xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision d58f75de)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20 
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24 
25 #include "fsl_spdif.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SPDIF_TXFIFO_WML	0x8
29 #define FSL_SPDIF_RXFIFO_WML	0x8
30 
31 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
32 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
33 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
34 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
35 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
36 
37 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
38 
39 /* Index list for the values that has if (DPLL Locked) condition */
40 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
41 #define SRPC_NODPLL_START1	0x5
42 #define SRPC_NODPLL_START2	0xc
43 
44 #define DEFAULT_RXCLK_SRC	1
45 
46 /**
47  * struct fsl_spdif_soc_data: soc specific data
48  *
49  * @imx: for imx platform
50  * @shared_root_clock: flag of sharing a clock source with others;
51  *                     so the driver shouldn't set root clock rate
52  * @interrupts: interrupt number
53  * @tx_burst: tx maxburst size
54  * @rx_burst: rx maxburst size
55  * @tx_formats: tx supported data format
56  */
57 struct fsl_spdif_soc_data {
58 	bool imx;
59 	bool shared_root_clock;
60 	u32 interrupts;
61 	u32 tx_burst;
62 	u32 rx_burst;
63 	u64 tx_formats;
64 };
65 
66 /*
67  * SPDIF control structure
68  * Defines channel status, subcode and Q sub
69  */
70 struct spdif_mixer_control {
71 	/* spinlock to access control data */
72 	spinlock_t ctl_lock;
73 
74 	/* IEC958 channel tx status bit */
75 	unsigned char ch_status[4];
76 
77 	/* User bits */
78 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
79 
80 	/* Q subcode part of user bits */
81 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
82 
83 	/* Buffer offset for U/Q */
84 	u32 upos;
85 	u32 qpos;
86 
87 	/* Ready buffer index of the two buffers */
88 	u32 ready_buf;
89 };
90 
91 /**
92  * struct fsl_spdif_priv - Freescale SPDIF private data
93  * @soc: SPDIF soc data
94  * @fsl_spdif_control: SPDIF control data
95  * @cpu_dai_drv: cpu dai driver
96  * @pdev: platform device pointer
97  * @regmap: regmap handler
98  * @dpll_locked: dpll lock flag
99  * @txrate: the best rates for playback
100  * @txclk_df: STC_TXCLK_DF dividers value for playback
101  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
102  * @txclk_src: STC_TXCLK_SRC values for playback
103  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
104  * @txclk: tx clock sources for playback
105  * @rxclk: rx clock sources for capture
106  * @coreclk: core clock for register access via DMA
107  * @sysclk: system clock for rx clock rate measurement
108  * @spbaclk: SPBA clock (optional, depending on SoC design)
109  * @dma_params_tx: DMA parameters for transmit channel
110  * @dma_params_rx: DMA parameters for receive channel
111  * @regcache_srpc: regcache for SRPC
112  */
113 struct fsl_spdif_priv {
114 	const struct fsl_spdif_soc_data *soc;
115 	struct spdif_mixer_control fsl_spdif_control;
116 	struct snd_soc_dai_driver cpu_dai_drv;
117 	struct platform_device *pdev;
118 	struct regmap *regmap;
119 	bool dpll_locked;
120 	u32 txrate[SPDIF_TXRATE_MAX];
121 	u8 txclk_df[SPDIF_TXRATE_MAX];
122 	u16 sysclk_df[SPDIF_TXRATE_MAX];
123 	u8 txclk_src[SPDIF_TXRATE_MAX];
124 	u8 rxclk_src;
125 	struct clk *txclk[SPDIF_TXRATE_MAX];
126 	struct clk *rxclk;
127 	struct clk *coreclk;
128 	struct clk *sysclk;
129 	struct clk *spbaclk;
130 	struct snd_dmaengine_dai_dma_data dma_params_tx;
131 	struct snd_dmaengine_dai_dma_data dma_params_rx;
132 	/* regcache for SRPC */
133 	u32 regcache_srpc;
134 };
135 
136 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
137 	.imx = false,
138 	.shared_root_clock = false,
139 	.interrupts = 1,
140 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
141 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
142 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
143 };
144 
145 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
146 	.imx = true,
147 	.shared_root_clock = false,
148 	.interrupts = 1,
149 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
150 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
151 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
152 };
153 
154 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
155 	.imx = true,
156 	.shared_root_clock = true,
157 	.interrupts = 1,
158 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
159 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
160 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
161 
162 };
163 
164 static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
165 	.imx = true,
166 	.shared_root_clock = true,
167 	.interrupts = 2,
168 	.tx_burst = 2,		/* Applied for EDMA */
169 	.rx_burst = 2,		/* Applied for EDMA */
170 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,  /* Applied for EDMA */
171 };
172 
173 /* Check if clk is a root clock that does not share clock source with others */
174 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
175 {
176 	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
177 }
178 
179 /* DPLL locked and lock loss interrupt handler */
180 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
181 {
182 	struct regmap *regmap = spdif_priv->regmap;
183 	struct platform_device *pdev = spdif_priv->pdev;
184 	u32 locked;
185 
186 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
187 	locked &= SRPC_DPLL_LOCKED;
188 
189 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
190 			locked ? "locked" : "loss lock");
191 
192 	spdif_priv->dpll_locked = locked ? true : false;
193 }
194 
195 /* Receiver found illegal symbol interrupt handler */
196 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
197 {
198 	struct regmap *regmap = spdif_priv->regmap;
199 	struct platform_device *pdev = spdif_priv->pdev;
200 
201 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
202 
203 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
204 	if (!spdif_priv->dpll_locked)
205 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
206 }
207 
208 /* U/Q Channel receive register full */
209 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
210 {
211 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
212 	struct regmap *regmap = spdif_priv->regmap;
213 	struct platform_device *pdev = spdif_priv->pdev;
214 	u32 *pos, size, val, reg;
215 
216 	switch (name) {
217 	case 'U':
218 		pos = &ctrl->upos;
219 		size = SPDIF_UBITS_SIZE;
220 		reg = REG_SPDIF_SRU;
221 		break;
222 	case 'Q':
223 		pos = &ctrl->qpos;
224 		size = SPDIF_QSUB_SIZE;
225 		reg = REG_SPDIF_SRQ;
226 		break;
227 	default:
228 		dev_err(&pdev->dev, "unsupported channel name\n");
229 		return;
230 	}
231 
232 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
233 
234 	if (*pos >= size * 2) {
235 		*pos = 0;
236 	} else if (unlikely((*pos % size) + 3 > size)) {
237 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
238 		return;
239 	}
240 
241 	regmap_read(regmap, reg, &val);
242 	ctrl->subcode[*pos++] = val >> 16;
243 	ctrl->subcode[*pos++] = val >> 8;
244 	ctrl->subcode[*pos++] = val;
245 }
246 
247 /* U/Q Channel sync found */
248 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
249 {
250 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
251 	struct platform_device *pdev = spdif_priv->pdev;
252 
253 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
254 
255 	/* U/Q buffer reset */
256 	if (ctrl->qpos == 0)
257 		return;
258 
259 	/* Set ready to this buffer */
260 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
261 }
262 
263 /* U/Q Channel framing error */
264 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
265 {
266 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
267 	struct regmap *regmap = spdif_priv->regmap;
268 	struct platform_device *pdev = spdif_priv->pdev;
269 	u32 val;
270 
271 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
272 
273 	/* Read U/Q data to clear the irq and do buffer reset */
274 	regmap_read(regmap, REG_SPDIF_SRU, &val);
275 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
276 
277 	/* Drop this U/Q buffer */
278 	ctrl->ready_buf = 0;
279 	ctrl->upos = 0;
280 	ctrl->qpos = 0;
281 }
282 
283 /* Get spdif interrupt status and clear the interrupt */
284 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
285 {
286 	struct regmap *regmap = spdif_priv->regmap;
287 	u32 val, val2;
288 
289 	regmap_read(regmap, REG_SPDIF_SIS, &val);
290 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
291 
292 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
293 
294 	return val;
295 }
296 
297 static irqreturn_t spdif_isr(int irq, void *devid)
298 {
299 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
300 	struct platform_device *pdev = spdif_priv->pdev;
301 	u32 sis;
302 
303 	sis = spdif_intr_status_clear(spdif_priv);
304 
305 	if (sis & INT_DPLL_LOCKED)
306 		spdif_irq_dpll_lock(spdif_priv);
307 
308 	if (sis & INT_TXFIFO_UNOV)
309 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
310 
311 	if (sis & INT_TXFIFO_RESYNC)
312 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
313 
314 	if (sis & INT_CNEW)
315 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
316 
317 	if (sis & INT_VAL_NOGOOD)
318 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
319 
320 	if (sis & INT_SYM_ERR)
321 		spdif_irq_sym_error(spdif_priv);
322 
323 	if (sis & INT_BIT_ERR)
324 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
325 
326 	if (sis & INT_URX_FUL)
327 		spdif_irq_uqrx_full(spdif_priv, 'U');
328 
329 	if (sis & INT_URX_OV)
330 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
331 
332 	if (sis & INT_QRX_FUL)
333 		spdif_irq_uqrx_full(spdif_priv, 'Q');
334 
335 	if (sis & INT_QRX_OV)
336 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
337 
338 	if (sis & INT_UQ_SYNC)
339 		spdif_irq_uq_sync(spdif_priv);
340 
341 	if (sis & INT_UQ_ERR)
342 		spdif_irq_uq_err(spdif_priv);
343 
344 	if (sis & INT_RXFIFO_UNOV)
345 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
346 
347 	if (sis & INT_RXFIFO_RESYNC)
348 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
349 
350 	if (sis & INT_LOSS_LOCK)
351 		spdif_irq_dpll_lock(spdif_priv);
352 
353 	/* FIXME: Write Tx FIFO to clear TxEm */
354 	if (sis & INT_TX_EM)
355 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
356 
357 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
358 	if (sis & INT_RXFIFO_FUL)
359 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
360 
361 	return IRQ_HANDLED;
362 }
363 
364 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
365 {
366 	struct regmap *regmap = spdif_priv->regmap;
367 	u32 val, cycle = 1000;
368 
369 	regcache_cache_bypass(regmap, true);
370 
371 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
372 
373 	/*
374 	 * RESET bit would be cleared after finishing its reset procedure,
375 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
376 	 */
377 	do {
378 		regmap_read(regmap, REG_SPDIF_SCR, &val);
379 	} while ((val & SCR_SOFT_RESET) && cycle--);
380 
381 	regcache_cache_bypass(regmap, false);
382 	regcache_mark_dirty(regmap);
383 	regcache_sync(regmap);
384 
385 	if (cycle)
386 		return 0;
387 	else
388 		return -EBUSY;
389 }
390 
391 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
392 				u8 mask, u8 cstatus)
393 {
394 	ctrl->ch_status[3] &= ~mask;
395 	ctrl->ch_status[3] |= cstatus & mask;
396 }
397 
398 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
399 {
400 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
401 	struct regmap *regmap = spdif_priv->regmap;
402 	struct platform_device *pdev = spdif_priv->pdev;
403 	u32 ch_status;
404 
405 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
406 		    (bitrev8(ctrl->ch_status[1]) << 8) |
407 		    bitrev8(ctrl->ch_status[2]);
408 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
409 
410 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
411 
412 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
413 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
414 
415 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
416 }
417 
418 /* Set SPDIF PhaseConfig register for rx clock */
419 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
420 				enum spdif_gainsel gainsel, int dpll_locked)
421 {
422 	struct regmap *regmap = spdif_priv->regmap;
423 	u8 clksrc = spdif_priv->rxclk_src;
424 
425 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
426 		return -EINVAL;
427 
428 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
429 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
430 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
431 
432 	return 0;
433 }
434 
435 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
436 				int sample_rate)
437 {
438 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
439 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
440 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
441 	struct regmap *regmap = spdif_priv->regmap;
442 	struct platform_device *pdev = spdif_priv->pdev;
443 	unsigned long csfs = 0;
444 	u32 stc, mask, rate;
445 	u16 sysclk_df;
446 	u8 clk, txclk_df;
447 	int ret;
448 
449 	switch (sample_rate) {
450 	case 32000:
451 		rate = SPDIF_TXRATE_32000;
452 		csfs = IEC958_AES3_CON_FS_32000;
453 		break;
454 	case 44100:
455 		rate = SPDIF_TXRATE_44100;
456 		csfs = IEC958_AES3_CON_FS_44100;
457 		break;
458 	case 48000:
459 		rate = SPDIF_TXRATE_48000;
460 		csfs = IEC958_AES3_CON_FS_48000;
461 		break;
462 	case 88200:
463 		rate = SPDIF_TXRATE_88200;
464 		csfs = IEC958_AES3_CON_FS_88200;
465 		break;
466 	case 96000:
467 		rate = SPDIF_TXRATE_96000;
468 		csfs = IEC958_AES3_CON_FS_96000;
469 		break;
470 	case 176400:
471 		rate = SPDIF_TXRATE_176400;
472 		csfs = IEC958_AES3_CON_FS_176400;
473 		break;
474 	case 192000:
475 		rate = SPDIF_TXRATE_192000;
476 		csfs = IEC958_AES3_CON_FS_192000;
477 		break;
478 	default:
479 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
480 		return -EINVAL;
481 	}
482 
483 	clk = spdif_priv->txclk_src[rate];
484 	if (clk >= STC_TXCLK_SRC_MAX) {
485 		dev_err(&pdev->dev, "tx clock source is out of range\n");
486 		return -EINVAL;
487 	}
488 
489 	txclk_df = spdif_priv->txclk_df[rate];
490 	if (txclk_df == 0) {
491 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
492 		return -EINVAL;
493 	}
494 
495 	sysclk_df = spdif_priv->sysclk_df[rate];
496 
497 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
498 		goto clk_set_bypass;
499 
500 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
501 	ret = clk_set_rate(spdif_priv->txclk[rate],
502 			   64 * sample_rate * txclk_df);
503 	if (ret) {
504 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
505 		return ret;
506 	}
507 
508 clk_set_bypass:
509 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
510 			(64 * sample_rate * txclk_df * sysclk_df));
511 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
512 			clk_get_rate(spdif_priv->txclk[rate]));
513 
514 	/* set fs field in consumer channel status */
515 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
516 
517 	/* select clock source and divisor */
518 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
519 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
520 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
521 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
522 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
523 
524 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
525 			spdif_priv->txrate[rate], sample_rate);
526 
527 	return 0;
528 }
529 
530 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
531 			     struct snd_soc_dai *cpu_dai)
532 {
533 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
534 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
535 	struct platform_device *pdev = spdif_priv->pdev;
536 	struct regmap *regmap = spdif_priv->regmap;
537 	u32 scr, mask;
538 	int ret;
539 
540 	/* Reset module and interrupts only for first initialization */
541 	if (!snd_soc_dai_active(cpu_dai)) {
542 		ret = spdif_softreset(spdif_priv);
543 		if (ret) {
544 			dev_err(&pdev->dev, "failed to soft reset\n");
545 			return ret;
546 		}
547 
548 		/* Disable all the interrupts */
549 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
550 	}
551 
552 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
553 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
554 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
555 			SCR_TXFIFO_FSEL_IF8;
556 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
557 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
558 			SCR_TXFIFO_FSEL_MASK;
559 	} else {
560 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
561 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
562 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
563 	}
564 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
565 
566 	/* Power up SPDIF module */
567 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
568 
569 	return 0;
570 }
571 
572 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
573 				struct snd_soc_dai *cpu_dai)
574 {
575 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
576 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
577 	struct regmap *regmap = spdif_priv->regmap;
578 	u32 scr, mask;
579 
580 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
581 		scr = 0;
582 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
583 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
584 			SCR_TXFIFO_FSEL_MASK;
585 	} else {
586 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
587 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
588 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
589 	}
590 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
591 
592 	/* Power down SPDIF module only if tx&rx are both inactive */
593 	if (!snd_soc_dai_active(cpu_dai)) {
594 		spdif_intr_status_clear(spdif_priv);
595 		regmap_update_bits(regmap, REG_SPDIF_SCR,
596 				SCR_LOW_POWER, SCR_LOW_POWER);
597 	}
598 }
599 
600 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
601 				struct snd_pcm_hw_params *params,
602 				struct snd_soc_dai *dai)
603 {
604 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
605 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
606 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
607 	struct platform_device *pdev = spdif_priv->pdev;
608 	u32 sample_rate = params_rate(params);
609 	int ret = 0;
610 
611 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
612 		ret  = spdif_set_sample_rate(substream, sample_rate);
613 		if (ret) {
614 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
615 					__func__, sample_rate);
616 			return ret;
617 		}
618 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
619 				  IEC958_AES3_CON_CLOCK_1000PPM);
620 		spdif_write_channel_status(spdif_priv);
621 	} else {
622 		/* Setup rx clock source */
623 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
624 	}
625 
626 	return ret;
627 }
628 
629 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
630 				int cmd, struct snd_soc_dai *dai)
631 {
632 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
633 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
634 	struct regmap *regmap = spdif_priv->regmap;
635 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
636 	u32 intr = SIE_INTR_FOR(tx);
637 	u32 dmaen = SCR_DMA_xX_EN(tx);
638 
639 	switch (cmd) {
640 	case SNDRV_PCM_TRIGGER_START:
641 	case SNDRV_PCM_TRIGGER_RESUME:
642 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
643 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
644 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
645 		break;
646 	case SNDRV_PCM_TRIGGER_STOP:
647 	case SNDRV_PCM_TRIGGER_SUSPEND:
648 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
649 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
650 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
651 		break;
652 	default:
653 		return -EINVAL;
654 	}
655 
656 	return 0;
657 }
658 
659 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
660 	.startup = fsl_spdif_startup,
661 	.hw_params = fsl_spdif_hw_params,
662 	.trigger = fsl_spdif_trigger,
663 	.shutdown = fsl_spdif_shutdown,
664 };
665 
666 
667 /*
668  * FSL SPDIF IEC958 controller(mixer) functions
669  *
670  *	Channel status get/put control
671  *	User bit value get/put control
672  *	Valid bit value get control
673  *	DPLL lock status get control
674  *	User bit sync mode selection control
675  */
676 
677 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
678 				struct snd_ctl_elem_info *uinfo)
679 {
680 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
681 	uinfo->count = 1;
682 
683 	return 0;
684 }
685 
686 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
687 				struct snd_ctl_elem_value *uvalue)
688 {
689 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
690 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
691 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
692 
693 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
694 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
695 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
696 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
697 
698 	return 0;
699 }
700 
701 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
702 				struct snd_ctl_elem_value *uvalue)
703 {
704 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
705 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
706 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
707 
708 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
709 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
710 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
711 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
712 
713 	spdif_write_channel_status(spdif_priv);
714 
715 	return 0;
716 }
717 
718 /* Get channel status from SPDIF_RX_CCHAN register */
719 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
720 				struct snd_ctl_elem_value *ucontrol)
721 {
722 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
723 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
724 	struct regmap *regmap = spdif_priv->regmap;
725 	u32 cstatus, val;
726 
727 	regmap_read(regmap, REG_SPDIF_SIS, &val);
728 	if (!(val & INT_CNEW))
729 		return -EAGAIN;
730 
731 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
732 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
733 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
734 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
735 
736 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
737 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
738 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
739 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
740 
741 	/* Clear intr */
742 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
743 
744 	return 0;
745 }
746 
747 /*
748  * Get User bits (subcode) from chip value which readed out
749  * in UChannel register.
750  */
751 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
752 				struct snd_ctl_elem_value *ucontrol)
753 {
754 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
755 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
756 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
757 	unsigned long flags;
758 	int ret = -EAGAIN;
759 
760 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
761 	if (ctrl->ready_buf) {
762 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
763 		memcpy(&ucontrol->value.iec958.subcode[0],
764 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
765 		ret = 0;
766 	}
767 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
768 
769 	return ret;
770 }
771 
772 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
773 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
774 				struct snd_ctl_elem_info *uinfo)
775 {
776 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
777 	uinfo->count = SPDIF_QSUB_SIZE;
778 
779 	return 0;
780 }
781 
782 /* Get Q subcode from chip value which readed out in QChannel register */
783 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
784 				struct snd_ctl_elem_value *ucontrol)
785 {
786 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
787 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
788 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
789 	unsigned long flags;
790 	int ret = -EAGAIN;
791 
792 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
793 	if (ctrl->ready_buf) {
794 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
795 		memcpy(&ucontrol->value.bytes.data[0],
796 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
797 		ret = 0;
798 	}
799 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
800 
801 	return ret;
802 }
803 
804 /* Get valid good bit from interrupt status register */
805 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
806 				 struct snd_ctl_elem_value *ucontrol)
807 {
808 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
809 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
810 	struct regmap *regmap = spdif_priv->regmap;
811 	u32 val;
812 
813 	regmap_read(regmap, REG_SPDIF_SIS, &val);
814 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
815 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
816 
817 	return 0;
818 }
819 
820 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
821 				 struct snd_ctl_elem_value *ucontrol)
822 {
823 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
824 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
825 	struct regmap *regmap = spdif_priv->regmap;
826 	u32 val;
827 
828 	regmap_read(regmap, REG_SPDIF_SCR, &val);
829 	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
830 	val = 1 - val;
831 	ucontrol->value.integer.value[0] = val;
832 
833 	return 0;
834 }
835 
836 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
837 				 struct snd_ctl_elem_value *ucontrol)
838 {
839 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
840 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
841 	struct regmap *regmap = spdif_priv->regmap;
842 	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
843 
844 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
845 
846 	return 0;
847 }
848 
849 /* DPLL lock information */
850 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
851 				struct snd_ctl_elem_info *uinfo)
852 {
853 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
854 	uinfo->count = 1;
855 	uinfo->value.integer.min = 16000;
856 	uinfo->value.integer.max = 192000;
857 
858 	return 0;
859 }
860 
861 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
862 	24, 16, 12, 8, 6, 4, 3,
863 };
864 
865 /* Get RX data clock rate given the SPDIF bus_clk */
866 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
867 				enum spdif_gainsel gainsel)
868 {
869 	struct regmap *regmap = spdif_priv->regmap;
870 	struct platform_device *pdev = spdif_priv->pdev;
871 	u64 tmpval64, busclk_freq = 0;
872 	u32 freqmeas, phaseconf;
873 	u8 clksrc;
874 
875 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
876 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
877 
878 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
879 
880 	/* Get bus clock from system */
881 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
882 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
883 
884 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
885 	tmpval64 = (u64) busclk_freq * freqmeas;
886 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
887 	do_div(tmpval64, 128 * 1024);
888 
889 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
890 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
891 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
892 
893 	return (int)tmpval64;
894 }
895 
896 /*
897  * Get DPLL lock or not info from stable interrupt status register.
898  * User application must use this control to get locked,
899  * then can do next PCM operation
900  */
901 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
902 				struct snd_ctl_elem_value *ucontrol)
903 {
904 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
905 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
906 	int rate = 0;
907 
908 	if (spdif_priv->dpll_locked)
909 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
910 
911 	ucontrol->value.integer.value[0] = rate;
912 
913 	return 0;
914 }
915 
916 /*
917  * User bit sync mode:
918  * 1 CD User channel subcode
919  * 0 Non-CD data
920  */
921 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
922 			       struct snd_ctl_elem_value *ucontrol)
923 {
924 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
925 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
926 	struct regmap *regmap = spdif_priv->regmap;
927 	u32 val;
928 
929 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
930 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
931 
932 	return 0;
933 }
934 
935 /*
936  * User bit sync mode:
937  * 1 CD User channel subcode
938  * 0 Non-CD data
939  */
940 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
941 				struct snd_ctl_elem_value *ucontrol)
942 {
943 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
944 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
945 	struct regmap *regmap = spdif_priv->regmap;
946 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
947 
948 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
949 
950 	return 0;
951 }
952 
953 /* FSL SPDIF IEC958 controller defines */
954 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
955 	/* Status cchanel controller */
956 	{
957 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
958 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
959 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
960 			SNDRV_CTL_ELEM_ACCESS_WRITE |
961 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
962 		.info = fsl_spdif_info,
963 		.get = fsl_spdif_pb_get,
964 		.put = fsl_spdif_pb_put,
965 	},
966 	{
967 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
968 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
969 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
970 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
971 		.info = fsl_spdif_info,
972 		.get = fsl_spdif_capture_get,
973 	},
974 	/* User bits controller */
975 	{
976 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
977 		.name = "IEC958 Subcode Capture Default",
978 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
979 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
980 		.info = fsl_spdif_info,
981 		.get = fsl_spdif_subcode_get,
982 	},
983 	{
984 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
985 		.name = "IEC958 Q-subcode Capture Default",
986 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
987 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
988 		.info = fsl_spdif_qinfo,
989 		.get = fsl_spdif_qget,
990 	},
991 	/* Valid bit error controller */
992 	{
993 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
994 		.name = "IEC958 RX V-Bit Errors",
995 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
996 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
997 		.info = snd_ctl_boolean_mono_info,
998 		.get = fsl_spdif_rx_vbit_get,
999 	},
1000 	{
1001 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1002 		.name = "IEC958 TX V-Bit",
1003 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1004 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1005 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1006 		.info = snd_ctl_boolean_mono_info,
1007 		.get = fsl_spdif_tx_vbit_get,
1008 		.put = fsl_spdif_tx_vbit_put,
1009 	},
1010 	/* DPLL lock info get controller */
1011 	{
1012 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1013 		.name = "RX Sample Rate",
1014 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1015 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1016 		.info = fsl_spdif_rxrate_info,
1017 		.get = fsl_spdif_rxrate_get,
1018 	},
1019 	/* User bit sync mode set/get controller */
1020 	{
1021 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1022 		.name = "IEC958 USyncMode CDText",
1023 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1024 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1025 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1026 		.info = snd_ctl_boolean_mono_info,
1027 		.get = fsl_spdif_usync_get,
1028 		.put = fsl_spdif_usync_put,
1029 	},
1030 };
1031 
1032 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1033 {
1034 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1035 
1036 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1037 				  &spdif_private->dma_params_rx);
1038 
1039 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1040 
1041 	/*Clear the val bit for Tx*/
1042 	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1043 			   SCR_VAL_MASK, SCR_VAL_CLEAR);
1044 
1045 	return 0;
1046 }
1047 
1048 static struct snd_soc_dai_driver fsl_spdif_dai = {
1049 	.probe = &fsl_spdif_dai_probe,
1050 	.playback = {
1051 		.stream_name = "CPU-Playback",
1052 		.channels_min = 2,
1053 		.channels_max = 2,
1054 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1055 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1056 	},
1057 	.capture = {
1058 		.stream_name = "CPU-Capture",
1059 		.channels_min = 2,
1060 		.channels_max = 2,
1061 		.rates = FSL_SPDIF_RATES_CAPTURE,
1062 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1063 	},
1064 	.ops = &fsl_spdif_dai_ops,
1065 };
1066 
1067 static const struct snd_soc_component_driver fsl_spdif_component = {
1068 	.name		= "fsl-spdif",
1069 };
1070 
1071 /* FSL SPDIF REGMAP */
1072 static const struct reg_default fsl_spdif_reg_defaults[] = {
1073 	{REG_SPDIF_SCR,    0x00000400},
1074 	{REG_SPDIF_SRCD,   0x00000000},
1075 	{REG_SPDIF_SIE,	   0x00000000},
1076 	{REG_SPDIF_STL,	   0x00000000},
1077 	{REG_SPDIF_STR,	   0x00000000},
1078 	{REG_SPDIF_STCSCH, 0x00000000},
1079 	{REG_SPDIF_STCSCL, 0x00000000},
1080 	{REG_SPDIF_STC,	   0x00020f00},
1081 };
1082 
1083 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1084 {
1085 	switch (reg) {
1086 	case REG_SPDIF_SCR:
1087 	case REG_SPDIF_SRCD:
1088 	case REG_SPDIF_SRPC:
1089 	case REG_SPDIF_SIE:
1090 	case REG_SPDIF_SIS:
1091 	case REG_SPDIF_SRL:
1092 	case REG_SPDIF_SRR:
1093 	case REG_SPDIF_SRCSH:
1094 	case REG_SPDIF_SRCSL:
1095 	case REG_SPDIF_SRU:
1096 	case REG_SPDIF_SRQ:
1097 	case REG_SPDIF_STCSCH:
1098 	case REG_SPDIF_STCSCL:
1099 	case REG_SPDIF_SRFM:
1100 	case REG_SPDIF_STC:
1101 		return true;
1102 	default:
1103 		return false;
1104 	}
1105 }
1106 
1107 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1108 {
1109 	switch (reg) {
1110 	case REG_SPDIF_SRPC:
1111 	case REG_SPDIF_SIS:
1112 	case REG_SPDIF_SRL:
1113 	case REG_SPDIF_SRR:
1114 	case REG_SPDIF_SRCSH:
1115 	case REG_SPDIF_SRCSL:
1116 	case REG_SPDIF_SRU:
1117 	case REG_SPDIF_SRQ:
1118 	case REG_SPDIF_SRFM:
1119 		return true;
1120 	default:
1121 		return false;
1122 	}
1123 }
1124 
1125 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1126 {
1127 	switch (reg) {
1128 	case REG_SPDIF_SCR:
1129 	case REG_SPDIF_SRCD:
1130 	case REG_SPDIF_SRPC:
1131 	case REG_SPDIF_SIE:
1132 	case REG_SPDIF_SIC:
1133 	case REG_SPDIF_STL:
1134 	case REG_SPDIF_STR:
1135 	case REG_SPDIF_STCSCH:
1136 	case REG_SPDIF_STCSCL:
1137 	case REG_SPDIF_STC:
1138 		return true;
1139 	default:
1140 		return false;
1141 	}
1142 }
1143 
1144 static const struct regmap_config fsl_spdif_regmap_config = {
1145 	.reg_bits = 32,
1146 	.reg_stride = 4,
1147 	.val_bits = 32,
1148 
1149 	.max_register = REG_SPDIF_STC,
1150 	.reg_defaults = fsl_spdif_reg_defaults,
1151 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1152 	.readable_reg = fsl_spdif_readable_reg,
1153 	.volatile_reg = fsl_spdif_volatile_reg,
1154 	.writeable_reg = fsl_spdif_writeable_reg,
1155 	.cache_type = REGCACHE_FLAT,
1156 };
1157 
1158 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1159 				struct clk *clk, u64 savesub,
1160 				enum spdif_txrate index, bool round)
1161 {
1162 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1163 				    192000, };
1164 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1165 	u64 rate_ideal, rate_actual, sub;
1166 	u32 arate;
1167 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1168 	u8 txclk_df;
1169 
1170 	/* The sysclk has an extra divisor [2, 512] */
1171 	sysclk_dfmin = is_sysclk ? 2 : 1;
1172 	sysclk_dfmax = is_sysclk ? 512 : 1;
1173 
1174 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1175 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1176 			rate_ideal = rate[index] * txclk_df * 64ULL;
1177 			if (round)
1178 				rate_actual = clk_round_rate(clk, rate_ideal);
1179 			else
1180 				rate_actual = clk_get_rate(clk);
1181 
1182 			arate = rate_actual / 64;
1183 			arate /= txclk_df * sysclk_df;
1184 
1185 			if (arate == rate[index]) {
1186 				/* We are lucky */
1187 				savesub = 0;
1188 				spdif_priv->txclk_df[index] = txclk_df;
1189 				spdif_priv->sysclk_df[index] = sysclk_df;
1190 				spdif_priv->txrate[index] = arate;
1191 				goto out;
1192 			} else if (arate / rate[index] == 1) {
1193 				/* A little bigger than expect */
1194 				sub = (u64)(arate - rate[index]) * 100000;
1195 				do_div(sub, rate[index]);
1196 				if (sub >= savesub)
1197 					continue;
1198 				savesub = sub;
1199 				spdif_priv->txclk_df[index] = txclk_df;
1200 				spdif_priv->sysclk_df[index] = sysclk_df;
1201 				spdif_priv->txrate[index] = arate;
1202 			} else if (rate[index] / arate == 1) {
1203 				/* A little smaller than expect */
1204 				sub = (u64)(rate[index] - arate) * 100000;
1205 				do_div(sub, rate[index]);
1206 				if (sub >= savesub)
1207 					continue;
1208 				savesub = sub;
1209 				spdif_priv->txclk_df[index] = txclk_df;
1210 				spdif_priv->sysclk_df[index] = sysclk_df;
1211 				spdif_priv->txrate[index] = arate;
1212 			}
1213 		}
1214 	}
1215 
1216 out:
1217 	return savesub;
1218 }
1219 
1220 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1221 				enum spdif_txrate index)
1222 {
1223 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1224 				    192000, };
1225 	struct platform_device *pdev = spdif_priv->pdev;
1226 	struct device *dev = &pdev->dev;
1227 	u64 savesub = 100000, ret;
1228 	struct clk *clk;
1229 	char tmp[16];
1230 	int i;
1231 
1232 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1233 		sprintf(tmp, "rxtx%d", i);
1234 		clk = devm_clk_get(dev, tmp);
1235 		if (IS_ERR(clk)) {
1236 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1237 			return PTR_ERR(clk);
1238 		}
1239 		if (!clk_get_rate(clk))
1240 			continue;
1241 
1242 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1243 					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1244 		if (savesub == ret)
1245 			continue;
1246 
1247 		savesub = ret;
1248 		spdif_priv->txclk[index] = clk;
1249 		spdif_priv->txclk_src[index] = i;
1250 
1251 		/* To quick catch a divisor, we allow a 0.1% deviation */
1252 		if (savesub < 100)
1253 			break;
1254 	}
1255 
1256 	dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1257 			spdif_priv->txclk_src[index], rate[index]);
1258 	dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1259 			spdif_priv->txclk_df[index], rate[index]);
1260 	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1261 		dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1262 				spdif_priv->sysclk_df[index], rate[index]);
1263 	dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1264 			rate[index], spdif_priv->txrate[index]);
1265 
1266 	return 0;
1267 }
1268 
1269 static int fsl_spdif_probe(struct platform_device *pdev)
1270 {
1271 	struct fsl_spdif_priv *spdif_priv;
1272 	struct spdif_mixer_control *ctrl;
1273 	struct resource *res;
1274 	void __iomem *regs;
1275 	int irq, ret, i;
1276 
1277 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1278 	if (!spdif_priv)
1279 		return -ENOMEM;
1280 
1281 	spdif_priv->pdev = pdev;
1282 
1283 	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1284 
1285 	/* Initialize this copy of the CPU DAI driver structure */
1286 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1287 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1288 	spdif_priv->cpu_dai_drv.playback.formats =
1289 				spdif_priv->soc->tx_formats;
1290 
1291 	/* Get the addresses and IRQ */
1292 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293 	regs = devm_ioremap_resource(&pdev->dev, res);
1294 	if (IS_ERR(regs))
1295 		return PTR_ERR(regs);
1296 
1297 	spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1298 	if (IS_ERR(spdif_priv->regmap)) {
1299 		dev_err(&pdev->dev, "regmap init failed\n");
1300 		return PTR_ERR(spdif_priv->regmap);
1301 	}
1302 
1303 	for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1304 		irq = platform_get_irq(pdev, i);
1305 		if (irq < 0) {
1306 			dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1307 			return irq;
1308 		}
1309 
1310 		ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1311 				       dev_name(&pdev->dev), spdif_priv);
1312 		if (ret) {
1313 			dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1314 			return ret;
1315 		}
1316 	}
1317 
1318 	/* Get system clock for rx clock rate calculation */
1319 	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1320 	if (IS_ERR(spdif_priv->sysclk)) {
1321 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1322 		return PTR_ERR(spdif_priv->sysclk);
1323 	}
1324 
1325 	/* Get core clock for data register access via DMA */
1326 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1327 	if (IS_ERR(spdif_priv->coreclk)) {
1328 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1329 		return PTR_ERR(spdif_priv->coreclk);
1330 	}
1331 
1332 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1333 	if (IS_ERR(spdif_priv->spbaclk))
1334 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1335 
1336 	/* Select clock source for rx/tx clock */
1337 	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1338 	if (IS_ERR(spdif_priv->rxclk)) {
1339 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1340 		return PTR_ERR(spdif_priv->rxclk);
1341 	}
1342 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1343 
1344 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1345 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1346 		if (ret)
1347 			return ret;
1348 	}
1349 
1350 	/* Initial spinlock for control data */
1351 	ctrl = &spdif_priv->fsl_spdif_control;
1352 	spin_lock_init(&ctrl->ctl_lock);
1353 
1354 	/* Init tx channel status default value */
1355 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1356 			     IEC958_AES0_CON_EMPHASIS_5015;
1357 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1358 	ctrl->ch_status[2] = 0x00;
1359 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1360 			     IEC958_AES3_CON_CLOCK_1000PPM;
1361 
1362 	spdif_priv->dpll_locked = false;
1363 
1364 	spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1365 	spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1366 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1367 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1368 
1369 	/* Register with ASoC */
1370 	dev_set_drvdata(&pdev->dev, spdif_priv);
1371 	pm_runtime_enable(&pdev->dev);
1372 	regcache_cache_only(spdif_priv->regmap, true);
1373 
1374 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1375 					      &spdif_priv->cpu_dai_drv, 1);
1376 	if (ret) {
1377 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1378 		return ret;
1379 	}
1380 
1381 	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1382 	if (ret && ret != -EPROBE_DEFER)
1383 		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1384 
1385 	return ret;
1386 }
1387 
1388 #ifdef CONFIG_PM
1389 static int fsl_spdif_runtime_suspend(struct device *dev)
1390 {
1391 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1392 	int i;
1393 
1394 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1395 			&spdif_priv->regcache_srpc);
1396 	regcache_cache_only(spdif_priv->regmap, true);
1397 
1398 	clk_disable_unprepare(spdif_priv->rxclk);
1399 
1400 	for (i = 0; i < SPDIF_TXRATE_MAX; i++)
1401 		clk_disable_unprepare(spdif_priv->txclk[i]);
1402 
1403 	if (!IS_ERR(spdif_priv->spbaclk))
1404 		clk_disable_unprepare(spdif_priv->spbaclk);
1405 	clk_disable_unprepare(spdif_priv->coreclk);
1406 
1407 	return 0;
1408 }
1409 
1410 static int fsl_spdif_runtime_resume(struct device *dev)
1411 {
1412 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1413 	int ret;
1414 	int i;
1415 
1416 	ret = clk_prepare_enable(spdif_priv->coreclk);
1417 	if (ret) {
1418 		dev_err(dev, "failed to enable core clock\n");
1419 		return ret;
1420 	}
1421 
1422 	if (!IS_ERR(spdif_priv->spbaclk)) {
1423 		ret = clk_prepare_enable(spdif_priv->spbaclk);
1424 		if (ret) {
1425 			dev_err(dev, "failed to enable spba clock\n");
1426 			goto disable_core_clk;
1427 		}
1428 	}
1429 
1430 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1431 		ret = clk_prepare_enable(spdif_priv->txclk[i]);
1432 		if (ret)
1433 			goto disable_tx_clk;
1434 	}
1435 
1436 	ret = clk_prepare_enable(spdif_priv->rxclk);
1437 	if (ret)
1438 		goto disable_tx_clk;
1439 
1440 	regcache_cache_only(spdif_priv->regmap, false);
1441 	regcache_mark_dirty(spdif_priv->regmap);
1442 
1443 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1444 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1445 			spdif_priv->regcache_srpc);
1446 
1447 	ret = regcache_sync(spdif_priv->regmap);
1448 	if (ret)
1449 		goto disable_rx_clk;
1450 
1451 	return 0;
1452 
1453 disable_rx_clk:
1454 	clk_disable_unprepare(spdif_priv->rxclk);
1455 disable_tx_clk:
1456 	for (i--; i >= 0; i--)
1457 		clk_disable_unprepare(spdif_priv->txclk[i]);
1458 	if (!IS_ERR(spdif_priv->spbaclk))
1459 		clk_disable_unprepare(spdif_priv->spbaclk);
1460 disable_core_clk:
1461 	clk_disable_unprepare(spdif_priv->coreclk);
1462 
1463 	return ret;
1464 }
1465 #endif /* CONFIG_PM */
1466 
1467 static const struct dev_pm_ops fsl_spdif_pm = {
1468 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1469 				pm_runtime_force_resume)
1470 	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1471 			   NULL)
1472 };
1473 
1474 static const struct of_device_id fsl_spdif_dt_ids[] = {
1475 	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1476 	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1477 	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1478 	{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1479 	{}
1480 };
1481 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1482 
1483 static struct platform_driver fsl_spdif_driver = {
1484 	.driver = {
1485 		.name = "fsl-spdif-dai",
1486 		.of_match_table = fsl_spdif_dt_ids,
1487 		.pm = &fsl_spdif_pm,
1488 	},
1489 	.probe = fsl_spdif_probe,
1490 };
1491 
1492 module_platform_driver(fsl_spdif_driver);
1493 
1494 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1495 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1496 MODULE_LICENSE("GPL v2");
1497 MODULE_ALIAS("platform:fsl-spdif-dai");
1498