1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver 4 // 5 // Author: Timur Tabi <timur@freescale.com> 6 // 7 // Copyright 2007-2010 Freescale Semiconductor, Inc. 8 // 9 // Some notes why imx-pcm-fiq is used instead of DMA on some boards: 10 // 11 // The i.MX SSI core has some nasty limitations in AC97 mode. While most 12 // sane processor vendors have a FIFO per AC97 slot, the i.MX has only 13 // one FIFO which combines all valid receive slots. We cannot even select 14 // which slots we want to receive. The WM9712 with which this driver 15 // was developed with always sends GPIO status data in slot 12 which 16 // we receive in our (PCM-) data stream. The only chance we have is to 17 // manually skip this data in the FIQ handler. With sampling rates different 18 // from 48000Hz not every frame has valid receive data, so the ratio 19 // between pcm data and GPIO status data changes. Our FIQ handler is not 20 // able to handle this, hence this driver only works with 48000Hz sampling 21 // rate. 22 // Reading and writing AC97 registers is another challenge. The core 23 // provides us status bits when the read register is updated with *another* 24 // value. When we read the same register two times (and the register still 25 // contains the same value) these status bits are not set. We work 26 // around this by not polling these bits but only wait a fixed delay. 27 28 #include <linux/init.h> 29 #include <linux/io.h> 30 #include <linux/module.h> 31 #include <linux/interrupt.h> 32 #include <linux/clk.h> 33 #include <linux/ctype.h> 34 #include <linux/device.h> 35 #include <linux/delay.h> 36 #include <linux/mutex.h> 37 #include <linux/slab.h> 38 #include <linux/spinlock.h> 39 #include <linux/of.h> 40 #include <linux/of_address.h> 41 #include <linux/of_irq.h> 42 #include <linux/of_platform.h> 43 44 #include <sound/core.h> 45 #include <sound/pcm.h> 46 #include <sound/pcm_params.h> 47 #include <sound/initval.h> 48 #include <sound/soc.h> 49 #include <sound/dmaengine_pcm.h> 50 51 #include "fsl_ssi.h" 52 #include "imx-pcm.h" 53 54 /* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */ 55 #define RX 0 56 #define TX 1 57 58 /** 59 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI 60 * 61 * The SSI has a limitation in that the samples must be in the same byte 62 * order as the host CPU. This is because when multiple bytes are written 63 * to the STX register, the bytes and bits must be written in the same 64 * order. The STX is a shift register, so all the bits need to be aligned 65 * (bit-endianness must match byte-endianness). Processors typically write 66 * the bits within a byte in the same order that the bytes of a word are 67 * written in. So if the host CPU is big-endian, then only big-endian 68 * samples will be written to STX properly. 69 */ 70 #ifdef __BIG_ENDIAN 71 #define FSLSSI_I2S_FORMATS \ 72 (SNDRV_PCM_FMTBIT_S8 | \ 73 SNDRV_PCM_FMTBIT_S16_BE | \ 74 SNDRV_PCM_FMTBIT_S18_3BE | \ 75 SNDRV_PCM_FMTBIT_S20_3BE | \ 76 SNDRV_PCM_FMTBIT_S24_3BE | \ 77 SNDRV_PCM_FMTBIT_S24_BE) 78 #else 79 #define FSLSSI_I2S_FORMATS \ 80 (SNDRV_PCM_FMTBIT_S8 | \ 81 SNDRV_PCM_FMTBIT_S16_LE | \ 82 SNDRV_PCM_FMTBIT_S18_3LE | \ 83 SNDRV_PCM_FMTBIT_S20_3LE | \ 84 SNDRV_PCM_FMTBIT_S24_3LE | \ 85 SNDRV_PCM_FMTBIT_S24_LE) 86 #endif 87 88 /* 89 * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1: 90 * - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS 91 * - Also have NB_NF to mark these two clocks will not be inverted 92 */ 93 #define FSLSSI_AC97_DAIFMT \ 94 (SND_SOC_DAIFMT_AC97 | \ 95 SND_SOC_DAIFMT_CBM_CFS | \ 96 SND_SOC_DAIFMT_NB_NF) 97 98 #define FSLSSI_SIER_DBG_RX_FLAGS \ 99 (SSI_SIER_RFF0_EN | \ 100 SSI_SIER_RLS_EN | \ 101 SSI_SIER_RFS_EN | \ 102 SSI_SIER_ROE0_EN | \ 103 SSI_SIER_RFRC_EN) 104 #define FSLSSI_SIER_DBG_TX_FLAGS \ 105 (SSI_SIER_TFE0_EN | \ 106 SSI_SIER_TLS_EN | \ 107 SSI_SIER_TFS_EN | \ 108 SSI_SIER_TUE0_EN | \ 109 SSI_SIER_TFRC_EN) 110 111 enum fsl_ssi_type { 112 FSL_SSI_MCP8610, 113 FSL_SSI_MX21, 114 FSL_SSI_MX35, 115 FSL_SSI_MX51, 116 }; 117 118 struct fsl_ssi_regvals { 119 u32 sier; 120 u32 srcr; 121 u32 stcr; 122 u32 scr; 123 }; 124 125 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg) 126 { 127 switch (reg) { 128 case REG_SSI_SACCEN: 129 case REG_SSI_SACCDIS: 130 return false; 131 default: 132 return true; 133 } 134 } 135 136 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg) 137 { 138 switch (reg) { 139 case REG_SSI_STX0: 140 case REG_SSI_STX1: 141 case REG_SSI_SRX0: 142 case REG_SSI_SRX1: 143 case REG_SSI_SISR: 144 case REG_SSI_SFCSR: 145 case REG_SSI_SACNT: 146 case REG_SSI_SACADD: 147 case REG_SSI_SACDAT: 148 case REG_SSI_SATAG: 149 case REG_SSI_SACCST: 150 case REG_SSI_SOR: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg) 158 { 159 switch (reg) { 160 case REG_SSI_SRX0: 161 case REG_SSI_SRX1: 162 case REG_SSI_SISR: 163 case REG_SSI_SACADD: 164 case REG_SSI_SACDAT: 165 case REG_SSI_SATAG: 166 return true; 167 default: 168 return false; 169 } 170 } 171 172 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg) 173 { 174 switch (reg) { 175 case REG_SSI_SRX0: 176 case REG_SSI_SRX1: 177 case REG_SSI_SACCST: 178 return false; 179 default: 180 return true; 181 } 182 } 183 184 static const struct regmap_config fsl_ssi_regconfig = { 185 .max_register = REG_SSI_SACCDIS, 186 .reg_bits = 32, 187 .val_bits = 32, 188 .reg_stride = 4, 189 .val_format_endian = REGMAP_ENDIAN_NATIVE, 190 .num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1, 191 .readable_reg = fsl_ssi_readable_reg, 192 .volatile_reg = fsl_ssi_volatile_reg, 193 .precious_reg = fsl_ssi_precious_reg, 194 .writeable_reg = fsl_ssi_writeable_reg, 195 .cache_type = REGCACHE_FLAT, 196 }; 197 198 struct fsl_ssi_soc_data { 199 bool imx; 200 bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */ 201 bool offline_config; 202 u32 sisr_write_mask; 203 }; 204 205 /** 206 * fsl_ssi: per-SSI private data 207 * 208 * @regs: Pointer to the regmap registers 209 * @irq: IRQ of this SSI 210 * @cpu_dai_drv: CPU DAI driver for this device 211 * 212 * @dai_fmt: DAI configuration this device is currently used with 213 * @streams: Mask of current active streams: BIT(TX) and BIT(RX) 214 * @i2s_net: I2S and Network mode configurations of SCR register 215 * (this is the initial settings based on the DAI format) 216 * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK 217 * @use_dma: DMA is used or FIQ with stream filter 218 * @use_dual_fifo: DMA with support for dual FIFO mode 219 * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree 220 * @fifo_depth: Depth of the SSI FIFOs 221 * @slot_width: Width of each DAI slot 222 * @slots: Number of slots 223 * @regvals: Specific RX/TX register settings 224 * 225 * @clk: Clock source to access register 226 * @baudclk: Clock source to generate bit and frame-sync clocks 227 * @baudclk_streams: Active streams that are using baudclk 228 * 229 * @regcache_sfcsr: Cache sfcsr register value during suspend and resume 230 * @regcache_sacnt: Cache sacnt register value during suspend and resume 231 * 232 * @dma_params_tx: DMA transmit parameters 233 * @dma_params_rx: DMA receive parameters 234 * @ssi_phys: physical address of the SSI registers 235 * 236 * @fiq_params: FIQ stream filtering parameters 237 * 238 * @card_pdev: Platform_device pointer to register a sound card for PowerPC or 239 * to register a CODEC platform device for AC97 240 * @card_name: Platform_device name to register a sound card for PowerPC or 241 * to register a CODEC platform device for AC97 242 * @card_idx: The index of SSI to register a sound card for PowerPC or 243 * to register a CODEC platform device for AC97 244 * 245 * @dbg_stats: Debugging statistics 246 * 247 * @soc: SoC specific data 248 * @dev: Pointer to &pdev->dev 249 * 250 * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are 251 * @fifo_watermark or fewer words in TX fifo or 252 * @fifo_watermark or more empty words in RX fifo. 253 * @dma_maxburst: Max number of words to transfer in one go. So far, 254 * this is always the same as fifo_watermark. 255 * 256 * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations 257 */ 258 struct fsl_ssi { 259 struct regmap *regs; 260 int irq; 261 struct snd_soc_dai_driver cpu_dai_drv; 262 263 unsigned int dai_fmt; 264 u8 streams; 265 u8 i2s_net; 266 bool synchronous; 267 bool use_dma; 268 bool use_dual_fifo; 269 bool has_ipg_clk_name; 270 unsigned int fifo_depth; 271 unsigned int slot_width; 272 unsigned int slots; 273 struct fsl_ssi_regvals regvals[2]; 274 275 struct clk *clk; 276 struct clk *baudclk; 277 unsigned int baudclk_streams; 278 279 u32 regcache_sfcsr; 280 u32 regcache_sacnt; 281 282 struct snd_dmaengine_dai_dma_data dma_params_tx; 283 struct snd_dmaengine_dai_dma_data dma_params_rx; 284 dma_addr_t ssi_phys; 285 286 struct imx_pcm_fiq_params fiq_params; 287 288 struct platform_device *card_pdev; 289 char card_name[32]; 290 u32 card_idx; 291 292 struct fsl_ssi_dbg dbg_stats; 293 294 const struct fsl_ssi_soc_data *soc; 295 struct device *dev; 296 297 u32 fifo_watermark; 298 u32 dma_maxburst; 299 300 struct mutex ac97_reg_lock; 301 }; 302 303 /* 304 * SoC specific data 305 * 306 * Notes: 307 * 1) SSI in earlier SoCS has critical bits in control registers that 308 * cannot be changed after SSI starts running -- a software reset 309 * (set SSIEN to 0) is required to change their values. So adding 310 * an offline_config flag for these SoCs. 311 * 2) SDMA is available since imx35. However, imx35 does not support 312 * DMA bits changing when SSI is running, so set offline_config. 313 * 3) imx51 and later versions support register configurations when 314 * SSI is running (SSIEN); For these versions, DMA needs to be 315 * configured before SSI sends DMA request to avoid an undefined 316 * DMA request on the SDMA side. 317 */ 318 319 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = { 320 .imx = false, 321 .offline_config = true, 322 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC | 323 SSI_SISR_ROE0 | SSI_SISR_ROE1 | 324 SSI_SISR_TUE0 | SSI_SISR_TUE1, 325 }; 326 327 static struct fsl_ssi_soc_data fsl_ssi_imx21 = { 328 .imx = true, 329 .imx21regs = true, 330 .offline_config = true, 331 .sisr_write_mask = 0, 332 }; 333 334 static struct fsl_ssi_soc_data fsl_ssi_imx35 = { 335 .imx = true, 336 .offline_config = true, 337 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC | 338 SSI_SISR_ROE0 | SSI_SISR_ROE1 | 339 SSI_SISR_TUE0 | SSI_SISR_TUE1, 340 }; 341 342 static struct fsl_ssi_soc_data fsl_ssi_imx51 = { 343 .imx = true, 344 .offline_config = false, 345 .sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 | 346 SSI_SISR_TUE0 | SSI_SISR_TUE1, 347 }; 348 349 static const struct of_device_id fsl_ssi_ids[] = { 350 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 }, 351 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 }, 352 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 }, 353 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 }, 354 {} 355 }; 356 MODULE_DEVICE_TABLE(of, fsl_ssi_ids); 357 358 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi) 359 { 360 return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) == 361 SND_SOC_DAIFMT_AC97; 362 } 363 364 static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi) 365 { 366 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) == 367 SND_SOC_DAIFMT_CBS_CFS; 368 } 369 370 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi) 371 { 372 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) == 373 SND_SOC_DAIFMT_CBM_CFS; 374 } 375 376 /** 377 * Interrupt handler to gather states 378 */ 379 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) 380 { 381 struct fsl_ssi *ssi = dev_id; 382 struct regmap *regs = ssi->regs; 383 u32 sisr, sisr2; 384 385 regmap_read(regs, REG_SSI_SISR, &sisr); 386 387 sisr2 = sisr & ssi->soc->sisr_write_mask; 388 /* Clear the bits that we set */ 389 if (sisr2) 390 regmap_write(regs, REG_SSI_SISR, sisr2); 391 392 fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr); 393 394 return IRQ_HANDLED; 395 } 396 397 /** 398 * Set SCR, SIER, STCR and SRCR registers with cached values in regvals 399 * 400 * Notes: 401 * 1) For offline_config SoCs, enable all necessary bits of both streams 402 * when 1st stream starts, even if the opposite stream will not start 403 * 2) It also clears FIFO before setting regvals; SOR is safe to set online 404 */ 405 static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx) 406 { 407 struct fsl_ssi_regvals *vals = ssi->regvals; 408 int dir = tx ? TX : RX; 409 u32 sier, srcr, stcr; 410 411 /* Clear dirty data in the FIFO; It also prevents channel slipping */ 412 regmap_update_bits(ssi->regs, REG_SSI_SOR, 413 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx)); 414 415 /* 416 * On offline_config SoCs, SxCR and SIER are already configured when 417 * the previous stream started. So skip all SxCR and SIER settings 418 * to prevent online reconfigurations, then jump to set SCR directly 419 */ 420 if (ssi->soc->offline_config && ssi->streams) 421 goto enable_scr; 422 423 if (ssi->soc->offline_config) { 424 /* 425 * Online reconfiguration not supported, so enable all bits for 426 * both streams at once to avoid necessity of reconfigurations 427 */ 428 srcr = vals[RX].srcr | vals[TX].srcr; 429 stcr = vals[RX].stcr | vals[TX].stcr; 430 sier = vals[RX].sier | vals[TX].sier; 431 } else { 432 /* Otherwise, only set bits for the current stream */ 433 srcr = vals[dir].srcr; 434 stcr = vals[dir].stcr; 435 sier = vals[dir].sier; 436 } 437 438 /* Configure SRCR, STCR and SIER at once */ 439 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr); 440 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr); 441 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier); 442 443 enable_scr: 444 /* 445 * Start DMA before setting TE to avoid FIFO underrun 446 * which may cause a channel slip or a channel swap 447 * 448 * TODO: FIQ cases might also need this upon testing 449 */ 450 if (ssi->use_dma && tx) { 451 int try = 100; 452 u32 sfcsr; 453 454 /* Enable SSI first to send TX DMA request */ 455 regmap_update_bits(ssi->regs, REG_SSI_SCR, 456 SSI_SCR_SSIEN, SSI_SCR_SSIEN); 457 458 /* Busy wait until TX FIFO not empty -- DMA working */ 459 do { 460 regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr); 461 if (SSI_SFCSR_TFCNT0(sfcsr)) 462 break; 463 } while (--try); 464 465 /* FIFO still empty -- something might be wrong */ 466 if (!SSI_SFCSR_TFCNT0(sfcsr)) 467 dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n"); 468 } 469 /* Enable all remaining bits in SCR */ 470 regmap_update_bits(ssi->regs, REG_SSI_SCR, 471 vals[dir].scr, vals[dir].scr); 472 473 /* Log the enabled stream to the mask */ 474 ssi->streams |= BIT(dir); 475 } 476 477 /** 478 * Exclude bits that are used by the opposite stream 479 * 480 * When both streams are active, disabling some bits for the current stream 481 * might break the other stream if these bits are used by it. 482 * 483 * @vals : regvals of the current stream 484 * @avals: regvals of the opposite stream 485 * @aactive: active state of the opposite stream 486 * 487 * 1) XOR vals and avals to get the differences if the other stream is active; 488 * Otherwise, return current vals if the other stream is not active 489 * 2) AND the result of 1) with the current vals 490 */ 491 #define _ssi_xor_shared_bits(vals, avals, aactive) \ 492 ((vals) ^ ((avals) * (aactive))) 493 494 #define ssi_excl_shared_bits(vals, avals, aactive) \ 495 ((vals) & _ssi_xor_shared_bits(vals, avals, aactive)) 496 497 /** 498 * Unset SCR, SIER, STCR and SRCR registers with cached values in regvals 499 * 500 * Notes: 501 * 1) For offline_config SoCs, to avoid online reconfigurations, disable all 502 * bits of both streams at once when the last stream is abort to end 503 * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online 504 */ 505 static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx) 506 { 507 struct fsl_ssi_regvals *vals, *avals; 508 u32 sier, srcr, stcr, scr; 509 int adir = tx ? RX : TX; 510 int dir = tx ? TX : RX; 511 bool aactive; 512 513 /* Check if the opposite stream is active */ 514 aactive = ssi->streams & BIT(adir); 515 516 vals = &ssi->regvals[dir]; 517 518 /* Get regvals of the opposite stream to keep opposite stream safe */ 519 avals = &ssi->regvals[adir]; 520 521 /* 522 * To keep the other stream safe, exclude shared bits between 523 * both streams, and get safe bits to disable current stream 524 */ 525 scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive); 526 527 /* Disable safe bits of SCR register for the current stream */ 528 regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0); 529 530 /* Log the disabled stream to the mask */ 531 ssi->streams &= ~BIT(dir); 532 533 /* 534 * On offline_config SoCs, if the other stream is active, skip 535 * SxCR and SIER settings to prevent online reconfigurations 536 */ 537 if (ssi->soc->offline_config && aactive) 538 goto fifo_clear; 539 540 if (ssi->soc->offline_config) { 541 /* Now there is only current stream active, disable all bits */ 542 srcr = vals->srcr | avals->srcr; 543 stcr = vals->stcr | avals->stcr; 544 sier = vals->sier | avals->sier; 545 } else { 546 /* 547 * To keep the other stream safe, exclude shared bits between 548 * both streams, and get safe bits to disable current stream 549 */ 550 sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive); 551 srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive); 552 stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive); 553 } 554 555 /* Clear configurations of SRCR, STCR and SIER at once */ 556 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0); 557 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0); 558 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0); 559 560 fifo_clear: 561 /* Clear remaining data in the FIFO */ 562 regmap_update_bits(ssi->regs, REG_SSI_SOR, 563 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx)); 564 } 565 566 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi) 567 { 568 struct regmap *regs = ssi->regs; 569 570 /* no SACC{ST,EN,DIS} regs on imx21-class SSI */ 571 if (!ssi->soc->imx21regs) { 572 /* Disable all channel slots */ 573 regmap_write(regs, REG_SSI_SACCDIS, 0xff); 574 /* Enable slots 3 & 4 -- PCM Playback Left & Right channels */ 575 regmap_write(regs, REG_SSI_SACCEN, 0x300); 576 } 577 } 578 579 /** 580 * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely 581 */ 582 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi) 583 { 584 struct fsl_ssi_regvals *vals = ssi->regvals; 585 586 vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS; 587 vals[RX].srcr = SSI_SRCR_RFEN0; 588 vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE; 589 vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS; 590 vals[TX].stcr = SSI_STCR_TFEN0; 591 vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE; 592 593 /* AC97 has already enabled SSIEN, RE and TE, so ignore them */ 594 if (fsl_ssi_is_ac97(ssi)) 595 vals[RX].scr = vals[TX].scr = 0; 596 597 if (ssi->use_dual_fifo) { 598 vals[RX].srcr |= SSI_SRCR_RFEN1; 599 vals[TX].stcr |= SSI_STCR_TFEN1; 600 } 601 602 if (ssi->use_dma) { 603 vals[RX].sier |= SSI_SIER_RDMAE; 604 vals[TX].sier |= SSI_SIER_TDMAE; 605 } else { 606 vals[RX].sier |= SSI_SIER_RIE; 607 vals[TX].sier |= SSI_SIER_TIE; 608 } 609 } 610 611 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi) 612 { 613 struct regmap *regs = ssi->regs; 614 615 /* Setup the clock control register */ 616 regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13)); 617 regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13)); 618 619 /* Enable AC97 mode and startup the SSI */ 620 regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV); 621 622 /* AC97 has to communicate with codec before starting a stream */ 623 regmap_update_bits(regs, REG_SSI_SCR, 624 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE, 625 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE); 626 627 regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3)); 628 } 629 630 static int fsl_ssi_startup(struct snd_pcm_substream *substream, 631 struct snd_soc_dai *dai) 632 { 633 struct snd_soc_pcm_runtime *rtd = substream->private_data; 634 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai); 635 int ret; 636 637 ret = clk_prepare_enable(ssi->clk); 638 if (ret) 639 return ret; 640 641 /* 642 * When using dual fifo mode, it is safer to ensure an even period 643 * size. If appearing to an odd number while DMA always starts its 644 * task from fifo0, fifo1 would be neglected at the end of each 645 * period. But SSI would still access fifo1 with an invalid data. 646 */ 647 if (ssi->use_dual_fifo) 648 snd_pcm_hw_constraint_step(substream->runtime, 0, 649 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); 650 651 return 0; 652 } 653 654 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream, 655 struct snd_soc_dai *dai) 656 { 657 struct snd_soc_pcm_runtime *rtd = substream->private_data; 658 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai); 659 660 clk_disable_unprepare(ssi->clk); 661 } 662 663 /** 664 * Configure Digital Audio Interface bit clock 665 * 666 * Note: This function can be only called when using SSI as DAI master 667 * 668 * Quick instruction for parameters: 669 * freq: Output BCLK frequency = samplerate * slots * slot_width 670 * (In 2-channel I2S Master mode, slot_width is fixed 32) 671 */ 672 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream, 673 struct snd_soc_dai *dai, 674 struct snd_pcm_hw_params *hw_params) 675 { 676 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 677 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai); 678 struct regmap *regs = ssi->regs; 679 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i; 680 unsigned long clkrate, baudrate, tmprate; 681 unsigned int slots = params_channels(hw_params); 682 unsigned int slot_width = 32; 683 u64 sub, savesub = 100000; 684 unsigned int freq; 685 bool baudclk_is_used; 686 int ret; 687 688 /* Override slots and slot_width if being specifically set... */ 689 if (ssi->slots) 690 slots = ssi->slots; 691 /* ...but keep 32 bits if slots is 2 -- I2S Master mode */ 692 if (ssi->slot_width && slots != 2) 693 slot_width = ssi->slot_width; 694 695 /* Generate bit clock based on the slot number and slot width */ 696 freq = slots * slot_width * params_rate(hw_params); 697 698 /* Don't apply it to any non-baudclk circumstance */ 699 if (IS_ERR(ssi->baudclk)) 700 return -EINVAL; 701 702 /* 703 * Hardware limitation: The bclk rate must be 704 * never greater than 1/5 IPG clock rate 705 */ 706 if (freq * 5 > clk_get_rate(ssi->clk)) { 707 dev_err(dai->dev, "bitclk > ipgclk / 5\n"); 708 return -EINVAL; 709 } 710 711 baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream)); 712 713 /* It should be already enough to divide clock by setting pm alone */ 714 psr = 0; 715 div2 = 0; 716 717 factor = (div2 + 1) * (7 * psr + 1) * 2; 718 719 for (i = 0; i < 255; i++) { 720 tmprate = freq * factor * (i + 1); 721 722 if (baudclk_is_used) 723 clkrate = clk_get_rate(ssi->baudclk); 724 else 725 clkrate = clk_round_rate(ssi->baudclk, tmprate); 726 727 clkrate /= factor; 728 afreq = clkrate / (i + 1); 729 730 if (freq == afreq) 731 sub = 0; 732 else if (freq / afreq == 1) 733 sub = freq - afreq; 734 else if (afreq / freq == 1) 735 sub = afreq - freq; 736 else 737 continue; 738 739 /* Calculate the fraction */ 740 sub *= 100000; 741 do_div(sub, freq); 742 743 if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) { 744 baudrate = tmprate; 745 savesub = sub; 746 pm = i; 747 } 748 749 /* We are lucky */ 750 if (savesub == 0) 751 break; 752 } 753 754 /* No proper pm found if it is still remaining the initial value */ 755 if (pm == 999) { 756 dev_err(dai->dev, "failed to handle the required sysclk\n"); 757 return -EINVAL; 758 } 759 760 stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) | 761 (psr ? SSI_SxCCR_PSR : 0); 762 mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR; 763 764 /* STCCR is used for RX in synchronous mode */ 765 tx2 = tx || ssi->synchronous; 766 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr); 767 768 if (!baudclk_is_used) { 769 ret = clk_set_rate(ssi->baudclk, baudrate); 770 if (ret) { 771 dev_err(dai->dev, "failed to set baudclk rate\n"); 772 return -EINVAL; 773 } 774 } 775 776 return 0; 777 } 778 779 /** 780 * Configure SSI based on PCM hardware parameters 781 * 782 * Notes: 783 * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily 784 * disabled on offline_config SoCs. Even for online configurable SoCs 785 * running in synchronous mode (both TX and RX use STCCR), it is not 786 * safe to re-configure them when both two streams start running. 787 * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the 788 * fsl_ssi_set_bclk() if SSI is the DAI clock master. 789 */ 790 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, 791 struct snd_pcm_hw_params *hw_params, 792 struct snd_soc_dai *dai) 793 { 794 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 795 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai); 796 struct regmap *regs = ssi->regs; 797 unsigned int channels = params_channels(hw_params); 798 unsigned int sample_size = params_width(hw_params); 799 u32 wl = SSI_SxCCR_WL(sample_size); 800 int ret; 801 802 /* 803 * SSI is properly configured if it is enabled and running in 804 * the synchronous mode; Note that AC97 mode is an exception 805 * that should set separate configurations for STCCR and SRCCR 806 * despite running in the synchronous mode. 807 */ 808 if (ssi->streams && ssi->synchronous) 809 return 0; 810 811 if (fsl_ssi_is_i2s_master(ssi)) { 812 ret = fsl_ssi_set_bclk(substream, dai, hw_params); 813 if (ret) 814 return ret; 815 816 /* Do not enable the clock if it is already enabled */ 817 if (!(ssi->baudclk_streams & BIT(substream->stream))) { 818 ret = clk_prepare_enable(ssi->baudclk); 819 if (ret) 820 return ret; 821 822 ssi->baudclk_streams |= BIT(substream->stream); 823 } 824 } 825 826 if (!fsl_ssi_is_ac97(ssi)) { 827 /* 828 * Keep the ssi->i2s_net intact while having a local variable 829 * to override settings for special use cases. Otherwise, the 830 * ssi->i2s_net will lose the settings for regular use cases. 831 */ 832 u8 i2s_net = ssi->i2s_net; 833 834 /* Normal + Network mode to send 16-bit data in 32-bit frames */ 835 if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16) 836 i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET; 837 838 /* Use Normal mode to send mono data at 1st slot of 2 slots */ 839 if (channels == 1) 840 i2s_net = SSI_SCR_I2S_MODE_NORMAL; 841 842 regmap_update_bits(regs, REG_SSI_SCR, 843 SSI_SCR_I2S_NET_MASK, i2s_net); 844 } 845 846 /* In synchronous mode, the SSI uses STCCR for capture */ 847 tx2 = tx || ssi->synchronous; 848 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl); 849 850 return 0; 851 } 852 853 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream, 854 struct snd_soc_dai *dai) 855 { 856 struct snd_soc_pcm_runtime *rtd = substream->private_data; 857 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai); 858 859 if (fsl_ssi_is_i2s_master(ssi) && 860 ssi->baudclk_streams & BIT(substream->stream)) { 861 clk_disable_unprepare(ssi->baudclk); 862 ssi->baudclk_streams &= ~BIT(substream->stream); 863 } 864 865 return 0; 866 } 867 868 static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt) 869 { 870 u32 strcr = 0, scr = 0, stcr, srcr, mask; 871 872 ssi->dai_fmt = fmt; 873 874 /* Synchronize frame sync clock for TE to avoid data slipping */ 875 scr |= SSI_SCR_SYNC_TX_FS; 876 877 /* Set to default shifting settings: LSB_ALIGNED */ 878 strcr |= SSI_STCR_TXBIT0; 879 880 /* Use Network mode as default */ 881 ssi->i2s_net = SSI_SCR_NET; 882 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 883 case SND_SOC_DAIFMT_I2S: 884 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 885 case SND_SOC_DAIFMT_CBS_CFS: 886 if (IS_ERR(ssi->baudclk)) { 887 dev_err(ssi->dev, 888 "missing baudclk for master mode\n"); 889 return -EINVAL; 890 } 891 /* fall through */ 892 case SND_SOC_DAIFMT_CBM_CFS: 893 ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER; 894 break; 895 case SND_SOC_DAIFMT_CBM_CFM: 896 ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE; 897 break; 898 default: 899 return -EINVAL; 900 } 901 902 regmap_update_bits(ssi->regs, REG_SSI_STCCR, 903 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2)); 904 regmap_update_bits(ssi->regs, REG_SSI_SRCCR, 905 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2)); 906 907 /* Data on rising edge of bclk, frame low, 1clk before data */ 908 strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS; 909 break; 910 case SND_SOC_DAIFMT_LEFT_J: 911 /* Data on rising edge of bclk, frame high */ 912 strcr |= SSI_STCR_TSCKP; 913 break; 914 case SND_SOC_DAIFMT_DSP_A: 915 /* Data on rising edge of bclk, frame high, 1clk before data */ 916 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS; 917 break; 918 case SND_SOC_DAIFMT_DSP_B: 919 /* Data on rising edge of bclk, frame high */ 920 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP; 921 break; 922 case SND_SOC_DAIFMT_AC97: 923 /* Data on falling edge of bclk, frame high, 1clk before data */ 924 strcr |= SSI_STCR_TEFS; 925 break; 926 default: 927 return -EINVAL; 928 } 929 930 scr |= ssi->i2s_net; 931 932 /* DAI clock inversion */ 933 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 934 case SND_SOC_DAIFMT_NB_NF: 935 /* Nothing to do for both normal cases */ 936 break; 937 case SND_SOC_DAIFMT_IB_NF: 938 /* Invert bit clock */ 939 strcr ^= SSI_STCR_TSCKP; 940 break; 941 case SND_SOC_DAIFMT_NB_IF: 942 /* Invert frame clock */ 943 strcr ^= SSI_STCR_TFSI; 944 break; 945 case SND_SOC_DAIFMT_IB_IF: 946 /* Invert both clocks */ 947 strcr ^= SSI_STCR_TSCKP; 948 strcr ^= SSI_STCR_TFSI; 949 break; 950 default: 951 return -EINVAL; 952 } 953 954 /* DAI clock master masks */ 955 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 956 case SND_SOC_DAIFMT_CBS_CFS: 957 /* Output bit and frame sync clocks */ 958 strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR; 959 scr |= SSI_SCR_SYS_CLK_EN; 960 break; 961 case SND_SOC_DAIFMT_CBM_CFM: 962 /* Input bit or frame sync clocks */ 963 break; 964 case SND_SOC_DAIFMT_CBM_CFS: 965 /* Input bit clock but output frame sync clock */ 966 strcr |= SSI_STCR_TFDIR; 967 break; 968 default: 969 return -EINVAL; 970 } 971 972 stcr = strcr; 973 srcr = strcr; 974 975 /* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */ 976 if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) { 977 srcr &= ~SSI_SRCR_RXDIR; 978 scr |= SSI_SCR_SYN; 979 } 980 981 mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP | 982 SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0; 983 984 regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr); 985 regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr); 986 987 mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK | 988 SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN; 989 regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr); 990 991 return 0; 992 } 993 994 /** 995 * Configure Digital Audio Interface (DAI) Format 996 */ 997 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) 998 { 999 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai); 1000 1001 /* AC97 configured DAIFMT earlier in the probe() */ 1002 if (fsl_ssi_is_ac97(ssi)) 1003 return 0; 1004 1005 return _fsl_ssi_set_dai_fmt(ssi, fmt); 1006 } 1007 1008 /** 1009 * Set TDM slot number and slot width 1010 */ 1011 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask, 1012 u32 rx_mask, int slots, int slot_width) 1013 { 1014 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai); 1015 struct regmap *regs = ssi->regs; 1016 u32 val; 1017 1018 /* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */ 1019 if (slot_width & 1 || slot_width < 8 || slot_width > 24) { 1020 dev_err(dai->dev, "invalid slot width: %d\n", slot_width); 1021 return -EINVAL; 1022 } 1023 1024 /* The slot number should be >= 2 if using Network mode or I2S mode */ 1025 if (ssi->i2s_net && slots < 2) { 1026 dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n"); 1027 return -EINVAL; 1028 } 1029 1030 regmap_update_bits(regs, REG_SSI_STCCR, 1031 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots)); 1032 regmap_update_bits(regs, REG_SSI_SRCCR, 1033 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots)); 1034 1035 /* Save the SCR register value */ 1036 regmap_read(regs, REG_SSI_SCR, &val); 1037 /* Temporarily enable SSI to allow SxMSKs to be configurable */ 1038 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN); 1039 1040 regmap_write(regs, REG_SSI_STMSK, ~tx_mask); 1041 regmap_write(regs, REG_SSI_SRMSK, ~rx_mask); 1042 1043 /* Restore the value of SSIEN bit */ 1044 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val); 1045 1046 ssi->slot_width = slot_width; 1047 ssi->slots = slots; 1048 1049 return 0; 1050 } 1051 1052 /** 1053 * Start or stop SSI and corresponding DMA transaction. 1054 * 1055 * The DMA channel is in external master start and pause mode, which 1056 * means the SSI completely controls the flow of data. 1057 */ 1058 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, 1059 struct snd_soc_dai *dai) 1060 { 1061 struct snd_soc_pcm_runtime *rtd = substream->private_data; 1062 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai); 1063 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1064 1065 switch (cmd) { 1066 case SNDRV_PCM_TRIGGER_START: 1067 case SNDRV_PCM_TRIGGER_RESUME: 1068 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1069 /* 1070 * SACCST might be modified via AC Link by a CODEC if it sends 1071 * extra bits in their SLOTREQ requests, which'll accidentally 1072 * send valid data to slots other than normal playback slots. 1073 * 1074 * To be safe, configure SACCST right before TX starts. 1075 */ 1076 if (tx && fsl_ssi_is_ac97(ssi)) 1077 fsl_ssi_tx_ac97_saccst_setup(ssi); 1078 fsl_ssi_config_enable(ssi, tx); 1079 break; 1080 1081 case SNDRV_PCM_TRIGGER_STOP: 1082 case SNDRV_PCM_TRIGGER_SUSPEND: 1083 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1084 fsl_ssi_config_disable(ssi, tx); 1085 break; 1086 1087 default: 1088 return -EINVAL; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai) 1095 { 1096 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai); 1097 1098 if (ssi->soc->imx && ssi->use_dma) 1099 snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx, 1100 &ssi->dma_params_rx); 1101 1102 return 0; 1103 } 1104 1105 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = { 1106 .startup = fsl_ssi_startup, 1107 .shutdown = fsl_ssi_shutdown, 1108 .hw_params = fsl_ssi_hw_params, 1109 .hw_free = fsl_ssi_hw_free, 1110 .set_fmt = fsl_ssi_set_dai_fmt, 1111 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot, 1112 .trigger = fsl_ssi_trigger, 1113 }; 1114 1115 static struct snd_soc_dai_driver fsl_ssi_dai_template = { 1116 .probe = fsl_ssi_dai_probe, 1117 .playback = { 1118 .stream_name = "CPU-Playback", 1119 .channels_min = 1, 1120 .channels_max = 32, 1121 .rates = SNDRV_PCM_RATE_CONTINUOUS, 1122 .formats = FSLSSI_I2S_FORMATS, 1123 }, 1124 .capture = { 1125 .stream_name = "CPU-Capture", 1126 .channels_min = 1, 1127 .channels_max = 32, 1128 .rates = SNDRV_PCM_RATE_CONTINUOUS, 1129 .formats = FSLSSI_I2S_FORMATS, 1130 }, 1131 .ops = &fsl_ssi_dai_ops, 1132 }; 1133 1134 static const struct snd_soc_component_driver fsl_ssi_component = { 1135 .name = "fsl-ssi", 1136 }; 1137 1138 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = { 1139 .bus_control = true, 1140 .symmetric_channels = 1, 1141 .probe = fsl_ssi_dai_probe, 1142 .playback = { 1143 .stream_name = "AC97 Playback", 1144 .channels_min = 2, 1145 .channels_max = 2, 1146 .rates = SNDRV_PCM_RATE_8000_48000, 1147 .formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20, 1148 }, 1149 .capture = { 1150 .stream_name = "AC97 Capture", 1151 .channels_min = 2, 1152 .channels_max = 2, 1153 .rates = SNDRV_PCM_RATE_48000, 1154 /* 16-bit capture is broken (errata ERR003778) */ 1155 .formats = SNDRV_PCM_FMTBIT_S20, 1156 }, 1157 .ops = &fsl_ssi_dai_ops, 1158 }; 1159 1160 static struct fsl_ssi *fsl_ac97_data; 1161 1162 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 1163 unsigned short val) 1164 { 1165 struct regmap *regs = fsl_ac97_data->regs; 1166 unsigned int lreg; 1167 unsigned int lval; 1168 int ret; 1169 1170 if (reg > 0x7f) 1171 return; 1172 1173 mutex_lock(&fsl_ac97_data->ac97_reg_lock); 1174 1175 ret = clk_prepare_enable(fsl_ac97_data->clk); 1176 if (ret) { 1177 pr_err("ac97 write clk_prepare_enable failed: %d\n", 1178 ret); 1179 goto ret_unlock; 1180 } 1181 1182 lreg = reg << 12; 1183 regmap_write(regs, REG_SSI_SACADD, lreg); 1184 1185 lval = val << 4; 1186 regmap_write(regs, REG_SSI_SACDAT, lval); 1187 1188 regmap_update_bits(regs, REG_SSI_SACNT, 1189 SSI_SACNT_RDWR_MASK, SSI_SACNT_WR); 1190 udelay(100); 1191 1192 clk_disable_unprepare(fsl_ac97_data->clk); 1193 1194 ret_unlock: 1195 mutex_unlock(&fsl_ac97_data->ac97_reg_lock); 1196 } 1197 1198 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97, 1199 unsigned short reg) 1200 { 1201 struct regmap *regs = fsl_ac97_data->regs; 1202 unsigned short val = 0; 1203 u32 reg_val; 1204 unsigned int lreg; 1205 int ret; 1206 1207 mutex_lock(&fsl_ac97_data->ac97_reg_lock); 1208 1209 ret = clk_prepare_enable(fsl_ac97_data->clk); 1210 if (ret) { 1211 pr_err("ac97 read clk_prepare_enable failed: %d\n", ret); 1212 goto ret_unlock; 1213 } 1214 1215 lreg = (reg & 0x7f) << 12; 1216 regmap_write(regs, REG_SSI_SACADD, lreg); 1217 regmap_update_bits(regs, REG_SSI_SACNT, 1218 SSI_SACNT_RDWR_MASK, SSI_SACNT_RD); 1219 1220 udelay(100); 1221 1222 regmap_read(regs, REG_SSI_SACDAT, ®_val); 1223 val = (reg_val >> 4) & 0xffff; 1224 1225 clk_disable_unprepare(fsl_ac97_data->clk); 1226 1227 ret_unlock: 1228 mutex_unlock(&fsl_ac97_data->ac97_reg_lock); 1229 return val; 1230 } 1231 1232 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = { 1233 .read = fsl_ssi_ac97_read, 1234 .write = fsl_ssi_ac97_write, 1235 }; 1236 1237 /** 1238 * Initialize SSI registers 1239 */ 1240 static int fsl_ssi_hw_init(struct fsl_ssi *ssi) 1241 { 1242 u32 wm = ssi->fifo_watermark; 1243 1244 /* Initialize regvals */ 1245 fsl_ssi_setup_regvals(ssi); 1246 1247 /* Set watermarks */ 1248 regmap_write(ssi->regs, REG_SSI_SFCSR, 1249 SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) | 1250 SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm)); 1251 1252 /* Enable Dual FIFO mode */ 1253 if (ssi->use_dual_fifo) 1254 regmap_update_bits(ssi->regs, REG_SSI_SCR, 1255 SSI_SCR_TCH_EN, SSI_SCR_TCH_EN); 1256 1257 /* AC97 should start earlier to communicate with CODECs */ 1258 if (fsl_ssi_is_ac97(ssi)) { 1259 _fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt); 1260 fsl_ssi_setup_ac97(ssi); 1261 } 1262 1263 return 0; 1264 } 1265 1266 /** 1267 * Clear SSI registers 1268 */ 1269 static void fsl_ssi_hw_clean(struct fsl_ssi *ssi) 1270 { 1271 /* Disable registers for AC97 */ 1272 if (fsl_ssi_is_ac97(ssi)) { 1273 /* Disable TE and RE bits first */ 1274 regmap_update_bits(ssi->regs, REG_SSI_SCR, 1275 SSI_SCR_TE | SSI_SCR_RE, 0); 1276 /* Disable AC97 mode */ 1277 regmap_write(ssi->regs, REG_SSI_SACNT, 0); 1278 /* Unset WAIT bits */ 1279 regmap_write(ssi->regs, REG_SSI_SOR, 0); 1280 /* Disable SSI -- software reset */ 1281 regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0); 1282 } 1283 } 1284 /** 1285 * Make every character in a string lower-case 1286 */ 1287 static void make_lowercase(char *s) 1288 { 1289 if (!s) 1290 return; 1291 for (; *s; s++) 1292 *s = tolower(*s); 1293 } 1294 1295 static int fsl_ssi_imx_probe(struct platform_device *pdev, 1296 struct fsl_ssi *ssi, void __iomem *iomem) 1297 { 1298 struct device *dev = &pdev->dev; 1299 int ret; 1300 1301 /* Backward compatible for a DT without ipg clock name assigned */ 1302 if (ssi->has_ipg_clk_name) 1303 ssi->clk = devm_clk_get(dev, "ipg"); 1304 else 1305 ssi->clk = devm_clk_get(dev, NULL); 1306 if (IS_ERR(ssi->clk)) { 1307 ret = PTR_ERR(ssi->clk); 1308 dev_err(dev, "failed to get clock: %d\n", ret); 1309 return ret; 1310 } 1311 1312 /* Enable the clock since regmap will not handle it in this case */ 1313 if (!ssi->has_ipg_clk_name) { 1314 ret = clk_prepare_enable(ssi->clk); 1315 if (ret) { 1316 dev_err(dev, "clk_prepare_enable failed: %d\n", ret); 1317 return ret; 1318 } 1319 } 1320 1321 /* Do not error out for slave cases that live without a baud clock */ 1322 ssi->baudclk = devm_clk_get(dev, "baud"); 1323 if (IS_ERR(ssi->baudclk)) 1324 dev_dbg(dev, "failed to get baud clock: %ld\n", 1325 PTR_ERR(ssi->baudclk)); 1326 1327 ssi->dma_params_tx.maxburst = ssi->dma_maxburst; 1328 ssi->dma_params_rx.maxburst = ssi->dma_maxburst; 1329 ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0; 1330 ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0; 1331 1332 /* Use even numbers to avoid channel swap due to SDMA script design */ 1333 if (ssi->use_dual_fifo) { 1334 ssi->dma_params_tx.maxburst &= ~0x1; 1335 ssi->dma_params_rx.maxburst &= ~0x1; 1336 } 1337 1338 if (!ssi->use_dma) { 1339 /* 1340 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio 1341 * to get it working, as DMA is not possible in this situation. 1342 */ 1343 ssi->fiq_params.irq = ssi->irq; 1344 ssi->fiq_params.base = iomem; 1345 ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx; 1346 ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx; 1347 1348 ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params); 1349 if (ret) 1350 goto error_pcm; 1351 } else { 1352 ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE); 1353 if (ret) 1354 goto error_pcm; 1355 } 1356 1357 return 0; 1358 1359 error_pcm: 1360 if (!ssi->has_ipg_clk_name) 1361 clk_disable_unprepare(ssi->clk); 1362 1363 return ret; 1364 } 1365 1366 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi) 1367 { 1368 if (!ssi->use_dma) 1369 imx_pcm_fiq_exit(pdev); 1370 if (!ssi->has_ipg_clk_name) 1371 clk_disable_unprepare(ssi->clk); 1372 } 1373 1374 static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi) 1375 { 1376 struct device *dev = ssi->dev; 1377 struct device_node *np = dev->of_node; 1378 const struct of_device_id *of_id; 1379 const char *p, *sprop; 1380 const __be32 *iprop; 1381 u32 dmas[4]; 1382 int ret; 1383 1384 of_id = of_match_device(fsl_ssi_ids, dev); 1385 if (!of_id || !of_id->data) 1386 return -EINVAL; 1387 1388 ssi->soc = of_id->data; 1389 1390 ret = of_property_match_string(np, "clock-names", "ipg"); 1391 /* Get error code if not found */ 1392 ssi->has_ipg_clk_name = ret >= 0; 1393 1394 /* Check if being used in AC97 mode */ 1395 sprop = of_get_property(np, "fsl,mode", NULL); 1396 if (sprop && !strcmp(sprop, "ac97-slave")) { 1397 ssi->dai_fmt = FSLSSI_AC97_DAIFMT; 1398 1399 ret = of_property_read_u32(np, "cell-index", &ssi->card_idx); 1400 if (ret) { 1401 dev_err(dev, "failed to get SSI index property\n"); 1402 return -EINVAL; 1403 } 1404 strcpy(ssi->card_name, "ac97-codec"); 1405 } else if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) { 1406 /* 1407 * In synchronous mode, STCK and STFS ports are used by RX 1408 * as well. So the software should limit the sample rates, 1409 * sample bits and channels to be symmetric. 1410 * 1411 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs 1412 * in the SSI synchronous mode however it does not have to 1413 * limit symmetric sample rates and sample bits. 1414 */ 1415 ssi->synchronous = true; 1416 } 1417 1418 /* Select DMA or FIQ */ 1419 ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter"); 1420 1421 /* Fetch FIFO depth; Set to 8 for older DT without this property */ 1422 iprop = of_get_property(np, "fsl,fifo-depth", NULL); 1423 if (iprop) 1424 ssi->fifo_depth = be32_to_cpup(iprop); 1425 else 1426 ssi->fifo_depth = 8; 1427 1428 /* Use dual FIFO mode depending on the support from SDMA script */ 1429 ret = of_property_read_u32_array(np, "dmas", dmas, 4); 1430 if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) 1431 ssi->use_dual_fifo = true; 1432 1433 /* 1434 * Backward compatible for older bindings by manually triggering the 1435 * machine driver's probe(). Use /compatible property, including the 1436 * address of CPU DAI driver structure, as the name of machine driver 1437 * 1438 * If card_name is set by AC97 earlier, bypass here since it uses a 1439 * different name to register the device. 1440 */ 1441 if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) { 1442 sprop = of_get_property(of_find_node_by_path("/"), 1443 "compatible", NULL); 1444 /* Strip "fsl," in the compatible name if applicable */ 1445 p = strrchr(sprop, ','); 1446 if (p) 1447 sprop = p + 1; 1448 snprintf(ssi->card_name, sizeof(ssi->card_name), 1449 "snd-soc-%s", sprop); 1450 make_lowercase(ssi->card_name); 1451 ssi->card_idx = 0; 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int fsl_ssi_probe(struct platform_device *pdev) 1458 { 1459 struct regmap_config regconfig = fsl_ssi_regconfig; 1460 struct device *dev = &pdev->dev; 1461 struct fsl_ssi *ssi; 1462 struct resource *res; 1463 void __iomem *iomem; 1464 int ret = 0; 1465 1466 ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL); 1467 if (!ssi) 1468 return -ENOMEM; 1469 1470 ssi->dev = dev; 1471 1472 /* Probe from DT */ 1473 ret = fsl_ssi_probe_from_dt(ssi); 1474 if (ret) 1475 return ret; 1476 1477 if (fsl_ssi_is_ac97(ssi)) { 1478 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai, 1479 sizeof(fsl_ssi_ac97_dai)); 1480 fsl_ac97_data = ssi; 1481 } else { 1482 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template, 1483 sizeof(fsl_ssi_dai_template)); 1484 } 1485 ssi->cpu_dai_drv.name = dev_name(dev); 1486 1487 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1488 iomem = devm_ioremap_resource(dev, res); 1489 if (IS_ERR(iomem)) 1490 return PTR_ERR(iomem); 1491 ssi->ssi_phys = res->start; 1492 1493 if (ssi->soc->imx21regs) { 1494 /* No SACC{ST,EN,DIS} regs in imx21-class SSI */ 1495 regconfig.max_register = REG_SSI_SRMSK; 1496 regconfig.num_reg_defaults_raw = 1497 REG_SSI_SRMSK / sizeof(uint32_t) + 1; 1498 } 1499 1500 if (ssi->has_ipg_clk_name) 1501 ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem, 1502 ®config); 1503 else 1504 ssi->regs = devm_regmap_init_mmio(dev, iomem, ®config); 1505 if (IS_ERR(ssi->regs)) { 1506 dev_err(dev, "failed to init register map\n"); 1507 return PTR_ERR(ssi->regs); 1508 } 1509 1510 ssi->irq = platform_get_irq(pdev, 0); 1511 if (ssi->irq < 0) { 1512 dev_err(dev, "no irq for node %s\n", pdev->name); 1513 return ssi->irq; 1514 } 1515 1516 /* Set software limitations for synchronous mode except AC97 */ 1517 if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) { 1518 ssi->cpu_dai_drv.symmetric_rates = 1; 1519 ssi->cpu_dai_drv.symmetric_channels = 1; 1520 ssi->cpu_dai_drv.symmetric_samplebits = 1; 1521 } 1522 1523 /* 1524 * Configure TX and RX DMA watermarks -- when to send a DMA request 1525 * 1526 * Values should be tested to avoid FIFO under/over run. Set maxburst 1527 * to fifo_watermark to maxiumize DMA transaction to reduce overhead. 1528 */ 1529 switch (ssi->fifo_depth) { 1530 case 15: 1531 /* 1532 * Set to 8 as a balanced configuration -- When TX FIFO has 8 1533 * empty slots, send a DMA request to fill these 8 slots. The 1534 * remaining 7 slots should be able to allow DMA to finish the 1535 * transaction before TX FIFO underruns; Same applies to RX. 1536 * 1537 * Tested with cases running at 48kHz @ 16 bits x 16 channels 1538 */ 1539 ssi->fifo_watermark = 8; 1540 ssi->dma_maxburst = 8; 1541 break; 1542 case 8: 1543 default: 1544 /* Safely use old watermark configurations for older chips */ 1545 ssi->fifo_watermark = ssi->fifo_depth - 2; 1546 ssi->dma_maxburst = ssi->fifo_depth - 2; 1547 break; 1548 } 1549 1550 dev_set_drvdata(dev, ssi); 1551 1552 if (ssi->soc->imx) { 1553 ret = fsl_ssi_imx_probe(pdev, ssi, iomem); 1554 if (ret) 1555 return ret; 1556 } 1557 1558 if (fsl_ssi_is_ac97(ssi)) { 1559 mutex_init(&ssi->ac97_reg_lock); 1560 ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev); 1561 if (ret) { 1562 dev_err(dev, "failed to set AC'97 ops\n"); 1563 goto error_ac97_ops; 1564 } 1565 } 1566 1567 ret = devm_snd_soc_register_component(dev, &fsl_ssi_component, 1568 &ssi->cpu_dai_drv, 1); 1569 if (ret) { 1570 dev_err(dev, "failed to register DAI: %d\n", ret); 1571 goto error_asoc_register; 1572 } 1573 1574 if (ssi->use_dma) { 1575 ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0, 1576 dev_name(dev), ssi); 1577 if (ret < 0) { 1578 dev_err(dev, "failed to claim irq %u\n", ssi->irq); 1579 goto error_asoc_register; 1580 } 1581 } 1582 1583 ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev); 1584 if (ret) 1585 goto error_asoc_register; 1586 1587 /* Initially configures SSI registers */ 1588 fsl_ssi_hw_init(ssi); 1589 1590 /* Register a platform device for older bindings or AC97 */ 1591 if (ssi->card_name[0]) { 1592 struct device *parent = dev; 1593 /* 1594 * Do not set SSI dev as the parent of AC97 CODEC device since 1595 * it does not have a DT node. Otherwise ASoC core will assume 1596 * CODEC has the same DT node as the SSI, so it may bypass the 1597 * dai_probe() of SSI and then cause NULL DMA data pointers. 1598 */ 1599 if (fsl_ssi_is_ac97(ssi)) 1600 parent = NULL; 1601 1602 ssi->card_pdev = platform_device_register_data(parent, 1603 ssi->card_name, ssi->card_idx, NULL, 0); 1604 if (IS_ERR(ssi->card_pdev)) { 1605 ret = PTR_ERR(ssi->card_pdev); 1606 dev_err(dev, "failed to register %s: %d\n", 1607 ssi->card_name, ret); 1608 goto error_sound_card; 1609 } 1610 } 1611 1612 return 0; 1613 1614 error_sound_card: 1615 fsl_ssi_debugfs_remove(&ssi->dbg_stats); 1616 error_asoc_register: 1617 if (fsl_ssi_is_ac97(ssi)) 1618 snd_soc_set_ac97_ops(NULL); 1619 error_ac97_ops: 1620 if (fsl_ssi_is_ac97(ssi)) 1621 mutex_destroy(&ssi->ac97_reg_lock); 1622 1623 if (ssi->soc->imx) 1624 fsl_ssi_imx_clean(pdev, ssi); 1625 1626 return ret; 1627 } 1628 1629 static int fsl_ssi_remove(struct platform_device *pdev) 1630 { 1631 struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev); 1632 1633 fsl_ssi_debugfs_remove(&ssi->dbg_stats); 1634 1635 if (ssi->card_pdev) 1636 platform_device_unregister(ssi->card_pdev); 1637 1638 /* Clean up SSI registers */ 1639 fsl_ssi_hw_clean(ssi); 1640 1641 if (ssi->soc->imx) 1642 fsl_ssi_imx_clean(pdev, ssi); 1643 1644 if (fsl_ssi_is_ac97(ssi)) { 1645 snd_soc_set_ac97_ops(NULL); 1646 mutex_destroy(&ssi->ac97_reg_lock); 1647 } 1648 1649 return 0; 1650 } 1651 1652 #ifdef CONFIG_PM_SLEEP 1653 static int fsl_ssi_suspend(struct device *dev) 1654 { 1655 struct fsl_ssi *ssi = dev_get_drvdata(dev); 1656 struct regmap *regs = ssi->regs; 1657 1658 regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr); 1659 regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt); 1660 1661 regcache_cache_only(regs, true); 1662 regcache_mark_dirty(regs); 1663 1664 return 0; 1665 } 1666 1667 static int fsl_ssi_resume(struct device *dev) 1668 { 1669 struct fsl_ssi *ssi = dev_get_drvdata(dev); 1670 struct regmap *regs = ssi->regs; 1671 1672 regcache_cache_only(regs, false); 1673 1674 regmap_update_bits(regs, REG_SSI_SFCSR, 1675 SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK | 1676 SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK, 1677 ssi->regcache_sfcsr); 1678 regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt); 1679 1680 return regcache_sync(regs); 1681 } 1682 #endif /* CONFIG_PM_SLEEP */ 1683 1684 static const struct dev_pm_ops fsl_ssi_pm = { 1685 SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume) 1686 }; 1687 1688 static struct platform_driver fsl_ssi_driver = { 1689 .driver = { 1690 .name = "fsl-ssi-dai", 1691 .of_match_table = fsl_ssi_ids, 1692 .pm = &fsl_ssi_pm, 1693 }, 1694 .probe = fsl_ssi_probe, 1695 .remove = fsl_ssi_remove, 1696 }; 1697 1698 module_platform_driver(fsl_ssi_driver); 1699 1700 MODULE_ALIAS("platform:fsl-ssi-dai"); 1701 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 1702 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 1703 MODULE_LICENSE("GPL v2"); 1704