1 /* 2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed 7 * under the terms of the GNU General Public License version 2. This 8 * program is licensed "as is" without any warranty of any kind, whether 9 * express or implied. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/interrupt.h> 15 #include <linux/device.h> 16 #include <linux/delay.h> 17 18 #include <sound/core.h> 19 #include <sound/pcm.h> 20 #include <sound/pcm_params.h> 21 #include <sound/initval.h> 22 #include <sound/soc.h> 23 24 #include <asm/immap_86xx.h> 25 26 #include "fsl_ssi.h" 27 28 /** 29 * FSLSSI_I2S_RATES: sample rates supported by the I2S 30 * 31 * This driver currently only supports the SSI running in I2S slave mode, 32 * which means the codec determines the sample rate. Therefore, we tell 33 * ALSA that we support all rates and let the codec driver decide what rates 34 * are really supported. 35 */ 36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ 37 SNDRV_PCM_RATE_CONTINUOUS) 38 39 /** 40 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI 41 * 42 * This driver currently only supports the SSI running in I2S slave mode. 43 * 44 * The SSI has a limitation in that the samples must be in the same byte 45 * order as the host CPU. This is because when multiple bytes are written 46 * to the STX register, the bytes and bits must be written in the same 47 * order. The STX is a shift register, so all the bits need to be aligned 48 * (bit-endianness must match byte-endianness). Processors typically write 49 * the bits within a byte in the same order that the bytes of a word are 50 * written in. So if the host CPU is big-endian, then only big-endian 51 * samples will be written to STX properly. 52 */ 53 #ifdef __BIG_ENDIAN 54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ 55 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ 56 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) 57 #else 58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ 59 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ 60 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) 61 #endif 62 63 /** 64 * fsl_ssi_private: per-SSI private data 65 * 66 * @name: short name for this device ("SSI0", "SSI1", etc) 67 * @ssi: pointer to the SSI's registers 68 * @ssi_phys: physical address of the SSI registers 69 * @irq: IRQ of this SSI 70 * @first_stream: pointer to the stream that was opened first 71 * @second_stream: pointer to second stream 72 * @dev: struct device pointer 73 * @playback: the number of playback streams opened 74 * @capture: the number of capture streams opened 75 * @asynchronous: 0=synchronous mode, 1=asynchronous mode 76 * @cpu_dai: the CPU DAI for this device 77 * @dev_attr: the sysfs device attribute structure 78 * @stats: SSI statistics 79 */ 80 struct fsl_ssi_private { 81 char name[8]; 82 struct ccsr_ssi __iomem *ssi; 83 dma_addr_t ssi_phys; 84 unsigned int irq; 85 struct snd_pcm_substream *first_stream; 86 struct snd_pcm_substream *second_stream; 87 struct device *dev; 88 unsigned int playback; 89 unsigned int capture; 90 int asynchronous; 91 struct snd_soc_dai cpu_dai; 92 struct device_attribute dev_attr; 93 94 struct { 95 unsigned int rfrc; 96 unsigned int tfrc; 97 unsigned int cmdau; 98 unsigned int cmddu; 99 unsigned int rxt; 100 unsigned int rdr1; 101 unsigned int rdr0; 102 unsigned int tde1; 103 unsigned int tde0; 104 unsigned int roe1; 105 unsigned int roe0; 106 unsigned int tue1; 107 unsigned int tue0; 108 unsigned int tfs; 109 unsigned int rfs; 110 unsigned int tls; 111 unsigned int rls; 112 unsigned int rff1; 113 unsigned int rff0; 114 unsigned int tfe1; 115 unsigned int tfe0; 116 } stats; 117 }; 118 119 /** 120 * fsl_ssi_isr: SSI interrupt handler 121 * 122 * Although it's possible to use the interrupt handler to send and receive 123 * data to/from the SSI, we use the DMA instead. Programming is more 124 * complicated, but the performance is much better. 125 * 126 * This interrupt handler is used only to gather statistics. 127 * 128 * @irq: IRQ of the SSI device 129 * @dev_id: pointer to the ssi_private structure for this SSI device 130 */ 131 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) 132 { 133 struct fsl_ssi_private *ssi_private = dev_id; 134 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 135 irqreturn_t ret = IRQ_NONE; 136 __be32 sisr; 137 __be32 sisr2 = 0; 138 139 /* We got an interrupt, so read the status register to see what we 140 were interrupted for. We mask it with the Interrupt Enable register 141 so that we only check for events that we're interested in. 142 */ 143 sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); 144 145 if (sisr & CCSR_SSI_SISR_RFRC) { 146 ssi_private->stats.rfrc++; 147 sisr2 |= CCSR_SSI_SISR_RFRC; 148 ret = IRQ_HANDLED; 149 } 150 151 if (sisr & CCSR_SSI_SISR_TFRC) { 152 ssi_private->stats.tfrc++; 153 sisr2 |= CCSR_SSI_SISR_TFRC; 154 ret = IRQ_HANDLED; 155 } 156 157 if (sisr & CCSR_SSI_SISR_CMDAU) { 158 ssi_private->stats.cmdau++; 159 ret = IRQ_HANDLED; 160 } 161 162 if (sisr & CCSR_SSI_SISR_CMDDU) { 163 ssi_private->stats.cmddu++; 164 ret = IRQ_HANDLED; 165 } 166 167 if (sisr & CCSR_SSI_SISR_RXT) { 168 ssi_private->stats.rxt++; 169 ret = IRQ_HANDLED; 170 } 171 172 if (sisr & CCSR_SSI_SISR_RDR1) { 173 ssi_private->stats.rdr1++; 174 ret = IRQ_HANDLED; 175 } 176 177 if (sisr & CCSR_SSI_SISR_RDR0) { 178 ssi_private->stats.rdr0++; 179 ret = IRQ_HANDLED; 180 } 181 182 if (sisr & CCSR_SSI_SISR_TDE1) { 183 ssi_private->stats.tde1++; 184 ret = IRQ_HANDLED; 185 } 186 187 if (sisr & CCSR_SSI_SISR_TDE0) { 188 ssi_private->stats.tde0++; 189 ret = IRQ_HANDLED; 190 } 191 192 if (sisr & CCSR_SSI_SISR_ROE1) { 193 ssi_private->stats.roe1++; 194 sisr2 |= CCSR_SSI_SISR_ROE1; 195 ret = IRQ_HANDLED; 196 } 197 198 if (sisr & CCSR_SSI_SISR_ROE0) { 199 ssi_private->stats.roe0++; 200 sisr2 |= CCSR_SSI_SISR_ROE0; 201 ret = IRQ_HANDLED; 202 } 203 204 if (sisr & CCSR_SSI_SISR_TUE1) { 205 ssi_private->stats.tue1++; 206 sisr2 |= CCSR_SSI_SISR_TUE1; 207 ret = IRQ_HANDLED; 208 } 209 210 if (sisr & CCSR_SSI_SISR_TUE0) { 211 ssi_private->stats.tue0++; 212 sisr2 |= CCSR_SSI_SISR_TUE0; 213 ret = IRQ_HANDLED; 214 } 215 216 if (sisr & CCSR_SSI_SISR_TFS) { 217 ssi_private->stats.tfs++; 218 ret = IRQ_HANDLED; 219 } 220 221 if (sisr & CCSR_SSI_SISR_RFS) { 222 ssi_private->stats.rfs++; 223 ret = IRQ_HANDLED; 224 } 225 226 if (sisr & CCSR_SSI_SISR_TLS) { 227 ssi_private->stats.tls++; 228 ret = IRQ_HANDLED; 229 } 230 231 if (sisr & CCSR_SSI_SISR_RLS) { 232 ssi_private->stats.rls++; 233 ret = IRQ_HANDLED; 234 } 235 236 if (sisr & CCSR_SSI_SISR_RFF1) { 237 ssi_private->stats.rff1++; 238 ret = IRQ_HANDLED; 239 } 240 241 if (sisr & CCSR_SSI_SISR_RFF0) { 242 ssi_private->stats.rff0++; 243 ret = IRQ_HANDLED; 244 } 245 246 if (sisr & CCSR_SSI_SISR_TFE1) { 247 ssi_private->stats.tfe1++; 248 ret = IRQ_HANDLED; 249 } 250 251 if (sisr & CCSR_SSI_SISR_TFE0) { 252 ssi_private->stats.tfe0++; 253 ret = IRQ_HANDLED; 254 } 255 256 /* Clear the bits that we set */ 257 if (sisr2) 258 out_be32(&ssi->sisr, sisr2); 259 260 return ret; 261 } 262 263 /** 264 * fsl_ssi_startup: create a new substream 265 * 266 * This is the first function called when a stream is opened. 267 * 268 * If this is the first stream open, then grab the IRQ and program most of 269 * the SSI registers. 270 */ 271 static int fsl_ssi_startup(struct snd_pcm_substream *substream, 272 struct snd_soc_dai *dai) 273 { 274 struct snd_soc_pcm_runtime *rtd = substream->private_data; 275 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 276 277 /* 278 * If this is the first stream opened, then request the IRQ 279 * and initialize the SSI registers. 280 */ 281 if (!ssi_private->playback && !ssi_private->capture) { 282 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 283 int ret; 284 285 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, 286 ssi_private->name, ssi_private); 287 if (ret < 0) { 288 dev_err(substream->pcm->card->dev, 289 "could not claim irq %u\n", ssi_private->irq); 290 return ret; 291 } 292 293 /* 294 * Section 16.5 of the MPC8610 reference manual says that the 295 * SSI needs to be disabled before updating the registers we set 296 * here. 297 */ 298 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 299 300 /* 301 * Program the SSI into I2S Slave Non-Network Synchronous mode. 302 * Also enable the transmit and receive FIFO. 303 * 304 * FIXME: Little-endian samples require a different shift dir 305 */ 306 clrsetbits_be32(&ssi->scr, 307 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN, 308 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE 309 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN)); 310 311 out_be32(&ssi->stcr, 312 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | 313 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | 314 CCSR_SSI_STCR_TSCKP); 315 316 out_be32(&ssi->srcr, 317 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | 318 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | 319 CCSR_SSI_SRCR_RSCKP); 320 321 /* 322 * The DC and PM bits are only used if the SSI is the clock 323 * master. 324 */ 325 326 /* 4. Enable the interrupts and DMA requests */ 327 out_be32(&ssi->sier, 328 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | 329 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | 330 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | 331 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | 332 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); 333 334 /* 335 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We 336 * don't use FIFO 1. Since the SSI only supports stereo, the 337 * watermark should never be an odd number. 338 */ 339 out_be32(&ssi->sfcsr, 340 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); 341 342 /* 343 * We keep the SSI disabled because if we enable it, then the 344 * DMA controller will start. It's not supposed to start until 345 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The 346 * DMA controller will transfer one "BWC" of data (i.e. the 347 * amount of data that the MR.BWC bits are set to). The reason 348 * this is bad is because at this point, the PCM driver has not 349 * finished initializing the DMA controller. 350 */ 351 } 352 353 if (!ssi_private->first_stream) 354 ssi_private->first_stream = substream; 355 else { 356 /* This is the second stream open, so we need to impose sample 357 * rate and maybe sample size constraints. Note that this can 358 * cause a race condition if the second stream is opened before 359 * the first stream is fully initialized. 360 * 361 * We provide some protection by checking to make sure the first 362 * stream is initialized, but it's not perfect. ALSA sometimes 363 * re-initializes the driver with a different sample rate or 364 * size. If the second stream is opened before the first stream 365 * has received its final parameters, then the second stream may 366 * be constrained to the wrong sample rate or size. 367 * 368 * FIXME: This code does not handle opening and closing streams 369 * repeatedly. If you open two streams and then close the first 370 * one, you may not be able to open another stream until you 371 * close the second one as well. 372 */ 373 struct snd_pcm_runtime *first_runtime = 374 ssi_private->first_stream->runtime; 375 376 if (!first_runtime->rate || !first_runtime->sample_bits) { 377 dev_err(substream->pcm->card->dev, 378 "set sample rate and size in %s stream first\n", 379 substream->stream == SNDRV_PCM_STREAM_PLAYBACK 380 ? "capture" : "playback"); 381 return -EAGAIN; 382 } 383 384 snd_pcm_hw_constraint_minmax(substream->runtime, 385 SNDRV_PCM_HW_PARAM_RATE, 386 first_runtime->rate, first_runtime->rate); 387 388 /* If we're in synchronous mode, then we need to constrain 389 * the sample size as well. We don't support independent sample 390 * rates in asynchronous mode. 391 */ 392 if (!ssi_private->asynchronous) 393 snd_pcm_hw_constraint_minmax(substream->runtime, 394 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 395 first_runtime->sample_bits, 396 first_runtime->sample_bits); 397 398 ssi_private->second_stream = substream; 399 } 400 401 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 402 ssi_private->playback++; 403 404 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 405 ssi_private->capture++; 406 407 return 0; 408 } 409 410 /** 411 * fsl_ssi_hw_params - program the sample size 412 * 413 * Most of the SSI registers have been programmed in the startup function, 414 * but the word length must be programmed here. Unfortunately, programming 415 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can 416 * cause a problem with supporting simultaneous playback and capture. If 417 * the SSI is already playing a stream, then that stream may be temporarily 418 * stopped when you start capture. 419 * 420 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the 421 * clock master. 422 */ 423 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, 424 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai) 425 { 426 struct fsl_ssi_private *ssi_private = cpu_dai->private_data; 427 428 if (substream == ssi_private->first_stream) { 429 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 430 unsigned int sample_size = 431 snd_pcm_format_width(params_format(hw_params)); 432 u32 wl = CCSR_SSI_SxCCR_WL(sample_size); 433 434 /* The SSI should always be disabled at this points (SSIEN=0) */ 435 436 /* In synchronous mode, the SSI uses STCCR for capture */ 437 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) || 438 !ssi_private->asynchronous) 439 clrsetbits_be32(&ssi->stccr, 440 CCSR_SSI_SxCCR_WL_MASK, wl); 441 else 442 clrsetbits_be32(&ssi->srccr, 443 CCSR_SSI_SxCCR_WL_MASK, wl); 444 } 445 446 return 0; 447 } 448 449 /** 450 * fsl_ssi_trigger: start and stop the DMA transfer. 451 * 452 * This function is called by ALSA to start, stop, pause, and resume the DMA 453 * transfer of data. 454 * 455 * The DMA channel is in external master start and pause mode, which 456 * means the SSI completely controls the flow of data. 457 */ 458 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, 459 struct snd_soc_dai *dai) 460 { 461 struct snd_soc_pcm_runtime *rtd = substream->private_data; 462 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 463 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 464 465 switch (cmd) { 466 case SNDRV_PCM_TRIGGER_START: 467 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 468 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 470 setbits32(&ssi->scr, 471 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); 472 } else { 473 long timeout = jiffies + 10; 474 475 setbits32(&ssi->scr, 476 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); 477 478 /* Wait until the SSI has filled its FIFO. Without this 479 * delay, ALSA complains about overruns. When the FIFO 480 * is full, the DMA controller initiates its first 481 * transfer. Until then, however, the DMA's DAR 482 * register is zero, which translates to an 483 * out-of-bounds pointer. This makes ALSA think an 484 * overrun has occurred. 485 */ 486 while (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0) && 487 (jiffies < timeout)); 488 if (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0)) 489 return -EIO; 490 } 491 break; 492 493 case SNDRV_PCM_TRIGGER_STOP: 494 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 495 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 496 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); 497 else 498 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); 499 break; 500 501 default: 502 return -EINVAL; 503 } 504 505 return 0; 506 } 507 508 /** 509 * fsl_ssi_shutdown: shutdown the SSI 510 * 511 * Shutdown the SSI if there are no other substreams open. 512 */ 513 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream, 514 struct snd_soc_dai *dai) 515 { 516 struct snd_soc_pcm_runtime *rtd = substream->private_data; 517 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; 518 519 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 520 ssi_private->playback--; 521 522 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 523 ssi_private->capture--; 524 525 if (ssi_private->first_stream == substream) 526 ssi_private->first_stream = ssi_private->second_stream; 527 528 ssi_private->second_stream = NULL; 529 530 /* 531 * If this is the last active substream, disable the SSI and release 532 * the IRQ. 533 */ 534 if (!ssi_private->playback && !ssi_private->capture) { 535 struct ccsr_ssi __iomem *ssi = ssi_private->ssi; 536 537 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 538 539 free_irq(ssi_private->irq, ssi_private); 540 } 541 } 542 543 /** 544 * fsl_ssi_set_sysclk: set the clock frequency and direction 545 * 546 * This function is called by the machine driver to tell us what the clock 547 * frequency and direction are. 548 * 549 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), 550 * and we don't care about the frequency. Return an error if the direction 551 * is not SND_SOC_CLOCK_IN. 552 * 553 * @clk_id: reserved, should be zero 554 * @freq: the frequency of the given clock ID, currently ignored 555 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) 556 */ 557 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai, 558 int clk_id, unsigned int freq, int dir) 559 { 560 561 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; 562 } 563 564 /** 565 * fsl_ssi_set_fmt: set the serial format. 566 * 567 * This function is called by the machine driver to tell us what serial 568 * format to use. 569 * 570 * Currently, we only support I2S mode. Return an error if the format is 571 * not SND_SOC_DAIFMT_I2S. 572 * 573 * @format: one of SND_SOC_DAIFMT_xxx 574 */ 575 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format) 576 { 577 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; 578 } 579 580 /** 581 * fsl_ssi_dai_template: template CPU DAI for the SSI 582 */ 583 static struct snd_soc_dai_ops fsl_ssi_dai_ops = { 584 .startup = fsl_ssi_startup, 585 .hw_params = fsl_ssi_hw_params, 586 .shutdown = fsl_ssi_shutdown, 587 .trigger = fsl_ssi_trigger, 588 .set_sysclk = fsl_ssi_set_sysclk, 589 .set_fmt = fsl_ssi_set_fmt, 590 }; 591 592 static struct snd_soc_dai fsl_ssi_dai_template = { 593 .playback = { 594 /* The SSI does not support monaural audio. */ 595 .channels_min = 2, 596 .channels_max = 2, 597 .rates = FSLSSI_I2S_RATES, 598 .formats = FSLSSI_I2S_FORMATS, 599 }, 600 .capture = { 601 .channels_min = 2, 602 .channels_max = 2, 603 .rates = FSLSSI_I2S_RATES, 604 .formats = FSLSSI_I2S_FORMATS, 605 }, 606 .ops = &fsl_ssi_dai_ops, 607 }; 608 609 /** 610 * fsl_sysfs_ssi_show: display SSI statistics 611 * 612 * Display the statistics for the current SSI device. 613 */ 614 static ssize_t fsl_sysfs_ssi_show(struct device *dev, 615 struct device_attribute *attr, char *buf) 616 { 617 struct fsl_ssi_private *ssi_private = 618 container_of(attr, struct fsl_ssi_private, dev_attr); 619 ssize_t length; 620 621 length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); 622 length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); 623 length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); 624 length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); 625 length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); 626 length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); 627 length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); 628 length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); 629 length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); 630 length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); 631 length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); 632 length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); 633 length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); 634 length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); 635 length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); 636 length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); 637 length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); 638 length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); 639 length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); 640 length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); 641 length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); 642 643 return length; 644 } 645 646 /** 647 * fsl_ssi_create_dai: create a snd_soc_dai structure 648 * 649 * This function is called by the machine driver to create a snd_soc_dai 650 * structure. The function creates an ssi_private object, which contains 651 * the snd_soc_dai. It also creates the sysfs statistics device. 652 */ 653 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) 654 { 655 struct snd_soc_dai *fsl_ssi_dai; 656 struct fsl_ssi_private *ssi_private; 657 int ret = 0; 658 struct device_attribute *dev_attr; 659 660 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); 661 if (!ssi_private) { 662 dev_err(ssi_info->dev, "could not allocate DAI object\n"); 663 return NULL; 664 } 665 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, 666 sizeof(struct snd_soc_dai)); 667 668 fsl_ssi_dai = &ssi_private->cpu_dai; 669 dev_attr = &ssi_private->dev_attr; 670 671 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); 672 ssi_private->ssi = ssi_info->ssi; 673 ssi_private->ssi_phys = ssi_info->ssi_phys; 674 ssi_private->irq = ssi_info->irq; 675 ssi_private->dev = ssi_info->dev; 676 ssi_private->asynchronous = ssi_info->asynchronous; 677 678 ssi_private->dev->driver_data = fsl_ssi_dai; 679 680 /* Initialize the the device_attribute structure */ 681 dev_attr->attr.name = "ssi-stats"; 682 dev_attr->attr.mode = S_IRUGO; 683 dev_attr->show = fsl_sysfs_ssi_show; 684 685 ret = device_create_file(ssi_private->dev, dev_attr); 686 if (ret) { 687 dev_err(ssi_info->dev, "could not create sysfs %s file\n", 688 ssi_private->dev_attr.attr.name); 689 kfree(fsl_ssi_dai); 690 return NULL; 691 } 692 693 fsl_ssi_dai->private_data = ssi_private; 694 fsl_ssi_dai->name = ssi_private->name; 695 fsl_ssi_dai->id = ssi_info->id; 696 fsl_ssi_dai->dev = ssi_info->dev; 697 698 ret = snd_soc_register_dai(fsl_ssi_dai); 699 if (ret != 0) { 700 dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret); 701 kfree(fsl_ssi_dai); 702 return NULL; 703 } 704 705 return fsl_ssi_dai; 706 } 707 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); 708 709 /** 710 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object 711 * 712 * This function undoes the operations of fsl_ssi_create_dai() 713 */ 714 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai) 715 { 716 struct fsl_ssi_private *ssi_private = 717 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); 718 719 device_remove_file(ssi_private->dev, &ssi_private->dev_attr); 720 721 snd_soc_unregister_dai(&ssi_private->cpu_dai); 722 723 kfree(ssi_private); 724 } 725 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); 726 727 static int __init fsl_ssi_init(void) 728 { 729 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n"); 730 731 return 0; 732 } 733 module_init(fsl_ssi_init); 734 735 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 736 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 737 MODULE_LICENSE("GPL"); 738