xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20 
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24 
25 #include "fsl_spdif.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SPDIF_TXFIFO_WML	0x8
30 #define FSL_SPDIF_RXFIFO_WML	0x8
31 
32 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
33 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
34 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
35 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
36 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
37 
38 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
39 
40 /* Index list for the values that has if (DPLL Locked) condition */
41 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
42 #define SRPC_NODPLL_START1	0x5
43 #define SRPC_NODPLL_START2	0xc
44 
45 #define DEFAULT_RXCLK_SRC	1
46 
47 #define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate"
48 
49 /**
50  * struct fsl_spdif_soc_data: soc specific data
51  *
52  * @imx: for imx platform
53  * @shared_root_clock: flag of sharing a clock source with others;
54  *                     so the driver shouldn't set root clock rate
55  * @raw_capture_mode: if raw capture mode support
56  * @cchannel_192b: if there are registers for 192bits C channel data
57  * @interrupts: interrupt number
58  * @tx_burst: tx maxburst size
59  * @rx_burst: rx maxburst size
60  * @tx_formats: tx supported data format
61  */
62 struct fsl_spdif_soc_data {
63 	bool imx;
64 	bool shared_root_clock;
65 	bool raw_capture_mode;
66 	bool cchannel_192b;
67 	u32 interrupts;
68 	u32 tx_burst;
69 	u32 rx_burst;
70 	u64 tx_formats;
71 };
72 
73 /*
74  * SPDIF control structure
75  * Defines channel status, subcode and Q sub
76  */
77 struct spdif_mixer_control {
78 	/* spinlock to access control data */
79 	spinlock_t ctl_lock;
80 
81 	/* IEC958 channel tx status bit */
82 	unsigned char ch_status[4];
83 
84 	/* User bits */
85 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
86 
87 	/* Q subcode part of user bits */
88 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
89 
90 	/* Buffer offset for U/Q */
91 	u32 upos;
92 	u32 qpos;
93 
94 	/* Ready buffer index of the two buffers */
95 	u32 ready_buf;
96 };
97 
98 /**
99  * struct fsl_spdif_priv - Freescale SPDIF private data
100  * @soc: SPDIF soc data
101  * @fsl_spdif_control: SPDIF control data
102  * @cpu_dai_drv: cpu dai driver
103  * @snd_card: sound card pointer
104  * @rxrate_kcontrol: kcontrol for RX Sample Rate
105  * @pdev: platform device pointer
106  * @regmap: regmap handler
107  * @dpll_locked: dpll lock flag
108  * @txrate: the best rates for playback
109  * @txclk_df: STC_TXCLK_DF dividers value for playback
110  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
111  * @txclk_src: STC_TXCLK_SRC values for playback
112  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
113  * @txclk: tx clock sources for playback
114  * @rxclk: rx clock sources for capture
115  * @coreclk: core clock for register access via DMA
116  * @sysclk: system clock for rx clock rate measurement
117  * @spbaclk: SPBA clock (optional, depending on SoC design)
118  * @dma_params_tx: DMA parameters for transmit channel
119  * @dma_params_rx: DMA parameters for receive channel
120  * @regcache_srpc: regcache for SRPC
121  * @bypass: status of bypass input to output
122  * @pll8k_clk: PLL clock for the rate of multiply of 8kHz
123  * @pll11k_clk: PLL clock for the rate of multiply of 11kHz
124  */
125 struct fsl_spdif_priv {
126 	const struct fsl_spdif_soc_data *soc;
127 	struct spdif_mixer_control fsl_spdif_control;
128 	struct snd_soc_dai_driver cpu_dai_drv;
129 	struct snd_card *snd_card;
130 	struct snd_kcontrol *rxrate_kcontrol;
131 	struct platform_device *pdev;
132 	struct regmap *regmap;
133 	bool dpll_locked;
134 	u32 txrate[SPDIF_TXRATE_MAX];
135 	u8 txclk_df[SPDIF_TXRATE_MAX];
136 	u16 sysclk_df[SPDIF_TXRATE_MAX];
137 	u8 txclk_src[SPDIF_TXRATE_MAX];
138 	u8 rxclk_src;
139 	struct clk *txclk[STC_TXCLK_SRC_MAX];
140 	struct clk *rxclk;
141 	struct clk *coreclk;
142 	struct clk *sysclk;
143 	struct clk *spbaclk;
144 	struct snd_dmaengine_dai_dma_data dma_params_tx;
145 	struct snd_dmaengine_dai_dma_data dma_params_rx;
146 	/* regcache for SRPC */
147 	u32 regcache_srpc;
148 	bool bypass;
149 	struct clk *pll8k_clk;
150 	struct clk *pll11k_clk;
151 };
152 
153 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
154 	.imx = false,
155 	.shared_root_clock = false,
156 	.raw_capture_mode = false,
157 	.interrupts = 1,
158 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
159 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
160 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
161 };
162 
163 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
164 	.imx = true,
165 	.shared_root_clock = false,
166 	.raw_capture_mode = false,
167 	.interrupts = 1,
168 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
169 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
170 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
171 };
172 
173 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
174 	.imx = true,
175 	.shared_root_clock = true,
176 	.raw_capture_mode = false,
177 	.interrupts = 1,
178 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
179 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
180 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
181 
182 };
183 
184 static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
185 	.imx = true,
186 	.shared_root_clock = true,
187 	.raw_capture_mode = false,
188 	.interrupts = 2,
189 	.tx_burst = 2,		/* Applied for EDMA */
190 	.rx_burst = 2,		/* Applied for EDMA */
191 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,  /* Applied for EDMA */
192 };
193 
194 static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
195 	.imx = true,
196 	.shared_root_clock = false,
197 	.raw_capture_mode = true,
198 	.interrupts = 1,
199 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
200 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
201 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
202 };
203 
204 static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
205 	.imx = true,
206 	.shared_root_clock = true,
207 	.raw_capture_mode = false,
208 	.interrupts = 1,
209 	.tx_burst = 2,		/* Applied for EDMA */
210 	.rx_burst = 2,		/* Applied for EDMA */
211 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,	/* Applied for EDMA */
212 	.cchannel_192b = true,
213 };
214 
215 /* Check if clk is a root clock that does not share clock source with others */
216 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
217 {
218 	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
219 }
220 
221 /* DPLL locked and lock loss interrupt handler */
222 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
223 {
224 	struct regmap *regmap = spdif_priv->regmap;
225 	struct platform_device *pdev = spdif_priv->pdev;
226 	u32 locked;
227 
228 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
229 	locked &= SRPC_DPLL_LOCKED;
230 
231 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
232 			locked ? "locked" : "loss lock");
233 
234 	spdif_priv->dpll_locked = locked ? true : false;
235 
236 	if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) {
237 		snd_ctl_notify(spdif_priv->snd_card,
238 			       SNDRV_CTL_EVENT_MASK_VALUE,
239 			       &spdif_priv->rxrate_kcontrol->id);
240 	}
241 }
242 
243 /* Receiver found illegal symbol interrupt handler */
244 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
245 {
246 	struct regmap *regmap = spdif_priv->regmap;
247 	struct platform_device *pdev = spdif_priv->pdev;
248 
249 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
250 
251 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
252 	if (!spdif_priv->dpll_locked)
253 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
254 }
255 
256 /* U/Q Channel receive register full */
257 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
258 {
259 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
260 	struct regmap *regmap = spdif_priv->regmap;
261 	struct platform_device *pdev = spdif_priv->pdev;
262 	u32 *pos, size, val, reg;
263 
264 	switch (name) {
265 	case 'U':
266 		pos = &ctrl->upos;
267 		size = SPDIF_UBITS_SIZE;
268 		reg = REG_SPDIF_SRU;
269 		break;
270 	case 'Q':
271 		pos = &ctrl->qpos;
272 		size = SPDIF_QSUB_SIZE;
273 		reg = REG_SPDIF_SRQ;
274 		break;
275 	default:
276 		dev_err(&pdev->dev, "unsupported channel name\n");
277 		return;
278 	}
279 
280 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
281 
282 	if (*pos >= size * 2) {
283 		*pos = 0;
284 	} else if (unlikely((*pos % size) + 3 > size)) {
285 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
286 		return;
287 	}
288 
289 	regmap_read(regmap, reg, &val);
290 	ctrl->subcode[*pos++] = val >> 16;
291 	ctrl->subcode[*pos++] = val >> 8;
292 	ctrl->subcode[*pos++] = val;
293 }
294 
295 /* U/Q Channel sync found */
296 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
297 {
298 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
299 	struct platform_device *pdev = spdif_priv->pdev;
300 
301 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
302 
303 	/* U/Q buffer reset */
304 	if (ctrl->qpos == 0)
305 		return;
306 
307 	/* Set ready to this buffer */
308 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
309 }
310 
311 /* U/Q Channel framing error */
312 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
313 {
314 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
315 	struct regmap *regmap = spdif_priv->regmap;
316 	struct platform_device *pdev = spdif_priv->pdev;
317 	u32 val;
318 
319 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
320 
321 	/* Read U/Q data to clear the irq and do buffer reset */
322 	regmap_read(regmap, REG_SPDIF_SRU, &val);
323 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
324 
325 	/* Drop this U/Q buffer */
326 	ctrl->ready_buf = 0;
327 	ctrl->upos = 0;
328 	ctrl->qpos = 0;
329 }
330 
331 /* Get spdif interrupt status and clear the interrupt */
332 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
333 {
334 	struct regmap *regmap = spdif_priv->regmap;
335 	u32 val, val2;
336 
337 	regmap_read(regmap, REG_SPDIF_SIS, &val);
338 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
339 
340 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
341 
342 	return val;
343 }
344 
345 static irqreturn_t spdif_isr(int irq, void *devid)
346 {
347 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
348 	struct platform_device *pdev = spdif_priv->pdev;
349 	u32 sis;
350 
351 	sis = spdif_intr_status_clear(spdif_priv);
352 
353 	if (sis & INT_DPLL_LOCKED)
354 		spdif_irq_dpll_lock(spdif_priv);
355 
356 	if (sis & INT_TXFIFO_UNOV)
357 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
358 
359 	if (sis & INT_TXFIFO_RESYNC)
360 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
361 
362 	if (sis & INT_CNEW)
363 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
364 
365 	if (sis & INT_VAL_NOGOOD)
366 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
367 
368 	if (sis & INT_SYM_ERR)
369 		spdif_irq_sym_error(spdif_priv);
370 
371 	if (sis & INT_BIT_ERR)
372 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
373 
374 	if (sis & INT_URX_FUL)
375 		spdif_irq_uqrx_full(spdif_priv, 'U');
376 
377 	if (sis & INT_URX_OV)
378 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
379 
380 	if (sis & INT_QRX_FUL)
381 		spdif_irq_uqrx_full(spdif_priv, 'Q');
382 
383 	if (sis & INT_QRX_OV)
384 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
385 
386 	if (sis & INT_UQ_SYNC)
387 		spdif_irq_uq_sync(spdif_priv);
388 
389 	if (sis & INT_UQ_ERR)
390 		spdif_irq_uq_err(spdif_priv);
391 
392 	if (sis & INT_RXFIFO_UNOV)
393 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
394 
395 	if (sis & INT_RXFIFO_RESYNC)
396 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
397 
398 	if (sis & INT_LOSS_LOCK)
399 		spdif_irq_dpll_lock(spdif_priv);
400 
401 	/* FIXME: Write Tx FIFO to clear TxEm */
402 	if (sis & INT_TX_EM)
403 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
404 
405 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
406 	if (sis & INT_RXFIFO_FUL)
407 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
408 
409 	return IRQ_HANDLED;
410 }
411 
412 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
413 {
414 	struct regmap *regmap = spdif_priv->regmap;
415 	u32 val, cycle = 1000;
416 
417 	regcache_cache_bypass(regmap, true);
418 
419 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
420 
421 	/*
422 	 * RESET bit would be cleared after finishing its reset procedure,
423 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
424 	 */
425 	do {
426 		regmap_read(regmap, REG_SPDIF_SCR, &val);
427 	} while ((val & SCR_SOFT_RESET) && cycle--);
428 
429 	regcache_cache_bypass(regmap, false);
430 	regcache_mark_dirty(regmap);
431 	regcache_sync(regmap);
432 
433 	if (cycle)
434 		return 0;
435 	else
436 		return -EBUSY;
437 }
438 
439 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
440 				u8 mask, u8 cstatus)
441 {
442 	ctrl->ch_status[3] &= ~mask;
443 	ctrl->ch_status[3] |= cstatus & mask;
444 }
445 
446 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
447 {
448 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
449 	struct regmap *regmap = spdif_priv->regmap;
450 	struct platform_device *pdev = spdif_priv->pdev;
451 	u32 ch_status;
452 
453 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
454 		    (bitrev8(ctrl->ch_status[1]) << 8) |
455 		    bitrev8(ctrl->ch_status[2]);
456 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
457 
458 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
459 
460 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
461 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
462 
463 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
464 
465 	if (spdif_priv->soc->cchannel_192b) {
466 		ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
467 			    (bitrev8(ctrl->ch_status[1]) << 16) |
468 			    (bitrev8(ctrl->ch_status[2]) << 8) |
469 			    bitrev8(ctrl->ch_status[3]);
470 
471 		regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000);
472 
473 		/*
474 		 * The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
475 		 * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
476 		 * then can get correct result with HDMI analyzer capture.
477 		 * There is a hardware bug here.
478 		 */
479 		regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status);
480 	}
481 }
482 
483 /* Set SPDIF PhaseConfig register for rx clock */
484 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
485 				enum spdif_gainsel gainsel, int dpll_locked)
486 {
487 	struct regmap *regmap = spdif_priv->regmap;
488 	u8 clksrc = spdif_priv->rxclk_src;
489 
490 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
491 		return -EINVAL;
492 
493 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
494 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
495 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
496 
497 	return 0;
498 }
499 
500 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index);
501 
502 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
503 				int sample_rate)
504 {
505 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
506 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
507 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
508 	struct regmap *regmap = spdif_priv->regmap;
509 	struct platform_device *pdev = spdif_priv->pdev;
510 	unsigned long csfs = 0;
511 	u32 stc, mask, rate;
512 	u16 sysclk_df;
513 	u8 clk, txclk_df;
514 	int ret;
515 
516 	switch (sample_rate) {
517 	case 32000:
518 		rate = SPDIF_TXRATE_32000;
519 		csfs = IEC958_AES3_CON_FS_32000;
520 		break;
521 	case 44100:
522 		rate = SPDIF_TXRATE_44100;
523 		csfs = IEC958_AES3_CON_FS_44100;
524 		break;
525 	case 48000:
526 		rate = SPDIF_TXRATE_48000;
527 		csfs = IEC958_AES3_CON_FS_48000;
528 		break;
529 	case 88200:
530 		rate = SPDIF_TXRATE_88200;
531 		csfs = IEC958_AES3_CON_FS_88200;
532 		break;
533 	case 96000:
534 		rate = SPDIF_TXRATE_96000;
535 		csfs = IEC958_AES3_CON_FS_96000;
536 		break;
537 	case 176400:
538 		rate = SPDIF_TXRATE_176400;
539 		csfs = IEC958_AES3_CON_FS_176400;
540 		break;
541 	case 192000:
542 		rate = SPDIF_TXRATE_192000;
543 		csfs = IEC958_AES3_CON_FS_192000;
544 		break;
545 	default:
546 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
547 		return -EINVAL;
548 	}
549 
550 	ret = fsl_spdif_probe_txclk(spdif_priv, rate);
551 	if (ret)
552 		return ret;
553 
554 	clk = spdif_priv->txclk_src[rate];
555 	if (clk >= STC_TXCLK_SRC_MAX) {
556 		dev_err(&pdev->dev, "tx clock source is out of range\n");
557 		return -EINVAL;
558 	}
559 
560 	txclk_df = spdif_priv->txclk_df[rate];
561 	if (txclk_df == 0) {
562 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
563 		return -EINVAL;
564 	}
565 
566 	sysclk_df = spdif_priv->sysclk_df[rate];
567 
568 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
569 		goto clk_set_bypass;
570 
571 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
572 	ret = clk_set_rate(spdif_priv->txclk[clk],
573 			   64 * sample_rate * txclk_df);
574 	if (ret) {
575 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
576 		return ret;
577 	}
578 
579 clk_set_bypass:
580 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
581 			(64 * sample_rate * txclk_df * sysclk_df));
582 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
583 			clk_get_rate(spdif_priv->txclk[clk]));
584 
585 	/* set fs field in consumer channel status */
586 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
587 
588 	/* select clock source and divisor */
589 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
590 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
591 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
592 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
593 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
594 
595 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
596 			spdif_priv->txrate[rate], sample_rate);
597 
598 	return 0;
599 }
600 
601 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
602 			     struct snd_soc_dai *cpu_dai)
603 {
604 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
605 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
606 	struct platform_device *pdev = spdif_priv->pdev;
607 	struct regmap *regmap = spdif_priv->regmap;
608 	u32 scr, mask;
609 	int ret;
610 
611 	/* Reset module and interrupts only for first initialization */
612 	if (!snd_soc_dai_active(cpu_dai)) {
613 		ret = spdif_softreset(spdif_priv);
614 		if (ret) {
615 			dev_err(&pdev->dev, "failed to soft reset\n");
616 			return ret;
617 		}
618 
619 		/* Disable all the interrupts */
620 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
621 	}
622 
623 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
624 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
625 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
626 			SCR_TXFIFO_FSEL_IF8;
627 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
628 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
629 			SCR_TXFIFO_FSEL_MASK;
630 	} else {
631 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
632 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
633 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
634 	}
635 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
636 
637 	/* Power up SPDIF module */
638 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
639 
640 	return 0;
641 }
642 
643 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
644 				struct snd_soc_dai *cpu_dai)
645 {
646 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
647 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
648 	struct regmap *regmap = spdif_priv->regmap;
649 	u32 scr, mask;
650 
651 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
652 		scr = 0;
653 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
654 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
655 			SCR_TXFIFO_FSEL_MASK;
656 		/* Disable TX clock */
657 		regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0);
658 	} else {
659 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
660 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
661 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
662 	}
663 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
664 
665 	/* Power down SPDIF module only if tx&rx are both inactive */
666 	if (!snd_soc_dai_active(cpu_dai)) {
667 		spdif_intr_status_clear(spdif_priv);
668 		regmap_update_bits(regmap, REG_SPDIF_SCR,
669 				SCR_LOW_POWER, SCR_LOW_POWER);
670 	}
671 }
672 
673 static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate)
674 {
675 	struct platform_device *pdev = spdif_priv->pdev;
676 	struct clk *clk;
677 	int ret;
678 
679 	/* Reparent clock if required condition is true */
680 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, STC_TXCLK_SPDIF_ROOT))
681 		return 0;
682 
683 	/* Get root clock */
684 	clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT];
685 
686 	/* Disable clock first, for it was enabled by pm_runtime */
687 	clk_disable_unprepare(clk);
688 	fsl_asoc_reparent_pll_clocks(&pdev->dev, clk, spdif_priv->pll8k_clk,
689 				     spdif_priv->pll11k_clk, sample_rate);
690 	ret = clk_prepare_enable(clk);
691 	if (ret)
692 		return ret;
693 
694 	return 0;
695 }
696 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
697 				struct snd_pcm_hw_params *params,
698 				struct snd_soc_dai *dai)
699 {
700 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
701 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
702 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
703 	struct platform_device *pdev = spdif_priv->pdev;
704 	u32 sample_rate = params_rate(params);
705 	int ret = 0;
706 
707 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
708 		ret = spdif_reparent_rootclk(spdif_priv, sample_rate);
709 		if (ret) {
710 			dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n",
711 				__func__, sample_rate);
712 			return ret;
713 		}
714 
715 		ret  = spdif_set_sample_rate(substream, sample_rate);
716 		if (ret) {
717 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
718 					__func__, sample_rate);
719 			return ret;
720 		}
721 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
722 				  IEC958_AES3_CON_CLOCK_1000PPM);
723 		spdif_write_channel_status(spdif_priv);
724 	} else {
725 		/* Setup rx clock source */
726 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
727 	}
728 
729 	return ret;
730 }
731 
732 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
733 				int cmd, struct snd_soc_dai *dai)
734 {
735 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
736 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
737 	struct regmap *regmap = spdif_priv->regmap;
738 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
739 	u32 intr = SIE_INTR_FOR(tx);
740 	u32 dmaen = SCR_DMA_xX_EN(tx);
741 
742 	switch (cmd) {
743 	case SNDRV_PCM_TRIGGER_START:
744 	case SNDRV_PCM_TRIGGER_RESUME:
745 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
746 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
747 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
748 		break;
749 	case SNDRV_PCM_TRIGGER_STOP:
750 	case SNDRV_PCM_TRIGGER_SUSPEND:
751 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
752 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
753 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
754 		break;
755 	default:
756 		return -EINVAL;
757 	}
758 
759 	return 0;
760 }
761 
762 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
763 	.startup = fsl_spdif_startup,
764 	.hw_params = fsl_spdif_hw_params,
765 	.trigger = fsl_spdif_trigger,
766 	.shutdown = fsl_spdif_shutdown,
767 };
768 
769 
770 /*
771  * FSL SPDIF IEC958 controller(mixer) functions
772  *
773  *	Channel status get/put control
774  *	User bit value get/put control
775  *	Valid bit value get control
776  *	DPLL lock status get control
777  *	User bit sync mode selection control
778  */
779 
780 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
781 				struct snd_ctl_elem_info *uinfo)
782 {
783 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
784 	uinfo->count = 1;
785 
786 	return 0;
787 }
788 
789 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
790 				struct snd_ctl_elem_value *uvalue)
791 {
792 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
793 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
794 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
795 
796 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
797 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
798 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
799 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
800 
801 	return 0;
802 }
803 
804 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
805 				struct snd_ctl_elem_value *uvalue)
806 {
807 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
808 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
809 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
810 
811 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
812 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
813 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
814 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
815 
816 	spdif_write_channel_status(spdif_priv);
817 
818 	return 0;
819 }
820 
821 /* Get channel status from SPDIF_RX_CCHAN register */
822 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
823 				struct snd_ctl_elem_value *ucontrol)
824 {
825 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
826 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
827 	struct regmap *regmap = spdif_priv->regmap;
828 	u32 cstatus, val;
829 
830 	regmap_read(regmap, REG_SPDIF_SIS, &val);
831 	if (!(val & INT_CNEW))
832 		return -EAGAIN;
833 
834 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
835 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
836 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
837 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
838 
839 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
840 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
841 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
842 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
843 
844 	/* Clear intr */
845 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
846 
847 	return 0;
848 }
849 
850 /*
851  * Get User bits (subcode) from chip value which readed out
852  * in UChannel register.
853  */
854 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
855 				struct snd_ctl_elem_value *ucontrol)
856 {
857 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
858 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
859 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
860 	unsigned long flags;
861 	int ret = -EAGAIN;
862 
863 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
864 	if (ctrl->ready_buf) {
865 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
866 		memcpy(&ucontrol->value.iec958.subcode[0],
867 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
868 		ret = 0;
869 	}
870 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
871 
872 	return ret;
873 }
874 
875 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
876 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
877 				struct snd_ctl_elem_info *uinfo)
878 {
879 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
880 	uinfo->count = SPDIF_QSUB_SIZE;
881 
882 	return 0;
883 }
884 
885 /* Get Q subcode from chip value which readed out in QChannel register */
886 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
887 				struct snd_ctl_elem_value *ucontrol)
888 {
889 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
890 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
891 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
892 	unsigned long flags;
893 	int ret = -EAGAIN;
894 
895 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
896 	if (ctrl->ready_buf) {
897 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
898 		memcpy(&ucontrol->value.bytes.data[0],
899 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
900 		ret = 0;
901 	}
902 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
903 
904 	return ret;
905 }
906 
907 /* Get valid good bit from interrupt status register */
908 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
909 				 struct snd_ctl_elem_value *ucontrol)
910 {
911 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
912 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
913 	struct regmap *regmap = spdif_priv->regmap;
914 	u32 val;
915 
916 	regmap_read(regmap, REG_SPDIF_SIS, &val);
917 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
918 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
919 
920 	return 0;
921 }
922 
923 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
924 				 struct snd_ctl_elem_value *ucontrol)
925 {
926 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
927 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
928 	struct regmap *regmap = spdif_priv->regmap;
929 	u32 val;
930 
931 	regmap_read(regmap, REG_SPDIF_SCR, &val);
932 	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
933 	val = 1 - val;
934 	ucontrol->value.integer.value[0] = val;
935 
936 	return 0;
937 }
938 
939 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
940 				 struct snd_ctl_elem_value *ucontrol)
941 {
942 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
943 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
944 	struct regmap *regmap = spdif_priv->regmap;
945 	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
946 
947 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
948 
949 	return 0;
950 }
951 
952 static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
953 				struct snd_ctl_elem_value *ucontrol)
954 {
955 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
956 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
957 	struct regmap *regmap = spdif_priv->regmap;
958 	u32 val;
959 
960 	regmap_read(regmap, REG_SPDIF_SCR, &val);
961 	val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
962 	ucontrol->value.integer.value[0] = val;
963 
964 	return 0;
965 }
966 
967 static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
968 				struct snd_ctl_elem_value *ucontrol)
969 {
970 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
971 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
972 	struct regmap *regmap = spdif_priv->regmap;
973 	u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);
974 
975 	if (val)
976 		cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
977 	else
978 		cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;
979 
980 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);
981 
982 	return 0;
983 }
984 
985 static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
986 				struct snd_ctl_elem_value *ucontrol)
987 {
988 	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
989 	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
990 
991 	ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;
992 
993 	return 0;
994 }
995 
996 static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
997 				struct snd_ctl_elem_value *ucontrol)
998 {
999 	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
1000 	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
1001 	struct snd_soc_card *card = dai->component->card;
1002 	bool set = (ucontrol->value.integer.value[0] != 0);
1003 	struct regmap *regmap = priv->regmap;
1004 	struct snd_soc_pcm_runtime *rtd;
1005 	u32 scr, mask;
1006 	int stream;
1007 
1008 	rtd = snd_soc_get_pcm_runtime(card, card->dai_link);
1009 
1010 	if (priv->bypass == set)
1011 		return 0; /* nothing to do */
1012 
1013 	if (snd_soc_dai_active(dai)) {
1014 		dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
1015 		return -EBUSY;
1016 	}
1017 
1018 	pm_runtime_get_sync(dai->dev);
1019 
1020 	if (set) {
1021 		/* Disable interrupts */
1022 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
1023 
1024 		/* Configure BYPASS mode */
1025 		scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
1026 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
1027 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
1028 		/* Power up SPDIF module */
1029 		mask |= SCR_LOW_POWER;
1030 	} else {
1031 		/* Power down SPDIF module, disable TX */
1032 		scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
1033 		mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
1034 	}
1035 
1036 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
1037 
1038 	/* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
1039 	for_each_pcm_streams(stream)
1040 		rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);
1041 
1042 	priv->bypass = set;
1043 	pm_runtime_put_sync(dai->dev);
1044 
1045 	return 0;
1046 }
1047 
1048 /* DPLL lock information */
1049 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
1050 				struct snd_ctl_elem_info *uinfo)
1051 {
1052 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1053 	uinfo->count = 1;
1054 	uinfo->value.integer.min = 16000;
1055 	uinfo->value.integer.max = 192000;
1056 
1057 	return 0;
1058 }
1059 
1060 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
1061 	24, 16, 12, 8, 6, 4, 3,
1062 };
1063 
1064 /* Get RX data clock rate given the SPDIF bus_clk */
1065 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
1066 				enum spdif_gainsel gainsel)
1067 {
1068 	struct regmap *regmap = spdif_priv->regmap;
1069 	struct platform_device *pdev = spdif_priv->pdev;
1070 	u64 tmpval64, busclk_freq = 0;
1071 	u32 freqmeas, phaseconf;
1072 	u8 clksrc;
1073 
1074 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
1075 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
1076 
1077 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
1078 
1079 	/* Get bus clock from system */
1080 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
1081 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
1082 
1083 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
1084 	tmpval64 = (u64) busclk_freq * freqmeas;
1085 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
1086 	do_div(tmpval64, 128 * 1024);
1087 
1088 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
1089 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
1090 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
1091 
1092 	return (int)tmpval64;
1093 }
1094 
1095 /*
1096  * Get DPLL lock or not info from stable interrupt status register.
1097  * User application must use this control to get locked,
1098  * then can do next PCM operation
1099  */
1100 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
1101 				struct snd_ctl_elem_value *ucontrol)
1102 {
1103 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1104 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1105 	int rate = 0;
1106 
1107 	if (spdif_priv->dpll_locked)
1108 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
1109 
1110 	ucontrol->value.integer.value[0] = rate;
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * User bit sync mode:
1117  * 1 CD User channel subcode
1118  * 0 Non-CD data
1119  */
1120 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
1121 			       struct snd_ctl_elem_value *ucontrol)
1122 {
1123 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1124 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1125 	struct regmap *regmap = spdif_priv->regmap;
1126 	u32 val;
1127 
1128 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
1129 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * User bit sync mode:
1136  * 1 CD User channel subcode
1137  * 0 Non-CD data
1138  */
1139 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
1140 				struct snd_ctl_elem_value *ucontrol)
1141 {
1142 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1143 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1144 	struct regmap *regmap = spdif_priv->regmap;
1145 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
1146 
1147 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
1148 
1149 	return 0;
1150 }
1151 
1152 /* FSL SPDIF IEC958 controller defines */
1153 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
1154 	/* Status cchanel controller */
1155 	{
1156 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1157 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1158 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1159 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1160 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1161 		.info = fsl_spdif_info,
1162 		.get = fsl_spdif_pb_get,
1163 		.put = fsl_spdif_pb_put,
1164 	},
1165 	{
1166 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1167 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
1168 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1169 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1170 		.info = fsl_spdif_info,
1171 		.get = fsl_spdif_capture_get,
1172 	},
1173 	/* User bits controller */
1174 	{
1175 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1176 		.name = "IEC958 Subcode Capture Default",
1177 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1178 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1179 		.info = fsl_spdif_info,
1180 		.get = fsl_spdif_subcode_get,
1181 	},
1182 	{
1183 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1184 		.name = "IEC958 Q-subcode Capture Default",
1185 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1186 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1187 		.info = fsl_spdif_qinfo,
1188 		.get = fsl_spdif_qget,
1189 	},
1190 	/* Valid bit error controller */
1191 	{
1192 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1193 		.name = "IEC958 RX V-Bit Errors",
1194 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1195 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1196 		.info = snd_ctl_boolean_mono_info,
1197 		.get = fsl_spdif_rx_vbit_get,
1198 	},
1199 	{
1200 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1201 		.name = "IEC958 TX V-Bit",
1202 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1203 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1204 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1205 		.info = snd_ctl_boolean_mono_info,
1206 		.get = fsl_spdif_tx_vbit_get,
1207 		.put = fsl_spdif_tx_vbit_put,
1208 	},
1209 	/* DPLL lock info get controller */
1210 	{
1211 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1212 		.name = RX_SAMPLE_RATE_KCONTROL,
1213 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1214 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1215 		.info = fsl_spdif_rxrate_info,
1216 		.get = fsl_spdif_rxrate_get,
1217 	},
1218 	/* RX bypass controller */
1219 	{
1220 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1221 		.name = "Bypass Mode",
1222 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1223 		.info = snd_ctl_boolean_mono_info,
1224 		.get = fsl_spdif_bypass_get,
1225 		.put = fsl_spdif_bypass_put,
1226 	},
1227 	/* User bit sync mode set/get controller */
1228 	{
1229 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1230 		.name = "IEC958 USyncMode CDText",
1231 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1232 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1233 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1234 		.info = snd_ctl_boolean_mono_info,
1235 		.get = fsl_spdif_usync_get,
1236 		.put = fsl_spdif_usync_put,
1237 	},
1238 };
1239 
1240 static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
1241 	{
1242 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1243 		.name = "IEC958 Raw Capture Mode",
1244 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1245 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1246 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1247 		.info = snd_ctl_boolean_mono_info,
1248 		.get = fsl_spdif_rx_rcm_get,
1249 		.put = fsl_spdif_rx_rcm_put,
1250 	},
1251 };
1252 
1253 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1254 {
1255 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1256 
1257 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1258 				  &spdif_private->dma_params_rx);
1259 
1260 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1261 
1262 	if (spdif_private->soc->raw_capture_mode)
1263 		snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm,
1264 					 ARRAY_SIZE(fsl_spdif_ctrls_rcm));
1265 
1266 	spdif_private->snd_card = dai->component->card->snd_card;
1267 	spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(dai->component->card,
1268 								   RX_SAMPLE_RATE_KCONTROL);
1269 	if (!spdif_private->rxrate_kcontrol)
1270 		dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n",
1271 			RX_SAMPLE_RATE_KCONTROL);
1272 
1273 	/*Clear the val bit for Tx*/
1274 	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1275 			   SCR_VAL_MASK, SCR_VAL_CLEAR);
1276 
1277 	return 0;
1278 }
1279 
1280 static struct snd_soc_dai_driver fsl_spdif_dai = {
1281 	.probe = &fsl_spdif_dai_probe,
1282 	.playback = {
1283 		.stream_name = "CPU-Playback",
1284 		.channels_min = 2,
1285 		.channels_max = 2,
1286 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1287 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1288 	},
1289 	.capture = {
1290 		.stream_name = "CPU-Capture",
1291 		.channels_min = 2,
1292 		.channels_max = 2,
1293 		.rates = FSL_SPDIF_RATES_CAPTURE,
1294 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1295 	},
1296 	.ops = &fsl_spdif_dai_ops,
1297 };
1298 
1299 static const struct snd_soc_component_driver fsl_spdif_component = {
1300 	.name			= "fsl-spdif",
1301 	.legacy_dai_naming	= 1,
1302 };
1303 
1304 /* FSL SPDIF REGMAP */
1305 static const struct reg_default fsl_spdif_reg_defaults[] = {
1306 	{REG_SPDIF_SCR,    0x00000400},
1307 	{REG_SPDIF_SRCD,   0x00000000},
1308 	{REG_SPDIF_SIE,	   0x00000000},
1309 	{REG_SPDIF_STL,	   0x00000000},
1310 	{REG_SPDIF_STR,	   0x00000000},
1311 	{REG_SPDIF_STCSCH, 0x00000000},
1312 	{REG_SPDIF_STCSCL, 0x00000000},
1313 	{REG_SPDIF_STCSPH, 0x00000000},
1314 	{REG_SPDIF_STCSPL, 0x00000000},
1315 	{REG_SPDIF_STC,	   0x00020f00},
1316 };
1317 
1318 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1319 {
1320 	switch (reg) {
1321 	case REG_SPDIF_SCR:
1322 	case REG_SPDIF_SRCD:
1323 	case REG_SPDIF_SRPC:
1324 	case REG_SPDIF_SIE:
1325 	case REG_SPDIF_SIS:
1326 	case REG_SPDIF_SRL:
1327 	case REG_SPDIF_SRR:
1328 	case REG_SPDIF_SRCSH:
1329 	case REG_SPDIF_SRCSL:
1330 	case REG_SPDIF_SRU:
1331 	case REG_SPDIF_SRQ:
1332 	case REG_SPDIF_STCSCH:
1333 	case REG_SPDIF_STCSCL:
1334 	case REG_SPDIF_STCSPH:
1335 	case REG_SPDIF_STCSPL:
1336 	case REG_SPDIF_SRFM:
1337 	case REG_SPDIF_STC:
1338 	case REG_SPDIF_SRCCA_31_0:
1339 	case REG_SPDIF_SRCCA_63_32:
1340 	case REG_SPDIF_SRCCA_95_64:
1341 	case REG_SPDIF_SRCCA_127_96:
1342 	case REG_SPDIF_SRCCA_159_128:
1343 	case REG_SPDIF_SRCCA_191_160:
1344 	case REG_SPDIF_STCCA_31_0:
1345 	case REG_SPDIF_STCCA_63_32:
1346 	case REG_SPDIF_STCCA_95_64:
1347 	case REG_SPDIF_STCCA_127_96:
1348 	case REG_SPDIF_STCCA_159_128:
1349 	case REG_SPDIF_STCCA_191_160:
1350 		return true;
1351 	default:
1352 		return false;
1353 	}
1354 }
1355 
1356 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1357 {
1358 	switch (reg) {
1359 	case REG_SPDIF_SRPC:
1360 	case REG_SPDIF_SIS:
1361 	case REG_SPDIF_SRL:
1362 	case REG_SPDIF_SRR:
1363 	case REG_SPDIF_SRCSH:
1364 	case REG_SPDIF_SRCSL:
1365 	case REG_SPDIF_SRU:
1366 	case REG_SPDIF_SRQ:
1367 	case REG_SPDIF_SRFM:
1368 	case REG_SPDIF_SRCCA_31_0:
1369 	case REG_SPDIF_SRCCA_63_32:
1370 	case REG_SPDIF_SRCCA_95_64:
1371 	case REG_SPDIF_SRCCA_127_96:
1372 	case REG_SPDIF_SRCCA_159_128:
1373 	case REG_SPDIF_SRCCA_191_160:
1374 		return true;
1375 	default:
1376 		return false;
1377 	}
1378 }
1379 
1380 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1381 {
1382 	switch (reg) {
1383 	case REG_SPDIF_SCR:
1384 	case REG_SPDIF_SRCD:
1385 	case REG_SPDIF_SRPC:
1386 	case REG_SPDIF_SIE:
1387 	case REG_SPDIF_SIC:
1388 	case REG_SPDIF_STL:
1389 	case REG_SPDIF_STR:
1390 	case REG_SPDIF_STCSCH:
1391 	case REG_SPDIF_STCSCL:
1392 	case REG_SPDIF_STCSPH:
1393 	case REG_SPDIF_STCSPL:
1394 	case REG_SPDIF_STC:
1395 	case REG_SPDIF_STCCA_31_0:
1396 	case REG_SPDIF_STCCA_63_32:
1397 	case REG_SPDIF_STCCA_95_64:
1398 	case REG_SPDIF_STCCA_127_96:
1399 	case REG_SPDIF_STCCA_159_128:
1400 	case REG_SPDIF_STCCA_191_160:
1401 		return true;
1402 	default:
1403 		return false;
1404 	}
1405 }
1406 
1407 static const struct regmap_config fsl_spdif_regmap_config = {
1408 	.reg_bits = 32,
1409 	.reg_stride = 4,
1410 	.val_bits = 32,
1411 
1412 	.max_register = REG_SPDIF_STCCA_191_160,
1413 	.reg_defaults = fsl_spdif_reg_defaults,
1414 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1415 	.readable_reg = fsl_spdif_readable_reg,
1416 	.volatile_reg = fsl_spdif_volatile_reg,
1417 	.writeable_reg = fsl_spdif_writeable_reg,
1418 	.cache_type = REGCACHE_FLAT,
1419 };
1420 
1421 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1422 				struct clk *clk, u64 savesub,
1423 				enum spdif_txrate index, bool round)
1424 {
1425 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1426 				    192000, };
1427 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1428 	u64 rate_ideal, rate_actual, sub;
1429 	u32 arate;
1430 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1431 	u8 txclk_df;
1432 
1433 	/* The sysclk has an extra divisor [2, 512] */
1434 	sysclk_dfmin = is_sysclk ? 2 : 1;
1435 	sysclk_dfmax = is_sysclk ? 512 : 1;
1436 
1437 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1438 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1439 			rate_ideal = rate[index] * txclk_df * 64ULL;
1440 			if (round)
1441 				rate_actual = clk_round_rate(clk, rate_ideal);
1442 			else
1443 				rate_actual = clk_get_rate(clk);
1444 
1445 			arate = rate_actual / 64;
1446 			arate /= txclk_df * sysclk_df;
1447 
1448 			if (arate == rate[index]) {
1449 				/* We are lucky */
1450 				savesub = 0;
1451 				spdif_priv->txclk_df[index] = txclk_df;
1452 				spdif_priv->sysclk_df[index] = sysclk_df;
1453 				spdif_priv->txrate[index] = arate;
1454 				goto out;
1455 			} else if (arate / rate[index] == 1) {
1456 				/* A little bigger than expect */
1457 				sub = (u64)(arate - rate[index]) * 100000;
1458 				do_div(sub, rate[index]);
1459 				if (sub >= savesub)
1460 					continue;
1461 				savesub = sub;
1462 				spdif_priv->txclk_df[index] = txclk_df;
1463 				spdif_priv->sysclk_df[index] = sysclk_df;
1464 				spdif_priv->txrate[index] = arate;
1465 			} else if (rate[index] / arate == 1) {
1466 				/* A little smaller than expect */
1467 				sub = (u64)(rate[index] - arate) * 100000;
1468 				do_div(sub, rate[index]);
1469 				if (sub >= savesub)
1470 					continue;
1471 				savesub = sub;
1472 				spdif_priv->txclk_df[index] = txclk_df;
1473 				spdif_priv->sysclk_df[index] = sysclk_df;
1474 				spdif_priv->txrate[index] = arate;
1475 			}
1476 		}
1477 	}
1478 
1479 out:
1480 	return savesub;
1481 }
1482 
1483 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1484 				enum spdif_txrate index)
1485 {
1486 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1487 				    192000, };
1488 	struct platform_device *pdev = spdif_priv->pdev;
1489 	struct device *dev = &pdev->dev;
1490 	u64 savesub = 100000, ret;
1491 	struct clk *clk;
1492 	int i;
1493 
1494 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1495 		clk = spdif_priv->txclk[i];
1496 		if (IS_ERR(clk)) {
1497 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1498 			return PTR_ERR(clk);
1499 		}
1500 		if (!clk_get_rate(clk))
1501 			continue;
1502 
1503 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1504 					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1505 		if (savesub == ret)
1506 			continue;
1507 
1508 		savesub = ret;
1509 		spdif_priv->txclk_src[index] = i;
1510 
1511 		/* To quick catch a divisor, we allow a 0.1% deviation */
1512 		if (savesub < 100)
1513 			break;
1514 	}
1515 
1516 	dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1517 			spdif_priv->txclk_src[index], rate[index]);
1518 	dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1519 			spdif_priv->txclk_df[index], rate[index]);
1520 	if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk))
1521 		dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1522 				spdif_priv->sysclk_df[index], rate[index]);
1523 	dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1524 			rate[index], spdif_priv->txrate[index]);
1525 
1526 	return 0;
1527 }
1528 
1529 static int fsl_spdif_probe(struct platform_device *pdev)
1530 {
1531 	struct fsl_spdif_priv *spdif_priv;
1532 	struct spdif_mixer_control *ctrl;
1533 	struct resource *res;
1534 	void __iomem *regs;
1535 	int irq, ret, i;
1536 	char tmp[16];
1537 
1538 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1539 	if (!spdif_priv)
1540 		return -ENOMEM;
1541 
1542 	spdif_priv->pdev = pdev;
1543 
1544 	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1545 
1546 	/* Initialize this copy of the CPU DAI driver structure */
1547 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1548 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1549 	spdif_priv->cpu_dai_drv.playback.formats =
1550 				spdif_priv->soc->tx_formats;
1551 
1552 	/* Get the addresses and IRQ */
1553 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1554 	if (IS_ERR(regs))
1555 		return PTR_ERR(regs);
1556 
1557 	spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1558 	if (IS_ERR(spdif_priv->regmap)) {
1559 		dev_err(&pdev->dev, "regmap init failed\n");
1560 		return PTR_ERR(spdif_priv->regmap);
1561 	}
1562 
1563 	for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1564 		irq = platform_get_irq(pdev, i);
1565 		if (irq < 0)
1566 			return irq;
1567 
1568 		ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1569 				       dev_name(&pdev->dev), spdif_priv);
1570 		if (ret) {
1571 			dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1572 			return ret;
1573 		}
1574 	}
1575 
1576 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1577 		sprintf(tmp, "rxtx%d", i);
1578 		spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp);
1579 		if (IS_ERR(spdif_priv->txclk[i])) {
1580 			dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
1581 			return PTR_ERR(spdif_priv->txclk[i]);
1582 		}
1583 	}
1584 
1585 	/* Get system clock for rx clock rate calculation */
1586 	spdif_priv->sysclk = spdif_priv->txclk[5];
1587 	if (IS_ERR(spdif_priv->sysclk)) {
1588 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1589 		return PTR_ERR(spdif_priv->sysclk);
1590 	}
1591 
1592 	/* Get core clock for data register access via DMA */
1593 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1594 	if (IS_ERR(spdif_priv->coreclk)) {
1595 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1596 		return PTR_ERR(spdif_priv->coreclk);
1597 	}
1598 
1599 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1600 	if (IS_ERR(spdif_priv->spbaclk))
1601 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1602 
1603 	/* Select clock source for rx/tx clock */
1604 	spdif_priv->rxclk = spdif_priv->txclk[1];
1605 	if (IS_ERR(spdif_priv->rxclk)) {
1606 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1607 		return PTR_ERR(spdif_priv->rxclk);
1608 	}
1609 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1610 
1611 	fsl_asoc_get_pll_clocks(&pdev->dev, &spdif_priv->pll8k_clk,
1612 				&spdif_priv->pll11k_clk);
1613 
1614 	/* Initial spinlock for control data */
1615 	ctrl = &spdif_priv->fsl_spdif_control;
1616 	spin_lock_init(&ctrl->ctl_lock);
1617 
1618 	/* Init tx channel status default value */
1619 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1620 			     IEC958_AES0_CON_EMPHASIS_5015;
1621 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1622 	ctrl->ch_status[2] = 0x00;
1623 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1624 			     IEC958_AES3_CON_CLOCK_1000PPM;
1625 
1626 	spdif_priv->dpll_locked = false;
1627 
1628 	spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1629 	spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1630 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1631 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1632 
1633 	/* Register with ASoC */
1634 	dev_set_drvdata(&pdev->dev, spdif_priv);
1635 	pm_runtime_enable(&pdev->dev);
1636 	regcache_cache_only(spdif_priv->regmap, true);
1637 
1638 	/*
1639 	 * Register platform component before registering cpu dai for there
1640 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1641 	 */
1642 	ret = imx_pcm_dma_init(pdev);
1643 	if (ret) {
1644 		dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n");
1645 		goto err_pm_disable;
1646 	}
1647 
1648 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1649 					      &spdif_priv->cpu_dai_drv, 1);
1650 	if (ret) {
1651 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1652 		goto err_pm_disable;
1653 	}
1654 
1655 	return ret;
1656 
1657 err_pm_disable:
1658 	pm_runtime_disable(&pdev->dev);
1659 	return ret;
1660 }
1661 
1662 static int fsl_spdif_remove(struct platform_device *pdev)
1663 {
1664 	pm_runtime_disable(&pdev->dev);
1665 
1666 	return 0;
1667 }
1668 
1669 #ifdef CONFIG_PM
1670 static int fsl_spdif_runtime_suspend(struct device *dev)
1671 {
1672 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1673 	int i;
1674 
1675 	/* Disable all the interrupts */
1676 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0);
1677 
1678 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1679 			&spdif_priv->regcache_srpc);
1680 	regcache_cache_only(spdif_priv->regmap, true);
1681 
1682 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
1683 		clk_disable_unprepare(spdif_priv->txclk[i]);
1684 
1685 	if (!IS_ERR(spdif_priv->spbaclk))
1686 		clk_disable_unprepare(spdif_priv->spbaclk);
1687 	clk_disable_unprepare(spdif_priv->coreclk);
1688 
1689 	return 0;
1690 }
1691 
1692 static int fsl_spdif_runtime_resume(struct device *dev)
1693 {
1694 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1695 	int ret;
1696 	int i;
1697 
1698 	ret = clk_prepare_enable(spdif_priv->coreclk);
1699 	if (ret) {
1700 		dev_err(dev, "failed to enable core clock\n");
1701 		return ret;
1702 	}
1703 
1704 	if (!IS_ERR(spdif_priv->spbaclk)) {
1705 		ret = clk_prepare_enable(spdif_priv->spbaclk);
1706 		if (ret) {
1707 			dev_err(dev, "failed to enable spba clock\n");
1708 			goto disable_core_clk;
1709 		}
1710 	}
1711 
1712 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1713 		ret = clk_prepare_enable(spdif_priv->txclk[i]);
1714 		if (ret)
1715 			goto disable_tx_clk;
1716 	}
1717 
1718 	regcache_cache_only(spdif_priv->regmap, false);
1719 	regcache_mark_dirty(spdif_priv->regmap);
1720 
1721 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1722 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1723 			spdif_priv->regcache_srpc);
1724 
1725 	ret = regcache_sync(spdif_priv->regmap);
1726 	if (ret)
1727 		goto disable_tx_clk;
1728 
1729 	return 0;
1730 
1731 disable_tx_clk:
1732 	for (i--; i >= 0; i--)
1733 		clk_disable_unprepare(spdif_priv->txclk[i]);
1734 	if (!IS_ERR(spdif_priv->spbaclk))
1735 		clk_disable_unprepare(spdif_priv->spbaclk);
1736 disable_core_clk:
1737 	clk_disable_unprepare(spdif_priv->coreclk);
1738 
1739 	return ret;
1740 }
1741 #endif /* CONFIG_PM */
1742 
1743 static const struct dev_pm_ops fsl_spdif_pm = {
1744 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1745 				pm_runtime_force_resume)
1746 	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1747 			   NULL)
1748 };
1749 
1750 static const struct of_device_id fsl_spdif_dt_ids[] = {
1751 	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1752 	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1753 	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1754 	{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1755 	{ .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
1756 	{ .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
1757 	{}
1758 };
1759 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1760 
1761 static struct platform_driver fsl_spdif_driver = {
1762 	.driver = {
1763 		.name = "fsl-spdif-dai",
1764 		.of_match_table = fsl_spdif_dt_ids,
1765 		.pm = &fsl_spdif_pm,
1766 	},
1767 	.probe = fsl_spdif_probe,
1768 	.remove = fsl_spdif_remove,
1769 };
1770 
1771 module_platform_driver(fsl_spdif_driver);
1772 
1773 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1774 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1775 MODULE_LICENSE("GPL v2");
1776 MODULE_ALIAS("platform:fsl-spdif-dai");
1777