1 /* 2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2010 Freescale Semiconductor, Inc. 7 * 8 * This file is licensed under the terms of the GNU General Public License 9 * version 2. This program is licensed "as is" without any warranty of any 10 * kind, whether express or implied. 11 * 12 * 13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards: 14 * 15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most 16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only 17 * one FIFO which combines all valid receive slots. We cannot even select 18 * which slots we want to receive. The WM9712 with which this driver 19 * was developed with always sends GPIO status data in slot 12 which 20 * we receive in our (PCM-) data stream. The only chance we have is to 21 * manually skip this data in the FIQ handler. With sampling rates different 22 * from 48000Hz not every frame has valid receive data, so the ratio 23 * between pcm data and GPIO status data changes. Our FIQ handler is not 24 * able to handle this, hence this driver only works with 48000Hz sampling 25 * rate. 26 * Reading and writing AC97 registers is another challenge. The core 27 * provides us status bits when the read register is updated with *another* 28 * value. When we read the same register two times (and the register still 29 * contains the same value) these status bits are not set. We work 30 * around this by not polling these bits but only wait a fixed delay. 31 */ 32 33 #include <linux/init.h> 34 #include <linux/io.h> 35 #include <linux/module.h> 36 #include <linux/interrupt.h> 37 #include <linux/clk.h> 38 #include <linux/device.h> 39 #include <linux/delay.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/of.h> 43 #include <linux/of_address.h> 44 #include <linux/of_irq.h> 45 #include <linux/of_platform.h> 46 47 #include <sound/core.h> 48 #include <sound/pcm.h> 49 #include <sound/pcm_params.h> 50 #include <sound/initval.h> 51 #include <sound/soc.h> 52 #include <sound/dmaengine_pcm.h> 53 54 #include "fsl_ssi.h" 55 #include "imx-pcm.h" 56 57 /** 58 * FSLSSI_I2S_RATES: sample rates supported by the I2S 59 * 60 * This driver currently only supports the SSI running in I2S slave mode, 61 * which means the codec determines the sample rate. Therefore, we tell 62 * ALSA that we support all rates and let the codec driver decide what rates 63 * are really supported. 64 */ 65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS 66 67 /** 68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI 69 * 70 * The SSI has a limitation in that the samples must be in the same byte 71 * order as the host CPU. This is because when multiple bytes are written 72 * to the STX register, the bytes and bits must be written in the same 73 * order. The STX is a shift register, so all the bits need to be aligned 74 * (bit-endianness must match byte-endianness). Processors typically write 75 * the bits within a byte in the same order that the bytes of a word are 76 * written in. So if the host CPU is big-endian, then only big-endian 77 * samples will be written to STX properly. 78 */ 79 #ifdef __BIG_ENDIAN 80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ 81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ 82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) 83 #else 84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ 85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ 86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) 87 #endif 88 89 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \ 90 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \ 91 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN) 92 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \ 93 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \ 94 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN) 95 96 enum fsl_ssi_type { 97 FSL_SSI_MCP8610, 98 FSL_SSI_MX21, 99 FSL_SSI_MX35, 100 FSL_SSI_MX51, 101 }; 102 103 struct fsl_ssi_reg_val { 104 u32 sier; 105 u32 srcr; 106 u32 stcr; 107 u32 scr; 108 }; 109 110 struct fsl_ssi_rxtx_reg_val { 111 struct fsl_ssi_reg_val rx; 112 struct fsl_ssi_reg_val tx; 113 }; 114 static const struct regmap_config fsl_ssi_regconfig = { 115 .max_register = CCSR_SSI_SACCDIS, 116 .reg_bits = 32, 117 .val_bits = 32, 118 .reg_stride = 4, 119 .val_format_endian = REGMAP_ENDIAN_NATIVE, 120 }; 121 122 struct fsl_ssi_soc_data { 123 bool imx; 124 bool offline_config; 125 u32 sisr_write_mask; 126 }; 127 128 /** 129 * fsl_ssi_private: per-SSI private data 130 * 131 * @reg: Pointer to the regmap registers 132 * @irq: IRQ of this SSI 133 * @cpu_dai_drv: CPU DAI driver for this device 134 * 135 * @dai_fmt: DAI configuration this device is currently used with 136 * @i2s_mode: i2s and network mode configuration of the device. Is used to 137 * switch between normal and i2s/network mode 138 * mode depending on the number of channels 139 * @use_dma: DMA is used or FIQ with stream filter 140 * @use_dual_fifo: DMA with support for both FIFOs used 141 * @fifo_deph: Depth of the SSI FIFOs 142 * @rxtx_reg_val: Specific register settings for receive/transmit configuration 143 * 144 * @clk: SSI clock 145 * @baudclk: SSI baud clock for master mode 146 * @baudclk_streams: Active streams that are using baudclk 147 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk 148 * 149 * @dma_params_tx: DMA transmit parameters 150 * @dma_params_rx: DMA receive parameters 151 * @ssi_phys: physical address of the SSI registers 152 * 153 * @fiq_params: FIQ stream filtering parameters 154 * 155 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card 156 * 157 * @dbg_stats: Debugging statistics 158 * 159 * @soc: SoC specifc data 160 */ 161 struct fsl_ssi_private { 162 struct regmap *regs; 163 int irq; 164 struct snd_soc_dai_driver cpu_dai_drv; 165 166 unsigned int dai_fmt; 167 u8 i2s_mode; 168 bool use_dma; 169 bool use_dual_fifo; 170 bool has_ipg_clk_name; 171 unsigned int fifo_depth; 172 struct fsl_ssi_rxtx_reg_val rxtx_reg_val; 173 174 struct clk *clk; 175 struct clk *baudclk; 176 unsigned int baudclk_streams; 177 unsigned int bitclk_freq; 178 179 /* DMA params */ 180 struct snd_dmaengine_dai_dma_data dma_params_tx; 181 struct snd_dmaengine_dai_dma_data dma_params_rx; 182 dma_addr_t ssi_phys; 183 184 /* params for non-dma FIQ stream filtered mode */ 185 struct imx_pcm_fiq_params fiq_params; 186 187 /* Used when using fsl-ssi as sound-card. This is only used by ppc and 188 * should be replaced with simple-sound-card. */ 189 struct platform_device *pdev; 190 191 struct fsl_ssi_dbg dbg_stats; 192 193 const struct fsl_ssi_soc_data *soc; 194 }; 195 196 /* 197 * imx51 and later SoCs have a slightly different IP that allows the 198 * SSI configuration while the SSI unit is running. 199 * 200 * More important, it is necessary on those SoCs to configure the 201 * sperate TX/RX DMA bits just before starting the stream 202 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi 203 * sends any DMA requests to the SDMA unit, otherwise it is not defined 204 * how the SDMA unit handles the DMA request. 205 * 206 * SDMA units are present on devices starting at imx35 but the imx35 207 * reference manual states that the DMA bits should not be changed 208 * while the SSI unit is running (SSIEN). So we support the necessary 209 * online configuration of fsl-ssi starting at imx51. 210 */ 211 212 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = { 213 .imx = false, 214 .offline_config = true, 215 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC | 216 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 | 217 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1, 218 }; 219 220 static struct fsl_ssi_soc_data fsl_ssi_imx21 = { 221 .imx = true, 222 .offline_config = true, 223 .sisr_write_mask = 0, 224 }; 225 226 static struct fsl_ssi_soc_data fsl_ssi_imx35 = { 227 .imx = true, 228 .offline_config = true, 229 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC | 230 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 | 231 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1, 232 }; 233 234 static struct fsl_ssi_soc_data fsl_ssi_imx51 = { 235 .imx = true, 236 .offline_config = false, 237 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 | 238 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1, 239 }; 240 241 static const struct of_device_id fsl_ssi_ids[] = { 242 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 }, 243 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 }, 244 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 }, 245 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 }, 246 {} 247 }; 248 MODULE_DEVICE_TABLE(of, fsl_ssi_ids); 249 250 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private) 251 { 252 return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97); 253 } 254 255 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private) 256 { 257 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) == 258 SND_SOC_DAIFMT_CBS_CFS; 259 } 260 261 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private) 262 { 263 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) == 264 SND_SOC_DAIFMT_CBM_CFS; 265 } 266 /** 267 * fsl_ssi_isr: SSI interrupt handler 268 * 269 * Although it's possible to use the interrupt handler to send and receive 270 * data to/from the SSI, we use the DMA instead. Programming is more 271 * complicated, but the performance is much better. 272 * 273 * This interrupt handler is used only to gather statistics. 274 * 275 * @irq: IRQ of the SSI device 276 * @dev_id: pointer to the ssi_private structure for this SSI device 277 */ 278 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) 279 { 280 struct fsl_ssi_private *ssi_private = dev_id; 281 struct regmap *regs = ssi_private->regs; 282 __be32 sisr; 283 __be32 sisr2; 284 285 /* We got an interrupt, so read the status register to see what we 286 were interrupted for. We mask it with the Interrupt Enable register 287 so that we only check for events that we're interested in. 288 */ 289 regmap_read(regs, CCSR_SSI_SISR, &sisr); 290 291 sisr2 = sisr & ssi_private->soc->sisr_write_mask; 292 /* Clear the bits that we set */ 293 if (sisr2) 294 regmap_write(regs, CCSR_SSI_SISR, sisr2); 295 296 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr); 297 298 return IRQ_HANDLED; 299 } 300 301 /* 302 * Enable/Disable all rx/tx config flags at once. 303 */ 304 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private, 305 bool enable) 306 { 307 struct regmap *regs = ssi_private->regs; 308 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val; 309 310 if (enable) { 311 regmap_update_bits(regs, CCSR_SSI_SIER, 312 vals->rx.sier | vals->tx.sier, 313 vals->rx.sier | vals->tx.sier); 314 regmap_update_bits(regs, CCSR_SSI_SRCR, 315 vals->rx.srcr | vals->tx.srcr, 316 vals->rx.srcr | vals->tx.srcr); 317 regmap_update_bits(regs, CCSR_SSI_STCR, 318 vals->rx.stcr | vals->tx.stcr, 319 vals->rx.stcr | vals->tx.stcr); 320 } else { 321 regmap_update_bits(regs, CCSR_SSI_SRCR, 322 vals->rx.srcr | vals->tx.srcr, 0); 323 regmap_update_bits(regs, CCSR_SSI_STCR, 324 vals->rx.stcr | vals->tx.stcr, 0); 325 regmap_update_bits(regs, CCSR_SSI_SIER, 326 vals->rx.sier | vals->tx.sier, 0); 327 } 328 } 329 330 /* 331 * Calculate the bits that have to be disabled for the current stream that is 332 * getting disabled. This keeps the bits enabled that are necessary for the 333 * second stream to work if 'stream_active' is true. 334 * 335 * Detailed calculation: 336 * These are the values that need to be active after disabling. For non-active 337 * second stream, this is 0: 338 * vals_stream * !!stream_active 339 * 340 * The following computes the overall differences between the setup for the 341 * to-disable stream and the active stream, a simple XOR: 342 * vals_disable ^ (vals_stream * !!(stream_active)) 343 * 344 * The full expression adds a mask on all values we care about 345 */ 346 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \ 347 ((vals_disable) & \ 348 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active)))) 349 350 /* 351 * Enable/Disable a ssi configuration. You have to pass either 352 * ssi_private->rxtx_reg_val.rx or tx as vals parameter. 353 */ 354 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable, 355 struct fsl_ssi_reg_val *vals) 356 { 357 struct regmap *regs = ssi_private->regs; 358 struct fsl_ssi_reg_val *avals; 359 int nr_active_streams; 360 u32 scr_val; 361 int keep_active; 362 363 regmap_read(regs, CCSR_SSI_SCR, &scr_val); 364 365 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) + 366 !!(scr_val & CCSR_SSI_SCR_RE); 367 368 if (nr_active_streams - 1 > 0) 369 keep_active = 1; 370 else 371 keep_active = 0; 372 373 /* Find the other direction values rx or tx which we do not want to 374 * modify */ 375 if (&ssi_private->rxtx_reg_val.rx == vals) 376 avals = &ssi_private->rxtx_reg_val.tx; 377 else 378 avals = &ssi_private->rxtx_reg_val.rx; 379 380 /* If vals should be disabled, start with disabling the unit */ 381 if (!enable) { 382 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr, 383 keep_active); 384 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0); 385 } 386 387 /* 388 * We are running on a SoC which does not support online SSI 389 * reconfiguration, so we have to enable all necessary flags at once 390 * even if we do not use them later (capture and playback configuration) 391 */ 392 if (ssi_private->soc->offline_config) { 393 if ((enable && !nr_active_streams) || 394 (!enable && !keep_active)) 395 fsl_ssi_rxtx_config(ssi_private, enable); 396 397 goto config_done; 398 } 399 400 /* 401 * Configure single direction units while the SSI unit is running 402 * (online configuration) 403 */ 404 if (enable) { 405 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier); 406 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr); 407 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr); 408 } else { 409 u32 sier; 410 u32 srcr; 411 u32 stcr; 412 413 /* 414 * Disabling the necessary flags for one of rx/tx while the 415 * other stream is active is a little bit more difficult. We 416 * have to disable only those flags that differ between both 417 * streams (rx XOR tx) and that are set in the stream that is 418 * disabled now. Otherwise we could alter flags of the other 419 * stream 420 */ 421 422 /* These assignments are simply vals without bits set in avals*/ 423 sier = fsl_ssi_disable_val(vals->sier, avals->sier, 424 keep_active); 425 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr, 426 keep_active); 427 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr, 428 keep_active); 429 430 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0); 431 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0); 432 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0); 433 } 434 435 config_done: 436 /* Enabling of subunits is done after configuration */ 437 if (enable) 438 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr); 439 } 440 441 442 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable) 443 { 444 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx); 445 } 446 447 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable) 448 { 449 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx); 450 } 451 452 /* 453 * Setup rx/tx register values used to enable/disable the streams. These will 454 * be used later in fsl_ssi_config to setup the streams without the need to 455 * check for all different SSI modes. 456 */ 457 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private) 458 { 459 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val; 460 461 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN; 462 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0; 463 reg->rx.scr = 0; 464 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN; 465 reg->tx.stcr = CCSR_SSI_STCR_TFEN0; 466 reg->tx.scr = 0; 467 468 if (!fsl_ssi_is_ac97(ssi_private)) { 469 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE; 470 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN; 471 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE; 472 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN; 473 } 474 475 if (ssi_private->use_dma) { 476 reg->rx.sier |= CCSR_SSI_SIER_RDMAE; 477 reg->tx.sier |= CCSR_SSI_SIER_TDMAE; 478 } else { 479 reg->rx.sier |= CCSR_SSI_SIER_RIE; 480 reg->tx.sier |= CCSR_SSI_SIER_TIE; 481 } 482 483 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS; 484 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS; 485 } 486 487 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private) 488 { 489 struct regmap *regs = ssi_private->regs; 490 491 /* 492 * Setup the clock control register 493 */ 494 regmap_write(regs, CCSR_SSI_STCCR, 495 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13)); 496 regmap_write(regs, CCSR_SSI_SRCCR, 497 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13)); 498 499 /* 500 * Enable AC97 mode and startup the SSI 501 */ 502 regmap_write(regs, CCSR_SSI_SACNT, 503 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV); 504 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff); 505 regmap_write(regs, CCSR_SSI_SACCEN, 0x300); 506 507 /* 508 * Enable SSI, Transmit and Receive. AC97 has to communicate with the 509 * codec before a stream is started. 510 */ 511 regmap_update_bits(regs, CCSR_SSI_SCR, 512 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE, 513 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE); 514 515 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3)); 516 } 517 518 /** 519 * fsl_ssi_startup: create a new substream 520 * 521 * This is the first function called when a stream is opened. 522 * 523 * If this is the first stream open, then grab the IRQ and program most of 524 * the SSI registers. 525 */ 526 static int fsl_ssi_startup(struct snd_pcm_substream *substream, 527 struct snd_soc_dai *dai) 528 { 529 struct snd_soc_pcm_runtime *rtd = substream->private_data; 530 struct fsl_ssi_private *ssi_private = 531 snd_soc_dai_get_drvdata(rtd->cpu_dai); 532 int ret; 533 534 ret = clk_prepare_enable(ssi_private->clk); 535 if (ret) 536 return ret; 537 538 /* When using dual fifo mode, it is safer to ensure an even period 539 * size. If appearing to an odd number while DMA always starts its 540 * task from fifo0, fifo1 would be neglected at the end of each 541 * period. But SSI would still access fifo1 with an invalid data. 542 */ 543 if (ssi_private->use_dual_fifo) 544 snd_pcm_hw_constraint_step(substream->runtime, 0, 545 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); 546 547 return 0; 548 } 549 550 /** 551 * fsl_ssi_shutdown: shutdown the SSI 552 * 553 */ 554 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream, 555 struct snd_soc_dai *dai) 556 { 557 struct snd_soc_pcm_runtime *rtd = substream->private_data; 558 struct fsl_ssi_private *ssi_private = 559 snd_soc_dai_get_drvdata(rtd->cpu_dai); 560 561 clk_disable_unprepare(ssi_private->clk); 562 563 } 564 565 /** 566 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock 567 * 568 * Note: This function can be only called when using SSI as DAI master 569 * 570 * Quick instruction for parameters: 571 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels 572 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK. 573 */ 574 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream, 575 struct snd_soc_dai *cpu_dai, 576 struct snd_pcm_hw_params *hw_params) 577 { 578 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 579 struct regmap *regs = ssi_private->regs; 580 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret; 581 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i; 582 unsigned long clkrate, baudrate, tmprate; 583 u64 sub, savesub = 100000; 584 unsigned int freq; 585 bool baudclk_is_used; 586 587 /* Prefer the explicitly set bitclock frequency */ 588 if (ssi_private->bitclk_freq) 589 freq = ssi_private->bitclk_freq; 590 else 591 freq = params_channels(hw_params) * 32 * params_rate(hw_params); 592 593 /* Don't apply it to any non-baudclk circumstance */ 594 if (IS_ERR(ssi_private->baudclk)) 595 return -EINVAL; 596 597 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream)); 598 599 /* It should be already enough to divide clock by setting pm alone */ 600 psr = 0; 601 div2 = 0; 602 603 factor = (div2 + 1) * (7 * psr + 1) * 2; 604 605 for (i = 0; i < 255; i++) { 606 /* The bclk rate must be smaller than 1/5 sysclk rate */ 607 if (factor * (i + 1) < 5) 608 continue; 609 610 tmprate = freq * factor * (i + 2); 611 612 if (baudclk_is_used) 613 clkrate = clk_get_rate(ssi_private->baudclk); 614 else 615 clkrate = clk_round_rate(ssi_private->baudclk, tmprate); 616 617 clkrate /= factor; 618 afreq = clkrate / (i + 1); 619 620 if (freq == afreq) 621 sub = 0; 622 else if (freq / afreq == 1) 623 sub = freq - afreq; 624 else if (afreq / freq == 1) 625 sub = afreq - freq; 626 else 627 continue; 628 629 /* Calculate the fraction */ 630 sub *= 100000; 631 do_div(sub, freq); 632 633 if (sub < savesub) { 634 baudrate = tmprate; 635 savesub = sub; 636 pm = i; 637 } 638 639 /* We are lucky */ 640 if (savesub == 0) 641 break; 642 } 643 644 /* No proper pm found if it is still remaining the initial value */ 645 if (pm == 999) { 646 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n"); 647 return -EINVAL; 648 } 649 650 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) | 651 (psr ? CCSR_SSI_SxCCR_PSR : 0); 652 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | 653 CCSR_SSI_SxCCR_PSR; 654 655 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous) 656 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr); 657 else 658 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr); 659 660 if (!baudclk_is_used) { 661 ret = clk_set_rate(ssi_private->baudclk, baudrate); 662 if (ret) { 663 dev_err(cpu_dai->dev, "failed to set baudclk rate\n"); 664 return -EINVAL; 665 } 666 } 667 668 return 0; 669 } 670 671 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai, 672 int clk_id, unsigned int freq, int dir) 673 { 674 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 675 676 ssi_private->bitclk_freq = freq; 677 678 return 0; 679 } 680 681 /** 682 * fsl_ssi_hw_params - program the sample size 683 * 684 * Most of the SSI registers have been programmed in the startup function, 685 * but the word length must be programmed here. Unfortunately, programming 686 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can 687 * cause a problem with supporting simultaneous playback and capture. If 688 * the SSI is already playing a stream, then that stream may be temporarily 689 * stopped when you start capture. 690 * 691 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the 692 * clock master. 693 */ 694 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, 695 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai) 696 { 697 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 698 struct regmap *regs = ssi_private->regs; 699 unsigned int channels = params_channels(hw_params); 700 unsigned int sample_size = 701 snd_pcm_format_width(params_format(hw_params)); 702 u32 wl = CCSR_SSI_SxCCR_WL(sample_size); 703 int ret; 704 u32 scr_val; 705 int enabled; 706 707 regmap_read(regs, CCSR_SSI_SCR, &scr_val); 708 enabled = scr_val & CCSR_SSI_SCR_SSIEN; 709 710 /* 711 * If we're in synchronous mode, and the SSI is already enabled, 712 * then STCCR is already set properly. 713 */ 714 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates) 715 return 0; 716 717 if (fsl_ssi_is_i2s_master(ssi_private)) { 718 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params); 719 if (ret) 720 return ret; 721 722 /* Do not enable the clock if it is already enabled */ 723 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) { 724 ret = clk_prepare_enable(ssi_private->baudclk); 725 if (ret) 726 return ret; 727 728 ssi_private->baudclk_streams |= BIT(substream->stream); 729 } 730 } 731 732 if (!fsl_ssi_is_ac97(ssi_private)) { 733 u8 i2smode; 734 /* 735 * Switch to normal net mode in order to have a frame sync 736 * signal every 32 bits instead of 16 bits 737 */ 738 if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16) 739 i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL | 740 CCSR_SSI_SCR_NET; 741 else 742 i2smode = ssi_private->i2s_mode; 743 744 regmap_update_bits(regs, CCSR_SSI_SCR, 745 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK, 746 channels == 1 ? 0 : i2smode); 747 } 748 749 /* 750 * FIXME: The documentation says that SxCCR[WL] should not be 751 * modified while the SSI is enabled. The only time this can 752 * happen is if we're trying to do simultaneous playback and 753 * capture in asynchronous mode. Unfortunately, I have been enable 754 * to get that to work at all on the P1022DS. Therefore, we don't 755 * bother to disable/enable the SSI when setting SxCCR[WL], because 756 * the SSI will stop anyway. Maybe one day, this will get fixed. 757 */ 758 759 /* In synchronous mode, the SSI uses STCCR for capture */ 760 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) || 761 ssi_private->cpu_dai_drv.symmetric_rates) 762 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK, 763 wl); 764 else 765 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK, 766 wl); 767 768 return 0; 769 } 770 771 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream, 772 struct snd_soc_dai *cpu_dai) 773 { 774 struct snd_soc_pcm_runtime *rtd = substream->private_data; 775 struct fsl_ssi_private *ssi_private = 776 snd_soc_dai_get_drvdata(rtd->cpu_dai); 777 778 if (fsl_ssi_is_i2s_master(ssi_private) && 779 ssi_private->baudclk_streams & BIT(substream->stream)) { 780 clk_disable_unprepare(ssi_private->baudclk); 781 ssi_private->baudclk_streams &= ~BIT(substream->stream); 782 } 783 784 return 0; 785 } 786 787 static int _fsl_ssi_set_dai_fmt(struct device *dev, 788 struct fsl_ssi_private *ssi_private, 789 unsigned int fmt) 790 { 791 struct regmap *regs = ssi_private->regs; 792 u32 strcr = 0, stcr, srcr, scr, mask; 793 u8 wm; 794 795 ssi_private->dai_fmt = fmt; 796 797 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) { 798 dev_err(dev, "baudclk is missing which is necessary for master mode\n"); 799 return -EINVAL; 800 } 801 802 fsl_ssi_setup_reg_vals(ssi_private); 803 804 regmap_read(regs, CCSR_SSI_SCR, &scr); 805 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK); 806 scr |= CCSR_SSI_SCR_SYNC_TX_FS; 807 808 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR | 809 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL | 810 CCSR_SSI_STCR_TEFS; 811 regmap_read(regs, CCSR_SSI_STCR, &stcr); 812 regmap_read(regs, CCSR_SSI_SRCR, &srcr); 813 stcr &= ~mask; 814 srcr &= ~mask; 815 816 ssi_private->i2s_mode = CCSR_SSI_SCR_NET; 817 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 818 case SND_SOC_DAIFMT_I2S: 819 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 820 case SND_SOC_DAIFMT_CBM_CFS: 821 case SND_SOC_DAIFMT_CBS_CFS: 822 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER; 823 regmap_update_bits(regs, CCSR_SSI_STCCR, 824 CCSR_SSI_SxCCR_DC_MASK, 825 CCSR_SSI_SxCCR_DC(2)); 826 regmap_update_bits(regs, CCSR_SSI_SRCCR, 827 CCSR_SSI_SxCCR_DC_MASK, 828 CCSR_SSI_SxCCR_DC(2)); 829 break; 830 case SND_SOC_DAIFMT_CBM_CFM: 831 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE; 832 break; 833 default: 834 return -EINVAL; 835 } 836 837 /* Data on rising edge of bclk, frame low, 1clk before data */ 838 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP | 839 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS; 840 break; 841 case SND_SOC_DAIFMT_LEFT_J: 842 /* Data on rising edge of bclk, frame high */ 843 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP; 844 break; 845 case SND_SOC_DAIFMT_DSP_A: 846 /* Data on rising edge of bclk, frame high, 1clk before data */ 847 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP | 848 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS; 849 break; 850 case SND_SOC_DAIFMT_DSP_B: 851 /* Data on rising edge of bclk, frame high */ 852 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP | 853 CCSR_SSI_STCR_TXBIT0; 854 break; 855 case SND_SOC_DAIFMT_AC97: 856 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL; 857 break; 858 default: 859 return -EINVAL; 860 } 861 scr |= ssi_private->i2s_mode; 862 863 /* DAI clock inversion */ 864 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 865 case SND_SOC_DAIFMT_NB_NF: 866 /* Nothing to do for both normal cases */ 867 break; 868 case SND_SOC_DAIFMT_IB_NF: 869 /* Invert bit clock */ 870 strcr ^= CCSR_SSI_STCR_TSCKP; 871 break; 872 case SND_SOC_DAIFMT_NB_IF: 873 /* Invert frame clock */ 874 strcr ^= CCSR_SSI_STCR_TFSI; 875 break; 876 case SND_SOC_DAIFMT_IB_IF: 877 /* Invert both clocks */ 878 strcr ^= CCSR_SSI_STCR_TSCKP; 879 strcr ^= CCSR_SSI_STCR_TFSI; 880 break; 881 default: 882 return -EINVAL; 883 } 884 885 /* DAI clock master masks */ 886 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 887 case SND_SOC_DAIFMT_CBS_CFS: 888 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR; 889 scr |= CCSR_SSI_SCR_SYS_CLK_EN; 890 break; 891 case SND_SOC_DAIFMT_CBM_CFM: 892 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN; 893 break; 894 case SND_SOC_DAIFMT_CBM_CFS: 895 strcr &= ~CCSR_SSI_STCR_TXDIR; 896 strcr |= CCSR_SSI_STCR_TFDIR; 897 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN; 898 break; 899 default: 900 return -EINVAL; 901 } 902 903 stcr |= strcr; 904 srcr |= strcr; 905 906 if (ssi_private->cpu_dai_drv.symmetric_rates) { 907 /* Need to clear RXDIR when using SYNC mode */ 908 srcr &= ~CCSR_SSI_SRCR_RXDIR; 909 scr |= CCSR_SSI_SCR_SYN; 910 } 911 912 regmap_write(regs, CCSR_SSI_STCR, stcr); 913 regmap_write(regs, CCSR_SSI_SRCR, srcr); 914 regmap_write(regs, CCSR_SSI_SCR, scr); 915 916 /* 917 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't 918 * use FIFO 1. We program the transmit water to signal a DMA transfer 919 * if there are only two (or fewer) elements left in the FIFO. Two 920 * elements equals one frame (left channel, right channel). This value, 921 * however, depends on the depth of the transmit buffer. 922 * 923 * We set the watermark on the same level as the DMA burstsize. For 924 * fiq it is probably better to use the biggest possible watermark 925 * size. 926 */ 927 if (ssi_private->use_dma) 928 wm = ssi_private->fifo_depth - 2; 929 else 930 wm = ssi_private->fifo_depth; 931 932 regmap_write(regs, CCSR_SSI_SFCSR, 933 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) | 934 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm)); 935 936 if (ssi_private->use_dual_fifo) { 937 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1, 938 CCSR_SSI_SRCR_RFEN1); 939 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1, 940 CCSR_SSI_STCR_TFEN1); 941 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN, 942 CCSR_SSI_SCR_TCH_EN); 943 } 944 945 if (fmt & SND_SOC_DAIFMT_AC97) 946 fsl_ssi_setup_ac97(ssi_private); 947 948 return 0; 949 950 } 951 952 /** 953 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format. 954 */ 955 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) 956 { 957 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 958 959 return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt); 960 } 961 962 /** 963 * fsl_ssi_set_dai_tdm_slot - set TDM slot number 964 * 965 * Note: This function can be only called when using SSI as DAI master 966 */ 967 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, 968 u32 rx_mask, int slots, int slot_width) 969 { 970 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai); 971 struct regmap *regs = ssi_private->regs; 972 u32 val; 973 974 /* The slot number should be >= 2 if using Network mode or I2S mode */ 975 regmap_read(regs, CCSR_SSI_SCR, &val); 976 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET; 977 if (val && slots < 2) { 978 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n"); 979 return -EINVAL; 980 } 981 982 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK, 983 CCSR_SSI_SxCCR_DC(slots)); 984 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK, 985 CCSR_SSI_SxCCR_DC(slots)); 986 987 /* The register SxMSKs needs SSI to provide essential clock due to 988 * hardware design. So we here temporarily enable SSI to set them. 989 */ 990 regmap_read(regs, CCSR_SSI_SCR, &val); 991 val &= CCSR_SSI_SCR_SSIEN; 992 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, 993 CCSR_SSI_SCR_SSIEN); 994 995 regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask); 996 regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask); 997 998 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val); 999 1000 return 0; 1001 } 1002 1003 /** 1004 * fsl_ssi_trigger: start and stop the DMA transfer. 1005 * 1006 * This function is called by ALSA to start, stop, pause, and resume the DMA 1007 * transfer of data. 1008 * 1009 * The DMA channel is in external master start and pause mode, which 1010 * means the SSI completely controls the flow of data. 1011 */ 1012 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, 1013 struct snd_soc_dai *dai) 1014 { 1015 struct snd_soc_pcm_runtime *rtd = substream->private_data; 1016 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai); 1017 struct regmap *regs = ssi_private->regs; 1018 1019 switch (cmd) { 1020 case SNDRV_PCM_TRIGGER_START: 1021 case SNDRV_PCM_TRIGGER_RESUME: 1022 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1023 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 1024 fsl_ssi_tx_config(ssi_private, true); 1025 else 1026 fsl_ssi_rx_config(ssi_private, true); 1027 break; 1028 1029 case SNDRV_PCM_TRIGGER_STOP: 1030 case SNDRV_PCM_TRIGGER_SUSPEND: 1031 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1032 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 1033 fsl_ssi_tx_config(ssi_private, false); 1034 else 1035 fsl_ssi_rx_config(ssi_private, false); 1036 break; 1037 1038 default: 1039 return -EINVAL; 1040 } 1041 1042 if (fsl_ssi_is_ac97(ssi_private)) { 1043 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 1044 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR); 1045 else 1046 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR); 1047 } 1048 1049 return 0; 1050 } 1051 1052 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai) 1053 { 1054 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai); 1055 1056 if (ssi_private->soc->imx && ssi_private->use_dma) { 1057 dai->playback_dma_data = &ssi_private->dma_params_tx; 1058 dai->capture_dma_data = &ssi_private->dma_params_rx; 1059 } 1060 1061 return 0; 1062 } 1063 1064 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = { 1065 .startup = fsl_ssi_startup, 1066 .shutdown = fsl_ssi_shutdown, 1067 .hw_params = fsl_ssi_hw_params, 1068 .hw_free = fsl_ssi_hw_free, 1069 .set_fmt = fsl_ssi_set_dai_fmt, 1070 .set_sysclk = fsl_ssi_set_dai_sysclk, 1071 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot, 1072 .trigger = fsl_ssi_trigger, 1073 }; 1074 1075 /* Template for the CPU dai driver structure */ 1076 static struct snd_soc_dai_driver fsl_ssi_dai_template = { 1077 .probe = fsl_ssi_dai_probe, 1078 .playback = { 1079 .stream_name = "CPU-Playback", 1080 .channels_min = 1, 1081 .channels_max = 2, 1082 .rates = FSLSSI_I2S_RATES, 1083 .formats = FSLSSI_I2S_FORMATS, 1084 }, 1085 .capture = { 1086 .stream_name = "CPU-Capture", 1087 .channels_min = 1, 1088 .channels_max = 2, 1089 .rates = FSLSSI_I2S_RATES, 1090 .formats = FSLSSI_I2S_FORMATS, 1091 }, 1092 .ops = &fsl_ssi_dai_ops, 1093 }; 1094 1095 static const struct snd_soc_component_driver fsl_ssi_component = { 1096 .name = "fsl-ssi", 1097 }; 1098 1099 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = { 1100 .bus_control = true, 1101 .playback = { 1102 .stream_name = "AC97 Playback", 1103 .channels_min = 2, 1104 .channels_max = 2, 1105 .rates = SNDRV_PCM_RATE_8000_48000, 1106 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1107 }, 1108 .capture = { 1109 .stream_name = "AC97 Capture", 1110 .channels_min = 2, 1111 .channels_max = 2, 1112 .rates = SNDRV_PCM_RATE_48000, 1113 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1114 }, 1115 .ops = &fsl_ssi_dai_ops, 1116 }; 1117 1118 1119 static struct fsl_ssi_private *fsl_ac97_data; 1120 1121 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 1122 unsigned short val) 1123 { 1124 struct regmap *regs = fsl_ac97_data->regs; 1125 unsigned int lreg; 1126 unsigned int lval; 1127 1128 if (reg > 0x7f) 1129 return; 1130 1131 1132 lreg = reg << 12; 1133 regmap_write(regs, CCSR_SSI_SACADD, lreg); 1134 1135 lval = val << 4; 1136 regmap_write(regs, CCSR_SSI_SACDAT, lval); 1137 1138 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK, 1139 CCSR_SSI_SACNT_WR); 1140 udelay(100); 1141 } 1142 1143 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97, 1144 unsigned short reg) 1145 { 1146 struct regmap *regs = fsl_ac97_data->regs; 1147 1148 unsigned short val = -1; 1149 u32 reg_val; 1150 unsigned int lreg; 1151 1152 lreg = (reg & 0x7f) << 12; 1153 regmap_write(regs, CCSR_SSI_SACADD, lreg); 1154 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK, 1155 CCSR_SSI_SACNT_RD); 1156 1157 udelay(100); 1158 1159 regmap_read(regs, CCSR_SSI_SACDAT, ®_val); 1160 val = (reg_val >> 4) & 0xffff; 1161 1162 return val; 1163 } 1164 1165 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = { 1166 .read = fsl_ssi_ac97_read, 1167 .write = fsl_ssi_ac97_write, 1168 }; 1169 1170 /** 1171 * Make every character in a string lower-case 1172 */ 1173 static void make_lowercase(char *s) 1174 { 1175 char *p = s; 1176 char c; 1177 1178 while ((c = *p)) { 1179 if ((c >= 'A') && (c <= 'Z')) 1180 *p = c + ('a' - 'A'); 1181 p++; 1182 } 1183 } 1184 1185 static int fsl_ssi_imx_probe(struct platform_device *pdev, 1186 struct fsl_ssi_private *ssi_private, void __iomem *iomem) 1187 { 1188 struct device_node *np = pdev->dev.of_node; 1189 u32 dmas[4]; 1190 int ret; 1191 1192 if (ssi_private->has_ipg_clk_name) 1193 ssi_private->clk = devm_clk_get(&pdev->dev, "ipg"); 1194 else 1195 ssi_private->clk = devm_clk_get(&pdev->dev, NULL); 1196 if (IS_ERR(ssi_private->clk)) { 1197 ret = PTR_ERR(ssi_private->clk); 1198 dev_err(&pdev->dev, "could not get clock: %d\n", ret); 1199 return ret; 1200 } 1201 1202 if (!ssi_private->has_ipg_clk_name) { 1203 ret = clk_prepare_enable(ssi_private->clk); 1204 if (ret) { 1205 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret); 1206 return ret; 1207 } 1208 } 1209 1210 /* For those SLAVE implementations, we ingore non-baudclk cases 1211 * and, instead, abandon MASTER mode that needs baud clock. 1212 */ 1213 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud"); 1214 if (IS_ERR(ssi_private->baudclk)) 1215 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n", 1216 PTR_ERR(ssi_private->baudclk)); 1217 1218 /* 1219 * We have burstsize be "fifo_depth - 2" to match the SSI 1220 * watermark setting in fsl_ssi_startup(). 1221 */ 1222 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2; 1223 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2; 1224 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0; 1225 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0; 1226 1227 ret = !of_property_read_u32_array(np, "dmas", dmas, 4); 1228 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) { 1229 ssi_private->use_dual_fifo = true; 1230 /* When using dual fifo mode, we need to keep watermark 1231 * as even numbers due to dma script limitation. 1232 */ 1233 ssi_private->dma_params_tx.maxburst &= ~0x1; 1234 ssi_private->dma_params_rx.maxburst &= ~0x1; 1235 } 1236 1237 if (!ssi_private->use_dma) { 1238 1239 /* 1240 * Some boards use an incompatible codec. To get it 1241 * working, we are using imx-fiq-pcm-audio, that 1242 * can handle those codecs. DMA is not possible in this 1243 * situation. 1244 */ 1245 1246 ssi_private->fiq_params.irq = ssi_private->irq; 1247 ssi_private->fiq_params.base = iomem; 1248 ssi_private->fiq_params.dma_params_rx = 1249 &ssi_private->dma_params_rx; 1250 ssi_private->fiq_params.dma_params_tx = 1251 &ssi_private->dma_params_tx; 1252 1253 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params); 1254 if (ret) 1255 goto error_pcm; 1256 } else { 1257 ret = imx_pcm_dma_init(pdev); 1258 if (ret) 1259 goto error_pcm; 1260 } 1261 1262 return 0; 1263 1264 error_pcm: 1265 1266 if (!ssi_private->has_ipg_clk_name) 1267 clk_disable_unprepare(ssi_private->clk); 1268 return ret; 1269 } 1270 1271 static void fsl_ssi_imx_clean(struct platform_device *pdev, 1272 struct fsl_ssi_private *ssi_private) 1273 { 1274 if (!ssi_private->use_dma) 1275 imx_pcm_fiq_exit(pdev); 1276 if (!ssi_private->has_ipg_clk_name) 1277 clk_disable_unprepare(ssi_private->clk); 1278 } 1279 1280 static int fsl_ssi_probe(struct platform_device *pdev) 1281 { 1282 struct fsl_ssi_private *ssi_private; 1283 int ret = 0; 1284 struct device_node *np = pdev->dev.of_node; 1285 const struct of_device_id *of_id; 1286 const char *p, *sprop; 1287 const uint32_t *iprop; 1288 struct resource res; 1289 void __iomem *iomem; 1290 char name[64]; 1291 1292 /* SSIs that are not connected on the board should have a 1293 * status = "disabled" 1294 * property in their device tree nodes. 1295 */ 1296 if (!of_device_is_available(np)) 1297 return -ENODEV; 1298 1299 of_id = of_match_device(fsl_ssi_ids, &pdev->dev); 1300 if (!of_id || !of_id->data) 1301 return -EINVAL; 1302 1303 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private), 1304 GFP_KERNEL); 1305 if (!ssi_private) { 1306 dev_err(&pdev->dev, "could not allocate DAI object\n"); 1307 return -ENOMEM; 1308 } 1309 1310 ssi_private->soc = of_id->data; 1311 1312 sprop = of_get_property(np, "fsl,mode", NULL); 1313 if (sprop) { 1314 if (!strcmp(sprop, "ac97-slave")) 1315 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97; 1316 } 1317 1318 ssi_private->use_dma = !of_property_read_bool(np, 1319 "fsl,fiq-stream-filter"); 1320 1321 if (fsl_ssi_is_ac97(ssi_private)) { 1322 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai, 1323 sizeof(fsl_ssi_ac97_dai)); 1324 1325 fsl_ac97_data = ssi_private; 1326 1327 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev); 1328 } else { 1329 /* Initialize this copy of the CPU DAI driver structure */ 1330 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template, 1331 sizeof(fsl_ssi_dai_template)); 1332 } 1333 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev); 1334 1335 /* Get the addresses and IRQ */ 1336 ret = of_address_to_resource(np, 0, &res); 1337 if (ret) { 1338 dev_err(&pdev->dev, "could not determine device resources\n"); 1339 return ret; 1340 } 1341 ssi_private->ssi_phys = res.start; 1342 1343 iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); 1344 if (!iomem) { 1345 dev_err(&pdev->dev, "could not map device resources\n"); 1346 return -ENOMEM; 1347 } 1348 1349 ret = of_property_match_string(np, "clock-names", "ipg"); 1350 if (ret < 0) { 1351 ssi_private->has_ipg_clk_name = false; 1352 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem, 1353 &fsl_ssi_regconfig); 1354 } else { 1355 ssi_private->has_ipg_clk_name = true; 1356 ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev, 1357 "ipg", iomem, &fsl_ssi_regconfig); 1358 } 1359 if (IS_ERR(ssi_private->regs)) { 1360 dev_err(&pdev->dev, "Failed to init register map\n"); 1361 return PTR_ERR(ssi_private->regs); 1362 } 1363 1364 ssi_private->irq = platform_get_irq(pdev, 0); 1365 if (!ssi_private->irq) { 1366 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name); 1367 return ssi_private->irq; 1368 } 1369 1370 /* Are the RX and the TX clocks locked? */ 1371 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) { 1372 ssi_private->cpu_dai_drv.symmetric_rates = 1; 1373 ssi_private->cpu_dai_drv.symmetric_channels = 1; 1374 ssi_private->cpu_dai_drv.symmetric_samplebits = 1; 1375 } 1376 1377 /* Determine the FIFO depth. */ 1378 iprop = of_get_property(np, "fsl,fifo-depth", NULL); 1379 if (iprop) 1380 ssi_private->fifo_depth = be32_to_cpup(iprop); 1381 else 1382 /* Older 8610 DTs didn't have the fifo-depth property */ 1383 ssi_private->fifo_depth = 8; 1384 1385 dev_set_drvdata(&pdev->dev, ssi_private); 1386 1387 if (ssi_private->soc->imx) { 1388 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem); 1389 if (ret) 1390 return ret; 1391 } 1392 1393 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component, 1394 &ssi_private->cpu_dai_drv, 1); 1395 if (ret) { 1396 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); 1397 goto error_asoc_register; 1398 } 1399 1400 if (ssi_private->use_dma) { 1401 ret = devm_request_irq(&pdev->dev, ssi_private->irq, 1402 fsl_ssi_isr, 0, dev_name(&pdev->dev), 1403 ssi_private); 1404 if (ret < 0) { 1405 dev_err(&pdev->dev, "could not claim irq %u\n", 1406 ssi_private->irq); 1407 goto error_irq; 1408 } 1409 } 1410 1411 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev); 1412 if (ret) 1413 goto error_irq; 1414 1415 /* 1416 * If codec-handle property is missing from SSI node, we assume 1417 * that the machine driver uses new binding which does not require 1418 * SSI driver to trigger machine driver's probe. 1419 */ 1420 if (!of_get_property(np, "codec-handle", NULL)) 1421 goto done; 1422 1423 /* Trigger the machine driver's probe function. The platform driver 1424 * name of the machine driver is taken from /compatible property of the 1425 * device tree. We also pass the address of the CPU DAI driver 1426 * structure. 1427 */ 1428 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL); 1429 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */ 1430 p = strrchr(sprop, ','); 1431 if (p) 1432 sprop = p + 1; 1433 snprintf(name, sizeof(name), "snd-soc-%s", sprop); 1434 make_lowercase(name); 1435 1436 ssi_private->pdev = 1437 platform_device_register_data(&pdev->dev, name, 0, NULL, 0); 1438 if (IS_ERR(ssi_private->pdev)) { 1439 ret = PTR_ERR(ssi_private->pdev); 1440 dev_err(&pdev->dev, "failed to register platform: %d\n", ret); 1441 goto error_sound_card; 1442 } 1443 1444 done: 1445 if (ssi_private->dai_fmt) 1446 _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private, 1447 ssi_private->dai_fmt); 1448 1449 return 0; 1450 1451 error_sound_card: 1452 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats); 1453 1454 error_irq: 1455 snd_soc_unregister_component(&pdev->dev); 1456 1457 error_asoc_register: 1458 if (ssi_private->soc->imx) 1459 fsl_ssi_imx_clean(pdev, ssi_private); 1460 1461 return ret; 1462 } 1463 1464 static int fsl_ssi_remove(struct platform_device *pdev) 1465 { 1466 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev); 1467 1468 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats); 1469 1470 if (ssi_private->pdev) 1471 platform_device_unregister(ssi_private->pdev); 1472 snd_soc_unregister_component(&pdev->dev); 1473 1474 if (ssi_private->soc->imx) 1475 fsl_ssi_imx_clean(pdev, ssi_private); 1476 1477 return 0; 1478 } 1479 1480 static struct platform_driver fsl_ssi_driver = { 1481 .driver = { 1482 .name = "fsl-ssi-dai", 1483 .of_match_table = fsl_ssi_ids, 1484 }, 1485 .probe = fsl_ssi_probe, 1486 .remove = fsl_ssi_remove, 1487 }; 1488 1489 module_platform_driver(fsl_ssi_driver); 1490 1491 MODULE_ALIAS("platform:fsl-ssi-dai"); 1492 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 1493 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 1494 MODULE_LICENSE("GPL v2"); 1495