1 /* 2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2010 Freescale Semiconductor, Inc. 7 * 8 * This file is licensed under the terms of the GNU General Public License 9 * version 2. This program is licensed "as is" without any warranty of any 10 * kind, whether express or implied. 11 */ 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/interrupt.h> 16 #include <linux/device.h> 17 #include <linux/delay.h> 18 #include <linux/slab.h> 19 #include <linux/of_platform.h> 20 21 #include <sound/core.h> 22 #include <sound/pcm.h> 23 #include <sound/pcm_params.h> 24 #include <sound/initval.h> 25 #include <sound/soc.h> 26 27 #include "fsl_ssi.h" 28 29 /** 30 * FSLSSI_I2S_RATES: sample rates supported by the I2S 31 * 32 * This driver currently only supports the SSI running in I2S slave mode, 33 * which means the codec determines the sample rate. Therefore, we tell 34 * ALSA that we support all rates and let the codec driver decide what rates 35 * are really supported. 36 */ 37 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ 38 SNDRV_PCM_RATE_CONTINUOUS) 39 40 /** 41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI 42 * 43 * This driver currently only supports the SSI running in I2S slave mode. 44 * 45 * The SSI has a limitation in that the samples must be in the same byte 46 * order as the host CPU. This is because when multiple bytes are written 47 * to the STX register, the bytes and bits must be written in the same 48 * order. The STX is a shift register, so all the bits need to be aligned 49 * (bit-endianness must match byte-endianness). Processors typically write 50 * the bits within a byte in the same order that the bytes of a word are 51 * written in. So if the host CPU is big-endian, then only big-endian 52 * samples will be written to STX properly. 53 */ 54 #ifdef __BIG_ENDIAN 55 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ 56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ 57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) 58 #else 59 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ 60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ 61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) 62 #endif 63 64 /* SIER bitflag of interrupts to enable */ 65 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \ 66 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \ 67 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \ 68 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \ 69 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN) 70 71 /** 72 * fsl_ssi_private: per-SSI private data 73 * 74 * @ssi: pointer to the SSI's registers 75 * @ssi_phys: physical address of the SSI registers 76 * @irq: IRQ of this SSI 77 * @first_stream: pointer to the stream that was opened first 78 * @second_stream: pointer to second stream 79 * @playback: the number of playback streams opened 80 * @capture: the number of capture streams opened 81 * @asynchronous: 0=synchronous mode, 1=asynchronous mode 82 * @cpu_dai: the CPU DAI for this device 83 * @dev_attr: the sysfs device attribute structure 84 * @stats: SSI statistics 85 * @name: name for this device 86 */ 87 struct fsl_ssi_private { 88 struct ccsr_ssi __iomem *ssi; 89 dma_addr_t ssi_phys; 90 unsigned int irq; 91 struct snd_pcm_substream *first_stream; 92 struct snd_pcm_substream *second_stream; 93 unsigned int playback; 94 unsigned int capture; 95 int asynchronous; 96 unsigned int fifo_depth; 97 struct snd_soc_dai_driver cpu_dai_drv; 98 struct device_attribute dev_attr; 99 struct platform_device *pdev; 100 101 struct { 102 unsigned int rfrc; 103 unsigned int tfrc; 104 unsigned int cmdau; 105 unsigned int cmddu; 106 unsigned int rxt; 107 unsigned int rdr1; 108 unsigned int rdr0; 109 unsigned int tde1; 110 unsigned int tde0; 111 unsigned int roe1; 112 unsigned int roe0; 113 unsigned int tue1; 114 unsigned int tue0; 115 unsigned int tfs; 116 unsigned int rfs; 117 unsigned int tls; 118 unsigned int rls; 119 unsigned int rff1; 120 unsigned int rff0; 121 unsigned int tfe1; 122 unsigned int tfe0; 123 } stats; 124 125 char name[1]; 126 }; 127 128 /** 129 * fsl_ssi_isr: SSI interrupt handler 130 * 131 * Although it's possible to use the interrupt handler to send and receive 132 * data to/from the SSI, we use the DMA instead. Programming is more 133 * complicated, but the performance is much better. 134 * 135 * This interrupt handler is used only to gather statistics. 136 * 137 * @irq: IRQ of the SSI device 138 * @dev_id: pointer to the ssi_private structure for this SSI device 139 */ 140 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) 141 { 142 struct fsl_ssi_private *ssi_private = dev_id; 143 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 144 irqreturn_t ret = IRQ_NONE; 145 __be32 sisr; 146 __be32 sisr2 = 0; 147 148 /* We got an interrupt, so read the status register to see what we 149 were interrupted for. We mask it with the Interrupt Enable register 150 so that we only check for events that we're interested in. 151 */ 152 sisr = in_be32(&ssi->sisr) & SIER_FLAGS; 153 154 if (sisr & CCSR_SSI_SISR_RFRC) { 155 ssi_private->stats.rfrc++; 156 sisr2 |= CCSR_SSI_SISR_RFRC; 157 ret = IRQ_HANDLED; 158 } 159 160 if (sisr & CCSR_SSI_SISR_TFRC) { 161 ssi_private->stats.tfrc++; 162 sisr2 |= CCSR_SSI_SISR_TFRC; 163 ret = IRQ_HANDLED; 164 } 165 166 if (sisr & CCSR_SSI_SISR_CMDAU) { 167 ssi_private->stats.cmdau++; 168 ret = IRQ_HANDLED; 169 } 170 171 if (sisr & CCSR_SSI_SISR_CMDDU) { 172 ssi_private->stats.cmddu++; 173 ret = IRQ_HANDLED; 174 } 175 176 if (sisr & CCSR_SSI_SISR_RXT) { 177 ssi_private->stats.rxt++; 178 ret = IRQ_HANDLED; 179 } 180 181 if (sisr & CCSR_SSI_SISR_RDR1) { 182 ssi_private->stats.rdr1++; 183 ret = IRQ_HANDLED; 184 } 185 186 if (sisr & CCSR_SSI_SISR_RDR0) { 187 ssi_private->stats.rdr0++; 188 ret = IRQ_HANDLED; 189 } 190 191 if (sisr & CCSR_SSI_SISR_TDE1) { 192 ssi_private->stats.tde1++; 193 ret = IRQ_HANDLED; 194 } 195 196 if (sisr & CCSR_SSI_SISR_TDE0) { 197 ssi_private->stats.tde0++; 198 ret = IRQ_HANDLED; 199 } 200 201 if (sisr & CCSR_SSI_SISR_ROE1) { 202 ssi_private->stats.roe1++; 203 sisr2 |= CCSR_SSI_SISR_ROE1; 204 ret = IRQ_HANDLED; 205 } 206 207 if (sisr & CCSR_SSI_SISR_ROE0) { 208 ssi_private->stats.roe0++; 209 sisr2 |= CCSR_SSI_SISR_ROE0; 210 ret = IRQ_HANDLED; 211 } 212 213 if (sisr & CCSR_SSI_SISR_TUE1) { 214 ssi_private->stats.tue1++; 215 sisr2 |= CCSR_SSI_SISR_TUE1; 216 ret = IRQ_HANDLED; 217 } 218 219 if (sisr & CCSR_SSI_SISR_TUE0) { 220 ssi_private->stats.tue0++; 221 sisr2 |= CCSR_SSI_SISR_TUE0; 222 ret = IRQ_HANDLED; 223 } 224 225 if (sisr & CCSR_SSI_SISR_TFS) { 226 ssi_private->stats.tfs++; 227 ret = IRQ_HANDLED; 228 } 229 230 if (sisr & CCSR_SSI_SISR_RFS) { 231 ssi_private->stats.rfs++; 232 ret = IRQ_HANDLED; 233 } 234 235 if (sisr & CCSR_SSI_SISR_TLS) { 236 ssi_private->stats.tls++; 237 ret = IRQ_HANDLED; 238 } 239 240 if (sisr & CCSR_SSI_SISR_RLS) { 241 ssi_private->stats.rls++; 242 ret = IRQ_HANDLED; 243 } 244 245 if (sisr & CCSR_SSI_SISR_RFF1) { 246 ssi_private->stats.rff1++; 247 ret = IRQ_HANDLED; 248 } 249 250 if (sisr & CCSR_SSI_SISR_RFF0) { 251 ssi_private->stats.rff0++; 252 ret = IRQ_HANDLED; 253 } 254 255 if (sisr & CCSR_SSI_SISR_TFE1) { 256 ssi_private->stats.tfe1++; 257 ret = IRQ_HANDLED; 258 } 259 260 if (sisr & CCSR_SSI_SISR_TFE0) { 261 ssi_private->stats.tfe0++; 262 ret = IRQ_HANDLED; 263 } 264 265 /* Clear the bits that we set */ 266 if (sisr2) 267 out_be32(&ssi->sisr, sisr2); 268 269 return ret; 270 } 271 272 /** 273 * fsl_ssi_startup: create a new substream 274 * 275 * This is the first function called when a stream is opened. 276 * 277 * If this is the first stream open, then grab the IRQ and program most of 278 * the SSI registers. 279 */ 280 static int fsl_ssi_startup(struct snd_pcm_substream *substream, 281 struct snd_soc_dai *dai) 282 { 283 struct snd_soc_pcm_runtime *rtd = substream->private_data; 284 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai); 285 286 /* 287 * If this is the first stream opened, then request the IRQ 288 * and initialize the SSI registers. 289 */ 290 if (!ssi_private->playback && !ssi_private->capture) { 291 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 292 int ret; 293 294 /* The 'name' should not have any slashes in it. */ 295 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, 296 ssi_private->name, ssi_private); 297 if (ret < 0) { 298 dev_err(substream->pcm->card->dev, 299 "could not claim irq %u\n", ssi_private->irq); 300 return ret; 301 } 302 303 /* 304 * Section 16.5 of the MPC8610 reference manual says that the 305 * SSI needs to be disabled before updating the registers we set 306 * here. 307 */ 308 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 309 310 /* 311 * Program the SSI into I2S Slave Non-Network Synchronous mode. 312 * Also enable the transmit and receive FIFO. 313 * 314 * FIXME: Little-endian samples require a different shift dir 315 */ 316 clrsetbits_be32(&ssi->scr, 317 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN, 318 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE 319 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN)); 320 321 out_be32(&ssi->stcr, 322 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | 323 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | 324 CCSR_SSI_STCR_TSCKP); 325 326 out_be32(&ssi->srcr, 327 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | 328 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | 329 CCSR_SSI_SRCR_RSCKP); 330 331 /* 332 * The DC and PM bits are only used if the SSI is the clock 333 * master. 334 */ 335 336 /* 4. Enable the interrupts and DMA requests */ 337 out_be32(&ssi->sier, SIER_FLAGS); 338 339 /* 340 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We 341 * don't use FIFO 1. We program the transmit water to signal a 342 * DMA transfer if there are only two (or fewer) elements left 343 * in the FIFO. Two elements equals one frame (left channel, 344 * right channel). This value, however, depends on the depth of 345 * the transmit buffer. 346 * 347 * We program the receive FIFO to notify us if at least two 348 * elements (one frame) have been written to the FIFO. We could 349 * make this value larger (and maybe we should), but this way 350 * data will be written to memory as soon as it's available. 351 */ 352 out_be32(&ssi->sfcsr, 353 CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) | 354 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2)); 355 356 /* 357 * We keep the SSI disabled because if we enable it, then the 358 * DMA controller will start. It's not supposed to start until 359 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The 360 * DMA controller will transfer one "BWC" of data (i.e. the 361 * amount of data that the MR.BWC bits are set to). The reason 362 * this is bad is because at this point, the PCM driver has not 363 * finished initializing the DMA controller. 364 */ 365 } 366 367 if (!ssi_private->first_stream) 368 ssi_private->first_stream = substream; 369 else { 370 /* This is the second stream open, so we need to impose sample 371 * rate and maybe sample size constraints. Note that this can 372 * cause a race condition if the second stream is opened before 373 * the first stream is fully initialized. 374 * 375 * We provide some protection by checking to make sure the first 376 * stream is initialized, but it's not perfect. ALSA sometimes 377 * re-initializes the driver with a different sample rate or 378 * size. If the second stream is opened before the first stream 379 * has received its final parameters, then the second stream may 380 * be constrained to the wrong sample rate or size. 381 * 382 * FIXME: This code does not handle opening and closing streams 383 * repeatedly. If you open two streams and then close the first 384 * one, you may not be able to open another stream until you 385 * close the second one as well. 386 */ 387 struct snd_pcm_runtime *first_runtime = 388 ssi_private->first_stream->runtime; 389 390 if (!first_runtime->sample_bits) { 391 dev_err(substream->pcm->card->dev, 392 "set sample size in %s stream first\n", 393 substream->stream == SNDRV_PCM_STREAM_PLAYBACK 394 ? "capture" : "playback"); 395 return -EAGAIN; 396 } 397 398 /* If we're in synchronous mode, then we need to constrain 399 * the sample size as well. We don't support independent sample 400 * rates in asynchronous mode. 401 */ 402 if (!ssi_private->asynchronous) 403 snd_pcm_hw_constraint_minmax(substream->runtime, 404 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 405 first_runtime->sample_bits, 406 first_runtime->sample_bits); 407 408 ssi_private->second_stream = substream; 409 } 410 411 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 412 ssi_private->playback++; 413 414 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 415 ssi_private->capture++; 416 417 return 0; 418 } 419 420 /** 421 * fsl_ssi_hw_params - program the sample size 422 * 423 * Most of the SSI registers have been programmed in the startup function, 424 * but the word length must be programmed here. Unfortunately, programming 425 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can 426 * cause a problem with supporting simultaneous playback and capture. If 427 * the SSI is already playing a stream, then that stream may be temporarily 428 * stopped when you start capture. 429 * 430 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the 431 * clock master. 432 */ 433 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, 434 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai) 435 { 436 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 437 438 if (substream == ssi_private->first_stream) { 439 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 440 unsigned int sample_size = 441 snd_pcm_format_width(params_format(hw_params)); 442 u32 wl = CCSR_SSI_SxCCR_WL(sample_size); 443 444 /* The SSI should always be disabled at this points (SSIEN=0) */ 445 446 /* In synchronous mode, the SSI uses STCCR for capture */ 447 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) || 448 !ssi_private->asynchronous) 449 clrsetbits_be32(&ssi->stccr, 450 CCSR_SSI_SxCCR_WL_MASK, wl); 451 else 452 clrsetbits_be32(&ssi->srccr, 453 CCSR_SSI_SxCCR_WL_MASK, wl); 454 } 455 456 return 0; 457 } 458 459 /** 460 * fsl_ssi_trigger: start and stop the DMA transfer. 461 * 462 * This function is called by ALSA to start, stop, pause, and resume the DMA 463 * transfer of data. 464 * 465 * The DMA channel is in external master start and pause mode, which 466 * means the SSI completely controls the flow of data. 467 */ 468 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, 469 struct snd_soc_dai *dai) 470 { 471 struct snd_soc_pcm_runtime *rtd = substream->private_data; 472 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai); 473 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 474 475 switch (cmd) { 476 case SNDRV_PCM_TRIGGER_START: 477 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 478 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 480 setbits32(&ssi->scr, 481 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); 482 else 483 setbits32(&ssi->scr, 484 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); 485 break; 486 487 case SNDRV_PCM_TRIGGER_STOP: 488 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 489 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 490 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); 491 else 492 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); 493 break; 494 495 default: 496 return -EINVAL; 497 } 498 499 return 0; 500 } 501 502 /** 503 * fsl_ssi_shutdown: shutdown the SSI 504 * 505 * Shutdown the SSI if there are no other substreams open. 506 */ 507 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream, 508 struct snd_soc_dai *dai) 509 { 510 struct snd_soc_pcm_runtime *rtd = substream->private_data; 511 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai); 512 513 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 514 ssi_private->playback--; 515 516 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 517 ssi_private->capture--; 518 519 if (ssi_private->first_stream == substream) 520 ssi_private->first_stream = ssi_private->second_stream; 521 522 ssi_private->second_stream = NULL; 523 524 /* 525 * If this is the last active substream, disable the SSI and release 526 * the IRQ. 527 */ 528 if (!ssi_private->playback && !ssi_private->capture) { 529 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 530 531 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 532 533 free_irq(ssi_private->irq, ssi_private); 534 } 535 } 536 537 static struct snd_soc_dai_ops fsl_ssi_dai_ops = { 538 .startup = fsl_ssi_startup, 539 .hw_params = fsl_ssi_hw_params, 540 .shutdown = fsl_ssi_shutdown, 541 .trigger = fsl_ssi_trigger, 542 }; 543 544 /* Template for the CPU dai driver structure */ 545 static struct snd_soc_dai_driver fsl_ssi_dai_template = { 546 .playback = { 547 /* The SSI does not support monaural audio. */ 548 .channels_min = 2, 549 .channels_max = 2, 550 .rates = FSLSSI_I2S_RATES, 551 .formats = FSLSSI_I2S_FORMATS, 552 }, 553 .capture = { 554 .channels_min = 2, 555 .channels_max = 2, 556 .rates = FSLSSI_I2S_RATES, 557 .formats = FSLSSI_I2S_FORMATS, 558 }, 559 .ops = &fsl_ssi_dai_ops, 560 }; 561 562 /* Show the statistics of a flag only if its interrupt is enabled. The 563 * compiler will optimze this code to a no-op if the interrupt is not 564 * enabled. 565 */ 566 #define SIER_SHOW(flag, name) \ 567 do { \ 568 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \ 569 length += sprintf(buf + length, #name "=%u\n", \ 570 ssi_private->stats.name); \ 571 } while (0) 572 573 574 /** 575 * fsl_sysfs_ssi_show: display SSI statistics 576 * 577 * Display the statistics for the current SSI device. To avoid confusion, 578 * we only show those counts that are enabled. 579 */ 580 static ssize_t fsl_sysfs_ssi_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct fsl_ssi_private *ssi_private = 584 container_of(attr, struct fsl_ssi_private, dev_attr); 585 ssize_t length = 0; 586 587 SIER_SHOW(RFRC_EN, rfrc); 588 SIER_SHOW(TFRC_EN, tfrc); 589 SIER_SHOW(CMDAU_EN, cmdau); 590 SIER_SHOW(CMDDU_EN, cmddu); 591 SIER_SHOW(RXT_EN, rxt); 592 SIER_SHOW(RDR1_EN, rdr1); 593 SIER_SHOW(RDR0_EN, rdr0); 594 SIER_SHOW(TDE1_EN, tde1); 595 SIER_SHOW(TDE0_EN, tde0); 596 SIER_SHOW(ROE1_EN, roe1); 597 SIER_SHOW(ROE0_EN, roe0); 598 SIER_SHOW(TUE1_EN, tue1); 599 SIER_SHOW(TUE0_EN, tue0); 600 SIER_SHOW(TFS_EN, tfs); 601 SIER_SHOW(RFS_EN, rfs); 602 SIER_SHOW(TLS_EN, tls); 603 SIER_SHOW(RLS_EN, rls); 604 SIER_SHOW(RFF1_EN, rff1); 605 SIER_SHOW(RFF0_EN, rff0); 606 SIER_SHOW(TFE1_EN, tfe1); 607 SIER_SHOW(TFE0_EN, tfe0); 608 609 return length; 610 } 611 612 /** 613 * Make every character in a string lower-case 614 */ 615 static void make_lowercase(char *s) 616 { 617 char *p = s; 618 char c; 619 620 while ((c = *p)) { 621 if ((c >= 'A') && (c <= 'Z')) 622 *p = c + ('a' - 'A'); 623 p++; 624 } 625 } 626 627 static int __devinit fsl_ssi_probe(struct platform_device *pdev, 628 const struct of_device_id *match) 629 { 630 struct fsl_ssi_private *ssi_private; 631 int ret = 0; 632 struct device_attribute *dev_attr = NULL; 633 struct device_node *np = pdev->dev.of_node; 634 const char *p, *sprop; 635 const uint32_t *iprop; 636 struct resource res; 637 char name[64]; 638 639 /* SSIs that are not connected on the board should have a 640 * status = "disabled" 641 * property in their device tree nodes. 642 */ 643 if (!of_device_is_available(np)) 644 return -ENODEV; 645 646 /* Check for a codec-handle property. */ 647 if (!of_get_property(np, "codec-handle", NULL)) { 648 dev_err(&pdev->dev, "missing codec-handle property\n"); 649 return -ENODEV; 650 } 651 652 /* We only support the SSI in "I2S Slave" mode */ 653 sprop = of_get_property(np, "fsl,mode", NULL); 654 if (!sprop || strcmp(sprop, "i2s-slave")) { 655 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop); 656 return -ENODEV; 657 } 658 659 /* The DAI name is the last part of the full name of the node. */ 660 p = strrchr(np->full_name, '/') + 1; 661 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p), 662 GFP_KERNEL); 663 if (!ssi_private) { 664 dev_err(&pdev->dev, "could not allocate DAI object\n"); 665 return -ENOMEM; 666 } 667 668 strcpy(ssi_private->name, p); 669 670 /* Initialize this copy of the CPU DAI driver structure */ 671 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template, 672 sizeof(fsl_ssi_dai_template)); 673 ssi_private->cpu_dai_drv.name = ssi_private->name; 674 675 /* Get the addresses and IRQ */ 676 ret = of_address_to_resource(np, 0, &res); 677 if (ret) { 678 dev_err(&pdev->dev, "could not determine device resources\n"); 679 kfree(ssi_private); 680 return ret; 681 } 682 ssi_private->ssi = ioremap(res.start, 1 + res.end - res.start); 683 ssi_private->ssi_phys = res.start; 684 ssi_private->irq = irq_of_parse_and_map(np, 0); 685 686 /* Are the RX and the TX clocks locked? */ 687 if (of_find_property(np, "fsl,ssi-asynchronous", NULL)) 688 ssi_private->asynchronous = 1; 689 else 690 ssi_private->cpu_dai_drv.symmetric_rates = 1; 691 692 /* Determine the FIFO depth. */ 693 iprop = of_get_property(np, "fsl,fifo-depth", NULL); 694 if (iprop) 695 ssi_private->fifo_depth = *iprop; 696 else 697 /* Older 8610 DTs didn't have the fifo-depth property */ 698 ssi_private->fifo_depth = 8; 699 700 /* Initialize the the device_attribute structure */ 701 dev_attr = &ssi_private->dev_attr; 702 dev_attr->attr.name = "statistics"; 703 dev_attr->attr.mode = S_IRUGO; 704 dev_attr->show = fsl_sysfs_ssi_show; 705 706 ret = device_create_file(&pdev->dev, dev_attr); 707 if (ret) { 708 dev_err(&pdev->dev, "could not create sysfs %s file\n", 709 ssi_private->dev_attr.attr.name); 710 goto error; 711 } 712 713 /* Register with ASoC */ 714 dev_set_drvdata(&pdev->dev, ssi_private); 715 716 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv); 717 if (ret) { 718 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); 719 goto error; 720 } 721 722 /* Trigger the machine driver's probe function. The platform driver 723 * name of the machine driver is taken from the /model property of the 724 * device tree. We also pass the address of the CPU DAI driver 725 * structure. 726 */ 727 sprop = of_get_property(of_find_node_by_path("/"), "model", NULL); 728 /* Sometimes the model name has a "fsl," prefix, so we strip that. */ 729 p = strrchr(sprop, ','); 730 if (p) 731 sprop = p + 1; 732 snprintf(name, sizeof(name), "snd-soc-%s", sprop); 733 make_lowercase(name); 734 735 ssi_private->pdev = 736 platform_device_register_data(&pdev->dev, name, 0, NULL, 0); 737 if (IS_ERR(ssi_private->pdev)) { 738 ret = PTR_ERR(ssi_private->pdev); 739 dev_err(&pdev->dev, "failed to register platform: %d\n", ret); 740 goto error; 741 } 742 743 return 0; 744 745 error: 746 snd_soc_unregister_dai(&pdev->dev); 747 dev_set_drvdata(&pdev->dev, NULL); 748 if (dev_attr) 749 device_remove_file(&pdev->dev, dev_attr); 750 irq_dispose_mapping(ssi_private->irq); 751 iounmap(ssi_private->ssi); 752 kfree(ssi_private); 753 754 return ret; 755 } 756 757 static int fsl_ssi_remove(struct platform_device *pdev) 758 { 759 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev); 760 761 platform_device_unregister(ssi_private->pdev); 762 snd_soc_unregister_dai(&pdev->dev); 763 device_remove_file(&pdev->dev, &ssi_private->dev_attr); 764 765 kfree(ssi_private); 766 dev_set_drvdata(&pdev->dev, NULL); 767 768 return 0; 769 } 770 771 static const struct of_device_id fsl_ssi_ids[] = { 772 { .compatible = "fsl,mpc8610-ssi", }, 773 {} 774 }; 775 MODULE_DEVICE_TABLE(of, fsl_ssi_ids); 776 777 static struct of_platform_driver fsl_ssi_driver = { 778 .driver = { 779 .name = "fsl-ssi-dai", 780 .owner = THIS_MODULE, 781 .of_match_table = fsl_ssi_ids, 782 }, 783 .probe = fsl_ssi_probe, 784 .remove = fsl_ssi_remove, 785 }; 786 787 static int __init fsl_ssi_init(void) 788 { 789 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n"); 790 791 return of_register_platform_driver(&fsl_ssi_driver); 792 } 793 794 static void __exit fsl_ssi_exit(void) 795 { 796 of_unregister_platform_driver(&fsl_ssi_driver); 797 } 798 799 module_init(fsl_ssi_init); 800 module_exit(fsl_ssi_exit); 801 802 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 803 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 804 MODULE_LICENSE("GPL v2"); 805