xref: /openbmc/linux/sound/soc/fsl/fsl_ssi.c (revision 089a49b6)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/of_address.h>
42 #include <linux/of_irq.h>
43 #include <linux/of_platform.h>
44 
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/initval.h>
49 #include <sound/soc.h>
50 #include <sound/dmaengine_pcm.h>
51 
52 #include "fsl_ssi.h"
53 #include "imx-pcm.h"
54 
55 #ifdef PPC
56 #define read_ssi(addr)			 in_be32(addr)
57 #define write_ssi(val, addr)		 out_be32(addr, val)
58 #define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59 #else
60 #define read_ssi(addr)			 readl(addr)
61 #define write_ssi(val, addr)		 writel(val, addr)
62 /*
63  * FIXME: Proper locking should be added at write_ssi_mask caller level
64  * to ensure this register read/modify/write sequence is race free.
65  */
66 static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
67 {
68 	u32 val = readl(addr);
69 	val = (val & ~clear) | set;
70 	writel(val, addr);
71 }
72 #endif
73 
74 /**
75  * FSLSSI_I2S_RATES: sample rates supported by the I2S
76  *
77  * This driver currently only supports the SSI running in I2S slave mode,
78  * which means the codec determines the sample rate.  Therefore, we tell
79  * ALSA that we support all rates and let the codec driver decide what rates
80  * are really supported.
81  */
82 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
83 			  SNDRV_PCM_RATE_CONTINUOUS)
84 
85 /**
86  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
87  *
88  * This driver currently only supports the SSI running in I2S slave mode.
89  *
90  * The SSI has a limitation in that the samples must be in the same byte
91  * order as the host CPU.  This is because when multiple bytes are written
92  * to the STX register, the bytes and bits must be written in the same
93  * order.  The STX is a shift register, so all the bits need to be aligned
94  * (bit-endianness must match byte-endianness).  Processors typically write
95  * the bits within a byte in the same order that the bytes of a word are
96  * written in.  So if the host CPU is big-endian, then only big-endian
97  * samples will be written to STX properly.
98  */
99 #ifdef __BIG_ENDIAN
100 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
101 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
102 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
103 #else
104 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
105 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
106 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
107 #endif
108 
109 /* SIER bitflag of interrupts to enable */
110 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
111 		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
112 		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
113 		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
114 		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
115 
116 /**
117  * fsl_ssi_private: per-SSI private data
118  *
119  * @ssi: pointer to the SSI's registers
120  * @ssi_phys: physical address of the SSI registers
121  * @irq: IRQ of this SSI
122  * @first_stream: pointer to the stream that was opened first
123  * @second_stream: pointer to second stream
124  * @playback: the number of playback streams opened
125  * @capture: the number of capture streams opened
126  * @cpu_dai: the CPU DAI for this device
127  * @dev_attr: the sysfs device attribute structure
128  * @stats: SSI statistics
129  * @name: name for this device
130  */
131 struct fsl_ssi_private {
132 	struct ccsr_ssi __iomem *ssi;
133 	dma_addr_t ssi_phys;
134 	unsigned int irq;
135 	struct snd_pcm_substream *first_stream;
136 	struct snd_pcm_substream *second_stream;
137 	unsigned int fifo_depth;
138 	struct snd_soc_dai_driver cpu_dai_drv;
139 	struct device_attribute dev_attr;
140 	struct platform_device *pdev;
141 
142 	bool new_binding;
143 	bool ssi_on_imx;
144 	bool imx_ac97;
145 	bool use_dma;
146 	struct clk *clk;
147 	struct snd_dmaengine_dai_dma_data dma_params_tx;
148 	struct snd_dmaengine_dai_dma_data dma_params_rx;
149 	struct imx_dma_data filter_data_tx;
150 	struct imx_dma_data filter_data_rx;
151 	struct imx_pcm_fiq_params fiq_params;
152 
153 	struct {
154 		unsigned int rfrc;
155 		unsigned int tfrc;
156 		unsigned int cmdau;
157 		unsigned int cmddu;
158 		unsigned int rxt;
159 		unsigned int rdr1;
160 		unsigned int rdr0;
161 		unsigned int tde1;
162 		unsigned int tde0;
163 		unsigned int roe1;
164 		unsigned int roe0;
165 		unsigned int tue1;
166 		unsigned int tue0;
167 		unsigned int tfs;
168 		unsigned int rfs;
169 		unsigned int tls;
170 		unsigned int rls;
171 		unsigned int rff1;
172 		unsigned int rff0;
173 		unsigned int tfe1;
174 		unsigned int tfe0;
175 	} stats;
176 
177 	char name[1];
178 };
179 
180 /**
181  * fsl_ssi_isr: SSI interrupt handler
182  *
183  * Although it's possible to use the interrupt handler to send and receive
184  * data to/from the SSI, we use the DMA instead.  Programming is more
185  * complicated, but the performance is much better.
186  *
187  * This interrupt handler is used only to gather statistics.
188  *
189  * @irq: IRQ of the SSI device
190  * @dev_id: pointer to the ssi_private structure for this SSI device
191  */
192 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
193 {
194 	struct fsl_ssi_private *ssi_private = dev_id;
195 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
196 	irqreturn_t ret = IRQ_NONE;
197 	__be32 sisr;
198 	__be32 sisr2 = 0;
199 
200 	/* We got an interrupt, so read the status register to see what we
201 	   were interrupted for.  We mask it with the Interrupt Enable register
202 	   so that we only check for events that we're interested in.
203 	 */
204 	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
205 
206 	if (sisr & CCSR_SSI_SISR_RFRC) {
207 		ssi_private->stats.rfrc++;
208 		sisr2 |= CCSR_SSI_SISR_RFRC;
209 		ret = IRQ_HANDLED;
210 	}
211 
212 	if (sisr & CCSR_SSI_SISR_TFRC) {
213 		ssi_private->stats.tfrc++;
214 		sisr2 |= CCSR_SSI_SISR_TFRC;
215 		ret = IRQ_HANDLED;
216 	}
217 
218 	if (sisr & CCSR_SSI_SISR_CMDAU) {
219 		ssi_private->stats.cmdau++;
220 		ret = IRQ_HANDLED;
221 	}
222 
223 	if (sisr & CCSR_SSI_SISR_CMDDU) {
224 		ssi_private->stats.cmddu++;
225 		ret = IRQ_HANDLED;
226 	}
227 
228 	if (sisr & CCSR_SSI_SISR_RXT) {
229 		ssi_private->stats.rxt++;
230 		ret = IRQ_HANDLED;
231 	}
232 
233 	if (sisr & CCSR_SSI_SISR_RDR1) {
234 		ssi_private->stats.rdr1++;
235 		ret = IRQ_HANDLED;
236 	}
237 
238 	if (sisr & CCSR_SSI_SISR_RDR0) {
239 		ssi_private->stats.rdr0++;
240 		ret = IRQ_HANDLED;
241 	}
242 
243 	if (sisr & CCSR_SSI_SISR_TDE1) {
244 		ssi_private->stats.tde1++;
245 		ret = IRQ_HANDLED;
246 	}
247 
248 	if (sisr & CCSR_SSI_SISR_TDE0) {
249 		ssi_private->stats.tde0++;
250 		ret = IRQ_HANDLED;
251 	}
252 
253 	if (sisr & CCSR_SSI_SISR_ROE1) {
254 		ssi_private->stats.roe1++;
255 		sisr2 |= CCSR_SSI_SISR_ROE1;
256 		ret = IRQ_HANDLED;
257 	}
258 
259 	if (sisr & CCSR_SSI_SISR_ROE0) {
260 		ssi_private->stats.roe0++;
261 		sisr2 |= CCSR_SSI_SISR_ROE0;
262 		ret = IRQ_HANDLED;
263 	}
264 
265 	if (sisr & CCSR_SSI_SISR_TUE1) {
266 		ssi_private->stats.tue1++;
267 		sisr2 |= CCSR_SSI_SISR_TUE1;
268 		ret = IRQ_HANDLED;
269 	}
270 
271 	if (sisr & CCSR_SSI_SISR_TUE0) {
272 		ssi_private->stats.tue0++;
273 		sisr2 |= CCSR_SSI_SISR_TUE0;
274 		ret = IRQ_HANDLED;
275 	}
276 
277 	if (sisr & CCSR_SSI_SISR_TFS) {
278 		ssi_private->stats.tfs++;
279 		ret = IRQ_HANDLED;
280 	}
281 
282 	if (sisr & CCSR_SSI_SISR_RFS) {
283 		ssi_private->stats.rfs++;
284 		ret = IRQ_HANDLED;
285 	}
286 
287 	if (sisr & CCSR_SSI_SISR_TLS) {
288 		ssi_private->stats.tls++;
289 		ret = IRQ_HANDLED;
290 	}
291 
292 	if (sisr & CCSR_SSI_SISR_RLS) {
293 		ssi_private->stats.rls++;
294 		ret = IRQ_HANDLED;
295 	}
296 
297 	if (sisr & CCSR_SSI_SISR_RFF1) {
298 		ssi_private->stats.rff1++;
299 		ret = IRQ_HANDLED;
300 	}
301 
302 	if (sisr & CCSR_SSI_SISR_RFF0) {
303 		ssi_private->stats.rff0++;
304 		ret = IRQ_HANDLED;
305 	}
306 
307 	if (sisr & CCSR_SSI_SISR_TFE1) {
308 		ssi_private->stats.tfe1++;
309 		ret = IRQ_HANDLED;
310 	}
311 
312 	if (sisr & CCSR_SSI_SISR_TFE0) {
313 		ssi_private->stats.tfe0++;
314 		ret = IRQ_HANDLED;
315 	}
316 
317 	/* Clear the bits that we set */
318 	if (sisr2)
319 		write_ssi(sisr2, &ssi->sisr);
320 
321 	return ret;
322 }
323 
324 static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
325 {
326 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
327 	u8 i2s_mode;
328 	u8 wm;
329 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
330 
331 	if (ssi_private->imx_ac97)
332 		i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
333 	else
334 		i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
335 
336 	/*
337 	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
338 	 * to be disabled before updating the registers we set here.
339 	 */
340 	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
341 
342 	/*
343 	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
344 	 * enable the transmit and receive FIFO.
345 	 *
346 	 * FIXME: Little-endian samples require a different shift dir
347 	 */
348 	write_ssi_mask(&ssi->scr,
349 		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
350 		CCSR_SSI_SCR_TFR_CLK_DIS |
351 		i2s_mode |
352 		(synchronous ? CCSR_SSI_SCR_SYN : 0));
353 
354 	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
355 		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
356 		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
357 
358 	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
359 		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
360 		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
361 	/*
362 	 * The DC and PM bits are only used if the SSI is the clock master.
363 	 */
364 
365 	/*
366 	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
367 	 * use FIFO 1. We program the transmit water to signal a DMA transfer
368 	 * if there are only two (or fewer) elements left in the FIFO. Two
369 	 * elements equals one frame (left channel, right channel). This value,
370 	 * however, depends on the depth of the transmit buffer.
371 	 *
372 	 * We set the watermark on the same level as the DMA burstsize.  For
373 	 * fiq it is probably better to use the biggest possible watermark
374 	 * size.
375 	 */
376 	if (ssi_private->use_dma)
377 		wm = ssi_private->fifo_depth - 2;
378 	else
379 		wm = ssi_private->fifo_depth;
380 
381 	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
382 		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
383 		&ssi->sfcsr);
384 
385 	/*
386 	 * For ac97 interrupts are enabled with the startup of the substream
387 	 * because it is also running without an active substream. Normally SSI
388 	 * is only enabled when there is a substream.
389 	 */
390 	if (ssi_private->imx_ac97) {
391 		/*
392 		 * Setup the clock control register
393 		 */
394 		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
395 				&ssi->stccr);
396 		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
397 				&ssi->srccr);
398 
399 		/*
400 		 * Enable AC97 mode and startup the SSI
401 		 */
402 		write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
403 				&ssi->sacnt);
404 		write_ssi(0xff, &ssi->saccdis);
405 		write_ssi(0x300, &ssi->saccen);
406 
407 		/*
408 		 * Enable SSI, Transmit and Receive
409 		 */
410 		write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
411 				CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
412 
413 		write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
414 	}
415 
416 	return 0;
417 }
418 
419 
420 /**
421  * fsl_ssi_startup: create a new substream
422  *
423  * This is the first function called when a stream is opened.
424  *
425  * If this is the first stream open, then grab the IRQ and program most of
426  * the SSI registers.
427  */
428 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
429 			   struct snd_soc_dai *dai)
430 {
431 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
432 	struct fsl_ssi_private *ssi_private =
433 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
434 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
435 
436 	/*
437 	 * If this is the first stream opened, then request the IRQ
438 	 * and initialize the SSI registers.
439 	 */
440 	if (!ssi_private->first_stream) {
441 		ssi_private->first_stream = substream;
442 
443 		/*
444 		 * fsl_ssi_setup was already called by ac97_init earlier if
445 		 * the driver is in ac97 mode.
446 		 */
447 		if (!ssi_private->imx_ac97)
448 			fsl_ssi_setup(ssi_private);
449 	} else {
450 		if (synchronous) {
451 			struct snd_pcm_runtime *first_runtime =
452 				ssi_private->first_stream->runtime;
453 			/*
454 			 * This is the second stream open, and we're in
455 			 * synchronous mode, so we need to impose sample
456 			 * sample size constraints. This is because STCCR is
457 			 * used for playback and capture in synchronous mode,
458 			 * so there's no way to specify different word
459 			 * lengths.
460 			 *
461 			 * Note that this can cause a race condition if the
462 			 * second stream is opened before the first stream is
463 			 * fully initialized.  We provide some protection by
464 			 * checking to make sure the first stream is
465 			 * initialized, but it's not perfect.  ALSA sometimes
466 			 * re-initializes the driver with a different sample
467 			 * rate or size.  If the second stream is opened
468 			 * before the first stream has received its final
469 			 * parameters, then the second stream may be
470 			 * constrained to the wrong sample rate or size.
471 			 */
472 			if (!first_runtime->sample_bits) {
473 				dev_err(substream->pcm->card->dev,
474 					"set sample size in %s stream first\n",
475 					substream->stream ==
476 					SNDRV_PCM_STREAM_PLAYBACK
477 					? "capture" : "playback");
478 				return -EAGAIN;
479 			}
480 
481 			snd_pcm_hw_constraint_minmax(substream->runtime,
482 				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
483 				first_runtime->sample_bits,
484 				first_runtime->sample_bits);
485 		}
486 
487 		ssi_private->second_stream = substream;
488 	}
489 
490 	return 0;
491 }
492 
493 /**
494  * fsl_ssi_hw_params - program the sample size
495  *
496  * Most of the SSI registers have been programmed in the startup function,
497  * but the word length must be programmed here.  Unfortunately, programming
498  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
499  * cause a problem with supporting simultaneous playback and capture.  If
500  * the SSI is already playing a stream, then that stream may be temporarily
501  * stopped when you start capture.
502  *
503  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
504  * clock master.
505  */
506 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
507 	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
508 {
509 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
510 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
511 	unsigned int sample_size =
512 		snd_pcm_format_width(params_format(hw_params));
513 	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
514 	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
515 
516 	/*
517 	 * If we're in synchronous mode, and the SSI is already enabled,
518 	 * then STCCR is already set properly.
519 	 */
520 	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
521 		return 0;
522 
523 	/*
524 	 * FIXME: The documentation says that SxCCR[WL] should not be
525 	 * modified while the SSI is enabled.  The only time this can
526 	 * happen is if we're trying to do simultaneous playback and
527 	 * capture in asynchronous mode.  Unfortunately, I have been enable
528 	 * to get that to work at all on the P1022DS.  Therefore, we don't
529 	 * bother to disable/enable the SSI when setting SxCCR[WL], because
530 	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
531 	 */
532 
533 	/* In synchronous mode, the SSI uses STCCR for capture */
534 	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
535 	    ssi_private->cpu_dai_drv.symmetric_rates)
536 		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
537 	else
538 		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
539 
540 	return 0;
541 }
542 
543 /**
544  * fsl_ssi_trigger: start and stop the DMA transfer.
545  *
546  * This function is called by ALSA to start, stop, pause, and resume the DMA
547  * transfer of data.
548  *
549  * The DMA channel is in external master start and pause mode, which
550  * means the SSI completely controls the flow of data.
551  */
552 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
553 			   struct snd_soc_dai *dai)
554 {
555 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
556 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
557 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
558 	unsigned int sier_bits;
559 
560 	/*
561 	 *  Enable only the interrupts and DMA requests
562 	 *  that are needed for the channel. As the fiq
563 	 *  is polling for this bits, we have to ensure
564 	 *  that this are aligned with the preallocated
565 	 *  buffers
566 	 */
567 
568 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
569 		if (ssi_private->use_dma)
570 			sier_bits = SIER_FLAGS;
571 		else
572 			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
573 	} else {
574 		if (ssi_private->use_dma)
575 			sier_bits = SIER_FLAGS;
576 		else
577 			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
578 	}
579 
580 	switch (cmd) {
581 	case SNDRV_PCM_TRIGGER_START:
582 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
583 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
584 			write_ssi_mask(&ssi->scr, 0,
585 				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
586 		else
587 			write_ssi_mask(&ssi->scr, 0,
588 				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
589 		break;
590 
591 	case SNDRV_PCM_TRIGGER_STOP:
592 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
593 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
594 			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
595 		else
596 			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
597 
598 		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
599 					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
600 			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
601 		break;
602 
603 	default:
604 		return -EINVAL;
605 	}
606 
607 	write_ssi(sier_bits, &ssi->sier);
608 
609 	return 0;
610 }
611 
612 /**
613  * fsl_ssi_shutdown: shutdown the SSI
614  *
615  * Shutdown the SSI if there are no other substreams open.
616  */
617 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
618 			     struct snd_soc_dai *dai)
619 {
620 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
621 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
622 
623 	if (ssi_private->first_stream == substream)
624 		ssi_private->first_stream = ssi_private->second_stream;
625 
626 	ssi_private->second_stream = NULL;
627 }
628 
629 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
630 {
631 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
632 
633 	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
634 		dai->playback_dma_data = &ssi_private->dma_params_tx;
635 		dai->capture_dma_data = &ssi_private->dma_params_rx;
636 	}
637 
638 	return 0;
639 }
640 
641 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
642 	.startup	= fsl_ssi_startup,
643 	.hw_params	= fsl_ssi_hw_params,
644 	.shutdown	= fsl_ssi_shutdown,
645 	.trigger	= fsl_ssi_trigger,
646 };
647 
648 /* Template for the CPU dai driver structure */
649 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
650 	.probe = fsl_ssi_dai_probe,
651 	.playback = {
652 		/* The SSI does not support monaural audio. */
653 		.channels_min = 2,
654 		.channels_max = 2,
655 		.rates = FSLSSI_I2S_RATES,
656 		.formats = FSLSSI_I2S_FORMATS,
657 	},
658 	.capture = {
659 		.channels_min = 2,
660 		.channels_max = 2,
661 		.rates = FSLSSI_I2S_RATES,
662 		.formats = FSLSSI_I2S_FORMATS,
663 	},
664 	.ops = &fsl_ssi_dai_ops,
665 };
666 
667 static const struct snd_soc_component_driver fsl_ssi_component = {
668 	.name		= "fsl-ssi",
669 };
670 
671 /**
672  * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
673  *
674  * This function is called by ALSA to start, stop, pause, and resume the
675  * transfer of data.
676  */
677 static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
678 			   struct snd_soc_dai *dai)
679 {
680 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
681 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
682 			rtd->cpu_dai);
683 	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
684 
685 	switch (cmd) {
686 	case SNDRV_PCM_TRIGGER_START:
687 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
688 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
689 			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
690 					CCSR_SSI_SIER_TFE0_EN);
691 		else
692 			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
693 					CCSR_SSI_SIER_RFF0_EN);
694 		break;
695 
696 	case SNDRV_PCM_TRIGGER_STOP:
697 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
698 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
699 			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
700 					CCSR_SSI_SIER_TFE0_EN, 0);
701 		else
702 			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
703 					CCSR_SSI_SIER_RFF0_EN, 0);
704 		break;
705 
706 	default:
707 		return -EINVAL;
708 	}
709 
710 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
711 		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
712 	else
713 		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
714 
715 	return 0;
716 }
717 
718 static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
719 	.startup	= fsl_ssi_startup,
720 	.shutdown	= fsl_ssi_shutdown,
721 	.trigger	= fsl_ssi_ac97_trigger,
722 };
723 
724 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
725 	.ac97_control = 1,
726 	.playback = {
727 		.stream_name = "AC97 Playback",
728 		.channels_min = 2,
729 		.channels_max = 2,
730 		.rates = SNDRV_PCM_RATE_8000_48000,
731 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
732 	},
733 	.capture = {
734 		.stream_name = "AC97 Capture",
735 		.channels_min = 2,
736 		.channels_max = 2,
737 		.rates = SNDRV_PCM_RATE_48000,
738 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
739 	},
740 	.ops = &fsl_ssi_ac97_dai_ops,
741 };
742 
743 
744 static struct fsl_ssi_private *fsl_ac97_data;
745 
746 static void fsl_ssi_ac97_init(void)
747 {
748 	fsl_ssi_setup(fsl_ac97_data);
749 }
750 
751 void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
752 		unsigned short val)
753 {
754 	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
755 	unsigned int lreg;
756 	unsigned int lval;
757 
758 	if (reg > 0x7f)
759 		return;
760 
761 
762 	lreg = reg <<  12;
763 	write_ssi(lreg, &ssi->sacadd);
764 
765 	lval = val << 4;
766 	write_ssi(lval , &ssi->sacdat);
767 
768 	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
769 			CCSR_SSI_SACNT_WR);
770 	udelay(100);
771 }
772 
773 unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
774 		unsigned short reg)
775 {
776 	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
777 
778 	unsigned short val = -1;
779 	unsigned int lreg;
780 
781 	lreg = (reg & 0x7f) <<  12;
782 	write_ssi(lreg, &ssi->sacadd);
783 	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
784 			CCSR_SSI_SACNT_RD);
785 
786 	udelay(100);
787 
788 	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;
789 
790 	return val;
791 }
792 
793 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
794 	.read		= fsl_ssi_ac97_read,
795 	.write		= fsl_ssi_ac97_write,
796 };
797 
798 /* Show the statistics of a flag only if its interrupt is enabled.  The
799  * compiler will optimze this code to a no-op if the interrupt is not
800  * enabled.
801  */
802 #define SIER_SHOW(flag, name) \
803 	do { \
804 		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
805 			length += sprintf(buf + length, #name "=%u\n", \
806 				ssi_private->stats.name); \
807 	} while (0)
808 
809 
810 /**
811  * fsl_sysfs_ssi_show: display SSI statistics
812  *
813  * Display the statistics for the current SSI device.  To avoid confusion,
814  * we only show those counts that are enabled.
815  */
816 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
817 	struct device_attribute *attr, char *buf)
818 {
819 	struct fsl_ssi_private *ssi_private =
820 		container_of(attr, struct fsl_ssi_private, dev_attr);
821 	ssize_t length = 0;
822 
823 	SIER_SHOW(RFRC_EN, rfrc);
824 	SIER_SHOW(TFRC_EN, tfrc);
825 	SIER_SHOW(CMDAU_EN, cmdau);
826 	SIER_SHOW(CMDDU_EN, cmddu);
827 	SIER_SHOW(RXT_EN, rxt);
828 	SIER_SHOW(RDR1_EN, rdr1);
829 	SIER_SHOW(RDR0_EN, rdr0);
830 	SIER_SHOW(TDE1_EN, tde1);
831 	SIER_SHOW(TDE0_EN, tde0);
832 	SIER_SHOW(ROE1_EN, roe1);
833 	SIER_SHOW(ROE0_EN, roe0);
834 	SIER_SHOW(TUE1_EN, tue1);
835 	SIER_SHOW(TUE0_EN, tue0);
836 	SIER_SHOW(TFS_EN, tfs);
837 	SIER_SHOW(RFS_EN, rfs);
838 	SIER_SHOW(TLS_EN, tls);
839 	SIER_SHOW(RLS_EN, rls);
840 	SIER_SHOW(RFF1_EN, rff1);
841 	SIER_SHOW(RFF0_EN, rff0);
842 	SIER_SHOW(TFE1_EN, tfe1);
843 	SIER_SHOW(TFE0_EN, tfe0);
844 
845 	return length;
846 }
847 
848 /**
849  * Make every character in a string lower-case
850  */
851 static void make_lowercase(char *s)
852 {
853 	char *p = s;
854 	char c;
855 
856 	while ((c = *p)) {
857 		if ((c >= 'A') && (c <= 'Z'))
858 			*p = c + ('a' - 'A');
859 		p++;
860 	}
861 }
862 
863 static int fsl_ssi_probe(struct platform_device *pdev)
864 {
865 	struct fsl_ssi_private *ssi_private;
866 	int ret = 0;
867 	struct device_attribute *dev_attr = NULL;
868 	struct device_node *np = pdev->dev.of_node;
869 	const char *p, *sprop;
870 	const uint32_t *iprop;
871 	struct resource res;
872 	char name[64];
873 	bool shared;
874 	bool ac97 = false;
875 
876 	/* SSIs that are not connected on the board should have a
877 	 *      status = "disabled"
878 	 * property in their device tree nodes.
879 	 */
880 	if (!of_device_is_available(np))
881 		return -ENODEV;
882 
883 	/* We only support the SSI in "I2S Slave" mode */
884 	sprop = of_get_property(np, "fsl,mode", NULL);
885 	if (!sprop) {
886 		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
887 		return -EINVAL;
888 	}
889 	if (!strcmp(sprop, "ac97-slave")) {
890 		ac97 = true;
891 	} else if (strcmp(sprop, "i2s-slave")) {
892 		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
893 		return -ENODEV;
894 	}
895 
896 	/* The DAI name is the last part of the full name of the node. */
897 	p = strrchr(np->full_name, '/') + 1;
898 	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
899 			      GFP_KERNEL);
900 	if (!ssi_private) {
901 		dev_err(&pdev->dev, "could not allocate DAI object\n");
902 		return -ENOMEM;
903 	}
904 
905 	strcpy(ssi_private->name, p);
906 
907 	ssi_private->use_dma = !of_property_read_bool(np,
908 			"fsl,fiq-stream-filter");
909 
910 	if (ac97) {
911 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
912 				sizeof(fsl_ssi_ac97_dai));
913 
914 		fsl_ac97_data = ssi_private;
915 		ssi_private->imx_ac97 = true;
916 
917 		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
918 	} else {
919 		/* Initialize this copy of the CPU DAI driver structure */
920 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
921 		       sizeof(fsl_ssi_dai_template));
922 	}
923 	ssi_private->cpu_dai_drv.name = ssi_private->name;
924 
925 	/* Get the addresses and IRQ */
926 	ret = of_address_to_resource(np, 0, &res);
927 	if (ret) {
928 		dev_err(&pdev->dev, "could not determine device resources\n");
929 		return ret;
930 	}
931 	ssi_private->ssi = of_iomap(np, 0);
932 	if (!ssi_private->ssi) {
933 		dev_err(&pdev->dev, "could not map device resources\n");
934 		return -ENOMEM;
935 	}
936 	ssi_private->ssi_phys = res.start;
937 
938 	ssi_private->irq = irq_of_parse_and_map(np, 0);
939 	if (ssi_private->irq == NO_IRQ) {
940 		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
941 		return -ENXIO;
942 	}
943 
944 	/* Are the RX and the TX clocks locked? */
945 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
946 		ssi_private->cpu_dai_drv.symmetric_rates = 1;
947 
948 	/* Determine the FIFO depth. */
949 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
950 	if (iprop)
951 		ssi_private->fifo_depth = be32_to_cpup(iprop);
952 	else
953                 /* Older 8610 DTs didn't have the fifo-depth property */
954 		ssi_private->fifo_depth = 8;
955 
956 	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
957 		u32 dma_events[2];
958 		ssi_private->ssi_on_imx = true;
959 
960 		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
961 		if (IS_ERR(ssi_private->clk)) {
962 			ret = PTR_ERR(ssi_private->clk);
963 			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
964 			goto error_irqmap;
965 		}
966 		ret = clk_prepare_enable(ssi_private->clk);
967 		if (ret) {
968 			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
969 				ret);
970 			goto error_irqmap;
971 		}
972 
973 		/*
974 		 * We have burstsize be "fifo_depth - 2" to match the SSI
975 		 * watermark setting in fsl_ssi_startup().
976 		 */
977 		ssi_private->dma_params_tx.maxburst =
978 			ssi_private->fifo_depth - 2;
979 		ssi_private->dma_params_rx.maxburst =
980 			ssi_private->fifo_depth - 2;
981 		ssi_private->dma_params_tx.addr =
982 			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
983 		ssi_private->dma_params_rx.addr =
984 			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
985 		ssi_private->dma_params_tx.filter_data =
986 			&ssi_private->filter_data_tx;
987 		ssi_private->dma_params_rx.filter_data =
988 			&ssi_private->filter_data_rx;
989 		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
990 				ssi_private->use_dma) {
991 			/*
992 			 * FIXME: This is a temporary solution until all
993 			 * necessary dma drivers support the generic dma
994 			 * bindings.
995 			 */
996 			ret = of_property_read_u32_array(pdev->dev.of_node,
997 					"fsl,ssi-dma-events", dma_events, 2);
998 			if (ret && ssi_private->use_dma) {
999 				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
1000 				goto error_clk;
1001 			}
1002 		}
1003 
1004 		shared = of_device_is_compatible(of_get_parent(np),
1005 			    "fsl,spba-bus");
1006 
1007 		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1008 			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1009 		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1010 			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1011 	} else if (ssi_private->use_dma) {
1012 		/* The 'name' should not have any slashes in it. */
1013 		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1014 					fsl_ssi_isr, 0, ssi_private->name,
1015 					ssi_private);
1016 		if (ret < 0) {
1017 			dev_err(&pdev->dev, "could not claim irq %u\n",
1018 					ssi_private->irq);
1019 			goto error_irqmap;
1020 		}
1021 	}
1022 
1023 	/* Initialize the the device_attribute structure */
1024 	dev_attr = &ssi_private->dev_attr;
1025 	sysfs_attr_init(&dev_attr->attr);
1026 	dev_attr->attr.name = "statistics";
1027 	dev_attr->attr.mode = S_IRUGO;
1028 	dev_attr->show = fsl_sysfs_ssi_show;
1029 
1030 	ret = device_create_file(&pdev->dev, dev_attr);
1031 	if (ret) {
1032 		dev_err(&pdev->dev, "could not create sysfs %s file\n",
1033 			ssi_private->dev_attr.attr.name);
1034 		goto error_clk;
1035 	}
1036 
1037 	/* Register with ASoC */
1038 	dev_set_drvdata(&pdev->dev, ssi_private);
1039 
1040 	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1041 					 &ssi_private->cpu_dai_drv, 1);
1042 	if (ret) {
1043 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1044 		goto error_dev;
1045 	}
1046 
1047 	if (ssi_private->ssi_on_imx) {
1048 		if (!ssi_private->use_dma) {
1049 
1050 			/*
1051 			 * Some boards use an incompatible codec. To get it
1052 			 * working, we are using imx-fiq-pcm-audio, that
1053 			 * can handle those codecs. DMA is not possible in this
1054 			 * situation.
1055 			 */
1056 
1057 			ssi_private->fiq_params.irq = ssi_private->irq;
1058 			ssi_private->fiq_params.base = ssi_private->ssi;
1059 			ssi_private->fiq_params.dma_params_rx =
1060 				&ssi_private->dma_params_rx;
1061 			ssi_private->fiq_params.dma_params_tx =
1062 				&ssi_private->dma_params_tx;
1063 
1064 			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1065 			if (ret)
1066 				goto error_dev;
1067 		} else {
1068 			ret = imx_pcm_dma_init(pdev);
1069 			if (ret)
1070 				goto error_dev;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * If codec-handle property is missing from SSI node, we assume
1076 	 * that the machine driver uses new binding which does not require
1077 	 * SSI driver to trigger machine driver's probe.
1078 	 */
1079 	if (!of_get_property(np, "codec-handle", NULL)) {
1080 		ssi_private->new_binding = true;
1081 		goto done;
1082 	}
1083 
1084 	/* Trigger the machine driver's probe function.  The platform driver
1085 	 * name of the machine driver is taken from /compatible property of the
1086 	 * device tree.  We also pass the address of the CPU DAI driver
1087 	 * structure.
1088 	 */
1089 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1090 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1091 	p = strrchr(sprop, ',');
1092 	if (p)
1093 		sprop = p + 1;
1094 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1095 	make_lowercase(name);
1096 
1097 	ssi_private->pdev =
1098 		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1099 	if (IS_ERR(ssi_private->pdev)) {
1100 		ret = PTR_ERR(ssi_private->pdev);
1101 		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1102 		goto error_dai;
1103 	}
1104 
1105 done:
1106 	if (ssi_private->imx_ac97)
1107 		fsl_ssi_ac97_init();
1108 
1109 	return 0;
1110 
1111 error_dai:
1112 	if (ssi_private->ssi_on_imx)
1113 		imx_pcm_dma_exit(pdev);
1114 	snd_soc_unregister_component(&pdev->dev);
1115 
1116 error_dev:
1117 	device_remove_file(&pdev->dev, dev_attr);
1118 
1119 error_clk:
1120 	if (ssi_private->ssi_on_imx)
1121 		clk_disable_unprepare(ssi_private->clk);
1122 
1123 error_irqmap:
1124 	irq_dispose_mapping(ssi_private->irq);
1125 
1126 	return ret;
1127 }
1128 
1129 static int fsl_ssi_remove(struct platform_device *pdev)
1130 {
1131 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1132 
1133 	if (!ssi_private->new_binding)
1134 		platform_device_unregister(ssi_private->pdev);
1135 	if (ssi_private->ssi_on_imx)
1136 		imx_pcm_dma_exit(pdev);
1137 	snd_soc_unregister_component(&pdev->dev);
1138 	dev_set_drvdata(&pdev->dev, NULL);
1139 	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1140 	if (ssi_private->ssi_on_imx)
1141 		clk_disable_unprepare(ssi_private->clk);
1142 	irq_dispose_mapping(ssi_private->irq);
1143 
1144 	return 0;
1145 }
1146 
1147 static const struct of_device_id fsl_ssi_ids[] = {
1148 	{ .compatible = "fsl,mpc8610-ssi", },
1149 	{ .compatible = "fsl,imx21-ssi", },
1150 	{}
1151 };
1152 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
1153 
1154 static struct platform_driver fsl_ssi_driver = {
1155 	.driver = {
1156 		.name = "fsl-ssi-dai",
1157 		.owner = THIS_MODULE,
1158 		.of_match_table = fsl_ssi_ids,
1159 	},
1160 	.probe = fsl_ssi_probe,
1161 	.remove = fsl_ssi_remove,
1162 };
1163 
1164 module_platform_driver(fsl_ssi_driver);
1165 
1166 MODULE_ALIAS("platform:fsl-ssi-dai");
1167 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1168 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1169 MODULE_LICENSE("GPL v2");
1170