xref: /openbmc/linux/sound/soc/fsl/fsl_ssi.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  *
13  * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14  *
15  * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16  * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17  * one FIFO which combines all valid receive slots. We cannot even select
18  * which slots we want to receive. The WM9712 with which this driver
19  * was developed with always sends GPIO status data in slot 12 which
20  * we receive in our (PCM-) data stream. The only chance we have is to
21  * manually skip this data in the FIQ handler. With sampling rates different
22  * from 48000Hz not every frame has valid receive data, so the ratio
23  * between pcm data and GPIO status data changes. Our FIQ handler is not
24  * able to handle this, hence this driver only works with 48000Hz sampling
25  * rate.
26  * Reading and writing AC97 registers is another challenge. The core
27  * provides us status bits when the read register is updated with *another*
28  * value. When we read the same register two times (and the register still
29  * contains the same value) these status bits are not set. We work
30  * around this by not polling these bits but only wait a fixed delay.
31  */
32 
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46 
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53 
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56 
57 /**
58  * FSLSSI_I2S_RATES: sample rates supported by the I2S
59  *
60  * This driver currently only supports the SSI running in I2S slave mode,
61  * which means the codec determines the sample rate.  Therefore, we tell
62  * ALSA that we support all rates and let the codec driver decide what rates
63  * are really supported.
64  */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66 
67 /**
68  * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69  *
70  * The SSI has a limitation in that the samples must be in the same byte
71  * order as the host CPU.  This is because when multiple bytes are written
72  * to the STX register, the bytes and bits must be written in the same
73  * order.  The STX is a shift register, so all the bits need to be aligned
74  * (bit-endianness must match byte-endianness).  Processors typically write
75  * the bits within a byte in the same order that the bytes of a word are
76  * written in.  So if the host CPU is big-endian, then only big-endian
77  * samples will be written to STX properly.
78  */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88 
89 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90 		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91 		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93 		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94 		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
95 
96 enum fsl_ssi_type {
97 	FSL_SSI_MCP8610,
98 	FSL_SSI_MX21,
99 	FSL_SSI_MX35,
100 	FSL_SSI_MX51,
101 };
102 
103 struct fsl_ssi_reg_val {
104 	u32 sier;
105 	u32 srcr;
106 	u32 stcr;
107 	u32 scr;
108 };
109 
110 struct fsl_ssi_rxtx_reg_val {
111 	struct fsl_ssi_reg_val rx;
112 	struct fsl_ssi_reg_val tx;
113 };
114 
115 static const struct reg_default fsl_ssi_reg_defaults[] = {
116 	{0x10, 0x00000000},
117 	{0x18, 0x00003003},
118 	{0x1c, 0x00000200},
119 	{0x20, 0x00000200},
120 	{0x24, 0x00040000},
121 	{0x28, 0x00040000},
122 	{0x38, 0x00000000},
123 	{0x48, 0x00000000},
124 	{0x4c, 0x00000000},
125 	{0x54, 0x00000000},
126 	{0x58, 0x00000000},
127 };
128 
129 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
130 {
131 	switch (reg) {
132 	case CCSR_SSI_SACCEN:
133 	case CCSR_SSI_SACCDIS:
134 		return false;
135 	default:
136 		return true;
137 	}
138 }
139 
140 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
141 {
142 	switch (reg) {
143 	case CCSR_SSI_STX0:
144 	case CCSR_SSI_STX1:
145 	case CCSR_SSI_SRX0:
146 	case CCSR_SSI_SRX1:
147 	case CCSR_SSI_SISR:
148 	case CCSR_SSI_SFCSR:
149 	case CCSR_SSI_SACADD:
150 	case CCSR_SSI_SACDAT:
151 	case CCSR_SSI_SATAG:
152 	case CCSR_SSI_SACCST:
153 		return true;
154 	default:
155 		return false;
156 	}
157 }
158 
159 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
160 {
161 	switch (reg) {
162 	case CCSR_SSI_SRX0:
163 	case CCSR_SSI_SRX1:
164 	case CCSR_SSI_SACCST:
165 		return false;
166 	default:
167 		return true;
168 	}
169 }
170 
171 static const struct regmap_config fsl_ssi_regconfig = {
172 	.max_register = CCSR_SSI_SACCDIS,
173 	.reg_bits = 32,
174 	.val_bits = 32,
175 	.reg_stride = 4,
176 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
177 	.reg_defaults = fsl_ssi_reg_defaults,
178 	.num_reg_defaults = ARRAY_SIZE(fsl_ssi_reg_defaults),
179 	.readable_reg = fsl_ssi_readable_reg,
180 	.volatile_reg = fsl_ssi_volatile_reg,
181 	.writeable_reg = fsl_ssi_writeable_reg,
182 	.cache_type = REGCACHE_RBTREE,
183 };
184 
185 struct fsl_ssi_soc_data {
186 	bool imx;
187 	bool offline_config;
188 	u32 sisr_write_mask;
189 };
190 
191 /**
192  * fsl_ssi_private: per-SSI private data
193  *
194  * @reg: Pointer to the regmap registers
195  * @irq: IRQ of this SSI
196  * @cpu_dai_drv: CPU DAI driver for this device
197  *
198  * @dai_fmt: DAI configuration this device is currently used with
199  * @i2s_mode: i2s and network mode configuration of the device. Is used to
200  * switch between normal and i2s/network mode
201  * mode depending on the number of channels
202  * @use_dma: DMA is used or FIQ with stream filter
203  * @use_dual_fifo: DMA with support for both FIFOs used
204  * @fifo_deph: Depth of the SSI FIFOs
205  * @rxtx_reg_val: Specific register settings for receive/transmit configuration
206  *
207  * @clk: SSI clock
208  * @baudclk: SSI baud clock for master mode
209  * @baudclk_streams: Active streams that are using baudclk
210  * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
211  *
212  * @dma_params_tx: DMA transmit parameters
213  * @dma_params_rx: DMA receive parameters
214  * @ssi_phys: physical address of the SSI registers
215  *
216  * @fiq_params: FIQ stream filtering parameters
217  *
218  * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
219  *
220  * @dbg_stats: Debugging statistics
221  *
222  * @soc: SoC specific data
223  */
224 struct fsl_ssi_private {
225 	struct regmap *regs;
226 	int irq;
227 	struct snd_soc_dai_driver cpu_dai_drv;
228 
229 	unsigned int dai_fmt;
230 	u8 i2s_mode;
231 	bool use_dma;
232 	bool use_dual_fifo;
233 	bool has_ipg_clk_name;
234 	unsigned int fifo_depth;
235 	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
236 
237 	struct clk *clk;
238 	struct clk *baudclk;
239 	unsigned int baudclk_streams;
240 	unsigned int bitclk_freq;
241 
242 	/*regcache for SFCSR*/
243 	u32 regcache_sfcsr;
244 
245 	/* DMA params */
246 	struct snd_dmaengine_dai_dma_data dma_params_tx;
247 	struct snd_dmaengine_dai_dma_data dma_params_rx;
248 	dma_addr_t ssi_phys;
249 
250 	/* params for non-dma FIQ stream filtered mode */
251 	struct imx_pcm_fiq_params fiq_params;
252 
253 	/* Used when using fsl-ssi as sound-card. This is only used by ppc and
254 	 * should be replaced with simple-sound-card. */
255 	struct platform_device *pdev;
256 
257 	struct fsl_ssi_dbg dbg_stats;
258 
259 	const struct fsl_ssi_soc_data *soc;
260 };
261 
262 /*
263  * imx51 and later SoCs have a slightly different IP that allows the
264  * SSI configuration while the SSI unit is running.
265  *
266  * More important, it is necessary on those SoCs to configure the
267  * sperate TX/RX DMA bits just before starting the stream
268  * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
269  * sends any DMA requests to the SDMA unit, otherwise it is not defined
270  * how the SDMA unit handles the DMA request.
271  *
272  * SDMA units are present on devices starting at imx35 but the imx35
273  * reference manual states that the DMA bits should not be changed
274  * while the SSI unit is running (SSIEN). So we support the necessary
275  * online configuration of fsl-ssi starting at imx51.
276  */
277 
278 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
279 	.imx = false,
280 	.offline_config = true,
281 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
282 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
283 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
284 };
285 
286 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
287 	.imx = true,
288 	.offline_config = true,
289 	.sisr_write_mask = 0,
290 };
291 
292 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
293 	.imx = true,
294 	.offline_config = true,
295 	.sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
296 			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
297 			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
298 };
299 
300 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
301 	.imx = true,
302 	.offline_config = false,
303 	.sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
304 		CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
305 };
306 
307 static const struct of_device_id fsl_ssi_ids[] = {
308 	{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
309 	{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
310 	{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
311 	{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
312 	{}
313 };
314 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
315 
316 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
317 {
318 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
319 		SND_SOC_DAIFMT_AC97;
320 }
321 
322 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
323 {
324 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
325 		SND_SOC_DAIFMT_CBS_CFS;
326 }
327 
328 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
329 {
330 	return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
331 		SND_SOC_DAIFMT_CBM_CFS;
332 }
333 /**
334  * fsl_ssi_isr: SSI interrupt handler
335  *
336  * Although it's possible to use the interrupt handler to send and receive
337  * data to/from the SSI, we use the DMA instead.  Programming is more
338  * complicated, but the performance is much better.
339  *
340  * This interrupt handler is used only to gather statistics.
341  *
342  * @irq: IRQ of the SSI device
343  * @dev_id: pointer to the ssi_private structure for this SSI device
344  */
345 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
346 {
347 	struct fsl_ssi_private *ssi_private = dev_id;
348 	struct regmap *regs = ssi_private->regs;
349 	__be32 sisr;
350 	__be32 sisr2;
351 
352 	/* We got an interrupt, so read the status register to see what we
353 	   were interrupted for.  We mask it with the Interrupt Enable register
354 	   so that we only check for events that we're interested in.
355 	 */
356 	regmap_read(regs, CCSR_SSI_SISR, &sisr);
357 
358 	sisr2 = sisr & ssi_private->soc->sisr_write_mask;
359 	/* Clear the bits that we set */
360 	if (sisr2)
361 		regmap_write(regs, CCSR_SSI_SISR, sisr2);
362 
363 	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
364 
365 	return IRQ_HANDLED;
366 }
367 
368 /*
369  * Enable/Disable all rx/tx config flags at once.
370  */
371 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
372 		bool enable)
373 {
374 	struct regmap *regs = ssi_private->regs;
375 	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
376 
377 	if (enable) {
378 		regmap_update_bits(regs, CCSR_SSI_SIER,
379 				vals->rx.sier | vals->tx.sier,
380 				vals->rx.sier | vals->tx.sier);
381 		regmap_update_bits(regs, CCSR_SSI_SRCR,
382 				vals->rx.srcr | vals->tx.srcr,
383 				vals->rx.srcr | vals->tx.srcr);
384 		regmap_update_bits(regs, CCSR_SSI_STCR,
385 				vals->rx.stcr | vals->tx.stcr,
386 				vals->rx.stcr | vals->tx.stcr);
387 	} else {
388 		regmap_update_bits(regs, CCSR_SSI_SRCR,
389 				vals->rx.srcr | vals->tx.srcr, 0);
390 		regmap_update_bits(regs, CCSR_SSI_STCR,
391 				vals->rx.stcr | vals->tx.stcr, 0);
392 		regmap_update_bits(regs, CCSR_SSI_SIER,
393 				vals->rx.sier | vals->tx.sier, 0);
394 	}
395 }
396 
397 /*
398  * Calculate the bits that have to be disabled for the current stream that is
399  * getting disabled. This keeps the bits enabled that are necessary for the
400  * second stream to work if 'stream_active' is true.
401  *
402  * Detailed calculation:
403  * These are the values that need to be active after disabling. For non-active
404  * second stream, this is 0:
405  *	vals_stream * !!stream_active
406  *
407  * The following computes the overall differences between the setup for the
408  * to-disable stream and the active stream, a simple XOR:
409  *	vals_disable ^ (vals_stream * !!(stream_active))
410  *
411  * The full expression adds a mask on all values we care about
412  */
413 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
414 	((vals_disable) & \
415 	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
416 
417 /*
418  * Enable/Disable a ssi configuration. You have to pass either
419  * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
420  */
421 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
422 		struct fsl_ssi_reg_val *vals)
423 {
424 	struct regmap *regs = ssi_private->regs;
425 	struct fsl_ssi_reg_val *avals;
426 	int nr_active_streams;
427 	u32 scr_val;
428 	int keep_active;
429 
430 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
431 
432 	nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
433 				!!(scr_val & CCSR_SSI_SCR_RE);
434 
435 	if (nr_active_streams - 1 > 0)
436 		keep_active = 1;
437 	else
438 		keep_active = 0;
439 
440 	/* Find the other direction values rx or tx which we do not want to
441 	 * modify */
442 	if (&ssi_private->rxtx_reg_val.rx == vals)
443 		avals = &ssi_private->rxtx_reg_val.tx;
444 	else
445 		avals = &ssi_private->rxtx_reg_val.rx;
446 
447 	/* If vals should be disabled, start with disabling the unit */
448 	if (!enable) {
449 		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
450 				keep_active);
451 		regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
452 	}
453 
454 	/*
455 	 * We are running on a SoC which does not support online SSI
456 	 * reconfiguration, so we have to enable all necessary flags at once
457 	 * even if we do not use them later (capture and playback configuration)
458 	 */
459 	if (ssi_private->soc->offline_config) {
460 		if ((enable && !nr_active_streams) ||
461 				(!enable && !keep_active))
462 			fsl_ssi_rxtx_config(ssi_private, enable);
463 
464 		goto config_done;
465 	}
466 
467 	/*
468 	 * Configure single direction units while the SSI unit is running
469 	 * (online configuration)
470 	 */
471 	if (enable) {
472 		regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
473 		regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
474 		regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
475 	} else {
476 		u32 sier;
477 		u32 srcr;
478 		u32 stcr;
479 
480 		/*
481 		 * Disabling the necessary flags for one of rx/tx while the
482 		 * other stream is active is a little bit more difficult. We
483 		 * have to disable only those flags that differ between both
484 		 * streams (rx XOR tx) and that are set in the stream that is
485 		 * disabled now. Otherwise we could alter flags of the other
486 		 * stream
487 		 */
488 
489 		/* These assignments are simply vals without bits set in avals*/
490 		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
491 				keep_active);
492 		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
493 				keep_active);
494 		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
495 				keep_active);
496 
497 		regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
498 		regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
499 		regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
500 	}
501 
502 config_done:
503 	/* Enabling of subunits is done after configuration */
504 	if (enable)
505 		regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
506 }
507 
508 
509 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
510 {
511 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
512 }
513 
514 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
515 {
516 	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
517 }
518 
519 /*
520  * Setup rx/tx register values used to enable/disable the streams. These will
521  * be used later in fsl_ssi_config to setup the streams without the need to
522  * check for all different SSI modes.
523  */
524 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
525 {
526 	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
527 
528 	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
529 	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
530 	reg->rx.scr = 0;
531 	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
532 	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
533 	reg->tx.scr = 0;
534 
535 	if (!fsl_ssi_is_ac97(ssi_private)) {
536 		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
537 		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
538 		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
539 		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
540 	}
541 
542 	if (ssi_private->use_dma) {
543 		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
544 		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
545 	} else {
546 		reg->rx.sier |= CCSR_SSI_SIER_RIE;
547 		reg->tx.sier |= CCSR_SSI_SIER_TIE;
548 	}
549 
550 	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
551 	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
552 }
553 
554 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
555 {
556 	struct regmap *regs = ssi_private->regs;
557 
558 	/*
559 	 * Setup the clock control register
560 	 */
561 	regmap_write(regs, CCSR_SSI_STCCR,
562 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
563 	regmap_write(regs, CCSR_SSI_SRCCR,
564 			CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
565 
566 	/*
567 	 * Enable AC97 mode and startup the SSI
568 	 */
569 	regmap_write(regs, CCSR_SSI_SACNT,
570 			CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
571 	regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
572 	regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
573 
574 	/*
575 	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
576 	 * codec before a stream is started.
577 	 */
578 	regmap_update_bits(regs, CCSR_SSI_SCR,
579 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
580 			CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
581 
582 	regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
583 }
584 
585 /**
586  * fsl_ssi_startup: create a new substream
587  *
588  * This is the first function called when a stream is opened.
589  *
590  * If this is the first stream open, then grab the IRQ and program most of
591  * the SSI registers.
592  */
593 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
594 			   struct snd_soc_dai *dai)
595 {
596 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
597 	struct fsl_ssi_private *ssi_private =
598 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
599 	int ret;
600 
601 	ret = clk_prepare_enable(ssi_private->clk);
602 	if (ret)
603 		return ret;
604 
605 	/* When using dual fifo mode, it is safer to ensure an even period
606 	 * size. If appearing to an odd number while DMA always starts its
607 	 * task from fifo0, fifo1 would be neglected at the end of each
608 	 * period. But SSI would still access fifo1 with an invalid data.
609 	 */
610 	if (ssi_private->use_dual_fifo)
611 		snd_pcm_hw_constraint_step(substream->runtime, 0,
612 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
613 
614 	return 0;
615 }
616 
617 /**
618  * fsl_ssi_shutdown: shutdown the SSI
619  *
620  */
621 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
622 				struct snd_soc_dai *dai)
623 {
624 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
625 	struct fsl_ssi_private *ssi_private =
626 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
627 
628 	clk_disable_unprepare(ssi_private->clk);
629 
630 }
631 
632 /**
633  * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
634  *
635  * Note: This function can be only called when using SSI as DAI master
636  *
637  * Quick instruction for parameters:
638  * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
639  * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
640  */
641 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
642 		struct snd_soc_dai *cpu_dai,
643 		struct snd_pcm_hw_params *hw_params)
644 {
645 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
646 	struct regmap *regs = ssi_private->regs;
647 	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
648 	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
649 	unsigned long clkrate, baudrate, tmprate;
650 	u64 sub, savesub = 100000;
651 	unsigned int freq;
652 	bool baudclk_is_used;
653 
654 	/* Prefer the explicitly set bitclock frequency */
655 	if (ssi_private->bitclk_freq)
656 		freq = ssi_private->bitclk_freq;
657 	else
658 		freq = params_channels(hw_params) * 32 * params_rate(hw_params);
659 
660 	/* Don't apply it to any non-baudclk circumstance */
661 	if (IS_ERR(ssi_private->baudclk))
662 		return -EINVAL;
663 
664 	baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
665 
666 	/* It should be already enough to divide clock by setting pm alone */
667 	psr = 0;
668 	div2 = 0;
669 
670 	factor = (div2 + 1) * (7 * psr + 1) * 2;
671 
672 	for (i = 0; i < 255; i++) {
673 		tmprate = freq * factor * (i + 1);
674 
675 		if (baudclk_is_used)
676 			clkrate = clk_get_rate(ssi_private->baudclk);
677 		else
678 			clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
679 
680 		/*
681 		 * Hardware limitation: The bclk rate must be
682 		 * never greater than 1/5 IPG clock rate
683 		 */
684 		if (clkrate * 5 > clk_get_rate(ssi_private->clk))
685 			continue;
686 
687 		clkrate /= factor;
688 		afreq = clkrate / (i + 1);
689 
690 		if (freq == afreq)
691 			sub = 0;
692 		else if (freq / afreq == 1)
693 			sub = freq - afreq;
694 		else if (afreq / freq == 1)
695 			sub = afreq - freq;
696 		else
697 			continue;
698 
699 		/* Calculate the fraction */
700 		sub *= 100000;
701 		do_div(sub, freq);
702 
703 		if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
704 			baudrate = tmprate;
705 			savesub = sub;
706 			pm = i;
707 		}
708 
709 		/* We are lucky */
710 		if (savesub == 0)
711 			break;
712 	}
713 
714 	/* No proper pm found if it is still remaining the initial value */
715 	if (pm == 999) {
716 		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
717 		return -EINVAL;
718 	}
719 
720 	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
721 		(psr ? CCSR_SSI_SxCCR_PSR : 0);
722 	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
723 		CCSR_SSI_SxCCR_PSR;
724 
725 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
726 		regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
727 	else
728 		regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
729 
730 	if (!baudclk_is_used) {
731 		ret = clk_set_rate(ssi_private->baudclk, baudrate);
732 		if (ret) {
733 			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
734 			return -EINVAL;
735 		}
736 	}
737 
738 	return 0;
739 }
740 
741 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
742 		int clk_id, unsigned int freq, int dir)
743 {
744 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
745 
746 	ssi_private->bitclk_freq = freq;
747 
748 	return 0;
749 }
750 
751 /**
752  * fsl_ssi_hw_params - program the sample size
753  *
754  * Most of the SSI registers have been programmed in the startup function,
755  * but the word length must be programmed here.  Unfortunately, programming
756  * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
757  * cause a problem with supporting simultaneous playback and capture.  If
758  * the SSI is already playing a stream, then that stream may be temporarily
759  * stopped when you start capture.
760  *
761  * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
762  * clock master.
763  */
764 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
765 	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
766 {
767 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
768 	struct regmap *regs = ssi_private->regs;
769 	unsigned int channels = params_channels(hw_params);
770 	unsigned int sample_size =
771 		snd_pcm_format_width(params_format(hw_params));
772 	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
773 	int ret;
774 	u32 scr_val;
775 	int enabled;
776 
777 	regmap_read(regs, CCSR_SSI_SCR, &scr_val);
778 	enabled = scr_val & CCSR_SSI_SCR_SSIEN;
779 
780 	/*
781 	 * If we're in synchronous mode, and the SSI is already enabled,
782 	 * then STCCR is already set properly.
783 	 */
784 	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
785 		return 0;
786 
787 	if (fsl_ssi_is_i2s_master(ssi_private)) {
788 		ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
789 		if (ret)
790 			return ret;
791 
792 		/* Do not enable the clock if it is already enabled */
793 		if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
794 			ret = clk_prepare_enable(ssi_private->baudclk);
795 			if (ret)
796 				return ret;
797 
798 			ssi_private->baudclk_streams |= BIT(substream->stream);
799 		}
800 	}
801 
802 	if (!fsl_ssi_is_ac97(ssi_private)) {
803 		u8 i2smode;
804 		/*
805 		 * Switch to normal net mode in order to have a frame sync
806 		 * signal every 32 bits instead of 16 bits
807 		 */
808 		if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
809 			i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
810 				CCSR_SSI_SCR_NET;
811 		else
812 			i2smode = ssi_private->i2s_mode;
813 
814 		regmap_update_bits(regs, CCSR_SSI_SCR,
815 				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
816 				channels == 1 ? 0 : i2smode);
817 	}
818 
819 	/*
820 	 * FIXME: The documentation says that SxCCR[WL] should not be
821 	 * modified while the SSI is enabled.  The only time this can
822 	 * happen is if we're trying to do simultaneous playback and
823 	 * capture in asynchronous mode.  Unfortunately, I have been enable
824 	 * to get that to work at all on the P1022DS.  Therefore, we don't
825 	 * bother to disable/enable the SSI when setting SxCCR[WL], because
826 	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
827 	 */
828 
829 	/* In synchronous mode, the SSI uses STCCR for capture */
830 	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
831 	    ssi_private->cpu_dai_drv.symmetric_rates)
832 		regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
833 				wl);
834 	else
835 		regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
836 				wl);
837 
838 	return 0;
839 }
840 
841 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
842 		struct snd_soc_dai *cpu_dai)
843 {
844 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
845 	struct fsl_ssi_private *ssi_private =
846 		snd_soc_dai_get_drvdata(rtd->cpu_dai);
847 
848 	if (fsl_ssi_is_i2s_master(ssi_private) &&
849 			ssi_private->baudclk_streams & BIT(substream->stream)) {
850 		clk_disable_unprepare(ssi_private->baudclk);
851 		ssi_private->baudclk_streams &= ~BIT(substream->stream);
852 	}
853 
854 	return 0;
855 }
856 
857 static int _fsl_ssi_set_dai_fmt(struct device *dev,
858 				struct fsl_ssi_private *ssi_private,
859 				unsigned int fmt)
860 {
861 	struct regmap *regs = ssi_private->regs;
862 	u32 strcr = 0, stcr, srcr, scr, mask;
863 	u8 wm;
864 
865 	ssi_private->dai_fmt = fmt;
866 
867 	if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
868 		dev_err(dev, "baudclk is missing which is necessary for master mode\n");
869 		return -EINVAL;
870 	}
871 
872 	fsl_ssi_setup_reg_vals(ssi_private);
873 
874 	regmap_read(regs, CCSR_SSI_SCR, &scr);
875 	scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
876 	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
877 
878 	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
879 		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
880 		CCSR_SSI_STCR_TEFS;
881 	regmap_read(regs, CCSR_SSI_STCR, &stcr);
882 	regmap_read(regs, CCSR_SSI_SRCR, &srcr);
883 	stcr &= ~mask;
884 	srcr &= ~mask;
885 
886 	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
887 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
888 	case SND_SOC_DAIFMT_I2S:
889 		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
890 		case SND_SOC_DAIFMT_CBM_CFS:
891 		case SND_SOC_DAIFMT_CBS_CFS:
892 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
893 			regmap_update_bits(regs, CCSR_SSI_STCCR,
894 					CCSR_SSI_SxCCR_DC_MASK,
895 					CCSR_SSI_SxCCR_DC(2));
896 			regmap_update_bits(regs, CCSR_SSI_SRCCR,
897 					CCSR_SSI_SxCCR_DC_MASK,
898 					CCSR_SSI_SxCCR_DC(2));
899 			break;
900 		case SND_SOC_DAIFMT_CBM_CFM:
901 			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
902 			break;
903 		default:
904 			return -EINVAL;
905 		}
906 
907 		/* Data on rising edge of bclk, frame low, 1clk before data */
908 		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
909 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
910 		break;
911 	case SND_SOC_DAIFMT_LEFT_J:
912 		/* Data on rising edge of bclk, frame high */
913 		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
914 		break;
915 	case SND_SOC_DAIFMT_DSP_A:
916 		/* Data on rising edge of bclk, frame high, 1clk before data */
917 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
918 			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
919 		break;
920 	case SND_SOC_DAIFMT_DSP_B:
921 		/* Data on rising edge of bclk, frame high */
922 		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
923 			CCSR_SSI_STCR_TXBIT0;
924 		break;
925 	case SND_SOC_DAIFMT_AC97:
926 		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
927 		break;
928 	default:
929 		return -EINVAL;
930 	}
931 	scr |= ssi_private->i2s_mode;
932 
933 	/* DAI clock inversion */
934 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
935 	case SND_SOC_DAIFMT_NB_NF:
936 		/* Nothing to do for both normal cases */
937 		break;
938 	case SND_SOC_DAIFMT_IB_NF:
939 		/* Invert bit clock */
940 		strcr ^= CCSR_SSI_STCR_TSCKP;
941 		break;
942 	case SND_SOC_DAIFMT_NB_IF:
943 		/* Invert frame clock */
944 		strcr ^= CCSR_SSI_STCR_TFSI;
945 		break;
946 	case SND_SOC_DAIFMT_IB_IF:
947 		/* Invert both clocks */
948 		strcr ^= CCSR_SSI_STCR_TSCKP;
949 		strcr ^= CCSR_SSI_STCR_TFSI;
950 		break;
951 	default:
952 		return -EINVAL;
953 	}
954 
955 	/* DAI clock master masks */
956 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
957 	case SND_SOC_DAIFMT_CBS_CFS:
958 		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
959 		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
960 		break;
961 	case SND_SOC_DAIFMT_CBM_CFM:
962 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
963 		break;
964 	case SND_SOC_DAIFMT_CBM_CFS:
965 		strcr &= ~CCSR_SSI_STCR_TXDIR;
966 		strcr |= CCSR_SSI_STCR_TFDIR;
967 		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
968 		break;
969 	default:
970 		if (!fsl_ssi_is_ac97(ssi_private))
971 			return -EINVAL;
972 	}
973 
974 	stcr |= strcr;
975 	srcr |= strcr;
976 
977 	if (ssi_private->cpu_dai_drv.symmetric_rates
978 			|| fsl_ssi_is_ac97(ssi_private)) {
979 		/* Need to clear RXDIR when using SYNC or AC97 mode */
980 		srcr &= ~CCSR_SSI_SRCR_RXDIR;
981 		scr |= CCSR_SSI_SCR_SYN;
982 	}
983 
984 	regmap_write(regs, CCSR_SSI_STCR, stcr);
985 	regmap_write(regs, CCSR_SSI_SRCR, srcr);
986 	regmap_write(regs, CCSR_SSI_SCR, scr);
987 
988 	/*
989 	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
990 	 * use FIFO 1. We program the transmit water to signal a DMA transfer
991 	 * if there are only two (or fewer) elements left in the FIFO. Two
992 	 * elements equals one frame (left channel, right channel). This value,
993 	 * however, depends on the depth of the transmit buffer.
994 	 *
995 	 * We set the watermark on the same level as the DMA burstsize.  For
996 	 * fiq it is probably better to use the biggest possible watermark
997 	 * size.
998 	 */
999 	if (ssi_private->use_dma)
1000 		wm = ssi_private->fifo_depth - 2;
1001 	else
1002 		wm = ssi_private->fifo_depth;
1003 
1004 	regmap_write(regs, CCSR_SSI_SFCSR,
1005 			CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
1006 			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1007 
1008 	if (ssi_private->use_dual_fifo) {
1009 		regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1010 				CCSR_SSI_SRCR_RFEN1);
1011 		regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1012 				CCSR_SSI_STCR_TFEN1);
1013 		regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1014 				CCSR_SSI_SCR_TCH_EN);
1015 	}
1016 
1017 	if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1018 		fsl_ssi_setup_ac97(ssi_private);
1019 
1020 	return 0;
1021 
1022 }
1023 
1024 /**
1025  * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
1026  */
1027 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
1028 {
1029 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1030 
1031 	return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1032 }
1033 
1034 /**
1035  * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1036  *
1037  * Note: This function can be only called when using SSI as DAI master
1038  */
1039 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
1040 				u32 rx_mask, int slots, int slot_width)
1041 {
1042 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1043 	struct regmap *regs = ssi_private->regs;
1044 	u32 val;
1045 
1046 	/* The slot number should be >= 2 if using Network mode or I2S mode */
1047 	regmap_read(regs, CCSR_SSI_SCR, &val);
1048 	val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1049 	if (val && slots < 2) {
1050 		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
1051 		return -EINVAL;
1052 	}
1053 
1054 	regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1055 			CCSR_SSI_SxCCR_DC(slots));
1056 	regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1057 			CCSR_SSI_SxCCR_DC(slots));
1058 
1059 	/* The register SxMSKs needs SSI to provide essential clock due to
1060 	 * hardware design. So we here temporarily enable SSI to set them.
1061 	 */
1062 	regmap_read(regs, CCSR_SSI_SCR, &val);
1063 	val &= CCSR_SSI_SCR_SSIEN;
1064 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
1065 			CCSR_SSI_SCR_SSIEN);
1066 
1067 	regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
1068 	regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1069 
1070 	regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * fsl_ssi_trigger: start and stop the DMA transfer.
1077  *
1078  * This function is called by ALSA to start, stop, pause, and resume the DMA
1079  * transfer of data.
1080  *
1081  * The DMA channel is in external master start and pause mode, which
1082  * means the SSI completely controls the flow of data.
1083  */
1084 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1085 			   struct snd_soc_dai *dai)
1086 {
1087 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1088 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1089 	struct regmap *regs = ssi_private->regs;
1090 
1091 	switch (cmd) {
1092 	case SNDRV_PCM_TRIGGER_START:
1093 	case SNDRV_PCM_TRIGGER_RESUME:
1094 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1095 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1096 			fsl_ssi_tx_config(ssi_private, true);
1097 		else
1098 			fsl_ssi_rx_config(ssi_private, true);
1099 		break;
1100 
1101 	case SNDRV_PCM_TRIGGER_STOP:
1102 	case SNDRV_PCM_TRIGGER_SUSPEND:
1103 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1104 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1105 			fsl_ssi_tx_config(ssi_private, false);
1106 		else
1107 			fsl_ssi_rx_config(ssi_private, false);
1108 		break;
1109 
1110 	default:
1111 		return -EINVAL;
1112 	}
1113 
1114 	if (fsl_ssi_is_ac97(ssi_private)) {
1115 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1116 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1117 		else
1118 			regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1125 {
1126 	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1127 
1128 	if (ssi_private->soc->imx && ssi_private->use_dma) {
1129 		dai->playback_dma_data = &ssi_private->dma_params_tx;
1130 		dai->capture_dma_data = &ssi_private->dma_params_rx;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1137 	.startup	= fsl_ssi_startup,
1138 	.shutdown       = fsl_ssi_shutdown,
1139 	.hw_params	= fsl_ssi_hw_params,
1140 	.hw_free	= fsl_ssi_hw_free,
1141 	.set_fmt	= fsl_ssi_set_dai_fmt,
1142 	.set_sysclk	= fsl_ssi_set_dai_sysclk,
1143 	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
1144 	.trigger	= fsl_ssi_trigger,
1145 };
1146 
1147 /* Template for the CPU dai driver structure */
1148 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1149 	.probe = fsl_ssi_dai_probe,
1150 	.playback = {
1151 		.stream_name = "CPU-Playback",
1152 		.channels_min = 1,
1153 		.channels_max = 2,
1154 		.rates = FSLSSI_I2S_RATES,
1155 		.formats = FSLSSI_I2S_FORMATS,
1156 	},
1157 	.capture = {
1158 		.stream_name = "CPU-Capture",
1159 		.channels_min = 1,
1160 		.channels_max = 2,
1161 		.rates = FSLSSI_I2S_RATES,
1162 		.formats = FSLSSI_I2S_FORMATS,
1163 	},
1164 	.ops = &fsl_ssi_dai_ops,
1165 };
1166 
1167 static const struct snd_soc_component_driver fsl_ssi_component = {
1168 	.name		= "fsl-ssi",
1169 };
1170 
1171 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1172 	.bus_control = true,
1173 	.probe = fsl_ssi_dai_probe,
1174 	.playback = {
1175 		.stream_name = "AC97 Playback",
1176 		.channels_min = 2,
1177 		.channels_max = 2,
1178 		.rates = SNDRV_PCM_RATE_8000_48000,
1179 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1180 	},
1181 	.capture = {
1182 		.stream_name = "AC97 Capture",
1183 		.channels_min = 2,
1184 		.channels_max = 2,
1185 		.rates = SNDRV_PCM_RATE_48000,
1186 		.formats = SNDRV_PCM_FMTBIT_S16_LE,
1187 	},
1188 	.ops = &fsl_ssi_dai_ops,
1189 };
1190 
1191 
1192 static struct fsl_ssi_private *fsl_ac97_data;
1193 
1194 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1195 		unsigned short val)
1196 {
1197 	struct regmap *regs = fsl_ac97_data->regs;
1198 	unsigned int lreg;
1199 	unsigned int lval;
1200 	int ret;
1201 
1202 	if (reg > 0x7f)
1203 		return;
1204 
1205 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1206 	if (ret) {
1207 		pr_err("ac97 write clk_prepare_enable failed: %d\n",
1208 			ret);
1209 		return;
1210 	}
1211 
1212 	lreg = reg <<  12;
1213 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1214 
1215 	lval = val << 4;
1216 	regmap_write(regs, CCSR_SSI_SACDAT, lval);
1217 
1218 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1219 			CCSR_SSI_SACNT_WR);
1220 	udelay(100);
1221 
1222 	clk_disable_unprepare(fsl_ac97_data->clk);
1223 }
1224 
1225 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1226 		unsigned short reg)
1227 {
1228 	struct regmap *regs = fsl_ac97_data->regs;
1229 
1230 	unsigned short val = -1;
1231 	u32 reg_val;
1232 	unsigned int lreg;
1233 	int ret;
1234 
1235 	ret = clk_prepare_enable(fsl_ac97_data->clk);
1236 	if (ret) {
1237 		pr_err("ac97 read clk_prepare_enable failed: %d\n",
1238 			ret);
1239 		return -1;
1240 	}
1241 
1242 	lreg = (reg & 0x7f) <<  12;
1243 	regmap_write(regs, CCSR_SSI_SACADD, lreg);
1244 	regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1245 			CCSR_SSI_SACNT_RD);
1246 
1247 	udelay(100);
1248 
1249 	regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1250 	val = (reg_val >> 4) & 0xffff;
1251 
1252 	clk_disable_unprepare(fsl_ac97_data->clk);
1253 
1254 	return val;
1255 }
1256 
1257 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1258 	.read		= fsl_ssi_ac97_read,
1259 	.write		= fsl_ssi_ac97_write,
1260 };
1261 
1262 /**
1263  * Make every character in a string lower-case
1264  */
1265 static void make_lowercase(char *s)
1266 {
1267 	char *p = s;
1268 	char c;
1269 
1270 	while ((c = *p)) {
1271 		if ((c >= 'A') && (c <= 'Z'))
1272 			*p = c + ('a' - 'A');
1273 		p++;
1274 	}
1275 }
1276 
1277 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1278 		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1279 {
1280 	struct device_node *np = pdev->dev.of_node;
1281 	u32 dmas[4];
1282 	int ret;
1283 
1284 	if (ssi_private->has_ipg_clk_name)
1285 		ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1286 	else
1287 		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1288 	if (IS_ERR(ssi_private->clk)) {
1289 		ret = PTR_ERR(ssi_private->clk);
1290 		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1291 		return ret;
1292 	}
1293 
1294 	if (!ssi_private->has_ipg_clk_name) {
1295 		ret = clk_prepare_enable(ssi_private->clk);
1296 		if (ret) {
1297 			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1298 			return ret;
1299 		}
1300 	}
1301 
1302 	/* For those SLAVE implementations, we ignore non-baudclk cases
1303 	 * and, instead, abandon MASTER mode that needs baud clock.
1304 	 */
1305 	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1306 	if (IS_ERR(ssi_private->baudclk))
1307 		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1308 			 PTR_ERR(ssi_private->baudclk));
1309 
1310 	/*
1311 	 * We have burstsize be "fifo_depth - 2" to match the SSI
1312 	 * watermark setting in fsl_ssi_startup().
1313 	 */
1314 	ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1315 	ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1316 	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1317 	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1318 
1319 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1320 	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1321 		ssi_private->use_dual_fifo = true;
1322 		/* When using dual fifo mode, we need to keep watermark
1323 		 * as even numbers due to dma script limitation.
1324 		 */
1325 		ssi_private->dma_params_tx.maxburst &= ~0x1;
1326 		ssi_private->dma_params_rx.maxburst &= ~0x1;
1327 	}
1328 
1329 	if (!ssi_private->use_dma) {
1330 
1331 		/*
1332 		 * Some boards use an incompatible codec. To get it
1333 		 * working, we are using imx-fiq-pcm-audio, that
1334 		 * can handle those codecs. DMA is not possible in this
1335 		 * situation.
1336 		 */
1337 
1338 		ssi_private->fiq_params.irq = ssi_private->irq;
1339 		ssi_private->fiq_params.base = iomem;
1340 		ssi_private->fiq_params.dma_params_rx =
1341 			&ssi_private->dma_params_rx;
1342 		ssi_private->fiq_params.dma_params_tx =
1343 			&ssi_private->dma_params_tx;
1344 
1345 		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1346 		if (ret)
1347 			goto error_pcm;
1348 	} else {
1349 		ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1350 		if (ret)
1351 			goto error_pcm;
1352 	}
1353 
1354 	return 0;
1355 
1356 error_pcm:
1357 
1358 	if (!ssi_private->has_ipg_clk_name)
1359 		clk_disable_unprepare(ssi_private->clk);
1360 	return ret;
1361 }
1362 
1363 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1364 		struct fsl_ssi_private *ssi_private)
1365 {
1366 	if (!ssi_private->use_dma)
1367 		imx_pcm_fiq_exit(pdev);
1368 	if (!ssi_private->has_ipg_clk_name)
1369 		clk_disable_unprepare(ssi_private->clk);
1370 }
1371 
1372 static int fsl_ssi_probe(struct platform_device *pdev)
1373 {
1374 	struct fsl_ssi_private *ssi_private;
1375 	int ret = 0;
1376 	struct device_node *np = pdev->dev.of_node;
1377 	const struct of_device_id *of_id;
1378 	const char *p, *sprop;
1379 	const uint32_t *iprop;
1380 	struct resource *res;
1381 	void __iomem *iomem;
1382 	char name[64];
1383 
1384 	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1385 	if (!of_id || !of_id->data)
1386 		return -EINVAL;
1387 
1388 	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1389 			GFP_KERNEL);
1390 	if (!ssi_private) {
1391 		dev_err(&pdev->dev, "could not allocate DAI object\n");
1392 		return -ENOMEM;
1393 	}
1394 
1395 	ssi_private->soc = of_id->data;
1396 
1397 	sprop = of_get_property(np, "fsl,mode", NULL);
1398 	if (sprop) {
1399 		if (!strcmp(sprop, "ac97-slave"))
1400 			ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1401 	}
1402 
1403 	ssi_private->use_dma = !of_property_read_bool(np,
1404 			"fsl,fiq-stream-filter");
1405 
1406 	if (fsl_ssi_is_ac97(ssi_private)) {
1407 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1408 				sizeof(fsl_ssi_ac97_dai));
1409 
1410 		fsl_ac97_data = ssi_private;
1411 
1412 		ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1413 		if (ret) {
1414 			dev_err(&pdev->dev, "could not set AC'97 ops\n");
1415 			return ret;
1416 		}
1417 	} else {
1418 		/* Initialize this copy of the CPU DAI driver structure */
1419 		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1420 		       sizeof(fsl_ssi_dai_template));
1421 	}
1422 	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1423 
1424 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1425 	iomem = devm_ioremap_resource(&pdev->dev, res);
1426 	if (IS_ERR(iomem))
1427 		return PTR_ERR(iomem);
1428 	ssi_private->ssi_phys = res->start;
1429 
1430 	ret = of_property_match_string(np, "clock-names", "ipg");
1431 	if (ret < 0) {
1432 		ssi_private->has_ipg_clk_name = false;
1433 		ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1434 			&fsl_ssi_regconfig);
1435 	} else {
1436 		ssi_private->has_ipg_clk_name = true;
1437 		ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1438 			"ipg", iomem, &fsl_ssi_regconfig);
1439 	}
1440 	if (IS_ERR(ssi_private->regs)) {
1441 		dev_err(&pdev->dev, "Failed to init register map\n");
1442 		return PTR_ERR(ssi_private->regs);
1443 	}
1444 
1445 	ssi_private->irq = platform_get_irq(pdev, 0);
1446 	if (ssi_private->irq < 0) {
1447 		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1448 		return ssi_private->irq;
1449 	}
1450 
1451 	/* Are the RX and the TX clocks locked? */
1452 	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1453 		if (!fsl_ssi_is_ac97(ssi_private))
1454 			ssi_private->cpu_dai_drv.symmetric_rates = 1;
1455 
1456 		ssi_private->cpu_dai_drv.symmetric_channels = 1;
1457 		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1458 	}
1459 
1460 	/* Determine the FIFO depth. */
1461 	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1462 	if (iprop)
1463 		ssi_private->fifo_depth = be32_to_cpup(iprop);
1464 	else
1465                 /* Older 8610 DTs didn't have the fifo-depth property */
1466 		ssi_private->fifo_depth = 8;
1467 
1468 	dev_set_drvdata(&pdev->dev, ssi_private);
1469 
1470 	if (ssi_private->soc->imx) {
1471 		ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1472 		if (ret)
1473 			return ret;
1474 	}
1475 
1476 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1477 					      &ssi_private->cpu_dai_drv, 1);
1478 	if (ret) {
1479 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1480 		goto error_asoc_register;
1481 	}
1482 
1483 	if (ssi_private->use_dma) {
1484 		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1485 					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1486 					ssi_private);
1487 		if (ret < 0) {
1488 			dev_err(&pdev->dev, "could not claim irq %u\n",
1489 					ssi_private->irq);
1490 			goto error_asoc_register;
1491 		}
1492 	}
1493 
1494 	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1495 	if (ret)
1496 		goto error_asoc_register;
1497 
1498 	/*
1499 	 * If codec-handle property is missing from SSI node, we assume
1500 	 * that the machine driver uses new binding which does not require
1501 	 * SSI driver to trigger machine driver's probe.
1502 	 */
1503 	if (!of_get_property(np, "codec-handle", NULL))
1504 		goto done;
1505 
1506 	/* Trigger the machine driver's probe function.  The platform driver
1507 	 * name of the machine driver is taken from /compatible property of the
1508 	 * device tree.  We also pass the address of the CPU DAI driver
1509 	 * structure.
1510 	 */
1511 	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1512 	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1513 	p = strrchr(sprop, ',');
1514 	if (p)
1515 		sprop = p + 1;
1516 	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1517 	make_lowercase(name);
1518 
1519 	ssi_private->pdev =
1520 		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1521 	if (IS_ERR(ssi_private->pdev)) {
1522 		ret = PTR_ERR(ssi_private->pdev);
1523 		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1524 		goto error_sound_card;
1525 	}
1526 
1527 done:
1528 	if (ssi_private->dai_fmt)
1529 		_fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1530 				     ssi_private->dai_fmt);
1531 
1532 	if (fsl_ssi_is_ac97(ssi_private)) {
1533 		u32 ssi_idx;
1534 
1535 		ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1536 		if (ret) {
1537 			dev_err(&pdev->dev, "cannot get SSI index property\n");
1538 			goto error_sound_card;
1539 		}
1540 
1541 		ssi_private->pdev =
1542 			platform_device_register_data(NULL,
1543 					"ac97-codec", ssi_idx, NULL, 0);
1544 		if (IS_ERR(ssi_private->pdev)) {
1545 			ret = PTR_ERR(ssi_private->pdev);
1546 			dev_err(&pdev->dev,
1547 				"failed to register AC97 codec platform: %d\n",
1548 				ret);
1549 			goto error_sound_card;
1550 		}
1551 	}
1552 
1553 	return 0;
1554 
1555 error_sound_card:
1556 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1557 
1558 error_asoc_register:
1559 	if (ssi_private->soc->imx)
1560 		fsl_ssi_imx_clean(pdev, ssi_private);
1561 
1562 	return ret;
1563 }
1564 
1565 static int fsl_ssi_remove(struct platform_device *pdev)
1566 {
1567 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1568 
1569 	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1570 
1571 	if (ssi_private->pdev)
1572 		platform_device_unregister(ssi_private->pdev);
1573 
1574 	if (ssi_private->soc->imx)
1575 		fsl_ssi_imx_clean(pdev, ssi_private);
1576 
1577 	if (fsl_ssi_is_ac97(ssi_private))
1578 		snd_soc_set_ac97_ops(NULL);
1579 
1580 	return 0;
1581 }
1582 
1583 #ifdef CONFIG_PM_SLEEP
1584 static int fsl_ssi_suspend(struct device *dev)
1585 {
1586 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1587 	struct regmap *regs = ssi_private->regs;
1588 
1589 	regmap_read(regs, CCSR_SSI_SFCSR,
1590 			&ssi_private->regcache_sfcsr);
1591 
1592 	regcache_cache_only(regs, true);
1593 	regcache_mark_dirty(regs);
1594 
1595 	return 0;
1596 }
1597 
1598 static int fsl_ssi_resume(struct device *dev)
1599 {
1600 	struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1601 	struct regmap *regs = ssi_private->regs;
1602 
1603 	regcache_cache_only(regs, false);
1604 
1605 	regmap_update_bits(regs, CCSR_SSI_SFCSR,
1606 			CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
1607 			CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1608 			ssi_private->regcache_sfcsr);
1609 
1610 	return regcache_sync(regs);
1611 }
1612 #endif /* CONFIG_PM_SLEEP */
1613 
1614 static const struct dev_pm_ops fsl_ssi_pm = {
1615 	SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1616 };
1617 
1618 static struct platform_driver fsl_ssi_driver = {
1619 	.driver = {
1620 		.name = "fsl-ssi-dai",
1621 		.of_match_table = fsl_ssi_ids,
1622 		.pm = &fsl_ssi_pm,
1623 	},
1624 	.probe = fsl_ssi_probe,
1625 	.remove = fsl_ssi_remove,
1626 };
1627 
1628 module_platform_driver(fsl_ssi_driver);
1629 
1630 MODULE_ALIAS("platform:fsl-ssi-dai");
1631 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1632 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1633 MODULE_LICENSE("GPL v2");
1634