xref: /openbmc/linux/sound/soc/fsl/fsl_ssi.c (revision 503ccc3f)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46 
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53 
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56 
57 /**
58  * FSLSSI_I2S_RATES: sample rates supported by the I2S
59  *
60  * This driver currently only supports the SSI running in I2S slave mode,
61  * which means the codec determines the sample rate.  Therefore, we tell
62  * ALSA that we support all rates and let the codec driver decide what rates
63  * are really supported.
64  */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66 
67 /**
68  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69  *
70  * This driver currently only supports the SSI running in I2S slave mode.
71  *
72  * The SSI has a limitation in that the samples must be in the same byte
73  * order as the host CPU.  This is because when multiple bytes are written
74  * to the STX register, the bytes and bits must be written in the same
75  * order.  The STX is a shift register, so all the bits need to be aligned
76  * (bit-endianness must match byte-endianness).  Processors typically write
77  * the bits within a byte in the same order that the bytes of a word are
78  * written in.  So if the host CPU is big-endian, then only big-endian
79  * samples will be written to STX properly.
80  */
81 #ifdef __BIG_ENDIAN
82 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
83 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
84 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
85 #else
86 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
87 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
88 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
89 #endif
90 
91 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
92 		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
93 		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
94 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
95 		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
96 		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
97 
98 enum fsl_ssi_type {
99 	FSL_SSI_MCP8610,
100 	FSL_SSI_MX21,
101 	FSL_SSI_MX35,
102 	FSL_SSI_MX51,
103 };
104 
105 struct fsl_ssi_reg_val {
106 	u32 sier;
107 	u32 srcr;
108 	u32 stcr;
109 	u32 scr;
110 };
111 
112 struct fsl_ssi_rxtx_reg_val {
113 	struct fsl_ssi_reg_val rx;
114 	struct fsl_ssi_reg_val tx;
115 };
116 static const struct regmap_config fsl_ssi_regconfig = {
117 	.max_register = CCSR_SSI_SACCDIS,
118 	.reg_bits = 32,
119 	.val_bits = 32,
120 	.reg_stride = 4,
121 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
122 };
123 
124 struct fsl_ssi_soc_data {
125 	bool imx;
126 	bool offline_config;
127 	u32 sisr_write_mask;
128 };
129 
130 /**
131  * fsl_ssi_private: per-SSI private data
132  *
133  * @reg: Pointer to the regmap registers
134  * @irq: IRQ of this SSI
135  * @cpu_dai_drv: CPU DAI driver for this device
136  *
137  * @dai_fmt: DAI configuration this device is currently used with
138  * @i2s_mode: i2s and network mode configuration of the device. Is used to
139  * switch between normal and i2s/network mode
140  * mode depending on the number of channels
141  * @use_dma: DMA is used or FIQ with stream filter
142  * @use_dual_fifo: DMA with support for both FIFOs used
143  * @fifo_deph: Depth of the SSI FIFOs
144  * @rxtx_reg_val: Specific register settings for receive/transmit configuration
145  *
146  * @clk: SSI clock
147  * @baudclk: SSI baud clock for master mode
148  * @baudclk_streams: Active streams that are using baudclk
149  * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
150  *
151  * @dma_params_tx: DMA transmit parameters
152  * @dma_params_rx: DMA receive parameters
153  * @ssi_phys: physical address of the SSI registers
154  *
155  * @fiq_params: FIQ stream filtering parameters
156  *
157  * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
158  *
159  * @dbg_stats: Debugging statistics
160  *
161  * @soc: SoC specifc data
162  */
163 struct fsl_ssi_private {
164 	struct regmap *regs;
165 	unsigned int irq;
166 	struct snd_soc_dai_driver cpu_dai_drv;
167 
168 	unsigned int dai_fmt;
169 	u8 i2s_mode;
170 	bool use_dma;
171 	bool use_dual_fifo;
172 	bool has_ipg_clk_name;
173 	unsigned int fifo_depth;
174 	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
175 
176 	struct clk *clk;
177 	struct clk *baudclk;
178 	unsigned int baudclk_streams;
179 	unsigned int bitclk_freq;
180 
181 	/* DMA params */
182 	struct snd_dmaengine_dai_dma_data dma_params_tx;
183 	struct snd_dmaengine_dai_dma_data dma_params_rx;
184 	dma_addr_t ssi_phys;
185 
186 	/* params for non-dma FIQ stream filtered mode */
187 	struct imx_pcm_fiq_params fiq_params;
188 
189 	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
190 	 * should be replaced with simple-sound-card. */
191 	struct platform_device *pdev;
192 
193 	struct fsl_ssi_dbg dbg_stats;
194 
195 	const struct fsl_ssi_soc_data *soc;
196 };
197 
198 /*
199  * imx51 and later SoCs have a slightly different IP that allows the
200  * SSI configuration while the SSI unit is running.
201  *
202  * More important, it is necessary on those SoCs to configure the
203  * sperate TX/RX DMA bits just before starting the stream
204  * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
205  * sends any DMA requests to the SDMA unit, otherwise it is not defined
206  * how the SDMA unit handles the DMA request.
207  *
208  * SDMA units are present on devices starting at imx35 but the imx35
209  * reference manual states that the DMA bits should not be changed
210  * while the SSI unit is running (SSIEN). So we support the necessary
211  * online configuration of fsl-ssi starting at imx51.
212  */
213 
214 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
215 	.imx = false,
216 	.offline_config = true,
217 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
218 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
219 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
220 };
221 
222 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
223 	.imx = true,
224 	.offline_config = true,
225 	.sisr_write_mask = 0,
226 };
227 
228 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
229 	.imx = true,
230 	.offline_config = true,
231 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
232 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
233 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
234 };
235 
236 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
237 	.imx = true,
238 	.offline_config = false,
239 	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
240 		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
241 };
242 
243 static const struct of_device_id fsl_ssi_ids[] = {
244 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
245 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
246 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
247 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
248 	{}
249 };
250 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
251 
252 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
253 {
254 	return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
255 }
256 
257 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
258 {
259 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
260 		SND_SOC_DAIFMT_CBS_CFS;
261 }
262 
263 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
264 {
265 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
266 		SND_SOC_DAIFMT_CBM_CFS;
267 }
268 /**
269  * fsl_ssi_isr: SSI interrupt handler
270  *
271  * Although it's possible to use the interrupt handler to send and receive
272  * data to/from the SSI, we use the DMA instead.  Programming is more
273  * complicated, but the performance is much better.
274  *
275  * This interrupt handler is used only to gather statistics.
276  *
277  * @irq: IRQ of the SSI device
278  * @dev_id: pointer to the ssi_private structure for this SSI device
279  */
280 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
281 {
282 	struct fsl_ssi_private *ssi_private = dev_id;
283 	struct regmap *regs = ssi_private->regs;
284 	__be32 sisr;
285 	__be32 sisr2;
286 
287 	/* We got an interrupt, so read the status register to see what we
288 	   were interrupted for.  We mask it with the Interrupt Enable register
289 	   so that we only check for events that we're interested in.
290 	 */
291 	regmap_read(regs, CCSR_SSI_SISR, &sisr);
292 
293 	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
294 	/* Clear the bits that we set */
295 	if (sisr2)
296 		regmap_write(regs, CCSR_SSI_SISR, sisr2);
297 
298 	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
299 
300 	return IRQ_HANDLED;
301 }
302 
303 /*
304  * Enable/Disable all rx/tx config flags at once.
305  */
306 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
307 		bool enable)
308 {
309 	struct regmap *regs = ssi_private->regs;
310 	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
311 
312 	if (enable) {
313 		regmap_update_bits(regs, CCSR_SSI_SIER,
314 				vals->rx.sier | vals->tx.sier,
315 				vals->rx.sier | vals->tx.sier);
316 		regmap_update_bits(regs, CCSR_SSI_SRCR,
317 				vals->rx.srcr | vals->tx.srcr,
318 				vals->rx.srcr | vals->tx.srcr);
319 		regmap_update_bits(regs, CCSR_SSI_STCR,
320 				vals->rx.stcr | vals->tx.stcr,
321 				vals->rx.stcr | vals->tx.stcr);
322 	} else {
323 		regmap_update_bits(regs, CCSR_SSI_SRCR,
324 				vals->rx.srcr | vals->tx.srcr, 0);
325 		regmap_update_bits(regs, CCSR_SSI_STCR,
326 				vals->rx.stcr | vals->tx.stcr, 0);
327 		regmap_update_bits(regs, CCSR_SSI_SIER,
328 				vals->rx.sier | vals->tx.sier, 0);
329 	}
330 }
331 
332 /*
333  * Calculate the bits that have to be disabled for the current stream that is
334  * getting disabled. This keeps the bits enabled that are necessary for the
335  * second stream to work if 'stream_active' is true.
336  *
337  * Detailed calculation:
338  * These are the values that need to be active after disabling. For non-active
339  * second stream, this is 0:
340  *	vals_stream * !!stream_active
341  *
342  * The following computes the overall differences between the setup for the
343  * to-disable stream and the active stream, a simple XOR:
344  *	vals_disable ^ (vals_stream * !!(stream_active))
345  *
346  * The full expression adds a mask on all values we care about
347  */
348 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
349 	((vals_disable) & \
350 	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
351 
352 /*
353  * Enable/Disable a ssi configuration. You have to pass either
354  * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
355  */
356 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
357 		struct fsl_ssi_reg_val *vals)
358 {
359 	struct regmap *regs = ssi_private->regs;
360 	struct fsl_ssi_reg_val *avals;
361 	int nr_active_streams;
362 	u32 scr_val;
363 	int keep_active;
364 
365 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
366 
367 	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
368 				!!(scr_val & CCSR_SSI_SCR_RE);
369 
370 	if (nr_active_streams - 1 > 0)
371 		keep_active = 1;
372 	else
373 		keep_active = 0;
374 
375 	/* Find the other direction values rx or tx which we do not want to
376 	 * modify */
377 	if (&ssi_private->rxtx_reg_val.rx == vals)
378 		avals = &ssi_private->rxtx_reg_val.tx;
379 	else
380 		avals = &ssi_private->rxtx_reg_val.rx;
381 
382 	/* If vals should be disabled, start with disabling the unit */
383 	if (!enable) {
384 		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
385 				keep_active);
386 		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
387 	}
388 
389 	/*
390 	 * We are running on a SoC which does not support online SSI
391 	 * reconfiguration, so we have to enable all necessary flags at once
392 	 * even if we do not use them later (capture and playback configuration)
393 	 */
394 	if (ssi_private->soc->offline_config) {
395 		if ((enable && !nr_active_streams) ||
396 				(!enable && !keep_active))
397 			fsl_ssi_rxtx_config(ssi_private, enable);
398 
399 		goto config_done;
400 	}
401 
402 	/*
403 	 * Configure single direction units while the SSI unit is running
404 	 * (online configuration)
405 	 */
406 	if (enable) {
407 		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
408 		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
409 		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
410 	} else {
411 		u32 sier;
412 		u32 srcr;
413 		u32 stcr;
414 
415 		/*
416 		 * Disabling the necessary flags for one of rx/tx while the
417 		 * other stream is active is a little bit more difficult. We
418 		 * have to disable only those flags that differ between both
419 		 * streams (rx XOR tx) and that are set in the stream that is
420 		 * disabled now. Otherwise we could alter flags of the other
421 		 * stream
422 		 */
423 
424 		/* These assignments are simply vals without bits set in avals*/
425 		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
426 				keep_active);
427 		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
428 				keep_active);
429 		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
430 				keep_active);
431 
432 		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
433 		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
434 		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
435 	}
436 
437 config_done:
438 	/* Enabling of subunits is done after configuration */
439 	if (enable)
440 		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
441 }
442 
443 
444 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
445 {
446 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
447 }
448 
449 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
450 {
451 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
452 }
453 
454 /*
455  * Setup rx/tx register values used to enable/disable the streams. These will
456  * be used later in fsl_ssi_config to setup the streams without the need to
457  * check for all different SSI modes.
458  */
459 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
460 {
461 	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
462 
463 	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
464 	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
465 	reg->rx.scr = 0;
466 	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
467 	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
468 	reg->tx.scr = 0;
469 
470 	if (!fsl_ssi_is_ac97(ssi_private)) {
471 		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
472 		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
473 		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
474 		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
475 	}
476 
477 	if (ssi_private->use_dma) {
478 		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
479 		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
480 	} else {
481 		reg->rx.sier |= CCSR_SSI_SIER_RIE;
482 		reg->tx.sier |= CCSR_SSI_SIER_TIE;
483 	}
484 
485 	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
486 	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
487 }
488 
489 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
490 {
491 	struct regmap *regs = ssi_private->regs;
492 
493 	/*
494 	 * Setup the clock control register
495 	 */
496 	regmap_write(regs, CCSR_SSI_STCCR,
497 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
498 	regmap_write(regs, CCSR_SSI_SRCCR,
499 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
500 
501 	/*
502 	 * Enable AC97 mode and startup the SSI
503 	 */
504 	regmap_write(regs, CCSR_SSI_SACNT,
505 			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
506 	regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
507 	regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
508 
509 	/*
510 	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
511 	 * codec before a stream is started.
512 	 */
513 	regmap_update_bits(regs, CCSR_SSI_SCR,
514 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
515 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
516 
517 	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
518 }
519 
520 /**
521  * fsl_ssi_startup: create a new substream
522  *
523  * This is the first function called when a stream is opened.
524  *
525  * If this is the first stream open, then grab the IRQ and program most of
526  * the SSI registers.
527  */
528 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
529 			   struct snd_soc_dai *dai)
530 {
531 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
532 	struct fsl_ssi_private *ssi_private =
533 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
534 	int ret;
535 
536 	ret = clk_prepare_enable(ssi_private->clk);
537 	if (ret)
538 		return ret;
539 
540 	/* When using dual fifo mode, it is safer to ensure an even period
541 	 * size. If appearing to an odd number while DMA always starts its
542 	 * task from fifo0, fifo1 would be neglected at the end of each
543 	 * period. But SSI would still access fifo1 with an invalid data.
544 	 */
545 	if (ssi_private->use_dual_fifo)
546 		snd_pcm_hw_constraint_step(substream->runtime, 0,
547 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
548 
549 	return 0;
550 }
551 
552 /**
553  * fsl_ssi_shutdown: shutdown the SSI
554  *
555  */
556 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
557 				struct snd_soc_dai *dai)
558 {
559 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
560 	struct fsl_ssi_private *ssi_private =
561 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
562 
563 	clk_disable_unprepare(ssi_private->clk);
564 
565 }
566 
567 /**
568  * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
569  *
570  * Note: This function can be only called when using SSI as DAI master
571  *
572  * Quick instruction for parameters:
573  * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
574  * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
575  */
576 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
577 		struct snd_soc_dai *cpu_dai,
578 		struct snd_pcm_hw_params *hw_params)
579 {
580 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
581 	struct regmap *regs = ssi_private->regs;
582 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
583 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
584 	unsigned long clkrate, baudrate, tmprate;
585 	u64 sub, savesub = 100000;
586 	unsigned int freq;
587 	bool baudclk_is_used;
588 
589 	/* Prefer the explicitly set bitclock frequency */
590 	if (ssi_private->bitclk_freq)
591 		freq = ssi_private->bitclk_freq;
592 	else
593 		freq = params_channels(hw_params) * 32 * params_rate(hw_params);
594 
595 	/* Don't apply it to any non-baudclk circumstance */
596 	if (IS_ERR(ssi_private->baudclk))
597 		return -EINVAL;
598 
599 	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
600 
601 	/* It should be already enough to divide clock by setting pm alone */
602 	psr = 0;
603 	div2 = 0;
604 
605 	factor = (div2 + 1) * (7 * psr + 1) * 2;
606 
607 	for (i = 0; i < 255; i++) {
608 		/* The bclk rate must be smaller than 1/5 sysclk rate */
609 		if (factor * (i + 1) < 5)
610 			continue;
611 
612 		tmprate = freq * factor * (i + 2);
613 
614 		if (baudclk_is_used)
615 			clkrate = clk_get_rate(ssi_private->baudclk);
616 		else
617 			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
618 
619 		clkrate /= factor;
620 		afreq = clkrate / (i + 1);
621 
622 		if (freq == afreq)
623 			sub = 0;
624 		else if (freq / afreq == 1)
625 			sub = freq - afreq;
626 		else if (afreq / freq == 1)
627 			sub = afreq - freq;
628 		else
629 			continue;
630 
631 		/* Calculate the fraction */
632 		sub *= 100000;
633 		do_div(sub, freq);
634 
635 		if (sub < savesub) {
636 			baudrate = tmprate;
637 			savesub = sub;
638 			pm = i;
639 		}
640 
641 		/* We are lucky */
642 		if (savesub == 0)
643 			break;
644 	}
645 
646 	/* No proper pm found if it is still remaining the initial value */
647 	if (pm == 999) {
648 		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
649 		return -EINVAL;
650 	}
651 
652 	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
653 		(psr ? CCSR_SSI_SxCCR_PSR : 0);
654 	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
655 		CCSR_SSI_SxCCR_PSR;
656 
657 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
658 		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
659 	else
660 		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
661 
662 	if (!baudclk_is_used) {
663 		ret = clk_set_rate(ssi_private->baudclk, baudrate);
664 		if (ret) {
665 			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
666 			return -EINVAL;
667 		}
668 	}
669 
670 	return 0;
671 }
672 
673 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
674 		int clk_id, unsigned int freq, int dir)
675 {
676 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
677 
678 	ssi_private->bitclk_freq = freq;
679 
680 	return 0;
681 }
682 
683 /**
684  * fsl_ssi_hw_params - program the sample size
685  *
686  * Most of the SSI registers have been programmed in the startup function,
687  * but the word length must be programmed here.  Unfortunately, programming
688  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
689  * cause a problem with supporting simultaneous playback and capture.  If
690  * the SSI is already playing a stream, then that stream may be temporarily
691  * stopped when you start capture.
692  *
693  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
694  * clock master.
695  */
696 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
697 	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
698 {
699 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
700 	struct regmap *regs = ssi_private->regs;
701 	unsigned int channels = params_channels(hw_params);
702 	unsigned int sample_size =
703 		snd_pcm_format_width(params_format(hw_params));
704 	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
705 	int ret;
706 	u32 scr_val;
707 	int enabled;
708 
709 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
710 	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
711 
712 	/*
713 	 * If we're in synchronous mode, and the SSI is already enabled,
714 	 * then STCCR is already set properly.
715 	 */
716 	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
717 		return 0;
718 
719 	if (fsl_ssi_is_i2s_master(ssi_private)) {
720 		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
721 		if (ret)
722 			return ret;
723 
724 		/* Do not enable the clock if it is already enabled */
725 		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
726 			ret = clk_prepare_enable(ssi_private->baudclk);
727 			if (ret)
728 				return ret;
729 
730 			ssi_private->baudclk_streams |= BIT(substream->stream);
731 		}
732 	}
733 
734 	if (!fsl_ssi_is_ac97(ssi_private)) {
735 		u8 i2smode;
736 		/*
737 		 * Switch to normal net mode in order to have a frame sync
738 		 * signal every 32 bits instead of 16 bits
739 		 */
740 		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
741 			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
742 				CCSR_SSI_SCR_NET;
743 		else
744 			i2smode = ssi_private->i2s_mode;
745 
746 		regmap_update_bits(regs, CCSR_SSI_SCR,
747 				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
748 				channels == 1 ? 0 : i2smode);
749 	}
750 
751 	/*
752 	 * FIXME: The documentation says that SxCCR[WL] should not be
753 	 * modified while the SSI is enabled.  The only time this can
754 	 * happen is if we're trying to do simultaneous playback and
755 	 * capture in asynchronous mode.  Unfortunately, I have been enable
756 	 * to get that to work at all on the P1022DS.  Therefore, we don't
757 	 * bother to disable/enable the SSI when setting SxCCR[WL], because
758 	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
759 	 */
760 
761 	/* In synchronous mode, the SSI uses STCCR for capture */
762 	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
763 	    ssi_private->cpu_dai_drv.symmetric_rates)
764 		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
765 				wl);
766 	else
767 		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
768 				wl);
769 
770 	return 0;
771 }
772 
773 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
774 		struct snd_soc_dai *cpu_dai)
775 {
776 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
777 	struct fsl_ssi_private *ssi_private =
778 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
779 
780 	if (fsl_ssi_is_i2s_master(ssi_private) &&
781 			ssi_private->baudclk_streams & BIT(substream->stream)) {
782 		clk_disable_unprepare(ssi_private->baudclk);
783 		ssi_private->baudclk_streams &= ~BIT(substream->stream);
784 	}
785 
786 	return 0;
787 }
788 
789 static int _fsl_ssi_set_dai_fmt(struct device *dev,
790 				struct fsl_ssi_private *ssi_private,
791 				unsigned int fmt)
792 {
793 	struct regmap *regs = ssi_private->regs;
794 	u32 strcr = 0, stcr, srcr, scr, mask;
795 	u8 wm;
796 
797 	ssi_private->dai_fmt = fmt;
798 
799 	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
800 		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
801 		return -EINVAL;
802 	}
803 
804 	fsl_ssi_setup_reg_vals(ssi_private);
805 
806 	regmap_read(regs, CCSR_SSI_SCR, &scr);
807 	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
808 	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
809 
810 	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
811 		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
812 		CCSR_SSI_STCR_TEFS;
813 	regmap_read(regs, CCSR_SSI_STCR, &stcr);
814 	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
815 	stcr &= ~mask;
816 	srcr &= ~mask;
817 
818 	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
819 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
820 	case SND_SOC_DAIFMT_I2S:
821 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
822 		case SND_SOC_DAIFMT_CBM_CFS:
823 		case SND_SOC_DAIFMT_CBS_CFS:
824 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
825 			regmap_update_bits(regs, CCSR_SSI_STCCR,
826 					CCSR_SSI_SxCCR_DC_MASK,
827 					CCSR_SSI_SxCCR_DC(2));
828 			regmap_update_bits(regs, CCSR_SSI_SRCCR,
829 					CCSR_SSI_SxCCR_DC_MASK,
830 					CCSR_SSI_SxCCR_DC(2));
831 			break;
832 		case SND_SOC_DAIFMT_CBM_CFM:
833 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
834 			break;
835 		default:
836 			return -EINVAL;
837 		}
838 
839 		/* Data on rising edge of bclk, frame low, 1clk before data */
840 		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
841 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
842 		break;
843 	case SND_SOC_DAIFMT_LEFT_J:
844 		/* Data on rising edge of bclk, frame high */
845 		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
846 		break;
847 	case SND_SOC_DAIFMT_DSP_A:
848 		/* Data on rising edge of bclk, frame high, 1clk before data */
849 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
850 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
851 		break;
852 	case SND_SOC_DAIFMT_DSP_B:
853 		/* Data on rising edge of bclk, frame high */
854 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
855 			CCSR_SSI_STCR_TXBIT0;
856 		break;
857 	case SND_SOC_DAIFMT_AC97:
858 		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
859 		break;
860 	default:
861 		return -EINVAL;
862 	}
863 	scr |= ssi_private->i2s_mode;
864 
865 	/* DAI clock inversion */
866 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
867 	case SND_SOC_DAIFMT_NB_NF:
868 		/* Nothing to do for both normal cases */
869 		break;
870 	case SND_SOC_DAIFMT_IB_NF:
871 		/* Invert bit clock */
872 		strcr ^= CCSR_SSI_STCR_TSCKP;
873 		break;
874 	case SND_SOC_DAIFMT_NB_IF:
875 		/* Invert frame clock */
876 		strcr ^= CCSR_SSI_STCR_TFSI;
877 		break;
878 	case SND_SOC_DAIFMT_IB_IF:
879 		/* Invert both clocks */
880 		strcr ^= CCSR_SSI_STCR_TSCKP;
881 		strcr ^= CCSR_SSI_STCR_TFSI;
882 		break;
883 	default:
884 		return -EINVAL;
885 	}
886 
887 	/* DAI clock master masks */
888 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
889 	case SND_SOC_DAIFMT_CBS_CFS:
890 		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
891 		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
892 		break;
893 	case SND_SOC_DAIFMT_CBM_CFM:
894 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
895 		break;
896 	case SND_SOC_DAIFMT_CBM_CFS:
897 		strcr &= ~CCSR_SSI_STCR_TXDIR;
898 		strcr |= CCSR_SSI_STCR_TFDIR;
899 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
900 		break;
901 	default:
902 		return -EINVAL;
903 	}
904 
905 	stcr |= strcr;
906 	srcr |= strcr;
907 
908 	if (ssi_private->cpu_dai_drv.symmetric_rates) {
909 		/* Need to clear RXDIR when using SYNC mode */
910 		srcr &= ~CCSR_SSI_SRCR_RXDIR;
911 		scr |= CCSR_SSI_SCR_SYN;
912 	}
913 
914 	regmap_write(regs, CCSR_SSI_STCR, stcr);
915 	regmap_write(regs, CCSR_SSI_SRCR, srcr);
916 	regmap_write(regs, CCSR_SSI_SCR, scr);
917 
918 	/*
919 	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
920 	 * use FIFO 1. We program the transmit water to signal a DMA transfer
921 	 * if there are only two (or fewer) elements left in the FIFO. Two
922 	 * elements equals one frame (left channel, right channel). This value,
923 	 * however, depends on the depth of the transmit buffer.
924 	 *
925 	 * We set the watermark on the same level as the DMA burstsize.  For
926 	 * fiq it is probably better to use the biggest possible watermark
927 	 * size.
928 	 */
929 	if (ssi_private->use_dma)
930 		wm = ssi_private->fifo_depth - 2;
931 	else
932 		wm = ssi_private->fifo_depth;
933 
934 	regmap_write(regs, CCSR_SSI_SFCSR,
935 			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
936 			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
937 
938 	if (ssi_private->use_dual_fifo) {
939 		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
940 				CCSR_SSI_SRCR_RFEN1);
941 		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
942 				CCSR_SSI_STCR_TFEN1);
943 		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
944 				CCSR_SSI_SCR_TCH_EN);
945 	}
946 
947 	if (fmt & SND_SOC_DAIFMT_AC97)
948 		fsl_ssi_setup_ac97(ssi_private);
949 
950 	return 0;
951 
952 }
953 
954 /**
955  * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
956  */
957 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
958 {
959 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
960 
961 	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
962 }
963 
964 /**
965  * fsl_ssi_set_dai_tdm_slot - set TDM slot number
966  *
967  * Note: This function can be only called when using SSI as DAI master
968  */
969 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
970 				u32 rx_mask, int slots, int slot_width)
971 {
972 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
973 	struct regmap *regs = ssi_private->regs;
974 	u32 val;
975 
976 	/* The slot number should be >= 2 if using Network mode or I2S mode */
977 	regmap_read(regs, CCSR_SSI_SCR, &val);
978 	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
979 	if (val && slots < 2) {
980 		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
981 		return -EINVAL;
982 	}
983 
984 	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
985 			CCSR_SSI_SxCCR_DC(slots));
986 	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
987 			CCSR_SSI_SxCCR_DC(slots));
988 
989 	/* The register SxMSKs needs SSI to provide essential clock due to
990 	 * hardware design. So we here temporarily enable SSI to set them.
991 	 */
992 	regmap_read(regs, CCSR_SSI_SCR, &val);
993 	val &= CCSR_SSI_SCR_SSIEN;
994 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
995 			CCSR_SSI_SCR_SSIEN);
996 
997 	regmap_write(regs, CCSR_SSI_STMSK, tx_mask);
998 	regmap_write(regs, CCSR_SSI_SRMSK, rx_mask);
999 
1000 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1001 
1002 	return 0;
1003 }
1004 
1005 /**
1006  * fsl_ssi_trigger: start and stop the DMA transfer.
1007  *
1008  * This function is called by ALSA to start, stop, pause, and resume the DMA
1009  * transfer of data.
1010  *
1011  * The DMA channel is in external master start and pause mode, which
1012  * means the SSI completely controls the flow of data.
1013  */
1014 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1015 			   struct snd_soc_dai *dai)
1016 {
1017 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1018 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1019 	struct regmap *regs = ssi_private->regs;
1020 
1021 	switch (cmd) {
1022 	case SNDRV_PCM_TRIGGER_START:
1023 	case SNDRV_PCM_TRIGGER_RESUME:
1024 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1025 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1026 			fsl_ssi_tx_config(ssi_private, true);
1027 		else
1028 			fsl_ssi_rx_config(ssi_private, true);
1029 		break;
1030 
1031 	case SNDRV_PCM_TRIGGER_STOP:
1032 	case SNDRV_PCM_TRIGGER_SUSPEND:
1033 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1034 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1035 			fsl_ssi_tx_config(ssi_private, false);
1036 		else
1037 			fsl_ssi_rx_config(ssi_private, false);
1038 		break;
1039 
1040 	default:
1041 		return -EINVAL;
1042 	}
1043 
1044 	if (fsl_ssi_is_ac97(ssi_private)) {
1045 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1046 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1047 		else
1048 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1055 {
1056 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1057 
1058 	if (ssi_private->soc->imx && ssi_private->use_dma) {
1059 		dai->playback_dma_data = &ssi_private->dma_params_tx;
1060 		dai->capture_dma_data = &ssi_private->dma_params_rx;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1067 	.startup	= fsl_ssi_startup,
1068 	.shutdown       = fsl_ssi_shutdown,
1069 	.hw_params	= fsl_ssi_hw_params,
1070 	.hw_free	= fsl_ssi_hw_free,
1071 	.set_fmt	= fsl_ssi_set_dai_fmt,
1072 	.set_sysclk	= fsl_ssi_set_dai_sysclk,
1073 	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1074 	.trigger	= fsl_ssi_trigger,
1075 };
1076 
1077 /* Template for the CPU dai driver structure */
1078 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1079 	.probe = fsl_ssi_dai_probe,
1080 	.playback = {
1081 		.stream_name = "CPU-Playback",
1082 		.channels_min = 1,
1083 		.channels_max = 2,
1084 		.rates = FSLSSI_I2S_RATES,
1085 		.formats = FSLSSI_I2S_FORMATS,
1086 	},
1087 	.capture = {
1088 		.stream_name = "CPU-Capture",
1089 		.channels_min = 1,
1090 		.channels_max = 2,
1091 		.rates = FSLSSI_I2S_RATES,
1092 		.formats = FSLSSI_I2S_FORMATS,
1093 	},
1094 	.ops = &fsl_ssi_dai_ops,
1095 };
1096 
1097 static const struct snd_soc_component_driver fsl_ssi_component = {
1098 	.name		= "fsl-ssi",
1099 };
1100 
1101 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1102 	.ac97_control = 1,
1103 	.playback = {
1104 		.stream_name = "AC97 Playback",
1105 		.channels_min = 2,
1106 		.channels_max = 2,
1107 		.rates = SNDRV_PCM_RATE_8000_48000,
1108 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1109 	},
1110 	.capture = {
1111 		.stream_name = "AC97 Capture",
1112 		.channels_min = 2,
1113 		.channels_max = 2,
1114 		.rates = SNDRV_PCM_RATE_48000,
1115 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1116 	},
1117 	.ops = &fsl_ssi_dai_ops,
1118 };
1119 
1120 
1121 static struct fsl_ssi_private *fsl_ac97_data;
1122 
1123 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1124 		unsigned short val)
1125 {
1126 	struct regmap *regs = fsl_ac97_data->regs;
1127 	unsigned int lreg;
1128 	unsigned int lval;
1129 
1130 	if (reg > 0x7f)
1131 		return;
1132 
1133 
1134 	lreg = reg <<  12;
1135 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1136 
1137 	lval = val << 4;
1138 	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1139 
1140 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1141 			CCSR_SSI_SACNT_WR);
1142 	udelay(100);
1143 }
1144 
1145 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1146 		unsigned short reg)
1147 {
1148 	struct regmap *regs = fsl_ac97_data->regs;
1149 
1150 	unsigned short val = -1;
1151 	u32 reg_val;
1152 	unsigned int lreg;
1153 
1154 	lreg = (reg & 0x7f) <<  12;
1155 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1156 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1157 			CCSR_SSI_SACNT_RD);
1158 
1159 	udelay(100);
1160 
1161 	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1162 	val = (reg_val >> 4) & 0xffff;
1163 
1164 	return val;
1165 }
1166 
1167 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1168 	.read		= fsl_ssi_ac97_read,
1169 	.write		= fsl_ssi_ac97_write,
1170 };
1171 
1172 /**
1173  * Make every character in a string lower-case
1174  */
1175 static void make_lowercase(char *s)
1176 {
1177 	char *p = s;
1178 	char c;
1179 
1180 	while ((c = *p)) {
1181 		if ((c >= 'A') && (c <= 'Z'))
1182 			*p = c + ('a' - 'A');
1183 		p++;
1184 	}
1185 }
1186 
1187 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1188 		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1189 {
1190 	struct device_node *np = pdev->dev.of_node;
1191 	u32 dmas[4];
1192 	int ret;
1193 
1194 	if (ssi_private->has_ipg_clk_name)
1195 		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1196 	else
1197 		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1198 	if (IS_ERR(ssi_private->clk)) {
1199 		ret = PTR_ERR(ssi_private->clk);
1200 		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1201 		return ret;
1202 	}
1203 
1204 	if (!ssi_private->has_ipg_clk_name) {
1205 		ret = clk_prepare_enable(ssi_private->clk);
1206 		if (ret) {
1207 			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1208 			return ret;
1209 		}
1210 	}
1211 
1212 	/* For those SLAVE implementations, we ingore non-baudclk cases
1213 	 * and, instead, abandon MASTER mode that needs baud clock.
1214 	 */
1215 	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1216 	if (IS_ERR(ssi_private->baudclk))
1217 		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1218 			 PTR_ERR(ssi_private->baudclk));
1219 
1220 	/*
1221 	 * We have burstsize be "fifo_depth - 2" to match the SSI
1222 	 * watermark setting in fsl_ssi_startup().
1223 	 */
1224 	ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1225 	ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1226 	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1227 	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1228 
1229 	ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
1230 	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1231 		ssi_private->use_dual_fifo = true;
1232 		/* When using dual fifo mode, we need to keep watermark
1233 		 * as even numbers due to dma script limitation.
1234 		 */
1235 		ssi_private->dma_params_tx.maxburst &= ~0x1;
1236 		ssi_private->dma_params_rx.maxburst &= ~0x1;
1237 	}
1238 
1239 	if (!ssi_private->use_dma) {
1240 
1241 		/*
1242 		 * Some boards use an incompatible codec. To get it
1243 		 * working, we are using imx-fiq-pcm-audio, that
1244 		 * can handle those codecs. DMA is not possible in this
1245 		 * situation.
1246 		 */
1247 
1248 		ssi_private->fiq_params.irq = ssi_private->irq;
1249 		ssi_private->fiq_params.base = iomem;
1250 		ssi_private->fiq_params.dma_params_rx =
1251 			&ssi_private->dma_params_rx;
1252 		ssi_private->fiq_params.dma_params_tx =
1253 			&ssi_private->dma_params_tx;
1254 
1255 		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1256 		if (ret)
1257 			goto error_pcm;
1258 	} else {
1259 		ret = imx_pcm_dma_init(pdev);
1260 		if (ret)
1261 			goto error_pcm;
1262 	}
1263 
1264 	return 0;
1265 
1266 error_pcm:
1267 
1268 	if (!ssi_private->has_ipg_clk_name)
1269 		clk_disable_unprepare(ssi_private->clk);
1270 	return ret;
1271 }
1272 
1273 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1274 		struct fsl_ssi_private *ssi_private)
1275 {
1276 	if (!ssi_private->use_dma)
1277 		imx_pcm_fiq_exit(pdev);
1278 	if (!ssi_private->has_ipg_clk_name)
1279 		clk_disable_unprepare(ssi_private->clk);
1280 }
1281 
1282 static int fsl_ssi_probe(struct platform_device *pdev)
1283 {
1284 	struct fsl_ssi_private *ssi_private;
1285 	int ret = 0;
1286 	struct device_node *np = pdev->dev.of_node;
1287 	const struct of_device_id *of_id;
1288 	const char *p, *sprop;
1289 	const uint32_t *iprop;
1290 	struct resource res;
1291 	void __iomem *iomem;
1292 	char name[64];
1293 
1294 	/* SSIs that are not connected on the board should have a
1295 	 *      status = "disabled"
1296 	 * property in their device tree nodes.
1297 	 */
1298 	if (!of_device_is_available(np))
1299 		return -ENODEV;
1300 
1301 	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1302 	if (!of_id || !of_id->data)
1303 		return -EINVAL;
1304 
1305 	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1306 			GFP_KERNEL);
1307 	if (!ssi_private) {
1308 		dev_err(&pdev->dev, "could not allocate DAI object\n");
1309 		return -ENOMEM;
1310 	}
1311 
1312 	ssi_private->soc = of_id->data;
1313 
1314 	sprop = of_get_property(np, "fsl,mode", NULL);
1315 	if (sprop) {
1316 		if (!strcmp(sprop, "ac97-slave"))
1317 			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1318 	}
1319 
1320 	ssi_private->use_dma = !of_property_read_bool(np,
1321 			"fsl,fiq-stream-filter");
1322 
1323 	if (fsl_ssi_is_ac97(ssi_private)) {
1324 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1325 				sizeof(fsl_ssi_ac97_dai));
1326 
1327 		fsl_ac97_data = ssi_private;
1328 
1329 		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1330 	} else {
1331 		/* Initialize this copy of the CPU DAI driver structure */
1332 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1333 		       sizeof(fsl_ssi_dai_template));
1334 	}
1335 	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1336 
1337 	/* Get the addresses and IRQ */
1338 	ret = of_address_to_resource(np, 0, &res);
1339 	if (ret) {
1340 		dev_err(&pdev->dev, "could not determine device resources\n");
1341 		return ret;
1342 	}
1343 	ssi_private->ssi_phys = res.start;
1344 
1345 	iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1346 	if (!iomem) {
1347 		dev_err(&pdev->dev, "could not map device resources\n");
1348 		return -ENOMEM;
1349 	}
1350 
1351 	ret = of_property_match_string(np, "clock-names", "ipg");
1352 	if (ret < 0) {
1353 		ssi_private->has_ipg_clk_name = false;
1354 		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1355 			&fsl_ssi_regconfig);
1356 	} else {
1357 		ssi_private->has_ipg_clk_name = true;
1358 		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1359 			"ipg", iomem, &fsl_ssi_regconfig);
1360 	}
1361 	if (IS_ERR(ssi_private->regs)) {
1362 		dev_err(&pdev->dev, "Failed to init register map\n");
1363 		return PTR_ERR(ssi_private->regs);
1364 	}
1365 
1366 	ssi_private->irq = irq_of_parse_and_map(np, 0);
1367 	if (!ssi_private->irq) {
1368 		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1369 		return -ENXIO;
1370 	}
1371 
1372 	/* Are the RX and the TX clocks locked? */
1373 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1374 		ssi_private->cpu_dai_drv.symmetric_rates = 1;
1375 		ssi_private->cpu_dai_drv.symmetric_channels = 1;
1376 		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1377 	}
1378 
1379 	/* Determine the FIFO depth. */
1380 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1381 	if (iprop)
1382 		ssi_private->fifo_depth = be32_to_cpup(iprop);
1383 	else
1384                 /* Older 8610 DTs didn't have the fifo-depth property */
1385 		ssi_private->fifo_depth = 8;
1386 
1387 	dev_set_drvdata(&pdev->dev, ssi_private);
1388 
1389 	if (ssi_private->soc->imx) {
1390 		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1391 		if (ret)
1392 			goto error_irqmap;
1393 	}
1394 
1395 	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1396 					 &ssi_private->cpu_dai_drv, 1);
1397 	if (ret) {
1398 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1399 		goto error_asoc_register;
1400 	}
1401 
1402 	if (ssi_private->use_dma) {
1403 		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1404 					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1405 					ssi_private);
1406 		if (ret < 0) {
1407 			dev_err(&pdev->dev, "could not claim irq %u\n",
1408 					ssi_private->irq);
1409 			goto error_irq;
1410 		}
1411 	}
1412 
1413 	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1414 	if (ret)
1415 		goto error_asoc_register;
1416 
1417 	/*
1418 	 * If codec-handle property is missing from SSI node, we assume
1419 	 * that the machine driver uses new binding which does not require
1420 	 * SSI driver to trigger machine driver's probe.
1421 	 */
1422 	if (!of_get_property(np, "codec-handle", NULL))
1423 		goto done;
1424 
1425 	/* Trigger the machine driver's probe function.  The platform driver
1426 	 * name of the machine driver is taken from /compatible property of the
1427 	 * device tree.  We also pass the address of the CPU DAI driver
1428 	 * structure.
1429 	 */
1430 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1431 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1432 	p = strrchr(sprop, ',');
1433 	if (p)
1434 		sprop = p + 1;
1435 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1436 	make_lowercase(name);
1437 
1438 	ssi_private->pdev =
1439 		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1440 	if (IS_ERR(ssi_private->pdev)) {
1441 		ret = PTR_ERR(ssi_private->pdev);
1442 		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1443 		goto error_sound_card;
1444 	}
1445 
1446 done:
1447 	if (ssi_private->dai_fmt)
1448 		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1449 				     ssi_private->dai_fmt);
1450 
1451 	return 0;
1452 
1453 error_sound_card:
1454 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1455 
1456 error_irq:
1457 	snd_soc_unregister_component(&pdev->dev);
1458 
1459 error_asoc_register:
1460 	if (ssi_private->soc->imx)
1461 		fsl_ssi_imx_clean(pdev, ssi_private);
1462 
1463 error_irqmap:
1464 	if (ssi_private->use_dma)
1465 		irq_dispose_mapping(ssi_private->irq);
1466 
1467 	return ret;
1468 }
1469 
1470 static int fsl_ssi_remove(struct platform_device *pdev)
1471 {
1472 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1473 
1474 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1475 
1476 	if (ssi_private->pdev)
1477 		platform_device_unregister(ssi_private->pdev);
1478 	snd_soc_unregister_component(&pdev->dev);
1479 
1480 	if (ssi_private->soc->imx)
1481 		fsl_ssi_imx_clean(pdev, ssi_private);
1482 
1483 	if (ssi_private->use_dma)
1484 		irq_dispose_mapping(ssi_private->irq);
1485 
1486 	return 0;
1487 }
1488 
1489 static struct platform_driver fsl_ssi_driver = {
1490 	.driver = {
1491 		.name = "fsl-ssi-dai",
1492 		.owner = THIS_MODULE,
1493 		.of_match_table = fsl_ssi_ids,
1494 	},
1495 	.probe = fsl_ssi_probe,
1496 	.remove = fsl_ssi_remove,
1497 };
1498 
1499 module_platform_driver(fsl_ssi_driver);
1500 
1501 MODULE_ALIAS("platform:fsl-ssi-dai");
1502 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1503 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1504 MODULE_LICENSE("GPL v2");
1505