xref: /openbmc/linux/sound/soc/fsl/fsl_ssi.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/ctype.h>
39 #include <linux/device.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/of.h>
44 #include <linux/of_address.h>
45 #include <linux/of_irq.h>
46 #include <linux/of_platform.h>
47 
48 #include <sound/core.h>
49 #include <sound/pcm.h>
50 #include <sound/pcm_params.h>
51 #include <sound/initval.h>
52 #include <sound/soc.h>
53 #include <sound/dmaengine_pcm.h>
54 
55 #include "fsl_ssi.h"
56 #include "imx-pcm.h"
57 
58 /**
59  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
60  *
61  * The SSI has a limitation in that the samples must be in the same byte
62  * order as the host CPU.  This is because when multiple bytes are written
63  * to the STX register, the bytes and bits must be written in the same
64  * order.  The STX is a shift register, so all the bits need to be aligned
65  * (bit-endianness must match byte-endianness).  Processors typically write
66  * the bits within a byte in the same order that the bytes of a word are
67  * written in.  So if the host CPU is big-endian, then only big-endian
68  * samples will be written to STX properly.
69  */
70 #ifdef __BIG_ENDIAN
71 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
72 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
73 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
74 #else
75 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
76 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
77 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
78 #endif
79 
80 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
81 		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
82 		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
83 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
84 		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
85 		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
86 
87 enum fsl_ssi_type {
88 	FSL_SSI_MCP8610,
89 	FSL_SSI_MX21,
90 	FSL_SSI_MX35,
91 	FSL_SSI_MX51,
92 };
93 
94 struct fsl_ssi_reg_val {
95 	u32 sier;
96 	u32 srcr;
97 	u32 stcr;
98 	u32 scr;
99 };
100 
101 struct fsl_ssi_rxtx_reg_val {
102 	struct fsl_ssi_reg_val rx;
103 	struct fsl_ssi_reg_val tx;
104 };
105 
106 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
107 {
108 	switch (reg) {
109 	case CCSR_SSI_SACCEN:
110 	case CCSR_SSI_SACCDIS:
111 		return false;
112 	default:
113 		return true;
114 	}
115 }
116 
117 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
118 {
119 	switch (reg) {
120 	case CCSR_SSI_STX0:
121 	case CCSR_SSI_STX1:
122 	case CCSR_SSI_SRX0:
123 	case CCSR_SSI_SRX1:
124 	case CCSR_SSI_SISR:
125 	case CCSR_SSI_SFCSR:
126 	case CCSR_SSI_SACNT:
127 	case CCSR_SSI_SACADD:
128 	case CCSR_SSI_SACDAT:
129 	case CCSR_SSI_SATAG:
130 	case CCSR_SSI_SACCST:
131 	case CCSR_SSI_SOR:
132 		return true;
133 	default:
134 		return false;
135 	}
136 }
137 
138 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
139 {
140 	switch (reg) {
141 	case CCSR_SSI_SRX0:
142 	case CCSR_SSI_SRX1:
143 	case CCSR_SSI_SISR:
144 	case CCSR_SSI_SACADD:
145 	case CCSR_SSI_SACDAT:
146 	case CCSR_SSI_SATAG:
147 		return true;
148 	default:
149 		return false;
150 	}
151 }
152 
153 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
154 {
155 	switch (reg) {
156 	case CCSR_SSI_SRX0:
157 	case CCSR_SSI_SRX1:
158 	case CCSR_SSI_SACCST:
159 		return false;
160 	default:
161 		return true;
162 	}
163 }
164 
165 static const struct regmap_config fsl_ssi_regconfig = {
166 	.max_register = CCSR_SSI_SACCDIS,
167 	.reg_bits = 32,
168 	.val_bits = 32,
169 	.reg_stride = 4,
170 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
171 	.num_reg_defaults_raw = CCSR_SSI_SACCDIS / sizeof(uint32_t) + 1,
172 	.readable_reg = fsl_ssi_readable_reg,
173 	.volatile_reg = fsl_ssi_volatile_reg,
174 	.precious_reg = fsl_ssi_precious_reg,
175 	.writeable_reg = fsl_ssi_writeable_reg,
176 	.cache_type = REGCACHE_FLAT,
177 };
178 
179 struct fsl_ssi_soc_data {
180 	bool imx;
181 	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
182 	bool offline_config;
183 	u32 sisr_write_mask;
184 };
185 
186 /**
187  * fsl_ssi_private: per-SSI private data
188  *
189  * @reg: Pointer to the regmap registers
190  * @irq: IRQ of this SSI
191  * @cpu_dai_drv: CPU DAI driver for this device
192  *
193  * @dai_fmt: DAI configuration this device is currently used with
194  * @i2s_mode: i2s and network mode configuration of the device. Is used to
195  * switch between normal and i2s/network mode
196  * mode depending on the number of channels
197  * @use_dma: DMA is used or FIQ with stream filter
198  * @use_dual_fifo: DMA with support for both FIFOs used
199  * @fifo_deph: Depth of the SSI FIFOs
200  * @rxtx_reg_val: Specific register settings for receive/transmit configuration
201  *
202  * @clk: SSI clock
203  * @baudclk: SSI baud clock for master mode
204  * @baudclk_streams: Active streams that are using baudclk
205  * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
206  *
207  * @dma_params_tx: DMA transmit parameters
208  * @dma_params_rx: DMA receive parameters
209  * @ssi_phys: physical address of the SSI registers
210  *
211  * @fiq_params: FIQ stream filtering parameters
212  *
213  * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
214  *
215  * @dbg_stats: Debugging statistics
216  *
217  * @soc: SoC specific data
218  *
219  * @fifo_watermark: the FIFO watermark setting.  Notifies DMA when
220  *             there are @fifo_watermark or fewer words in TX fifo or
221  *             @fifo_watermark or more empty words in RX fifo.
222  * @dma_maxburst: max number of words to transfer in one go.  So far,
223  *             this is always the same as fifo_watermark.
224  */
225 struct fsl_ssi_private {
226 	struct regmap *regs;
227 	int irq;
228 	struct snd_soc_dai_driver cpu_dai_drv;
229 
230 	unsigned int dai_fmt;
231 	u8 i2s_mode;
232 	bool use_dma;
233 	bool use_dual_fifo;
234 	bool has_ipg_clk_name;
235 	unsigned int fifo_depth;
236 	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
237 
238 	struct clk *clk;
239 	struct clk *baudclk;
240 	unsigned int baudclk_streams;
241 	unsigned int bitclk_freq;
242 
243 	/* regcache for volatile regs */
244 	u32 regcache_sfcsr;
245 	u32 regcache_sacnt;
246 
247 	/* DMA params */
248 	struct snd_dmaengine_dai_dma_data dma_params_tx;
249 	struct snd_dmaengine_dai_dma_data dma_params_rx;
250 	dma_addr_t ssi_phys;
251 
252 	/* params for non-dma FIQ stream filtered mode */
253 	struct imx_pcm_fiq_params fiq_params;
254 
255 	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
256 	 * should be replaced with simple-sound-card. */
257 	struct platform_device *pdev;
258 
259 	struct fsl_ssi_dbg dbg_stats;
260 
261 	const struct fsl_ssi_soc_data *soc;
262 	struct device *dev;
263 
264 	u32 fifo_watermark;
265 	u32 dma_maxburst;
266 };
267 
268 /*
269  * imx51 and later SoCs have a slightly different IP that allows the
270  * SSI configuration while the SSI unit is running.
271  *
272  * More important, it is necessary on those SoCs to configure the
273  * sperate TX/RX DMA bits just before starting the stream
274  * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
275  * sends any DMA requests to the SDMA unit, otherwise it is not defined
276  * how the SDMA unit handles the DMA request.
277  *
278  * SDMA units are present on devices starting at imx35 but the imx35
279  * reference manual states that the DMA bits should not be changed
280  * while the SSI unit is running (SSIEN). So we support the necessary
281  * online configuration of fsl-ssi starting at imx51.
282  */
283 
284 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
285 	.imx = false,
286 	.offline_config = true,
287 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
288 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
289 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
290 };
291 
292 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
293 	.imx = true,
294 	.imx21regs = true,
295 	.offline_config = true,
296 	.sisr_write_mask = 0,
297 };
298 
299 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
300 	.imx = true,
301 	.offline_config = true,
302 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
303 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
304 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
305 };
306 
307 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
308 	.imx = true,
309 	.offline_config = false,
310 	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
311 		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
312 };
313 
314 static const struct of_device_id fsl_ssi_ids[] = {
315 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
316 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
317 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
318 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
319 	{}
320 };
321 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
322 
323 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
324 {
325 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
326 		SND_SOC_DAIFMT_AC97;
327 }
328 
329 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
330 {
331 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
332 		SND_SOC_DAIFMT_CBS_CFS;
333 }
334 
335 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
336 {
337 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
338 		SND_SOC_DAIFMT_CBM_CFS;
339 }
340 /**
341  * fsl_ssi_isr: SSI interrupt handler
342  *
343  * Although it's possible to use the interrupt handler to send and receive
344  * data to/from the SSI, we use the DMA instead.  Programming is more
345  * complicated, but the performance is much better.
346  *
347  * This interrupt handler is used only to gather statistics.
348  *
349  * @irq: IRQ of the SSI device
350  * @dev_id: pointer to the ssi_private structure for this SSI device
351  */
352 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
353 {
354 	struct fsl_ssi_private *ssi_private = dev_id;
355 	struct regmap *regs = ssi_private->regs;
356 	__be32 sisr;
357 	__be32 sisr2;
358 
359 	/* We got an interrupt, so read the status register to see what we
360 	   were interrupted for.  We mask it with the Interrupt Enable register
361 	   so that we only check for events that we're interested in.
362 	 */
363 	regmap_read(regs, CCSR_SSI_SISR, &sisr);
364 
365 	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
366 	/* Clear the bits that we set */
367 	if (sisr2)
368 		regmap_write(regs, CCSR_SSI_SISR, sisr2);
369 
370 	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
371 
372 	return IRQ_HANDLED;
373 }
374 
375 /*
376  * Enable/Disable all rx/tx config flags at once.
377  */
378 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
379 		bool enable)
380 {
381 	struct regmap *regs = ssi_private->regs;
382 	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
383 
384 	if (enable) {
385 		regmap_update_bits(regs, CCSR_SSI_SIER,
386 				vals->rx.sier | vals->tx.sier,
387 				vals->rx.sier | vals->tx.sier);
388 		regmap_update_bits(regs, CCSR_SSI_SRCR,
389 				vals->rx.srcr | vals->tx.srcr,
390 				vals->rx.srcr | vals->tx.srcr);
391 		regmap_update_bits(regs, CCSR_SSI_STCR,
392 				vals->rx.stcr | vals->tx.stcr,
393 				vals->rx.stcr | vals->tx.stcr);
394 	} else {
395 		regmap_update_bits(regs, CCSR_SSI_SRCR,
396 				vals->rx.srcr | vals->tx.srcr, 0);
397 		regmap_update_bits(regs, CCSR_SSI_STCR,
398 				vals->rx.stcr | vals->tx.stcr, 0);
399 		regmap_update_bits(regs, CCSR_SSI_SIER,
400 				vals->rx.sier | vals->tx.sier, 0);
401 	}
402 }
403 
404 /*
405  * Clear RX or TX FIFO to remove samples from the previous
406  * stream session which may be still present in the FIFO and
407  * may introduce bad samples and/or channel slipping.
408  *
409  * Note: The SOR is not documented in recent IMX datasheet, but
410  * is described in IMX51 reference manual at section 56.3.3.15.
411  */
412 static void fsl_ssi_fifo_clear(struct fsl_ssi_private *ssi_private,
413 		bool is_rx)
414 {
415 	if (is_rx) {
416 		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
417 			CCSR_SSI_SOR_RX_CLR, CCSR_SSI_SOR_RX_CLR);
418 	} else {
419 		regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
420 			CCSR_SSI_SOR_TX_CLR, CCSR_SSI_SOR_TX_CLR);
421 	}
422 }
423 
424 /*
425  * Calculate the bits that have to be disabled for the current stream that is
426  * getting disabled. This keeps the bits enabled that are necessary for the
427  * second stream to work if 'stream_active' is true.
428  *
429  * Detailed calculation:
430  * These are the values that need to be active after disabling. For non-active
431  * second stream, this is 0:
432  *	vals_stream * !!stream_active
433  *
434  * The following computes the overall differences between the setup for the
435  * to-disable stream and the active stream, a simple XOR:
436  *	vals_disable ^ (vals_stream * !!(stream_active))
437  *
438  * The full expression adds a mask on all values we care about
439  */
440 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
441 	((vals_disable) & \
442 	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
443 
444 /*
445  * Enable/Disable a ssi configuration. You have to pass either
446  * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
447  */
448 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
449 		struct fsl_ssi_reg_val *vals)
450 {
451 	struct regmap *regs = ssi_private->regs;
452 	struct fsl_ssi_reg_val *avals;
453 	int nr_active_streams;
454 	u32 scr_val;
455 	int keep_active;
456 
457 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
458 
459 	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
460 				!!(scr_val & CCSR_SSI_SCR_RE);
461 
462 	if (nr_active_streams - 1 > 0)
463 		keep_active = 1;
464 	else
465 		keep_active = 0;
466 
467 	/* Find the other direction values rx or tx which we do not want to
468 	 * modify */
469 	if (&ssi_private->rxtx_reg_val.rx == vals)
470 		avals = &ssi_private->rxtx_reg_val.tx;
471 	else
472 		avals = &ssi_private->rxtx_reg_val.rx;
473 
474 	/* If vals should be disabled, start with disabling the unit */
475 	if (!enable) {
476 		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
477 				keep_active);
478 		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
479 	}
480 
481 	/*
482 	 * We are running on a SoC which does not support online SSI
483 	 * reconfiguration, so we have to enable all necessary flags at once
484 	 * even if we do not use them later (capture and playback configuration)
485 	 */
486 	if (ssi_private->soc->offline_config) {
487 		if ((enable && !nr_active_streams) ||
488 				(!enable && !keep_active))
489 			fsl_ssi_rxtx_config(ssi_private, enable);
490 
491 		goto config_done;
492 	}
493 
494 	/*
495 	 * Configure single direction units while the SSI unit is running
496 	 * (online configuration)
497 	 */
498 	if (enable) {
499 		fsl_ssi_fifo_clear(ssi_private, vals->scr & CCSR_SSI_SCR_RE);
500 
501 		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
502 		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
503 		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
504 	} else {
505 		u32 sier;
506 		u32 srcr;
507 		u32 stcr;
508 
509 		/*
510 		 * Disabling the necessary flags for one of rx/tx while the
511 		 * other stream is active is a little bit more difficult. We
512 		 * have to disable only those flags that differ between both
513 		 * streams (rx XOR tx) and that are set in the stream that is
514 		 * disabled now. Otherwise we could alter flags of the other
515 		 * stream
516 		 */
517 
518 		/* These assignments are simply vals without bits set in avals*/
519 		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
520 				keep_active);
521 		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
522 				keep_active);
523 		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
524 				keep_active);
525 
526 		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
527 		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
528 		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
529 	}
530 
531 config_done:
532 	/* Enabling of subunits is done after configuration */
533 	if (enable) {
534 		if (ssi_private->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
535 			/*
536 			 * Be sure the Tx FIFO is filled when TE is set.
537 			 * Otherwise, there are some chances to start the
538 			 * playback with some void samples inserted first,
539 			 * generating a channel slip.
540 			 *
541 			 * First, SSIEN must be set, to let the FIFO be filled.
542 			 *
543 			 * Notes:
544 			 * - Limit this fix to the DMA case until FIQ cases can
545 			 *   be tested.
546 			 * - Limit the length of the busy loop to not lock the
547 			 *   system too long, even if 1-2 loops are sufficient
548 			 *   in general.
549 			 */
550 			int i;
551 			int max_loop = 100;
552 			regmap_update_bits(regs, CCSR_SSI_SCR,
553 					CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
554 			for (i = 0; i < max_loop; i++) {
555 				u32 sfcsr;
556 				regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
557 				if (CCSR_SSI_SFCSR_TFCNT0(sfcsr))
558 					break;
559 			}
560 			if (i == max_loop) {
561 				dev_err(ssi_private->dev,
562 					"Timeout waiting TX FIFO filling\n");
563 			}
564 		}
565 		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
566 	}
567 }
568 
569 
570 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
571 {
572 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
573 }
574 
575 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
576 {
577 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
578 }
579 
580 /*
581  * Setup rx/tx register values used to enable/disable the streams. These will
582  * be used later in fsl_ssi_config to setup the streams without the need to
583  * check for all different SSI modes.
584  */
585 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
586 {
587 	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
588 
589 	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
590 	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
591 	reg->rx.scr = 0;
592 	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
593 	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
594 	reg->tx.scr = 0;
595 
596 	if (!fsl_ssi_is_ac97(ssi_private)) {
597 		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
598 		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
599 		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
600 		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
601 	}
602 
603 	if (ssi_private->use_dma) {
604 		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
605 		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
606 	} else {
607 		reg->rx.sier |= CCSR_SSI_SIER_RIE;
608 		reg->tx.sier |= CCSR_SSI_SIER_TIE;
609 	}
610 
611 	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
612 	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
613 }
614 
615 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
616 {
617 	struct regmap *regs = ssi_private->regs;
618 
619 	/*
620 	 * Setup the clock control register
621 	 */
622 	regmap_write(regs, CCSR_SSI_STCCR,
623 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
624 	regmap_write(regs, CCSR_SSI_SRCCR,
625 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
626 
627 	/*
628 	 * Enable AC97 mode and startup the SSI
629 	 */
630 	regmap_write(regs, CCSR_SSI_SACNT,
631 			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
632 
633 	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
634 	if (!ssi_private->soc->imx21regs) {
635 		regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
636 		regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
637 	}
638 
639 	/*
640 	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
641 	 * codec before a stream is started.
642 	 */
643 	regmap_update_bits(regs, CCSR_SSI_SCR,
644 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
645 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
646 
647 	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
648 }
649 
650 /**
651  * fsl_ssi_startup: create a new substream
652  *
653  * This is the first function called when a stream is opened.
654  *
655  * If this is the first stream open, then grab the IRQ and program most of
656  * the SSI registers.
657  */
658 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
659 			   struct snd_soc_dai *dai)
660 {
661 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
662 	struct fsl_ssi_private *ssi_private =
663 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
664 	int ret;
665 
666 	ret = clk_prepare_enable(ssi_private->clk);
667 	if (ret)
668 		return ret;
669 
670 	/* When using dual fifo mode, it is safer to ensure an even period
671 	 * size. If appearing to an odd number while DMA always starts its
672 	 * task from fifo0, fifo1 would be neglected at the end of each
673 	 * period. But SSI would still access fifo1 with an invalid data.
674 	 */
675 	if (ssi_private->use_dual_fifo)
676 		snd_pcm_hw_constraint_step(substream->runtime, 0,
677 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
678 
679 	return 0;
680 }
681 
682 /**
683  * fsl_ssi_shutdown: shutdown the SSI
684  *
685  */
686 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
687 				struct snd_soc_dai *dai)
688 {
689 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
690 	struct fsl_ssi_private *ssi_private =
691 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
692 
693 	clk_disable_unprepare(ssi_private->clk);
694 
695 }
696 
697 /**
698  * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
699  *
700  * Note: This function can be only called when using SSI as DAI master
701  *
702  * Quick instruction for parameters:
703  * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
704  * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
705  */
706 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
707 		struct snd_soc_dai *cpu_dai,
708 		struct snd_pcm_hw_params *hw_params)
709 {
710 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
711 	struct regmap *regs = ssi_private->regs;
712 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
713 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
714 	unsigned long clkrate, baudrate, tmprate;
715 	u64 sub, savesub = 100000;
716 	unsigned int freq;
717 	bool baudclk_is_used;
718 
719 	/* Prefer the explicitly set bitclock frequency */
720 	if (ssi_private->bitclk_freq)
721 		freq = ssi_private->bitclk_freq;
722 	else
723 		freq = params_channels(hw_params) * 32 * params_rate(hw_params);
724 
725 	/* Don't apply it to any non-baudclk circumstance */
726 	if (IS_ERR(ssi_private->baudclk))
727 		return -EINVAL;
728 
729 	/*
730 	 * Hardware limitation: The bclk rate must be
731 	 * never greater than 1/5 IPG clock rate
732 	 */
733 	if (freq * 5 > clk_get_rate(ssi_private->clk)) {
734 		dev_err(cpu_dai->dev, "bitclk > ipgclk/5\n");
735 		return -EINVAL;
736 	}
737 
738 	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
739 
740 	/* It should be already enough to divide clock by setting pm alone */
741 	psr = 0;
742 	div2 = 0;
743 
744 	factor = (div2 + 1) * (7 * psr + 1) * 2;
745 
746 	for (i = 0; i < 255; i++) {
747 		tmprate = freq * factor * (i + 1);
748 
749 		if (baudclk_is_used)
750 			clkrate = clk_get_rate(ssi_private->baudclk);
751 		else
752 			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
753 
754 		clkrate /= factor;
755 		afreq = clkrate / (i + 1);
756 
757 		if (freq == afreq)
758 			sub = 0;
759 		else if (freq / afreq == 1)
760 			sub = freq - afreq;
761 		else if (afreq / freq == 1)
762 			sub = afreq - freq;
763 		else
764 			continue;
765 
766 		/* Calculate the fraction */
767 		sub *= 100000;
768 		do_div(sub, freq);
769 
770 		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
771 			baudrate = tmprate;
772 			savesub = sub;
773 			pm = i;
774 		}
775 
776 		/* We are lucky */
777 		if (savesub == 0)
778 			break;
779 	}
780 
781 	/* No proper pm found if it is still remaining the initial value */
782 	if (pm == 999) {
783 		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
784 		return -EINVAL;
785 	}
786 
787 	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
788 		(psr ? CCSR_SSI_SxCCR_PSR : 0);
789 	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
790 		CCSR_SSI_SxCCR_PSR;
791 
792 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
793 		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
794 	else
795 		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
796 
797 	if (!baudclk_is_used) {
798 		ret = clk_set_rate(ssi_private->baudclk, baudrate);
799 		if (ret) {
800 			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
801 			return -EINVAL;
802 		}
803 	}
804 
805 	return 0;
806 }
807 
808 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
809 		int clk_id, unsigned int freq, int dir)
810 {
811 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
812 
813 	ssi_private->bitclk_freq = freq;
814 
815 	return 0;
816 }
817 
818 /**
819  * fsl_ssi_hw_params - program the sample size
820  *
821  * Most of the SSI registers have been programmed in the startup function,
822  * but the word length must be programmed here.  Unfortunately, programming
823  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
824  * cause a problem with supporting simultaneous playback and capture.  If
825  * the SSI is already playing a stream, then that stream may be temporarily
826  * stopped when you start capture.
827  *
828  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
829  * clock master.
830  */
831 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
832 	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
833 {
834 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
835 	struct regmap *regs = ssi_private->regs;
836 	unsigned int channels = params_channels(hw_params);
837 	unsigned int sample_size = params_width(hw_params);
838 	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
839 	int ret;
840 	u32 scr_val;
841 	int enabled;
842 
843 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
844 	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
845 
846 	/*
847 	 * If we're in synchronous mode, and the SSI is already enabled,
848 	 * then STCCR is already set properly.
849 	 */
850 	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
851 		return 0;
852 
853 	if (fsl_ssi_is_i2s_master(ssi_private)) {
854 		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
855 		if (ret)
856 			return ret;
857 
858 		/* Do not enable the clock if it is already enabled */
859 		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
860 			ret = clk_prepare_enable(ssi_private->baudclk);
861 			if (ret)
862 				return ret;
863 
864 			ssi_private->baudclk_streams |= BIT(substream->stream);
865 		}
866 	}
867 
868 	if (!fsl_ssi_is_ac97(ssi_private)) {
869 		u8 i2smode;
870 		/*
871 		 * Switch to normal net mode in order to have a frame sync
872 		 * signal every 32 bits instead of 16 bits
873 		 */
874 		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
875 			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
876 				CCSR_SSI_SCR_NET;
877 		else
878 			i2smode = ssi_private->i2s_mode;
879 
880 		regmap_update_bits(regs, CCSR_SSI_SCR,
881 				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
882 				channels == 1 ? 0 : i2smode);
883 	}
884 
885 	/*
886 	 * FIXME: The documentation says that SxCCR[WL] should not be
887 	 * modified while the SSI is enabled.  The only time this can
888 	 * happen is if we're trying to do simultaneous playback and
889 	 * capture in asynchronous mode.  Unfortunately, I have been enable
890 	 * to get that to work at all on the P1022DS.  Therefore, we don't
891 	 * bother to disable/enable the SSI when setting SxCCR[WL], because
892 	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
893 	 */
894 
895 	/* In synchronous mode, the SSI uses STCCR for capture */
896 	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
897 	    ssi_private->cpu_dai_drv.symmetric_rates)
898 		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
899 				wl);
900 	else
901 		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
902 				wl);
903 
904 	return 0;
905 }
906 
907 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
908 		struct snd_soc_dai *cpu_dai)
909 {
910 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
911 	struct fsl_ssi_private *ssi_private =
912 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
913 
914 	if (fsl_ssi_is_i2s_master(ssi_private) &&
915 			ssi_private->baudclk_streams & BIT(substream->stream)) {
916 		clk_disable_unprepare(ssi_private->baudclk);
917 		ssi_private->baudclk_streams &= ~BIT(substream->stream);
918 	}
919 
920 	return 0;
921 }
922 
923 static int _fsl_ssi_set_dai_fmt(struct device *dev,
924 				struct fsl_ssi_private *ssi_private,
925 				unsigned int fmt)
926 {
927 	struct regmap *regs = ssi_private->regs;
928 	u32 strcr = 0, stcr, srcr, scr, mask;
929 	u8 wm;
930 
931 	ssi_private->dai_fmt = fmt;
932 
933 	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
934 		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
935 		return -EINVAL;
936 	}
937 
938 	fsl_ssi_setup_reg_vals(ssi_private);
939 
940 	regmap_read(regs, CCSR_SSI_SCR, &scr);
941 	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
942 	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
943 
944 	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
945 		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
946 		CCSR_SSI_STCR_TEFS;
947 	regmap_read(regs, CCSR_SSI_STCR, &stcr);
948 	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
949 	stcr &= ~mask;
950 	srcr &= ~mask;
951 
952 	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
953 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
954 	case SND_SOC_DAIFMT_I2S:
955 		regmap_update_bits(regs, CCSR_SSI_STCCR,
956 				   CCSR_SSI_SxCCR_DC_MASK,
957 				   CCSR_SSI_SxCCR_DC(2));
958 		regmap_update_bits(regs, CCSR_SSI_SRCCR,
959 				   CCSR_SSI_SxCCR_DC_MASK,
960 				   CCSR_SSI_SxCCR_DC(2));
961 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
962 		case SND_SOC_DAIFMT_CBM_CFS:
963 		case SND_SOC_DAIFMT_CBS_CFS:
964 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
965 			break;
966 		case SND_SOC_DAIFMT_CBM_CFM:
967 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
968 			break;
969 		default:
970 			return -EINVAL;
971 		}
972 
973 		/* Data on rising edge of bclk, frame low, 1clk before data */
974 		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
975 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
976 		break;
977 	case SND_SOC_DAIFMT_LEFT_J:
978 		/* Data on rising edge of bclk, frame high */
979 		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
980 		break;
981 	case SND_SOC_DAIFMT_DSP_A:
982 		/* Data on rising edge of bclk, frame high, 1clk before data */
983 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
984 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
985 		break;
986 	case SND_SOC_DAIFMT_DSP_B:
987 		/* Data on rising edge of bclk, frame high */
988 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
989 			CCSR_SSI_STCR_TXBIT0;
990 		break;
991 	case SND_SOC_DAIFMT_AC97:
992 		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
993 		break;
994 	default:
995 		return -EINVAL;
996 	}
997 	scr |= ssi_private->i2s_mode;
998 
999 	/* DAI clock inversion */
1000 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1001 	case SND_SOC_DAIFMT_NB_NF:
1002 		/* Nothing to do for both normal cases */
1003 		break;
1004 	case SND_SOC_DAIFMT_IB_NF:
1005 		/* Invert bit clock */
1006 		strcr ^= CCSR_SSI_STCR_TSCKP;
1007 		break;
1008 	case SND_SOC_DAIFMT_NB_IF:
1009 		/* Invert frame clock */
1010 		strcr ^= CCSR_SSI_STCR_TFSI;
1011 		break;
1012 	case SND_SOC_DAIFMT_IB_IF:
1013 		/* Invert both clocks */
1014 		strcr ^= CCSR_SSI_STCR_TSCKP;
1015 		strcr ^= CCSR_SSI_STCR_TFSI;
1016 		break;
1017 	default:
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* DAI clock master masks */
1022 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1023 	case SND_SOC_DAIFMT_CBS_CFS:
1024 		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
1025 		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
1026 		break;
1027 	case SND_SOC_DAIFMT_CBM_CFM:
1028 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1029 		break;
1030 	case SND_SOC_DAIFMT_CBM_CFS:
1031 		strcr &= ~CCSR_SSI_STCR_TXDIR;
1032 		strcr |= CCSR_SSI_STCR_TFDIR;
1033 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1034 		break;
1035 	default:
1036 		if (!fsl_ssi_is_ac97(ssi_private))
1037 			return -EINVAL;
1038 	}
1039 
1040 	stcr |= strcr;
1041 	srcr |= strcr;
1042 
1043 	if (ssi_private->cpu_dai_drv.symmetric_rates
1044 			|| fsl_ssi_is_ac97(ssi_private)) {
1045 		/* Need to clear RXDIR when using SYNC or AC97 mode */
1046 		srcr &= ~CCSR_SSI_SRCR_RXDIR;
1047 		scr |= CCSR_SSI_SCR_SYN;
1048 	}
1049 
1050 	regmap_write(regs, CCSR_SSI_STCR, stcr);
1051 	regmap_write(regs, CCSR_SSI_SRCR, srcr);
1052 	regmap_write(regs, CCSR_SSI_SCR, scr);
1053 
1054 	wm = ssi_private->fifo_watermark;
1055 
1056 	regmap_write(regs, CCSR_SSI_SFCSR,
1057 			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
1058 			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1059 
1060 	if (ssi_private->use_dual_fifo) {
1061 		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1062 				CCSR_SSI_SRCR_RFEN1);
1063 		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1064 				CCSR_SSI_STCR_TFEN1);
1065 		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1066 				CCSR_SSI_SCR_TCH_EN);
1067 	}
1068 
1069 	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1070 		fsl_ssi_setup_ac97(ssi_private);
1071 
1072 	return 0;
1073 
1074 }
1075 
1076 /**
1077  * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
1078  */
1079 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
1080 {
1081 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1082 
1083 	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1084 }
1085 
1086 /**
1087  * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1088  *
1089  * Note: This function can be only called when using SSI as DAI master
1090  */
1091 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
1092 				u32 rx_mask, int slots, int slot_width)
1093 {
1094 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1095 	struct regmap *regs = ssi_private->regs;
1096 	u32 val;
1097 
1098 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1099 	regmap_read(regs, CCSR_SSI_SCR, &val);
1100 	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1101 	if (val && slots < 2) {
1102 		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
1103 		return -EINVAL;
1104 	}
1105 
1106 	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1107 			CCSR_SSI_SxCCR_DC(slots));
1108 	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1109 			CCSR_SSI_SxCCR_DC(slots));
1110 
1111 	/* The register SxMSKs needs SSI to provide essential clock due to
1112 	 * hardware design. So we here temporarily enable SSI to set them.
1113 	 */
1114 	regmap_read(regs, CCSR_SSI_SCR, &val);
1115 	val &= CCSR_SSI_SCR_SSIEN;
1116 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
1117 			CCSR_SSI_SCR_SSIEN);
1118 
1119 	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
1120 	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1121 
1122 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1123 
1124 	return 0;
1125 }
1126 
1127 /**
1128  * fsl_ssi_trigger: start and stop the DMA transfer.
1129  *
1130  * This function is called by ALSA to start, stop, pause, and resume the DMA
1131  * transfer of data.
1132  *
1133  * The DMA channel is in external master start and pause mode, which
1134  * means the SSI completely controls the flow of data.
1135  */
1136 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1137 			   struct snd_soc_dai *dai)
1138 {
1139 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1140 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1141 	struct regmap *regs = ssi_private->regs;
1142 
1143 	switch (cmd) {
1144 	case SNDRV_PCM_TRIGGER_START:
1145 	case SNDRV_PCM_TRIGGER_RESUME:
1146 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1147 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1148 			fsl_ssi_tx_config(ssi_private, true);
1149 		else
1150 			fsl_ssi_rx_config(ssi_private, true);
1151 		break;
1152 
1153 	case SNDRV_PCM_TRIGGER_STOP:
1154 	case SNDRV_PCM_TRIGGER_SUSPEND:
1155 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1156 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1157 			fsl_ssi_tx_config(ssi_private, false);
1158 		else
1159 			fsl_ssi_rx_config(ssi_private, false);
1160 		break;
1161 
1162 	default:
1163 		return -EINVAL;
1164 	}
1165 
1166 	if (fsl_ssi_is_ac97(ssi_private)) {
1167 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1168 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1169 		else
1170 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1177 {
1178 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1179 
1180 	if (ssi_private->soc->imx && ssi_private->use_dma) {
1181 		dai->playback_dma_data = &ssi_private->dma_params_tx;
1182 		dai->capture_dma_data = &ssi_private->dma_params_rx;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1189 	.startup	= fsl_ssi_startup,
1190 	.shutdown       = fsl_ssi_shutdown,
1191 	.hw_params	= fsl_ssi_hw_params,
1192 	.hw_free	= fsl_ssi_hw_free,
1193 	.set_fmt	= fsl_ssi_set_dai_fmt,
1194 	.set_sysclk	= fsl_ssi_set_dai_sysclk,
1195 	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1196 	.trigger	= fsl_ssi_trigger,
1197 };
1198 
1199 /* Template for the CPU dai driver structure */
1200 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1201 	.probe = fsl_ssi_dai_probe,
1202 	.playback = {
1203 		.stream_name = "CPU-Playback",
1204 		.channels_min = 1,
1205 		.channels_max = 32,
1206 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1207 		.formats = FSLSSI_I2S_FORMATS,
1208 	},
1209 	.capture = {
1210 		.stream_name = "CPU-Capture",
1211 		.channels_min = 1,
1212 		.channels_max = 32,
1213 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1214 		.formats = FSLSSI_I2S_FORMATS,
1215 	},
1216 	.ops = &fsl_ssi_dai_ops,
1217 };
1218 
1219 static const struct snd_soc_component_driver fsl_ssi_component = {
1220 	.name		= "fsl-ssi",
1221 };
1222 
1223 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1224 	.bus_control = true,
1225 	.probe = fsl_ssi_dai_probe,
1226 	.playback = {
1227 		.stream_name = "AC97 Playback",
1228 		.channels_min = 2,
1229 		.channels_max = 2,
1230 		.rates = SNDRV_PCM_RATE_8000_48000,
1231 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1232 	},
1233 	.capture = {
1234 		.stream_name = "AC97 Capture",
1235 		.channels_min = 2,
1236 		.channels_max = 2,
1237 		.rates = SNDRV_PCM_RATE_48000,
1238 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1239 	},
1240 	.ops = &fsl_ssi_dai_ops,
1241 };
1242 
1243 
1244 static struct fsl_ssi_private *fsl_ac97_data;
1245 
1246 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1247 		unsigned short val)
1248 {
1249 	struct regmap *regs = fsl_ac97_data->regs;
1250 	unsigned int lreg;
1251 	unsigned int lval;
1252 	int ret;
1253 
1254 	if (reg > 0x7f)
1255 		return;
1256 
1257 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1258 	if (ret) {
1259 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1260 			ret);
1261 		return;
1262 	}
1263 
1264 	lreg = reg <<  12;
1265 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1266 
1267 	lval = val << 4;
1268 	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1269 
1270 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1271 			CCSR_SSI_SACNT_WR);
1272 	udelay(100);
1273 
1274 	clk_disable_unprepare(fsl_ac97_data->clk);
1275 }
1276 
1277 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1278 		unsigned short reg)
1279 {
1280 	struct regmap *regs = fsl_ac97_data->regs;
1281 
1282 	unsigned short val = -1;
1283 	u32 reg_val;
1284 	unsigned int lreg;
1285 	int ret;
1286 
1287 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1288 	if (ret) {
1289 		pr_err("ac97 read clk_prepare_enable failed: %d\n",
1290 			ret);
1291 		return -1;
1292 	}
1293 
1294 	lreg = (reg & 0x7f) <<  12;
1295 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1296 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1297 			CCSR_SSI_SACNT_RD);
1298 
1299 	udelay(100);
1300 
1301 	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1302 	val = (reg_val >> 4) & 0xffff;
1303 
1304 	clk_disable_unprepare(fsl_ac97_data->clk);
1305 
1306 	return val;
1307 }
1308 
1309 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1310 	.read		= fsl_ssi_ac97_read,
1311 	.write		= fsl_ssi_ac97_write,
1312 };
1313 
1314 /**
1315  * Make every character in a string lower-case
1316  */
1317 static void make_lowercase(char *s)
1318 {
1319 	if (!s)
1320 		return;
1321 	for (; *s; s++)
1322 		*s = tolower(*s);
1323 }
1324 
1325 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1326 		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1327 {
1328 	struct device_node *np = pdev->dev.of_node;
1329 	u32 dmas[4];
1330 	int ret;
1331 
1332 	if (ssi_private->has_ipg_clk_name)
1333 		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1334 	else
1335 		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1336 	if (IS_ERR(ssi_private->clk)) {
1337 		ret = PTR_ERR(ssi_private->clk);
1338 		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	if (!ssi_private->has_ipg_clk_name) {
1343 		ret = clk_prepare_enable(ssi_private->clk);
1344 		if (ret) {
1345 			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1346 			return ret;
1347 		}
1348 	}
1349 
1350 	/* For those SLAVE implementations, we ignore non-baudclk cases
1351 	 * and, instead, abandon MASTER mode that needs baud clock.
1352 	 */
1353 	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1354 	if (IS_ERR(ssi_private->baudclk))
1355 		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1356 			 PTR_ERR(ssi_private->baudclk));
1357 
1358 	ssi_private->dma_params_tx.maxburst = ssi_private->dma_maxburst;
1359 	ssi_private->dma_params_rx.maxburst = ssi_private->dma_maxburst;
1360 	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1361 	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1362 
1363 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1364 	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1365 		ssi_private->use_dual_fifo = true;
1366 		/* When using dual fifo mode, we need to keep watermark
1367 		 * as even numbers due to dma script limitation.
1368 		 */
1369 		ssi_private->dma_params_tx.maxburst &= ~0x1;
1370 		ssi_private->dma_params_rx.maxburst &= ~0x1;
1371 	}
1372 
1373 	if (!ssi_private->use_dma) {
1374 
1375 		/*
1376 		 * Some boards use an incompatible codec. To get it
1377 		 * working, we are using imx-fiq-pcm-audio, that
1378 		 * can handle those codecs. DMA is not possible in this
1379 		 * situation.
1380 		 */
1381 
1382 		ssi_private->fiq_params.irq = ssi_private->irq;
1383 		ssi_private->fiq_params.base = iomem;
1384 		ssi_private->fiq_params.dma_params_rx =
1385 			&ssi_private->dma_params_rx;
1386 		ssi_private->fiq_params.dma_params_tx =
1387 			&ssi_private->dma_params_tx;
1388 
1389 		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1390 		if (ret)
1391 			goto error_pcm;
1392 	} else {
1393 		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1394 		if (ret)
1395 			goto error_pcm;
1396 	}
1397 
1398 	return 0;
1399 
1400 error_pcm:
1401 
1402 	if (!ssi_private->has_ipg_clk_name)
1403 		clk_disable_unprepare(ssi_private->clk);
1404 	return ret;
1405 }
1406 
1407 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1408 		struct fsl_ssi_private *ssi_private)
1409 {
1410 	if (!ssi_private->use_dma)
1411 		imx_pcm_fiq_exit(pdev);
1412 	if (!ssi_private->has_ipg_clk_name)
1413 		clk_disable_unprepare(ssi_private->clk);
1414 }
1415 
1416 static int fsl_ssi_probe(struct platform_device *pdev)
1417 {
1418 	struct fsl_ssi_private *ssi_private;
1419 	int ret = 0;
1420 	struct device_node *np = pdev->dev.of_node;
1421 	const struct of_device_id *of_id;
1422 	const char *p, *sprop;
1423 	const uint32_t *iprop;
1424 	struct resource *res;
1425 	void __iomem *iomem;
1426 	char name[64];
1427 	struct regmap_config regconfig = fsl_ssi_regconfig;
1428 
1429 	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1430 	if (!of_id || !of_id->data)
1431 		return -EINVAL;
1432 
1433 	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1434 			GFP_KERNEL);
1435 	if (!ssi_private)
1436 		return -ENOMEM;
1437 
1438 	ssi_private->soc = of_id->data;
1439 	ssi_private->dev = &pdev->dev;
1440 
1441 	sprop = of_get_property(np, "fsl,mode", NULL);
1442 	if (sprop) {
1443 		if (!strcmp(sprop, "ac97-slave"))
1444 			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1445 	}
1446 
1447 	ssi_private->use_dma = !of_property_read_bool(np,
1448 			"fsl,fiq-stream-filter");
1449 
1450 	if (fsl_ssi_is_ac97(ssi_private)) {
1451 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1452 				sizeof(fsl_ssi_ac97_dai));
1453 
1454 		fsl_ac97_data = ssi_private;
1455 
1456 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1457 		if (ret) {
1458 			dev_err(&pdev->dev, "could not set AC'97 ops\n");
1459 			return ret;
1460 		}
1461 	} else {
1462 		/* Initialize this copy of the CPU DAI driver structure */
1463 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1464 		       sizeof(fsl_ssi_dai_template));
1465 	}
1466 	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1467 
1468 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1469 	iomem = devm_ioremap_resource(&pdev->dev, res);
1470 	if (IS_ERR(iomem))
1471 		return PTR_ERR(iomem);
1472 	ssi_private->ssi_phys = res->start;
1473 
1474 	if (ssi_private->soc->imx21regs) {
1475 		/*
1476 		 * According to datasheet imx21-class SSI
1477 		 * don't have SACC{ST,EN,DIS} regs.
1478 		 */
1479 		regconfig.max_register = CCSR_SSI_SRMSK;
1480 		regconfig.num_reg_defaults_raw =
1481 			CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
1482 	}
1483 
1484 	ret = of_property_match_string(np, "clock-names", "ipg");
1485 	if (ret < 0) {
1486 		ssi_private->has_ipg_clk_name = false;
1487 		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1488 			&regconfig);
1489 	} else {
1490 		ssi_private->has_ipg_clk_name = true;
1491 		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1492 			"ipg", iomem, &regconfig);
1493 	}
1494 	if (IS_ERR(ssi_private->regs)) {
1495 		dev_err(&pdev->dev, "Failed to init register map\n");
1496 		return PTR_ERR(ssi_private->regs);
1497 	}
1498 
1499 	ssi_private->irq = platform_get_irq(pdev, 0);
1500 	if (ssi_private->irq < 0) {
1501 		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1502 		return ssi_private->irq;
1503 	}
1504 
1505 	/* Are the RX and the TX clocks locked? */
1506 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1507 		if (!fsl_ssi_is_ac97(ssi_private))
1508 			ssi_private->cpu_dai_drv.symmetric_rates = 1;
1509 
1510 		ssi_private->cpu_dai_drv.symmetric_channels = 1;
1511 		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1512 	}
1513 
1514 	/* Determine the FIFO depth. */
1515 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1516 	if (iprop)
1517 		ssi_private->fifo_depth = be32_to_cpup(iprop);
1518 	else
1519                 /* Older 8610 DTs didn't have the fifo-depth property */
1520 		ssi_private->fifo_depth = 8;
1521 
1522 	/*
1523 	 * Set the watermark for transmit FIFO 0 and receive FIFO 0. We don't
1524 	 * use FIFO 1 but set the watermark appropriately nontheless.
1525 	 * We program the transmit water to signal a DMA transfer
1526 	 * if there are N elements left in the FIFO. For chips with 15-deep
1527 	 * FIFOs, set watermark to 8.  This allows the SSI to operate at a
1528 	 * high data rate without channel slipping. Behavior is unchanged
1529 	 * for the older chips with a fifo depth of only 8.  A value of 4
1530 	 * might be appropriate for the older chips, but is left at
1531 	 * fifo_depth-2 until sombody has a chance to test.
1532 	 *
1533 	 * We set the watermark on the same level as the DMA burstsize.  For
1534 	 * fiq it is probably better to use the biggest possible watermark
1535 	 * size.
1536 	 */
1537 	switch (ssi_private->fifo_depth) {
1538 	case 15:
1539 		/*
1540 		 * 2 samples is not enough when running at high data
1541 		 * rates (like 48kHz @ 16 bits/channel, 16 channels)
1542 		 * 8 seems to split things evenly and leave enough time
1543 		 * for the DMA to fill the FIFO before it's over/under
1544 		 * run.
1545 		 */
1546 		ssi_private->fifo_watermark = 8;
1547 		ssi_private->dma_maxburst = 8;
1548 		break;
1549 	case 8:
1550 	default:
1551 		/*
1552 		 * maintain old behavior for older chips.
1553 		 * Keeping it the same because I don't have an older
1554 		 * board to test with.
1555 		 * I suspect this could be changed to be something to
1556 		 * leave some more space in the fifo.
1557 		 */
1558 		ssi_private->fifo_watermark = ssi_private->fifo_depth - 2;
1559 		ssi_private->dma_maxburst = ssi_private->fifo_depth - 2;
1560 		break;
1561 	}
1562 
1563 	dev_set_drvdata(&pdev->dev, ssi_private);
1564 
1565 	if (ssi_private->soc->imx) {
1566 		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1567 		if (ret)
1568 			return ret;
1569 	}
1570 
1571 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1572 					      &ssi_private->cpu_dai_drv, 1);
1573 	if (ret) {
1574 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1575 		goto error_asoc_register;
1576 	}
1577 
1578 	if (ssi_private->use_dma) {
1579 		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1580 					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1581 					ssi_private);
1582 		if (ret < 0) {
1583 			dev_err(&pdev->dev, "could not claim irq %u\n",
1584 					ssi_private->irq);
1585 			goto error_asoc_register;
1586 		}
1587 	}
1588 
1589 	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1590 	if (ret)
1591 		goto error_asoc_register;
1592 
1593 	/*
1594 	 * If codec-handle property is missing from SSI node, we assume
1595 	 * that the machine driver uses new binding which does not require
1596 	 * SSI driver to trigger machine driver's probe.
1597 	 */
1598 	if (!of_get_property(np, "codec-handle", NULL))
1599 		goto done;
1600 
1601 	/* Trigger the machine driver's probe function.  The platform driver
1602 	 * name of the machine driver is taken from /compatible property of the
1603 	 * device tree.  We also pass the address of the CPU DAI driver
1604 	 * structure.
1605 	 */
1606 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1607 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1608 	p = strrchr(sprop, ',');
1609 	if (p)
1610 		sprop = p + 1;
1611 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1612 	make_lowercase(name);
1613 
1614 	ssi_private->pdev =
1615 		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1616 	if (IS_ERR(ssi_private->pdev)) {
1617 		ret = PTR_ERR(ssi_private->pdev);
1618 		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1619 		goto error_sound_card;
1620 	}
1621 
1622 done:
1623 	if (ssi_private->dai_fmt)
1624 		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1625 				     ssi_private->dai_fmt);
1626 
1627 	if (fsl_ssi_is_ac97(ssi_private)) {
1628 		u32 ssi_idx;
1629 
1630 		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1631 		if (ret) {
1632 			dev_err(&pdev->dev, "cannot get SSI index property\n");
1633 			goto error_sound_card;
1634 		}
1635 
1636 		ssi_private->pdev =
1637 			platform_device_register_data(NULL,
1638 					"ac97-codec", ssi_idx, NULL, 0);
1639 		if (IS_ERR(ssi_private->pdev)) {
1640 			ret = PTR_ERR(ssi_private->pdev);
1641 			dev_err(&pdev->dev,
1642 				"failed to register AC97 codec platform: %d\n",
1643 				ret);
1644 			goto error_sound_card;
1645 		}
1646 	}
1647 
1648 	return 0;
1649 
1650 error_sound_card:
1651 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1652 
1653 error_asoc_register:
1654 	if (ssi_private->soc->imx)
1655 		fsl_ssi_imx_clean(pdev, ssi_private);
1656 
1657 	return ret;
1658 }
1659 
1660 static int fsl_ssi_remove(struct platform_device *pdev)
1661 {
1662 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1663 
1664 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1665 
1666 	if (ssi_private->pdev)
1667 		platform_device_unregister(ssi_private->pdev);
1668 
1669 	if (ssi_private->soc->imx)
1670 		fsl_ssi_imx_clean(pdev, ssi_private);
1671 
1672 	if (fsl_ssi_is_ac97(ssi_private))
1673 		snd_soc_set_ac97_ops(NULL);
1674 
1675 	return 0;
1676 }
1677 
1678 #ifdef CONFIG_PM_SLEEP
1679 static int fsl_ssi_suspend(struct device *dev)
1680 {
1681 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1682 	struct regmap *regs = ssi_private->regs;
1683 
1684 	regmap_read(regs, CCSR_SSI_SFCSR,
1685 			&ssi_private->regcache_sfcsr);
1686 	regmap_read(regs, CCSR_SSI_SACNT,
1687 			&ssi_private->regcache_sacnt);
1688 
1689 	regcache_cache_only(regs, true);
1690 	regcache_mark_dirty(regs);
1691 
1692 	return 0;
1693 }
1694 
1695 static int fsl_ssi_resume(struct device *dev)
1696 {
1697 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1698 	struct regmap *regs = ssi_private->regs;
1699 
1700 	regcache_cache_only(regs, false);
1701 
1702 	regmap_update_bits(regs, CCSR_SSI_SFCSR,
1703 			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
1704 			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1705 			ssi_private->regcache_sfcsr);
1706 	regmap_write(regs, CCSR_SSI_SACNT,
1707 			ssi_private->regcache_sacnt);
1708 
1709 	return regcache_sync(regs);
1710 }
1711 #endif /* CONFIG_PM_SLEEP */
1712 
1713 static const struct dev_pm_ops fsl_ssi_pm = {
1714 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1715 };
1716 
1717 static struct platform_driver fsl_ssi_driver = {
1718 	.driver = {
1719 		.name = "fsl-ssi-dai",
1720 		.of_match_table = fsl_ssi_ids,
1721 		.pm = &fsl_ssi_pm,
1722 	},
1723 	.probe = fsl_ssi_probe,
1724 	.remove = fsl_ssi_remove,
1725 };
1726 
1727 module_platform_driver(fsl_ssi_driver);
1728 
1729 MODULE_ALIAS("platform:fsl-ssi-dai");
1730 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1731 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1732 MODULE_LICENSE("GPL v2");
1733