xref: /openbmc/linux/sound/soc/fsl/fsl_ssi.c (revision 2359ccdd)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/ctype.h>
39 #include <linux/device.h>
40 #include <linux/delay.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
48 
49 #include <sound/core.h>
50 #include <sound/pcm.h>
51 #include <sound/pcm_params.h>
52 #include <sound/initval.h>
53 #include <sound/soc.h>
54 #include <sound/dmaengine_pcm.h>
55 
56 #include "fsl_ssi.h"
57 #include "imx-pcm.h"
58 
59 /* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
60 #define RX 0
61 #define TX 1
62 
63 /**
64  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
65  *
66  * The SSI has a limitation in that the samples must be in the same byte
67  * order as the host CPU.  This is because when multiple bytes are written
68  * to the STX register, the bytes and bits must be written in the same
69  * order.  The STX is a shift register, so all the bits need to be aligned
70  * (bit-endianness must match byte-endianness).  Processors typically write
71  * the bits within a byte in the same order that the bytes of a word are
72  * written in.  So if the host CPU is big-endian, then only big-endian
73  * samples will be written to STX properly.
74  */
75 #ifdef __BIG_ENDIAN
76 #define FSLSSI_I2S_FORMATS \
77 	(SNDRV_PCM_FMTBIT_S8 | \
78 	 SNDRV_PCM_FMTBIT_S16_BE | \
79 	 SNDRV_PCM_FMTBIT_S18_3BE | \
80 	 SNDRV_PCM_FMTBIT_S20_3BE | \
81 	 SNDRV_PCM_FMTBIT_S24_3BE | \
82 	 SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS \
85 	(SNDRV_PCM_FMTBIT_S8 | \
86 	 SNDRV_PCM_FMTBIT_S16_LE | \
87 	 SNDRV_PCM_FMTBIT_S18_3LE | \
88 	 SNDRV_PCM_FMTBIT_S20_3LE | \
89 	 SNDRV_PCM_FMTBIT_S24_3LE | \
90 	 SNDRV_PCM_FMTBIT_S24_LE)
91 #endif
92 
93 /*
94  * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
95  *  - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
96  *  - Also have NB_NF to mark these two clocks will not be inverted
97  */
98 #define FSLSSI_AC97_DAIFMT \
99 	(SND_SOC_DAIFMT_AC97 | \
100 	 SND_SOC_DAIFMT_CBM_CFS | \
101 	 SND_SOC_DAIFMT_NB_NF)
102 
103 #define FSLSSI_SIER_DBG_RX_FLAGS \
104 	(SSI_SIER_RFF0_EN | \
105 	 SSI_SIER_RLS_EN | \
106 	 SSI_SIER_RFS_EN | \
107 	 SSI_SIER_ROE0_EN | \
108 	 SSI_SIER_RFRC_EN)
109 #define FSLSSI_SIER_DBG_TX_FLAGS \
110 	(SSI_SIER_TFE0_EN | \
111 	 SSI_SIER_TLS_EN | \
112 	 SSI_SIER_TFS_EN | \
113 	 SSI_SIER_TUE0_EN | \
114 	 SSI_SIER_TFRC_EN)
115 
116 enum fsl_ssi_type {
117 	FSL_SSI_MCP8610,
118 	FSL_SSI_MX21,
119 	FSL_SSI_MX35,
120 	FSL_SSI_MX51,
121 };
122 
123 struct fsl_ssi_regvals {
124 	u32 sier;
125 	u32 srcr;
126 	u32 stcr;
127 	u32 scr;
128 };
129 
130 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
131 {
132 	switch (reg) {
133 	case REG_SSI_SACCEN:
134 	case REG_SSI_SACCDIS:
135 		return false;
136 	default:
137 		return true;
138 	}
139 }
140 
141 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
142 {
143 	switch (reg) {
144 	case REG_SSI_STX0:
145 	case REG_SSI_STX1:
146 	case REG_SSI_SRX0:
147 	case REG_SSI_SRX1:
148 	case REG_SSI_SISR:
149 	case REG_SSI_SFCSR:
150 	case REG_SSI_SACNT:
151 	case REG_SSI_SACADD:
152 	case REG_SSI_SACDAT:
153 	case REG_SSI_SATAG:
154 	case REG_SSI_SACCST:
155 	case REG_SSI_SOR:
156 		return true;
157 	default:
158 		return false;
159 	}
160 }
161 
162 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
163 {
164 	switch (reg) {
165 	case REG_SSI_SRX0:
166 	case REG_SSI_SRX1:
167 	case REG_SSI_SISR:
168 	case REG_SSI_SACADD:
169 	case REG_SSI_SACDAT:
170 	case REG_SSI_SATAG:
171 		return true;
172 	default:
173 		return false;
174 	}
175 }
176 
177 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
178 {
179 	switch (reg) {
180 	case REG_SSI_SRX0:
181 	case REG_SSI_SRX1:
182 	case REG_SSI_SACCST:
183 		return false;
184 	default:
185 		return true;
186 	}
187 }
188 
189 static const struct regmap_config fsl_ssi_regconfig = {
190 	.max_register = REG_SSI_SACCDIS,
191 	.reg_bits = 32,
192 	.val_bits = 32,
193 	.reg_stride = 4,
194 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
195 	.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
196 	.readable_reg = fsl_ssi_readable_reg,
197 	.volatile_reg = fsl_ssi_volatile_reg,
198 	.precious_reg = fsl_ssi_precious_reg,
199 	.writeable_reg = fsl_ssi_writeable_reg,
200 	.cache_type = REGCACHE_FLAT,
201 };
202 
203 struct fsl_ssi_soc_data {
204 	bool imx;
205 	bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
206 	bool offline_config;
207 	u32 sisr_write_mask;
208 };
209 
210 /**
211  * fsl_ssi: per-SSI private data
212  *
213  * @regs: Pointer to the regmap registers
214  * @irq: IRQ of this SSI
215  * @cpu_dai_drv: CPU DAI driver for this device
216  *
217  * @dai_fmt: DAI configuration this device is currently used with
218  * @streams: Mask of current active streams: BIT(TX) and BIT(RX)
219  * @i2s_net: I2S and Network mode configurations of SCR register
220  * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
221  * @use_dma: DMA is used or FIQ with stream filter
222  * @use_dual_fifo: DMA with support for dual FIFO mode
223  * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
224  * @fifo_depth: Depth of the SSI FIFOs
225  * @slot_width: Width of each DAI slot
226  * @slots: Number of slots
227  * @regvals: Specific RX/TX register settings
228  *
229  * @clk: Clock source to access register
230  * @baudclk: Clock source to generate bit and frame-sync clocks
231  * @baudclk_streams: Active streams that are using baudclk
232  *
233  * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
234  * @regcache_sacnt: Cache sacnt register value during suspend and resume
235  *
236  * @dma_params_tx: DMA transmit parameters
237  * @dma_params_rx: DMA receive parameters
238  * @ssi_phys: physical address of the SSI registers
239  *
240  * @fiq_params: FIQ stream filtering parameters
241  *
242  * @card_pdev: Platform_device pointer to register a sound card for PowerPC or
243  *             to register a CODEC platform device for AC97
244  * @card_name: Platform_device name to register a sound card for PowerPC or
245  *             to register a CODEC platform device for AC97
246  * @card_idx: The index of SSI to register a sound card for PowerPC or
247  *            to register a CODEC platform device for AC97
248  *
249  * @dbg_stats: Debugging statistics
250  *
251  * @soc: SoC specific data
252  * @dev: Pointer to &pdev->dev
253  *
254  * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
255  *                  @fifo_watermark or fewer words in TX fifo or
256  *                  @fifo_watermark or more empty words in RX fifo.
257  * @dma_maxburst: Max number of words to transfer in one go. So far,
258  *                this is always the same as fifo_watermark.
259  *
260  * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
261  */
262 struct fsl_ssi {
263 	struct regmap *regs;
264 	int irq;
265 	struct snd_soc_dai_driver cpu_dai_drv;
266 
267 	unsigned int dai_fmt;
268 	u8 streams;
269 	u8 i2s_net;
270 	bool synchronous;
271 	bool use_dma;
272 	bool use_dual_fifo;
273 	bool has_ipg_clk_name;
274 	unsigned int fifo_depth;
275 	unsigned int slot_width;
276 	unsigned int slots;
277 	struct fsl_ssi_regvals regvals[2];
278 
279 	struct clk *clk;
280 	struct clk *baudclk;
281 	unsigned int baudclk_streams;
282 
283 	u32 regcache_sfcsr;
284 	u32 regcache_sacnt;
285 
286 	struct snd_dmaengine_dai_dma_data dma_params_tx;
287 	struct snd_dmaengine_dai_dma_data dma_params_rx;
288 	dma_addr_t ssi_phys;
289 
290 	struct imx_pcm_fiq_params fiq_params;
291 
292 	struct platform_device *card_pdev;
293 	char card_name[32];
294 	u32 card_idx;
295 
296 	struct fsl_ssi_dbg dbg_stats;
297 
298 	const struct fsl_ssi_soc_data *soc;
299 	struct device *dev;
300 
301 	u32 fifo_watermark;
302 	u32 dma_maxburst;
303 
304 	struct mutex ac97_reg_lock;
305 };
306 
307 /*
308  * SoC specific data
309  *
310  * Notes:
311  * 1) SSI in earlier SoCS has critical bits in control registers that
312  *    cannot be changed after SSI starts running -- a software reset
313  *    (set SSIEN to 0) is required to change their values. So adding
314  *    an offline_config flag for these SoCs.
315  * 2) SDMA is available since imx35. However, imx35 does not support
316  *    DMA bits changing when SSI is running, so set offline_config.
317  * 3) imx51 and later versions support register configurations when
318  *    SSI is running (SSIEN); For these versions, DMA needs to be
319  *    configured before SSI sends DMA request to avoid an undefined
320  *    DMA request on the SDMA side.
321  */
322 
323 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
324 	.imx = false,
325 	.offline_config = true,
326 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
327 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
328 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
329 };
330 
331 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
332 	.imx = true,
333 	.imx21regs = true,
334 	.offline_config = true,
335 	.sisr_write_mask = 0,
336 };
337 
338 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
339 	.imx = true,
340 	.offline_config = true,
341 	.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
342 			   SSI_SISR_ROE0 | SSI_SISR_ROE1 |
343 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
344 };
345 
346 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
347 	.imx = true,
348 	.offline_config = false,
349 	.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
350 			   SSI_SISR_TUE0 | SSI_SISR_TUE1,
351 };
352 
353 static const struct of_device_id fsl_ssi_ids[] = {
354 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
355 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
356 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
357 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
358 	{}
359 };
360 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
361 
362 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
363 {
364 	return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
365 		SND_SOC_DAIFMT_AC97;
366 }
367 
368 static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
369 {
370 	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
371 		SND_SOC_DAIFMT_CBS_CFS;
372 }
373 
374 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
375 {
376 	return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
377 		SND_SOC_DAIFMT_CBM_CFS;
378 }
379 
380 /**
381  * Interrupt handler to gather states
382  */
383 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
384 {
385 	struct fsl_ssi *ssi = dev_id;
386 	struct regmap *regs = ssi->regs;
387 	__be32 sisr;
388 	__be32 sisr2;
389 
390 	regmap_read(regs, REG_SSI_SISR, &sisr);
391 
392 	sisr2 = sisr & ssi->soc->sisr_write_mask;
393 	/* Clear the bits that we set */
394 	if (sisr2)
395 		regmap_write(regs, REG_SSI_SISR, sisr2);
396 
397 	fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
398 
399 	return IRQ_HANDLED;
400 }
401 
402 /**
403  * Set SCR, SIER, STCR and SRCR registers with cached values in regvals
404  *
405  * Notes:
406  * 1) For offline_config SoCs, enable all necessary bits of both streams
407  *    when 1st stream starts, even if the opposite stream will not start
408  * 2) It also clears FIFO before setting regvals; SOR is safe to set online
409  */
410 static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
411 {
412 	struct fsl_ssi_regvals *vals = ssi->regvals;
413 	int dir = tx ? TX : RX;
414 	u32 sier, srcr, stcr;
415 
416 	/* Clear dirty data in the FIFO; It also prevents channel slipping */
417 	regmap_update_bits(ssi->regs, REG_SSI_SOR,
418 			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
419 
420 	/*
421 	 * On offline_config SoCs, SxCR and SIER are already configured when
422 	 * the previous stream started. So skip all SxCR and SIER settings
423 	 * to prevent online reconfigurations, then jump to set SCR directly
424 	 */
425 	if (ssi->soc->offline_config && ssi->streams)
426 		goto enable_scr;
427 
428 	if (ssi->soc->offline_config) {
429 		/*
430 		 * Online reconfiguration not supported, so enable all bits for
431 		 * both streams at once to avoid necessity of reconfigurations
432 		 */
433 		srcr = vals[RX].srcr | vals[TX].srcr;
434 		stcr = vals[RX].stcr | vals[TX].stcr;
435 		sier = vals[RX].sier | vals[TX].sier;
436 	} else {
437 		/* Otherwise, only set bits for the current stream */
438 		srcr = vals[dir].srcr;
439 		stcr = vals[dir].stcr;
440 		sier = vals[dir].sier;
441 	}
442 
443 	/* Configure SRCR, STCR and SIER at once */
444 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
445 	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
446 	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
447 
448 enable_scr:
449 	/*
450 	 * Start DMA before setting TE to avoid FIFO underrun
451 	 * which may cause a channel slip or a channel swap
452 	 *
453 	 * TODO: FIQ cases might also need this upon testing
454 	 */
455 	if (ssi->use_dma && tx) {
456 		int try = 100;
457 		u32 sfcsr;
458 
459 		/* Enable SSI first to send TX DMA request */
460 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
461 				   SSI_SCR_SSIEN, SSI_SCR_SSIEN);
462 
463 		/* Busy wait until TX FIFO not empty -- DMA working */
464 		do {
465 			regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
466 			if (SSI_SFCSR_TFCNT0(sfcsr))
467 				break;
468 		} while (--try);
469 
470 		/* FIFO still empty -- something might be wrong */
471 		if (!SSI_SFCSR_TFCNT0(sfcsr))
472 			dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
473 	}
474 	/* Enable all remaining bits in SCR */
475 	regmap_update_bits(ssi->regs, REG_SSI_SCR,
476 			   vals[dir].scr, vals[dir].scr);
477 
478 	/* Log the enabled stream to the mask */
479 	ssi->streams |= BIT(dir);
480 }
481 
482 /**
483  * Exclude bits that are used by the opposite stream
484  *
485  * When both streams are active, disabling some bits for the current stream
486  * might break the other stream if these bits are used by it.
487  *
488  * @vals : regvals of the current stream
489  * @avals: regvals of the opposite stream
490  * @aactive: active state of the opposite stream
491  *
492  *  1) XOR vals and avals to get the differences if the other stream is active;
493  *     Otherwise, return current vals if the other stream is not active
494  *  2) AND the result of 1) with the current vals
495  */
496 #define _ssi_xor_shared_bits(vals, avals, aactive) \
497 	((vals) ^ ((avals) * (aactive)))
498 
499 #define ssi_excl_shared_bits(vals, avals, aactive) \
500 	((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
501 
502 /**
503  * Unset SCR, SIER, STCR and SRCR registers with cached values in regvals
504  *
505  * Notes:
506  * 1) For offline_config SoCs, to avoid online reconfigurations, disable all
507  *    bits of both streams at once when the last stream is abort to end
508  * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
509  */
510 static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
511 {
512 	struct fsl_ssi_regvals *vals, *avals;
513 	u32 sier, srcr, stcr, scr;
514 	int adir = tx ? RX : TX;
515 	int dir = tx ? TX : RX;
516 	bool aactive;
517 
518 	/* Check if the opposite stream is active */
519 	aactive = ssi->streams & BIT(adir);
520 
521 	vals = &ssi->regvals[dir];
522 
523 	/* Get regvals of the opposite stream to keep opposite stream safe */
524 	avals = &ssi->regvals[adir];
525 
526 	/*
527 	 * To keep the other stream safe, exclude shared bits between
528 	 * both streams, and get safe bits to disable current stream
529 	 */
530 	scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
531 
532 	/* Disable safe bits of SCR register for the current stream */
533 	regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
534 
535 	/* Log the disabled stream to the mask */
536 	ssi->streams &= ~BIT(dir);
537 
538 	/*
539 	 * On offline_config SoCs, if the other stream is active, skip
540 	 * SxCR and SIER settings to prevent online reconfigurations
541 	 */
542 	if (ssi->soc->offline_config && aactive)
543 		goto fifo_clear;
544 
545 	if (ssi->soc->offline_config) {
546 		/* Now there is only current stream active, disable all bits */
547 		srcr = vals->srcr | avals->srcr;
548 		stcr = vals->stcr | avals->stcr;
549 		sier = vals->sier | avals->sier;
550 	} else {
551 		/*
552 		 * To keep the other stream safe, exclude shared bits between
553 		 * both streams, and get safe bits to disable current stream
554 		 */
555 		sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
556 		srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
557 		stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
558 	}
559 
560 	/* Clear configurations of SRCR, STCR and SIER at once */
561 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
562 	regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
563 	regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
564 
565 fifo_clear:
566 	/* Clear remaining data in the FIFO */
567 	regmap_update_bits(ssi->regs, REG_SSI_SOR,
568 			   SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
569 }
570 
571 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
572 {
573 	struct regmap *regs = ssi->regs;
574 
575 	/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
576 	if (!ssi->soc->imx21regs) {
577 		/* Disable all channel slots */
578 		regmap_write(regs, REG_SSI_SACCDIS, 0xff);
579 		/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
580 		regmap_write(regs, REG_SSI_SACCEN, 0x300);
581 	}
582 }
583 
584 /**
585  * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
586  */
587 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
588 {
589 	struct fsl_ssi_regvals *vals = ssi->regvals;
590 
591 	vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
592 	vals[RX].srcr = SSI_SRCR_RFEN0;
593 	vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
594 	vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
595 	vals[TX].stcr = SSI_STCR_TFEN0;
596 	vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
597 
598 	/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
599 	if (fsl_ssi_is_ac97(ssi))
600 		vals[RX].scr = vals[TX].scr = 0;
601 
602 	if (ssi->use_dual_fifo) {
603 		vals[RX].srcr |= SSI_SRCR_RFEN1;
604 		vals[TX].stcr |= SSI_STCR_TFEN1;
605 	}
606 
607 	if (ssi->use_dma) {
608 		vals[RX].sier |= SSI_SIER_RDMAE;
609 		vals[TX].sier |= SSI_SIER_TDMAE;
610 	} else {
611 		vals[RX].sier |= SSI_SIER_RIE;
612 		vals[TX].sier |= SSI_SIER_TIE;
613 	}
614 }
615 
616 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
617 {
618 	struct regmap *regs = ssi->regs;
619 
620 	/* Setup the clock control register */
621 	regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622 	regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
623 
624 	/* Enable AC97 mode and startup the SSI */
625 	regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
626 
627 	/* AC97 has to communicate with codec before starting a stream */
628 	regmap_update_bits(regs, REG_SSI_SCR,
629 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
630 			   SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
631 
632 	regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
633 }
634 
635 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
636 			   struct snd_soc_dai *dai)
637 {
638 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
639 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
640 	int ret;
641 
642 	ret = clk_prepare_enable(ssi->clk);
643 	if (ret)
644 		return ret;
645 
646 	/*
647 	 * When using dual fifo mode, it is safer to ensure an even period
648 	 * size. If appearing to an odd number while DMA always starts its
649 	 * task from fifo0, fifo1 would be neglected at the end of each
650 	 * period. But SSI would still access fifo1 with an invalid data.
651 	 */
652 	if (ssi->use_dual_fifo)
653 		snd_pcm_hw_constraint_step(substream->runtime, 0,
654 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
655 
656 	return 0;
657 }
658 
659 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
660 			     struct snd_soc_dai *dai)
661 {
662 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
663 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
664 
665 	clk_disable_unprepare(ssi->clk);
666 }
667 
668 /**
669  * Configure Digital Audio Interface bit clock
670  *
671  * Note: This function can be only called when using SSI as DAI master
672  *
673  * Quick instruction for parameters:
674  * freq: Output BCLK frequency = samplerate * slots * slot_width
675  *       (In 2-channel I2S Master mode, slot_width is fixed 32)
676  */
677 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
678 			    struct snd_soc_dai *dai,
679 			    struct snd_pcm_hw_params *hw_params)
680 {
681 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
682 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
683 	struct regmap *regs = ssi->regs;
684 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
685 	unsigned long clkrate, baudrate, tmprate;
686 	unsigned int slots = params_channels(hw_params);
687 	unsigned int slot_width = 32;
688 	u64 sub, savesub = 100000;
689 	unsigned int freq;
690 	bool baudclk_is_used;
691 	int ret;
692 
693 	/* Override slots and slot_width if being specifically set... */
694 	if (ssi->slots)
695 		slots = ssi->slots;
696 	/* ...but keep 32 bits if slots is 2 -- I2S Master mode */
697 	if (ssi->slot_width && slots != 2)
698 		slot_width = ssi->slot_width;
699 
700 	/* Generate bit clock based on the slot number and slot width */
701 	freq = slots * slot_width * params_rate(hw_params);
702 
703 	/* Don't apply it to any non-baudclk circumstance */
704 	if (IS_ERR(ssi->baudclk))
705 		return -EINVAL;
706 
707 	/*
708 	 * Hardware limitation: The bclk rate must be
709 	 * never greater than 1/5 IPG clock rate
710 	 */
711 	if (freq * 5 > clk_get_rate(ssi->clk)) {
712 		dev_err(dai->dev, "bitclk > ipgclk / 5\n");
713 		return -EINVAL;
714 	}
715 
716 	baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
717 
718 	/* It should be already enough to divide clock by setting pm alone */
719 	psr = 0;
720 	div2 = 0;
721 
722 	factor = (div2 + 1) * (7 * psr + 1) * 2;
723 
724 	for (i = 0; i < 255; i++) {
725 		tmprate = freq * factor * (i + 1);
726 
727 		if (baudclk_is_used)
728 			clkrate = clk_get_rate(ssi->baudclk);
729 		else
730 			clkrate = clk_round_rate(ssi->baudclk, tmprate);
731 
732 		clkrate /= factor;
733 		afreq = clkrate / (i + 1);
734 
735 		if (freq == afreq)
736 			sub = 0;
737 		else if (freq / afreq == 1)
738 			sub = freq - afreq;
739 		else if (afreq / freq == 1)
740 			sub = afreq - freq;
741 		else
742 			continue;
743 
744 		/* Calculate the fraction */
745 		sub *= 100000;
746 		do_div(sub, freq);
747 
748 		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
749 			baudrate = tmprate;
750 			savesub = sub;
751 			pm = i;
752 		}
753 
754 		/* We are lucky */
755 		if (savesub == 0)
756 			break;
757 	}
758 
759 	/* No proper pm found if it is still remaining the initial value */
760 	if (pm == 999) {
761 		dev_err(dai->dev, "failed to handle the required sysclk\n");
762 		return -EINVAL;
763 	}
764 
765 	stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) |
766 		(psr ? SSI_SxCCR_PSR : 0);
767 	mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
768 
769 	/* STCCR is used for RX in synchronous mode */
770 	tx2 = tx || ssi->synchronous;
771 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
772 
773 	if (!baudclk_is_used) {
774 		ret = clk_set_rate(ssi->baudclk, baudrate);
775 		if (ret) {
776 			dev_err(dai->dev, "failed to set baudclk rate\n");
777 			return -EINVAL;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * Configure SSI based on PCM hardware parameters
786  *
787  * Notes:
788  * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
789  *    disabled on offline_config SoCs. Even for online configurable SoCs
790  *    running in synchronous mode (both TX and RX use STCCR), it is not
791  *    safe to re-configure them when both two streams start running.
792  * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
793  *    fsl_ssi_set_bclk() if SSI is the DAI clock master.
794  */
795 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
796 			     struct snd_pcm_hw_params *hw_params,
797 			     struct snd_soc_dai *dai)
798 {
799 	bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
800 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
801 	struct regmap *regs = ssi->regs;
802 	unsigned int channels = params_channels(hw_params);
803 	unsigned int sample_size = params_width(hw_params);
804 	u32 wl = SSI_SxCCR_WL(sample_size);
805 	int ret;
806 
807 	/*
808 	 * SSI is properly configured if it is enabled and running in
809 	 * the synchronous mode; Note that AC97 mode is an exception
810 	 * that should set separate configurations for STCCR and SRCCR
811 	 * despite running in the synchronous mode.
812 	 */
813 	if (ssi->streams && ssi->synchronous)
814 		return 0;
815 
816 	if (fsl_ssi_is_i2s_master(ssi)) {
817 		ret = fsl_ssi_set_bclk(substream, dai, hw_params);
818 		if (ret)
819 			return ret;
820 
821 		/* Do not enable the clock if it is already enabled */
822 		if (!(ssi->baudclk_streams & BIT(substream->stream))) {
823 			ret = clk_prepare_enable(ssi->baudclk);
824 			if (ret)
825 				return ret;
826 
827 			ssi->baudclk_streams |= BIT(substream->stream);
828 		}
829 	}
830 
831 	if (!fsl_ssi_is_ac97(ssi)) {
832 		/* Normal + Network mode to send 16-bit data in 32-bit frames */
833 		if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
834 			ssi->i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
835 
836 		/* Use Normal mode to send mono data at 1st slot of 2 slots */
837 		if (channels == 1)
838 			ssi->i2s_net = SSI_SCR_I2S_MODE_NORMAL;
839 
840 		regmap_update_bits(regs, REG_SSI_SCR,
841 				   SSI_SCR_I2S_NET_MASK, ssi->i2s_net);
842 	}
843 
844 	/* In synchronous mode, the SSI uses STCCR for capture */
845 	tx2 = tx || ssi->synchronous;
846 	regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
847 
848 	return 0;
849 }
850 
851 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
852 			   struct snd_soc_dai *dai)
853 {
854 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
855 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
856 
857 	if (fsl_ssi_is_i2s_master(ssi) &&
858 	    ssi->baudclk_streams & BIT(substream->stream)) {
859 		clk_disable_unprepare(ssi->baudclk);
860 		ssi->baudclk_streams &= ~BIT(substream->stream);
861 	}
862 
863 	return 0;
864 }
865 
866 static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
867 {
868 	u32 strcr = 0, scr = 0, stcr, srcr, mask;
869 
870 	ssi->dai_fmt = fmt;
871 
872 	/* Synchronize frame sync clock for TE to avoid data slipping */
873 	scr |= SSI_SCR_SYNC_TX_FS;
874 
875 	/* Set to default shifting settings: LSB_ALIGNED */
876 	strcr |= SSI_STCR_TXBIT0;
877 
878 	/* Use Network mode as default */
879 	ssi->i2s_net = SSI_SCR_NET;
880 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
881 	case SND_SOC_DAIFMT_I2S:
882 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
883 		case SND_SOC_DAIFMT_CBS_CFS:
884 			if (IS_ERR(ssi->baudclk)) {
885 				dev_err(ssi->dev,
886 					"missing baudclk for master mode\n");
887 				return -EINVAL;
888 			}
889 			/* fall through */
890 		case SND_SOC_DAIFMT_CBM_CFS:
891 			ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
892 			break;
893 		case SND_SOC_DAIFMT_CBM_CFM:
894 			ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
895 			break;
896 		default:
897 			return -EINVAL;
898 		}
899 
900 		regmap_update_bits(ssi->regs, REG_SSI_STCCR,
901 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
902 		regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
903 				   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
904 
905 		/* Data on rising edge of bclk, frame low, 1clk before data */
906 		strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
907 		break;
908 	case SND_SOC_DAIFMT_LEFT_J:
909 		/* Data on rising edge of bclk, frame high */
910 		strcr |= SSI_STCR_TSCKP;
911 		break;
912 	case SND_SOC_DAIFMT_DSP_A:
913 		/* Data on rising edge of bclk, frame high, 1clk before data */
914 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
915 		break;
916 	case SND_SOC_DAIFMT_DSP_B:
917 		/* Data on rising edge of bclk, frame high */
918 		strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
919 		break;
920 	case SND_SOC_DAIFMT_AC97:
921 		/* Data on falling edge of bclk, frame high, 1clk before data */
922 		strcr |= SSI_STCR_TEFS;
923 		break;
924 	default:
925 		return -EINVAL;
926 	}
927 
928 	scr |= ssi->i2s_net;
929 
930 	/* DAI clock inversion */
931 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
932 	case SND_SOC_DAIFMT_NB_NF:
933 		/* Nothing to do for both normal cases */
934 		break;
935 	case SND_SOC_DAIFMT_IB_NF:
936 		/* Invert bit clock */
937 		strcr ^= SSI_STCR_TSCKP;
938 		break;
939 	case SND_SOC_DAIFMT_NB_IF:
940 		/* Invert frame clock */
941 		strcr ^= SSI_STCR_TFSI;
942 		break;
943 	case SND_SOC_DAIFMT_IB_IF:
944 		/* Invert both clocks */
945 		strcr ^= SSI_STCR_TSCKP;
946 		strcr ^= SSI_STCR_TFSI;
947 		break;
948 	default:
949 		return -EINVAL;
950 	}
951 
952 	/* DAI clock master masks */
953 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
954 	case SND_SOC_DAIFMT_CBS_CFS:
955 		/* Output bit and frame sync clocks */
956 		strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
957 		scr |= SSI_SCR_SYS_CLK_EN;
958 		break;
959 	case SND_SOC_DAIFMT_CBM_CFM:
960 		/* Input bit or frame sync clocks */
961 		break;
962 	case SND_SOC_DAIFMT_CBM_CFS:
963 		/* Input bit clock but output frame sync clock */
964 		strcr |= SSI_STCR_TFDIR;
965 		break;
966 	default:
967 		return -EINVAL;
968 	}
969 
970 	stcr = strcr;
971 	srcr = strcr;
972 
973 	/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
974 	if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
975 		srcr &= ~SSI_SRCR_RXDIR;
976 		scr |= SSI_SCR_SYN;
977 	}
978 
979 	mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
980 	       SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
981 
982 	regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
983 	regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
984 
985 	mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
986 	       SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
987 	regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
988 
989 	return 0;
990 }
991 
992 /**
993  * Configure Digital Audio Interface (DAI) Format
994  */
995 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
996 {
997 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
998 
999 	/* AC97 configured DAIFMT earlier in the probe() */
1000 	if (fsl_ssi_is_ac97(ssi))
1001 		return 0;
1002 
1003 	return _fsl_ssi_set_dai_fmt(ssi, fmt);
1004 }
1005 
1006 /**
1007  * Set TDM slot number and slot width
1008  */
1009 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1010 				    u32 rx_mask, int slots, int slot_width)
1011 {
1012 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1013 	struct regmap *regs = ssi->regs;
1014 	u32 val;
1015 
1016 	/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1017 	if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1018 		dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1019 		return -EINVAL;
1020 	}
1021 
1022 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1023 	if (ssi->i2s_net && slots < 2) {
1024 		dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1025 		return -EINVAL;
1026 	}
1027 
1028 	regmap_update_bits(regs, REG_SSI_STCCR,
1029 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1030 	regmap_update_bits(regs, REG_SSI_SRCCR,
1031 			   SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1032 
1033 	/* Save the SCR register value */
1034 	regmap_read(regs, REG_SSI_SCR, &val);
1035 	/* Temporarily enable SSI to allow SxMSKs to be configurable */
1036 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1037 
1038 	regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1039 	regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1040 
1041 	/* Restore the value of SSIEN bit */
1042 	regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1043 
1044 	ssi->slot_width = slot_width;
1045 	ssi->slots = slots;
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * Start or stop SSI and corresponding DMA transaction.
1052  *
1053  * The DMA channel is in external master start and pause mode, which
1054  * means the SSI completely controls the flow of data.
1055  */
1056 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1057 			   struct snd_soc_dai *dai)
1058 {
1059 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1060 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1061 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1062 
1063 	switch (cmd) {
1064 	case SNDRV_PCM_TRIGGER_START:
1065 	case SNDRV_PCM_TRIGGER_RESUME:
1066 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1067 		/*
1068 		 * SACCST might be modified via AC Link by a CODEC if it sends
1069 		 * extra bits in their SLOTREQ requests, which'll accidentally
1070 		 * send valid data to slots other than normal playback slots.
1071 		 *
1072 		 * To be safe, configure SACCST right before TX starts.
1073 		 */
1074 		if (tx && fsl_ssi_is_ac97(ssi))
1075 			fsl_ssi_tx_ac97_saccst_setup(ssi);
1076 		fsl_ssi_config_enable(ssi, tx);
1077 		break;
1078 
1079 	case SNDRV_PCM_TRIGGER_STOP:
1080 	case SNDRV_PCM_TRIGGER_SUSPEND:
1081 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1082 		fsl_ssi_config_disable(ssi, tx);
1083 		break;
1084 
1085 	default:
1086 		return -EINVAL;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1093 {
1094 	struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1095 
1096 	if (ssi->soc->imx && ssi->use_dma)
1097 		snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1098 					  &ssi->dma_params_rx);
1099 
1100 	return 0;
1101 }
1102 
1103 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1104 	.startup = fsl_ssi_startup,
1105 	.shutdown = fsl_ssi_shutdown,
1106 	.hw_params = fsl_ssi_hw_params,
1107 	.hw_free = fsl_ssi_hw_free,
1108 	.set_fmt = fsl_ssi_set_dai_fmt,
1109 	.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1110 	.trigger = fsl_ssi_trigger,
1111 };
1112 
1113 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1114 	.probe = fsl_ssi_dai_probe,
1115 	.playback = {
1116 		.stream_name = "CPU-Playback",
1117 		.channels_min = 1,
1118 		.channels_max = 32,
1119 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1120 		.formats = FSLSSI_I2S_FORMATS,
1121 	},
1122 	.capture = {
1123 		.stream_name = "CPU-Capture",
1124 		.channels_min = 1,
1125 		.channels_max = 32,
1126 		.rates = SNDRV_PCM_RATE_CONTINUOUS,
1127 		.formats = FSLSSI_I2S_FORMATS,
1128 	},
1129 	.ops = &fsl_ssi_dai_ops,
1130 };
1131 
1132 static const struct snd_soc_component_driver fsl_ssi_component = {
1133 	.name = "fsl-ssi",
1134 };
1135 
1136 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1137 	.bus_control = true,
1138 	.symmetric_channels = 1,
1139 	.probe = fsl_ssi_dai_probe,
1140 	.playback = {
1141 		.stream_name = "AC97 Playback",
1142 		.channels_min = 2,
1143 		.channels_max = 2,
1144 		.rates = SNDRV_PCM_RATE_8000_48000,
1145 		.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1146 	},
1147 	.capture = {
1148 		.stream_name = "AC97 Capture",
1149 		.channels_min = 2,
1150 		.channels_max = 2,
1151 		.rates = SNDRV_PCM_RATE_48000,
1152 		/* 16-bit capture is broken (errata ERR003778) */
1153 		.formats = SNDRV_PCM_FMTBIT_S20,
1154 	},
1155 	.ops = &fsl_ssi_dai_ops,
1156 };
1157 
1158 static struct fsl_ssi *fsl_ac97_data;
1159 
1160 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1161 			       unsigned short val)
1162 {
1163 	struct regmap *regs = fsl_ac97_data->regs;
1164 	unsigned int lreg;
1165 	unsigned int lval;
1166 	int ret;
1167 
1168 	if (reg > 0x7f)
1169 		return;
1170 
1171 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1172 
1173 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1174 	if (ret) {
1175 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1176 			ret);
1177 		goto ret_unlock;
1178 	}
1179 
1180 	lreg = reg <<  12;
1181 	regmap_write(regs, REG_SSI_SACADD, lreg);
1182 
1183 	lval = val << 4;
1184 	regmap_write(regs, REG_SSI_SACDAT, lval);
1185 
1186 	regmap_update_bits(regs, REG_SSI_SACNT,
1187 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1188 	udelay(100);
1189 
1190 	clk_disable_unprepare(fsl_ac97_data->clk);
1191 
1192 ret_unlock:
1193 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1194 }
1195 
1196 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1197 					unsigned short reg)
1198 {
1199 	struct regmap *regs = fsl_ac97_data->regs;
1200 	unsigned short val = 0;
1201 	u32 reg_val;
1202 	unsigned int lreg;
1203 	int ret;
1204 
1205 	mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1206 
1207 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1208 	if (ret) {
1209 		pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1210 		goto ret_unlock;
1211 	}
1212 
1213 	lreg = (reg & 0x7f) <<  12;
1214 	regmap_write(regs, REG_SSI_SACADD, lreg);
1215 	regmap_update_bits(regs, REG_SSI_SACNT,
1216 			   SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1217 
1218 	udelay(100);
1219 
1220 	regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1221 	val = (reg_val >> 4) & 0xffff;
1222 
1223 	clk_disable_unprepare(fsl_ac97_data->clk);
1224 
1225 ret_unlock:
1226 	mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1227 	return val;
1228 }
1229 
1230 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1231 	.read = fsl_ssi_ac97_read,
1232 	.write = fsl_ssi_ac97_write,
1233 };
1234 
1235 /**
1236  * Initialize SSI registers
1237  */
1238 static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1239 {
1240 	u32 wm = ssi->fifo_watermark;
1241 
1242 	/* Initialize regvals */
1243 	fsl_ssi_setup_regvals(ssi);
1244 
1245 	/* Set watermarks */
1246 	regmap_write(ssi->regs, REG_SSI_SFCSR,
1247 		     SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1248 		     SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1249 
1250 	/* Enable Dual FIFO mode */
1251 	if (ssi->use_dual_fifo)
1252 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1253 				   SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1254 
1255 	/* AC97 should start earlier to communicate with CODECs */
1256 	if (fsl_ssi_is_ac97(ssi)) {
1257 		_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1258 		fsl_ssi_setup_ac97(ssi);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * Clear SSI registers
1266  */
1267 static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1268 {
1269 	/* Disable registers for AC97 */
1270 	if (fsl_ssi_is_ac97(ssi)) {
1271 		/* Disable TE and RE bits first */
1272 		regmap_update_bits(ssi->regs, REG_SSI_SCR,
1273 				   SSI_SCR_TE | SSI_SCR_RE, 0);
1274 		/* Disable AC97 mode */
1275 		regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1276 		/* Unset WAIT bits */
1277 		regmap_write(ssi->regs, REG_SSI_SOR, 0);
1278 		/* Disable SSI -- software reset */
1279 		regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1280 	}
1281 }
1282 /**
1283  * Make every character in a string lower-case
1284  */
1285 static void make_lowercase(char *s)
1286 {
1287 	if (!s)
1288 		return;
1289 	for (; *s; s++)
1290 		*s = tolower(*s);
1291 }
1292 
1293 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1294 			     struct fsl_ssi *ssi, void __iomem *iomem)
1295 {
1296 	struct device *dev = &pdev->dev;
1297 	int ret;
1298 
1299 	/* Backward compatible for a DT without ipg clock name assigned */
1300 	if (ssi->has_ipg_clk_name)
1301 		ssi->clk = devm_clk_get(dev, "ipg");
1302 	else
1303 		ssi->clk = devm_clk_get(dev, NULL);
1304 	if (IS_ERR(ssi->clk)) {
1305 		ret = PTR_ERR(ssi->clk);
1306 		dev_err(dev, "failed to get clock: %d\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	/* Enable the clock since regmap will not handle it in this case */
1311 	if (!ssi->has_ipg_clk_name) {
1312 		ret = clk_prepare_enable(ssi->clk);
1313 		if (ret) {
1314 			dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1315 			return ret;
1316 		}
1317 	}
1318 
1319 	/* Do not error out for slave cases that live without a baud clock */
1320 	ssi->baudclk = devm_clk_get(dev, "baud");
1321 	if (IS_ERR(ssi->baudclk))
1322 		dev_dbg(dev, "failed to get baud clock: %ld\n",
1323 			 PTR_ERR(ssi->baudclk));
1324 
1325 	ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1326 	ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1327 	ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1328 	ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1329 
1330 	/* Use even numbers to avoid channel swap due to SDMA script design */
1331 	if (ssi->use_dual_fifo) {
1332 		ssi->dma_params_tx.maxburst &= ~0x1;
1333 		ssi->dma_params_rx.maxburst &= ~0x1;
1334 	}
1335 
1336 	if (!ssi->use_dma) {
1337 		/*
1338 		 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1339 		 * to get it working, as DMA is not possible in this situation.
1340 		 */
1341 		ssi->fiq_params.irq = ssi->irq;
1342 		ssi->fiq_params.base = iomem;
1343 		ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1344 		ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1345 
1346 		ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1347 		if (ret)
1348 			goto error_pcm;
1349 	} else {
1350 		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1351 		if (ret)
1352 			goto error_pcm;
1353 	}
1354 
1355 	return 0;
1356 
1357 error_pcm:
1358 	if (!ssi->has_ipg_clk_name)
1359 		clk_disable_unprepare(ssi->clk);
1360 
1361 	return ret;
1362 }
1363 
1364 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1365 {
1366 	if (!ssi->use_dma)
1367 		imx_pcm_fiq_exit(pdev);
1368 	if (!ssi->has_ipg_clk_name)
1369 		clk_disable_unprepare(ssi->clk);
1370 }
1371 
1372 static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1373 {
1374 	struct device *dev = ssi->dev;
1375 	struct device_node *np = dev->of_node;
1376 	const struct of_device_id *of_id;
1377 	const char *p, *sprop;
1378 	const __be32 *iprop;
1379 	u32 dmas[4];
1380 	int ret;
1381 
1382 	of_id = of_match_device(fsl_ssi_ids, dev);
1383 	if (!of_id || !of_id->data)
1384 		return -EINVAL;
1385 
1386 	ssi->soc = of_id->data;
1387 
1388 	ret = of_property_match_string(np, "clock-names", "ipg");
1389 	/* Get error code if not found */
1390 	ssi->has_ipg_clk_name = ret >= 0;
1391 
1392 	/* Check if being used in AC97 mode */
1393 	sprop = of_get_property(np, "fsl,mode", NULL);
1394 	if (sprop && !strcmp(sprop, "ac97-slave")) {
1395 		ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1396 
1397 		ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1398 		if (ret) {
1399 			dev_err(dev, "failed to get SSI index property\n");
1400 			return -EINVAL;
1401 		}
1402 		strcpy(ssi->card_name, "ac97-codec");
1403 	} else if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1404 		/*
1405 		 * In synchronous mode, STCK and STFS ports are used by RX
1406 		 * as well. So the software should limit the sample rates,
1407 		 * sample bits and channels to be symmetric.
1408 		 *
1409 		 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1410 		 * in the SSI synchronous mode however it does not have to
1411 		 * limit symmetric sample rates and sample bits.
1412 		 */
1413 		ssi->synchronous = true;
1414 	}
1415 
1416 	/* Select DMA or FIQ */
1417 	ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1418 
1419 	/* Fetch FIFO depth; Set to 8 for older DT without this property */
1420 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1421 	if (iprop)
1422 		ssi->fifo_depth = be32_to_cpup(iprop);
1423 	else
1424 		ssi->fifo_depth = 8;
1425 
1426 	/* Use dual FIFO mode depending on the support from SDMA script */
1427 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1428 	if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1429 		ssi->use_dual_fifo = true;
1430 
1431 	/*
1432 	 * Backward compatible for older bindings by manually triggering the
1433 	 * machine driver's probe(). Use /compatible property, including the
1434 	 * address of CPU DAI driver structure, as the name of machine driver
1435 	 *
1436 	 * If card_name is set by AC97 earlier, bypass here since it uses a
1437 	 * different name to register the device.
1438 	 */
1439 	if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1440 		sprop = of_get_property(of_find_node_by_path("/"),
1441 					"compatible", NULL);
1442 		/* Strip "fsl," in the compatible name if applicable */
1443 		p = strrchr(sprop, ',');
1444 		if (p)
1445 			sprop = p + 1;
1446 		snprintf(ssi->card_name, sizeof(ssi->card_name),
1447 			 "snd-soc-%s", sprop);
1448 		make_lowercase(ssi->card_name);
1449 		ssi->card_idx = 0;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static int fsl_ssi_probe(struct platform_device *pdev)
1456 {
1457 	struct regmap_config regconfig = fsl_ssi_regconfig;
1458 	struct device *dev = &pdev->dev;
1459 	struct fsl_ssi *ssi;
1460 	struct resource *res;
1461 	void __iomem *iomem;
1462 	int ret = 0;
1463 
1464 	ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1465 	if (!ssi)
1466 		return -ENOMEM;
1467 
1468 	ssi->dev = dev;
1469 
1470 	/* Probe from DT */
1471 	ret = fsl_ssi_probe_from_dt(ssi);
1472 	if (ret)
1473 		return ret;
1474 
1475 	if (fsl_ssi_is_ac97(ssi)) {
1476 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1477 		       sizeof(fsl_ssi_ac97_dai));
1478 		fsl_ac97_data = ssi;
1479 	} else {
1480 		memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1481 		       sizeof(fsl_ssi_dai_template));
1482 	}
1483 	ssi->cpu_dai_drv.name = dev_name(dev);
1484 
1485 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1486 	iomem = devm_ioremap_resource(dev, res);
1487 	if (IS_ERR(iomem))
1488 		return PTR_ERR(iomem);
1489 	ssi->ssi_phys = res->start;
1490 
1491 	if (ssi->soc->imx21regs) {
1492 		/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1493 		regconfig.max_register = REG_SSI_SRMSK;
1494 		regconfig.num_reg_defaults_raw =
1495 			REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1496 	}
1497 
1498 	if (ssi->has_ipg_clk_name)
1499 		ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1500 						      &regconfig);
1501 	else
1502 		ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1503 	if (IS_ERR(ssi->regs)) {
1504 		dev_err(dev, "failed to init register map\n");
1505 		return PTR_ERR(ssi->regs);
1506 	}
1507 
1508 	ssi->irq = platform_get_irq(pdev, 0);
1509 	if (ssi->irq < 0) {
1510 		dev_err(dev, "no irq for node %s\n", pdev->name);
1511 		return ssi->irq;
1512 	}
1513 
1514 	/* Set software limitations for synchronous mode except AC97 */
1515 	if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1516 		ssi->cpu_dai_drv.symmetric_rates = 1;
1517 		ssi->cpu_dai_drv.symmetric_channels = 1;
1518 		ssi->cpu_dai_drv.symmetric_samplebits = 1;
1519 	}
1520 
1521 	/*
1522 	 * Configure TX and RX DMA watermarks -- when to send a DMA request
1523 	 *
1524 	 * Values should be tested to avoid FIFO under/over run. Set maxburst
1525 	 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1526 	 */
1527 	switch (ssi->fifo_depth) {
1528 	case 15:
1529 		/*
1530 		 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1531 		 * empty slots, send a DMA request to fill these 8 slots. The
1532 		 * remaining 7 slots should be able to allow DMA to finish the
1533 		 * transaction before TX FIFO underruns; Same applies to RX.
1534 		 *
1535 		 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1536 		 */
1537 		ssi->fifo_watermark = 8;
1538 		ssi->dma_maxburst = 8;
1539 		break;
1540 	case 8:
1541 	default:
1542 		/* Safely use old watermark configurations for older chips */
1543 		ssi->fifo_watermark = ssi->fifo_depth - 2;
1544 		ssi->dma_maxburst = ssi->fifo_depth - 2;
1545 		break;
1546 	}
1547 
1548 	dev_set_drvdata(dev, ssi);
1549 
1550 	if (ssi->soc->imx) {
1551 		ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1552 		if (ret)
1553 			return ret;
1554 	}
1555 
1556 	if (fsl_ssi_is_ac97(ssi)) {
1557 		mutex_init(&ssi->ac97_reg_lock);
1558 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1559 		if (ret) {
1560 			dev_err(dev, "failed to set AC'97 ops\n");
1561 			goto error_ac97_ops;
1562 		}
1563 	}
1564 
1565 	ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1566 					      &ssi->cpu_dai_drv, 1);
1567 	if (ret) {
1568 		dev_err(dev, "failed to register DAI: %d\n", ret);
1569 		goto error_asoc_register;
1570 	}
1571 
1572 	if (ssi->use_dma) {
1573 		ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1574 				       dev_name(dev), ssi);
1575 		if (ret < 0) {
1576 			dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1577 			goto error_asoc_register;
1578 		}
1579 	}
1580 
1581 	ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1582 	if (ret)
1583 		goto error_asoc_register;
1584 
1585 	/* Initially configures SSI registers */
1586 	fsl_ssi_hw_init(ssi);
1587 
1588 	/* Register a platform device for older bindings or AC97 */
1589 	if (ssi->card_name[0]) {
1590 		struct device *parent = dev;
1591 		/*
1592 		 * Do not set SSI dev as the parent of AC97 CODEC device since
1593 		 * it does not have a DT node. Otherwise ASoC core will assume
1594 		 * CODEC has the same DT node as the SSI, so it may bypass the
1595 		 * dai_probe() of SSI and then cause NULL DMA data pointers.
1596 		 */
1597 		if (fsl_ssi_is_ac97(ssi))
1598 			parent = NULL;
1599 
1600 		ssi->card_pdev = platform_device_register_data(parent,
1601 				ssi->card_name, ssi->card_idx, NULL, 0);
1602 		if (IS_ERR(ssi->card_pdev)) {
1603 			ret = PTR_ERR(ssi->card_pdev);
1604 			dev_err(dev, "failed to register %s: %d\n",
1605 				ssi->card_name, ret);
1606 			goto error_sound_card;
1607 		}
1608 	}
1609 
1610 	return 0;
1611 
1612 error_sound_card:
1613 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1614 error_asoc_register:
1615 	if (fsl_ssi_is_ac97(ssi))
1616 		snd_soc_set_ac97_ops(NULL);
1617 error_ac97_ops:
1618 	if (fsl_ssi_is_ac97(ssi))
1619 		mutex_destroy(&ssi->ac97_reg_lock);
1620 
1621 	if (ssi->soc->imx)
1622 		fsl_ssi_imx_clean(pdev, ssi);
1623 
1624 	return ret;
1625 }
1626 
1627 static int fsl_ssi_remove(struct platform_device *pdev)
1628 {
1629 	struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1630 
1631 	fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1632 
1633 	if (ssi->card_pdev)
1634 		platform_device_unregister(ssi->card_pdev);
1635 
1636 	/* Clean up SSI registers */
1637 	fsl_ssi_hw_clean(ssi);
1638 
1639 	if (ssi->soc->imx)
1640 		fsl_ssi_imx_clean(pdev, ssi);
1641 
1642 	if (fsl_ssi_is_ac97(ssi)) {
1643 		snd_soc_set_ac97_ops(NULL);
1644 		mutex_destroy(&ssi->ac97_reg_lock);
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 #ifdef CONFIG_PM_SLEEP
1651 static int fsl_ssi_suspend(struct device *dev)
1652 {
1653 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1654 	struct regmap *regs = ssi->regs;
1655 
1656 	regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1657 	regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1658 
1659 	regcache_cache_only(regs, true);
1660 	regcache_mark_dirty(regs);
1661 
1662 	return 0;
1663 }
1664 
1665 static int fsl_ssi_resume(struct device *dev)
1666 {
1667 	struct fsl_ssi *ssi = dev_get_drvdata(dev);
1668 	struct regmap *regs = ssi->regs;
1669 
1670 	regcache_cache_only(regs, false);
1671 
1672 	regmap_update_bits(regs, REG_SSI_SFCSR,
1673 			   SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1674 			   SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1675 			   ssi->regcache_sfcsr);
1676 	regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1677 
1678 	return regcache_sync(regs);
1679 }
1680 #endif /* CONFIG_PM_SLEEP */
1681 
1682 static const struct dev_pm_ops fsl_ssi_pm = {
1683 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1684 };
1685 
1686 static struct platform_driver fsl_ssi_driver = {
1687 	.driver = {
1688 		.name = "fsl-ssi-dai",
1689 		.of_match_table = fsl_ssi_ids,
1690 		.pm = &fsl_ssi_pm,
1691 	},
1692 	.probe = fsl_ssi_probe,
1693 	.remove = fsl_ssi_remove,
1694 };
1695 
1696 module_platform_driver(fsl_ssi_driver);
1697 
1698 MODULE_ALIAS("platform:fsl-ssi-dai");
1699 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1700 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1701 MODULE_LICENSE("GPL v2");
1702