 ids->location_id, SST_DEFAULT_MODULE_ID); 1028 1029 cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP; 1030 cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map) 1031 - sizeof(struct sst_dsp_header); 1032 cmd.param.part.cfg.rate = 2; /* 48khz */ 1033 1034 cmd.param.part.cfg.format = ids->format; /* stereo/Mono */ 1035 cmd.param.part.cfg.s_length = 1; /* 24bit left justified */ 1036 cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */ 1037 1038 ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED, 1039 SST_TASK_SBA, 0, &cmd, 1040 sizeof(cmd.header) + cmd.header.length); 1041 if (ret) 1042 return ret; 1043 1044 if (SND_SOC_DAPM_EVENT_ON(event)) 1045 ret = sst_send_pipe_module_params(w, k); 1046 return ret; 1047 } 1048 1049 static const struct snd_soc_dapm_widget sst_dapm_widgets[] = { 1050 SST_AIF_IN("codec_in0", sst_set_be_modules), 1051 SST_AIF_IN("codec_in1", sst_set_be_modules), 1052 SST_AIF_OUT("codec_out0", sst_set_be_modules), 1053 SST_AIF_OUT("codec_out1", sst_set_be_modules), 1054 1055 /* Media Paths */ 1056 /* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */ 1057 SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event), 1058 SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL), 1059 SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path), 1060 SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL), 1061 SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path), 1062 SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path), 1063 1064 /* SBA PCM Paths */ 1065 SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path), 1066 SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path), 1067 SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path), 1068 SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path), 1069 SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path), 1070 1071 /* SBA Loops */ 1072 SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL), 1073 SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL), 1074 SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL), 1075 SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_MONO, sst_set_media_loop), 1076 SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_MONO, sst_set_media_loop), 1077 SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop), 1078 1079 /* Media Mixers */ 1080 SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0, 1081 sst_mix_media0_controls, sst_swm_mixer_event), 1082 SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1, 1083 sst_mix_media1_controls, sst_swm_mixer_event), 1084 1085 /* SBA PCM mixers */ 1086 SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0, 1087 sst_mix_pcm0_controls, sst_swm_mixer_event), 1088 SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1, 1089 sst_mix_pcm1_controls, sst_swm_mixer_event), 1090 SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2, 1091 sst_mix_pcm2_controls, sst_swm_mixer_event), 1092 1093 /* SBA Loop mixers */ 1094 SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, 1095 sst_mix_sprot_l0_controls, sst_swm_mixer_event), 1096 SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, 1097 sst_mix_media_l1_controls, sst_swm_mixer_event), 1098 SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, 1099 sst_mix_media_l2_controls, sst_swm_mixer_event), 1100 1101 /* SBA Backend mixers */ 1102 SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0, 1103 sst_mix_codec0_controls, sst_swm_mixer_event), 1104 SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1, 1105 sst_mix_codec1_controls, sst_swm_mixer_event), 1106 }; 1107 1108 static const struct snd_soc_dapm_route intercon[] = { 1109 {"media0_in", NULL, "Compress Playback"}, 1110 {"media1_in", NULL, "Headset Playback"}, 1111 {"media2_in", NULL, "pcm0_out"}, 1112 1113 {"media0_out mix 0", "media0_in Switch", "media0_in"}, 1114 {"media0_out mix 0", "media1_in Switch", "media1_in"}, 1115 {"media0_out mix 0", "media2_in Switch", "media2_in"}, 1116 {"media0_out mix 0", "media3_in Switch", "media3_in"}, 1117 {"media1_out mix 0", "media0_in Switch", "media0_in"}, 1118 {"media1_out mix 0", "media1_in Switch", "media1_in"}, 1119 {"media1_out mix 0", "media2_in Switch", "media2_in"}, 1120 {"media1_out mix 0", "media3_in Switch", "media3_in"}, 1121 1122 {"media0_out", NULL, "media0_out mix 0"}, 1123 {"media1_out", NULL, "media1_out mix 0"}, 1124 {"pcm0_in", NULL, "media0_out"}, 1125 {"pcm1_in", NULL, "media1_out"}, 1126 1127 {"Headset Capture", NULL, "pcm1_out"}, 1128 {"Headset Capture", NULL, "pcm2_out"}, 1129 {"pcm0_out", NULL, "pcm0_out mix 0"}, 1130 SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"), 1131 {"pcm1_out", NULL, "pcm1_out mix 0"}, 1132 SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"), 1133 {"pcm2_out", NULL, "pcm2_out mix 0"}, 1134 SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"), 1135 1136 {"media_loop1_in", NULL, "media_loop1_out"}, 1137 {"media_loop1_out", NULL, "media_loop1_out mix 0"}, 1138 SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"), 1139 {"media_loop2_in", NULL, "media_loop2_out"}, 1140 {"media_loop2_out", NULL, "media_loop2_out mix 0"}, 1141 SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"), 1142 {"sprot_loop_in", NULL, "sprot_loop_out"}, 1143 {"sprot_loop_out", NULL, "sprot_loop_out mix 0"}, 1144 SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"), 1145 1146 {"codec_out0", NULL, "codec_out0 mix 0"}, 1147 SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"), 1148 {"codec_out1", NULL, "codec_out1 mix 0"}, 1149 SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"), 1150 1151 }; 1152 static const char * const slot_names[] = { 1153 "none", 1154 "slot 0", "slot 1", "slot 2", "slot 3", 1155 "slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */ 1156 }; 1157 1158 static const char * const channel_names[] = { 1159 "none", 1160 "codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1", 1161 "codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */ 1162 }; 1163 1164 #define SST_INTERLEAVER(xpname, slot_name, slotno) \ 1165 SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \ 1166 channel_names, sst_slot_get, sst_slot_put) 1167 1168 #define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \ 1169 SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \ 1170 slot_names, sst_slot_get, sst_slot_put) 1171 1172 static const struct snd_kcontrol_new sst_slot_controls[] = { 1173 SST_INTERLEAVER("codec_out", "slot 0", 0), 1174 SST_INTERLEAVER("codec_out", "slot 1", 1), 1175 SST_INTERLEAVER("codec_out", "slot 2", 2), 1176 SST_INTERLEAVER("codec_out", "slot 3", 3), 1177 SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0), 1178 SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1), 1179 SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2), 1180 SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3), 1181 }; 1182 1183 /* Gain helper with min/max set */ 1184 #define SST_GAIN(name, path_id, task_id, instance, gain_var) \ 1185 SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ 1186 SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ 1187 sst_gain_get, sst_gain_put, \ 1188 SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id, \ 1189 sst_gain_tlv_common, gain_var) 1190 1191 #define SST_VOLUME(name, path_id, task_id, instance, gain_var) \ 1192 SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \ 1193 SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \ 1194 sst_gain_get, sst_gain_put, \ 1195 SST_MODULE_ID_VOLUME, path_id, instance, task_id, \ 1196 sst_gain_tlv_common, gain_var) 1197 1198 static struct sst_gain_value sst_gains[]; 1199 1200 static const struct snd_kcontrol_new sst_gain_controls[] = { 1201 SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]), 1202 SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]), 1203 SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]), 1204 SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]), 1205 1206 SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]), 1207 SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]), 1208 SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]), 1209 SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]), 1210 1211 SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]), 1212 SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]), 1213 SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]), 1214 SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]), 1215 SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]), 1216 SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]), 1217 SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]), 1218 SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]), 1219 }; 1220 1221 #define SST_GAIN_NUM_CONTROLS 3 1222 /* the SST_GAIN macro above will create three alsa controls for each 1223 * instance invoked, gain, mute and ramp duration, which use the same gain 1224 * cell sst_gain to keep track of data 1225 * To calculate number of gain cell instances we need to device by 3 in 1226 * below caulcation for gain cell memory. 1227 * This gets rid of static number and issues while adding new controls 1228 */ 1229 static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS]; 1230 1231 static const struct snd_kcontrol_new sst_algo_controls[] = { 1232 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24, 1233 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), 1234 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24, 1235 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1236 SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP, 1237 SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), 1238 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24, 1239 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR), 1240 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24, 1241 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1242 SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP, 1243 SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP), 1244 SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT, 1245 SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO), 1246 SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR, 1247 SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1248 SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR, 1249 SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR), 1250 1251 }; 1252 1253 static int sst_algo_control_init(struct device *dev) 1254 { 1255 int i = 0; 1256 struct sst_algo_control *bc; 1257 /*allocate space to cache the algo parameters in the driver*/ 1258 for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) { 1259 bc = (struct sst_algo_control *)sst_algo_controls[i].private_value; 1260 bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL); 1261 if (bc->params == NULL) 1262 return -ENOMEM; 1263 } 1264 return 0; 1265 } 1266 1267 static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w) 1268 { 1269 switch (w->id) { 1270 case snd_soc_dapm_pga: 1271 case snd_soc_dapm_aif_in: 1272 case snd_soc_dapm_aif_out: 1273 case snd_soc_dapm_input: 1274 case snd_soc_dapm_output: 1275 case snd_soc_dapm_mixer: 1276 return true; 1277 default: 1278 return false; 1279 } 1280 } 1281 1282 /** 1283 * sst_send_pipe_gains - send gains for the front-end DAIs 1284 * 1285 * The gains in the pipes connected to the front-ends are muted/unmuted 1286 * automatically via the digital_mute() DAPM callback. This function sends the 1287 * gains for the front-end pipes. 1288 */ 1289 int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute) 1290 { 1291 struct sst_data *drv = snd_soc_dai_get_drvdata(dai); 1292 struct snd_soc_dapm_widget *w; 1293 struct snd_soc_dapm_path *p = NULL; 1294 1295 dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream); 1296 1297 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1298 dev_dbg(dai->dev, "Stream name=%s\n", 1299 dai->playback_widget->name); 1300 w = dai->playback_widget; 1301 snd_soc_dapm_widget_for_each_sink_path(w, p) { 1302 if (p->connected && !p->connected(w, p->sink)) 1303 continue; 1304 1305 if (p->connect && p->sink->power && 1306 is_sst_dapm_widget(p->sink)) { 1307 struct sst_ids *ids = p->sink->priv; 1308 1309 dev_dbg(dai->dev, "send gains for widget=%s\n", 1310 p->sink->name); 1311 mutex_lock(&drv->lock); 1312 sst_set_pipe_gain(ids, drv, mute); 1313 mutex_unlock(&drv->lock); 1314 } 1315 } 1316 } else { 1317 dev_dbg(dai->dev, "Stream name=%s\n", 1318 dai->capture_widget->name); 1319 w = dai->capture_widget; 1320 snd_soc_dapm_widget_for_each_source_path(w, p) { 1321 if (p->connected && !p->connected(w, p->sink)) 1322 continue; 1323 1324 if (p->connect && p->source->power && 1325 is_sst_dapm_widget(p->source)) { 1326 struct sst_ids *ids = p->source->priv; 1327 1328 dev_dbg(dai->dev, "send gain for widget=%s\n", 1329 p->source->name); 1330 mutex_lock(&drv->lock); 1331 sst_set_pipe_gain(ids, drv, mute); 1332 mutex_unlock(&drv->lock); 1333 } 1334 } 1335 } 1336 return 0; 1337 } 1338 1339 /** 1340 * sst_fill_module_list - populate the list of modules/gains for a pipe 1341 * 1342 * 1343 * Fills the widget pointer in the kcontrol private data, and also fills the 1344 * kcontrol pointer in the widget private data. 1345 * 1346 * Widget pointer is used to send the algo/gain in the .put() handler if the 1347 * widget is powerd on. 1348 * 1349 * Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF 1350 * event handler. Each widget (pipe) has multiple algos stored in the algo_list. 1351 */ 1352 static int sst_fill_module_list(struct snd_kcontrol *kctl, 1353 struct snd_soc_dapm_widget *w, int type) 1354 { 1355 struct sst_module *module = NULL; 1356 struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm); 1357 struct sst_ids *ids = w->priv; 1358 int ret = 0; 1359 1360 module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL); 1361 if (!module) 1362 return -ENOMEM; 1363 1364 if (type == SST_MODULE_GAIN) { 1365 struct sst_gain_mixer_control *mc = (void *)kctl->private_value; 1366 1367 mc->w = w; 1368 module->kctl = kctl; 1369 list_add_tail(&module->node, &ids->gain_list); 1370 } else if (type == SST_MODULE_ALGO) { 1371 struct sst_algo_control *bc = (void *)kctl->private_value; 1372 1373 bc->w = w; 1374 module->kctl = kctl; 1375 list_add_tail(&module->node, &ids->algo_list); 1376 } else { 1377 dev_err(c->dev, "invoked for unknown type %d module %s", 1378 type, kctl->id.name); 1379 ret = -EINVAL; 1380 } 1381 1382 return ret; 1383 } 1384 1385 /** 1386 * sst_fill_widget_module_info - fill list of gains/algos for the pipe 1387 * @widget: pipe modelled as a DAPM widget 1388 * 1389 * Fill the list of gains/algos for the widget by looking at all the card 1390 * controls and comparing the name of the widget with the first part of control 1391 * name. First part of control name contains the pipe name (widget name). 1392 */ 1393 static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w, 1394 struct snd_soc_platform *platform) 1395 { 1396 struct snd_kcontrol *kctl; 1397 int index, ret = 0; 1398 struct snd_card *card = platform->component.card->snd_card; 1399 char *idx; 1400 1401 down_read(&card->controls_rwsem); 1402 1403 list_for_each_entry(kctl, &card->controls, list) { 1404 idx = strchr(kctl->id.name, ' '); 1405 if (idx == NULL) 1406 continue; 1407 index = idx - (char*)kctl->id.name; 1408 if (strncmp(kctl->id.name, w->name, index)) 1409 continue; 1410 1411 if (strstr(kctl->id.name, "Volume")) 1412 ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN); 1413 1414 else if (strstr(kctl->id.name, "params")) 1415 ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO); 1416 1417 else if (strstr(kctl->id.name, "Switch") && 1418 strstr(kctl->id.name, "Gain")) { 1419 struct sst_gain_mixer_control *mc = 1420 (void *)kctl->private_value; 1421 1422 mc->w = w; 1423 1424 } else if (strstr(kctl->id.name, "interleaver")) { 1425 struct sst_enum *e = (void *)kctl->private_value; 1426 1427 e->w = w; 1428 1429 } else if (strstr(kctl->id.name, "deinterleaver")) { 1430 struct sst_enum *e = (void *)kctl->private_value; 1431 1432 e->w = w; 1433 } 1434 1435 if (ret < 0) { 1436 up_read(&card->controls_rwsem); 1437 return ret; 1438 } 1439 } 1440 1441 up_read(&card->controls_rwsem); 1442 return 0; 1443 } 1444 1445 /** 1446 * sst_fill_linked_widgets - fill the parent pointer for the linked widget 1447 */ 1448 static void sst_fill_linked_widgets(struct snd_soc_platform *platform, 1449 struct sst_ids *ids) 1450 { 1451 struct snd_soc_dapm_widget *w; 1452 unsigned int len = strlen(ids->parent_wname); 1453 1454 list_for_each_entry(w, &platform->component.card->widgets, list) { 1455 if (!strncmp(ids->parent_wname, w->name, len)) { 1456 ids->parent_w = w; 1457 break; 1458 } 1459 } 1460 } 1461 1462 /** 1463 * sst_map_modules_to_pipe - fill algo/gains list for all pipes 1464 */ 1465 static int sst_map_modules_to_pipe(struct snd_soc_platform *platform) 1466 { 1467 struct snd_soc_dapm_widget *w; 1468 int ret = 0; 1469 1470 list_for_each_entry(w, &platform->component.card->widgets, list) { 1471 if (is_sst_dapm_widget(w) && (w->priv)) { 1472 struct sst_ids *ids = w->priv; 1473 1474 dev_dbg(platform->dev, "widget type=%d name=%s\n", 1475 w->id, w->name); 1476 INIT_LIST_HEAD(&ids->algo_list); 1477 INIT_LIST_HEAD(&ids->gain_list); 1478 ret = sst_fill_widget_module_info(w, platform); 1479 1480 if (ret < 0) 1481 return ret; 1482 1483 /* fill linked widgets */ 1484 if (ids->parent_wname != NULL) 1485 sst_fill_linked_widgets(platform, ids); 1486 } 1487 } 1488 return 0; 1489 } 1490 1491 int sst_dsp_init_v2_dpcm(struct snd_soc_platform *platform) 1492 { 1493 int i, ret = 0; 1494 struct snd_soc_dapm_context *dapm = 1495 snd_soc_component_get_dapm(&platform->component); 1496 struct sst_data *drv = snd_soc_platform_get_drvdata(platform); 1497 unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3; 1498 1499 drv->byte_stream = devm_kzalloc(platform->dev, 1500 SST_MAX_BIN_BYTES, GFP_KERNEL); 1501 if (!drv->byte_stream) 1502 return -ENOMEM; 1503 1504 snd_soc_dapm_new_controls(dapm, sst_dapm_widgets, 1505 ARRAY_SIZE(sst_dapm_widgets)); 1506 snd_soc_dapm_add_routes(dapm, intercon, 1507 ARRAY_SIZE(intercon)); 1508 snd_soc_dapm_new_widgets(dapm->card); 1509 1510 for (i = 0; i < gains; i++) { 1511 sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT; 1512 sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT; 1513 sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT; 1514 sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT; 1515 } 1516 1517 ret = snd_soc_add_platform_controls(platform, sst_gain_controls, 1518 ARRAY_SIZE(sst_gain_controls)); 1519 if (ret) 1520 return ret; 1521 1522 /* Initialize algo control params */ 1523 ret = sst_algo_control_init(platform->dev); 1524 if (ret) 1525 return ret; 1526 ret = snd_soc_add_platform_controls(platform, sst_algo_controls, 1527 ARRAY_SIZE(sst_algo_controls)); 1528 if (ret) 1529 return ret; 1530 1531 ret = snd_soc_add_platform_controls(platform, sst_slot_controls, 1532 ARRAY_SIZE(sst_slot_controls)); 1533 if (ret) 1534 return ret; 1535 1536 ret = sst_map_modules_to_pipe(platform); 1537 1538 return ret; 1539 } 1540