1 /* 2 * Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver 3 * 4 * Copyright (C) 2013 Freescale Semiconductor, Inc. 5 * 6 * Based on stmp3xxx_spdif_dai.c 7 * Vladimir Barinov <vbarinov@embeddedalley.com> 8 * Copyright 2008 SigmaTel, Inc 9 * Copyright 2008 Embedded Alley Solutions, Inc 10 * 11 * This file is licensed under the terms of the GNU General Public License 12 * version 2. This program is licensed "as is" without any warranty of any 13 * kind, whether express or implied. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/clk.h> 18 #include <linux/clk-private.h> 19 #include <linux/bitrev.h> 20 #include <linux/regmap.h> 21 #include <linux/of_address.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 25 #include <sound/asoundef.h> 26 #include <sound/soc.h> 27 #include <sound/dmaengine_pcm.h> 28 29 #include "fsl_spdif.h" 30 #include "imx-pcm.h" 31 32 #define FSL_SPDIF_TXFIFO_WML 0x8 33 #define FSL_SPDIF_RXFIFO_WML 0x8 34 35 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC) 36 #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL | INT_URX_OV|\ 37 INT_QRX_FUL | INT_QRX_OV | INT_UQ_SYNC | INT_UQ_ERR |\ 38 INT_RXFIFO_RESYNC | INT_LOSS_LOCK | INT_DPLL_LOCKED) 39 40 /* Index list for the values that has if (DPLL Locked) condition */ 41 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb }; 42 #define SRPC_NODPLL_START1 0x5 43 #define SRPC_NODPLL_START2 0xc 44 45 #define DEFAULT_RXCLK_SRC 1 46 47 /* 48 * SPDIF control structure 49 * Defines channel status, subcode and Q sub 50 */ 51 struct spdif_mixer_control { 52 /* spinlock to access control data */ 53 spinlock_t ctl_lock; 54 55 /* IEC958 channel tx status bit */ 56 unsigned char ch_status[4]; 57 58 /* User bits */ 59 unsigned char subcode[2 * SPDIF_UBITS_SIZE]; 60 61 /* Q subcode part of user bits */ 62 unsigned char qsub[2 * SPDIF_QSUB_SIZE]; 63 64 /* Buffer offset for U/Q */ 65 u32 upos; 66 u32 qpos; 67 68 /* Ready buffer index of the two buffers */ 69 u32 ready_buf; 70 }; 71 72 struct fsl_spdif_priv { 73 struct spdif_mixer_control fsl_spdif_control; 74 struct snd_soc_dai_driver cpu_dai_drv; 75 struct platform_device *pdev; 76 struct regmap *regmap; 77 bool dpll_locked; 78 u8 txclk_div[SPDIF_TXRATE_MAX]; 79 u8 txclk_src[SPDIF_TXRATE_MAX]; 80 u8 rxclk_src; 81 struct clk *txclk[SPDIF_TXRATE_MAX]; 82 struct clk *rxclk; 83 struct snd_dmaengine_dai_dma_data dma_params_tx; 84 struct snd_dmaengine_dai_dma_data dma_params_rx; 85 86 /* The name space will be allocated dynamically */ 87 char name[0]; 88 }; 89 90 91 /* DPLL locked and lock loss interrupt handler */ 92 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv) 93 { 94 struct regmap *regmap = spdif_priv->regmap; 95 struct platform_device *pdev = spdif_priv->pdev; 96 u32 locked; 97 98 regmap_read(regmap, REG_SPDIF_SRPC, &locked); 99 locked &= SRPC_DPLL_LOCKED; 100 101 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n", 102 locked ? "locked" : "loss lock"); 103 104 spdif_priv->dpll_locked = locked ? true : false; 105 } 106 107 /* Receiver found illegal symbol interrupt handler */ 108 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv) 109 { 110 struct regmap *regmap = spdif_priv->regmap; 111 struct platform_device *pdev = spdif_priv->pdev; 112 113 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n"); 114 115 if (!spdif_priv->dpll_locked) { 116 /* DPLL unlocked seems no audio stream */ 117 regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0); 118 } 119 } 120 121 /* U/Q Channel receive register full */ 122 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name) 123 { 124 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 125 struct regmap *regmap = spdif_priv->regmap; 126 struct platform_device *pdev = spdif_priv->pdev; 127 u32 *pos, size, val, reg; 128 129 switch (name) { 130 case 'U': 131 pos = &ctrl->upos; 132 size = SPDIF_UBITS_SIZE; 133 reg = REG_SPDIF_SRU; 134 break; 135 case 'Q': 136 pos = &ctrl->qpos; 137 size = SPDIF_QSUB_SIZE; 138 reg = REG_SPDIF_SRQ; 139 break; 140 default: 141 dev_err(&pdev->dev, "unsupported channel name\n"); 142 return; 143 } 144 145 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name); 146 147 if (*pos >= size * 2) { 148 *pos = 0; 149 } else if (unlikely((*pos % size) + 3 > size)) { 150 dev_err(&pdev->dev, "User bit receivce buffer overflow\n"); 151 return; 152 } 153 154 regmap_read(regmap, reg, &val); 155 ctrl->subcode[*pos++] = val >> 16; 156 ctrl->subcode[*pos++] = val >> 8; 157 ctrl->subcode[*pos++] = val; 158 } 159 160 /* U/Q Channel sync found */ 161 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv) 162 { 163 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 164 struct platform_device *pdev = spdif_priv->pdev; 165 166 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n"); 167 168 /* U/Q buffer reset */ 169 if (ctrl->qpos == 0) 170 return; 171 172 /* Set ready to this buffer */ 173 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1; 174 } 175 176 /* U/Q Channel framing error */ 177 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv) 178 { 179 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 180 struct regmap *regmap = spdif_priv->regmap; 181 struct platform_device *pdev = spdif_priv->pdev; 182 u32 val; 183 184 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n"); 185 186 /* Read U/Q data to clear the irq and do buffer reset */ 187 regmap_read(regmap, REG_SPDIF_SRU, &val); 188 regmap_read(regmap, REG_SPDIF_SRQ, &val); 189 190 /* Drop this U/Q buffer */ 191 ctrl->ready_buf = 0; 192 ctrl->upos = 0; 193 ctrl->qpos = 0; 194 } 195 196 /* Get spdif interrupt status and clear the interrupt */ 197 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv) 198 { 199 struct regmap *regmap = spdif_priv->regmap; 200 u32 val, val2; 201 202 regmap_read(regmap, REG_SPDIF_SIS, &val); 203 regmap_read(regmap, REG_SPDIF_SIE, &val2); 204 205 regmap_write(regmap, REG_SPDIF_SIC, val & val2); 206 207 return val; 208 } 209 210 static irqreturn_t spdif_isr(int irq, void *devid) 211 { 212 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid; 213 struct platform_device *pdev = spdif_priv->pdev; 214 u32 sis; 215 216 sis = spdif_intr_status_clear(spdif_priv); 217 218 if (sis & INT_DPLL_LOCKED) 219 spdif_irq_dpll_lock(spdif_priv); 220 221 if (sis & INT_TXFIFO_UNOV) 222 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n"); 223 224 if (sis & INT_TXFIFO_RESYNC) 225 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n"); 226 227 if (sis & INT_CNEW) 228 dev_dbg(&pdev->dev, "isr: cstatus new\n"); 229 230 if (sis & INT_VAL_NOGOOD) 231 dev_dbg(&pdev->dev, "isr: validity flag no good\n"); 232 233 if (sis & INT_SYM_ERR) 234 spdif_irq_sym_error(spdif_priv); 235 236 if (sis & INT_BIT_ERR) 237 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n"); 238 239 if (sis & INT_URX_FUL) 240 spdif_irq_uqrx_full(spdif_priv, 'U'); 241 242 if (sis & INT_URX_OV) 243 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n"); 244 245 if (sis & INT_QRX_FUL) 246 spdif_irq_uqrx_full(spdif_priv, 'Q'); 247 248 if (sis & INT_QRX_OV) 249 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n"); 250 251 if (sis & INT_UQ_SYNC) 252 spdif_irq_uq_sync(spdif_priv); 253 254 if (sis & INT_UQ_ERR) 255 spdif_irq_uq_err(spdif_priv); 256 257 if (sis & INT_RXFIFO_UNOV) 258 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n"); 259 260 if (sis & INT_RXFIFO_RESYNC) 261 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n"); 262 263 if (sis & INT_LOSS_LOCK) 264 spdif_irq_dpll_lock(spdif_priv); 265 266 /* FIXME: Write Tx FIFO to clear TxEm */ 267 if (sis & INT_TX_EM) 268 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n"); 269 270 /* FIXME: Read Rx FIFO to clear RxFIFOFul */ 271 if (sis & INT_RXFIFO_FUL) 272 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n"); 273 274 return IRQ_HANDLED; 275 } 276 277 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv) 278 { 279 struct regmap *regmap = spdif_priv->regmap; 280 u32 val, cycle = 1000; 281 282 regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET); 283 284 /* 285 * RESET bit would be cleared after finishing its reset procedure, 286 * which typically lasts 8 cycles. 1000 cycles will keep it safe. 287 */ 288 do { 289 regmap_read(regmap, REG_SPDIF_SCR, &val); 290 } while ((val & SCR_SOFT_RESET) && cycle--); 291 292 if (cycle) 293 return 0; 294 else 295 return -EBUSY; 296 } 297 298 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl, 299 u8 mask, u8 cstatus) 300 { 301 ctrl->ch_status[3] &= ~mask; 302 ctrl->ch_status[3] |= cstatus & mask; 303 } 304 305 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv) 306 { 307 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 308 struct regmap *regmap = spdif_priv->regmap; 309 struct platform_device *pdev = spdif_priv->pdev; 310 u32 ch_status; 311 312 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) | 313 (bitrev8(ctrl->ch_status[1]) << 8) | 314 bitrev8(ctrl->ch_status[2]); 315 regmap_write(regmap, REG_SPDIF_STCSCH, ch_status); 316 317 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status); 318 319 ch_status = bitrev8(ctrl->ch_status[3]) << 16; 320 regmap_write(regmap, REG_SPDIF_STCSCL, ch_status); 321 322 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status); 323 } 324 325 /* Set SPDIF PhaseConfig register for rx clock */ 326 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv, 327 enum spdif_gainsel gainsel, int dpll_locked) 328 { 329 struct regmap *regmap = spdif_priv->regmap; 330 u8 clksrc = spdif_priv->rxclk_src; 331 332 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX) 333 return -EINVAL; 334 335 regmap_update_bits(regmap, REG_SPDIF_SRPC, 336 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, 337 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel)); 338 339 return 0; 340 } 341 342 static int spdif_set_sample_rate(struct snd_pcm_substream *substream, 343 int sample_rate) 344 { 345 struct snd_soc_pcm_runtime *rtd = substream->private_data; 346 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 347 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 348 struct regmap *regmap = spdif_priv->regmap; 349 struct platform_device *pdev = spdif_priv->pdev; 350 unsigned long csfs = 0; 351 u32 stc, mask, rate; 352 u8 clk, div; 353 int ret; 354 355 switch (sample_rate) { 356 case 32000: 357 rate = SPDIF_TXRATE_32000; 358 csfs = IEC958_AES3_CON_FS_32000; 359 break; 360 case 44100: 361 rate = SPDIF_TXRATE_44100; 362 csfs = IEC958_AES3_CON_FS_44100; 363 break; 364 case 48000: 365 rate = SPDIF_TXRATE_48000; 366 csfs = IEC958_AES3_CON_FS_48000; 367 break; 368 default: 369 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate); 370 return -EINVAL; 371 } 372 373 clk = spdif_priv->txclk_src[rate]; 374 if (clk >= STC_TXCLK_SRC_MAX) { 375 dev_err(&pdev->dev, "tx clock source is out of range\n"); 376 return -EINVAL; 377 } 378 379 div = spdif_priv->txclk_div[rate]; 380 if (div == 0) { 381 dev_err(&pdev->dev, "the divisor can't be zero\n"); 382 return -EINVAL; 383 } 384 385 /* 386 * The S/PDIF block needs a clock of 64 * fs * div. The S/PDIF block 387 * will divide by (div). So request 64 * fs * (div+1) which will 388 * get rounded. 389 */ 390 ret = clk_set_rate(spdif_priv->txclk[rate], 64 * sample_rate * (div + 1)); 391 if (ret) { 392 dev_err(&pdev->dev, "failed to set tx clock rate\n"); 393 return ret; 394 } 395 396 dev_dbg(&pdev->dev, "expected clock rate = %d\n", 397 (64 * sample_rate * div)); 398 dev_dbg(&pdev->dev, "actual clock rate = %ld\n", 399 clk_get_rate(spdif_priv->txclk[rate])); 400 401 /* set fs field in consumer channel status */ 402 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs); 403 404 /* select clock source and divisor */ 405 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | STC_TXCLK_DIV(div); 406 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | STC_TXCLK_DIV_MASK; 407 regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc); 408 409 dev_dbg(&pdev->dev, "set sample rate to %d\n", sample_rate); 410 411 return 0; 412 } 413 414 static int fsl_spdif_startup(struct snd_pcm_substream *substream, 415 struct snd_soc_dai *cpu_dai) 416 { 417 struct snd_soc_pcm_runtime *rtd = substream->private_data; 418 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 419 struct platform_device *pdev = spdif_priv->pdev; 420 struct regmap *regmap = spdif_priv->regmap; 421 u32 scr, mask, i; 422 int ret; 423 424 /* Reset module and interrupts only for first initialization */ 425 if (!cpu_dai->active) { 426 ret = spdif_softreset(spdif_priv); 427 if (ret) { 428 dev_err(&pdev->dev, "failed to soft reset\n"); 429 return ret; 430 } 431 432 /* Disable all the interrupts */ 433 regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0); 434 } 435 436 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 437 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL | 438 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP | 439 SCR_TXFIFO_FSEL_IF8; 440 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | 441 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | 442 SCR_TXFIFO_FSEL_MASK; 443 for (i = 0; i < SPDIF_TXRATE_MAX; i++) 444 clk_prepare_enable(spdif_priv->txclk[i]); 445 } else { 446 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC; 447 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| 448 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; 449 clk_prepare_enable(spdif_priv->rxclk); 450 } 451 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); 452 453 /* Power up SPDIF module */ 454 regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0); 455 456 return 0; 457 } 458 459 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream, 460 struct snd_soc_dai *cpu_dai) 461 { 462 struct snd_soc_pcm_runtime *rtd = substream->private_data; 463 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 464 struct regmap *regmap = spdif_priv->regmap; 465 u32 scr, mask, i; 466 467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 468 scr = 0; 469 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | 470 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | 471 SCR_TXFIFO_FSEL_MASK; 472 for (i = 0; i < SPDIF_TXRATE_MAX; i++) 473 clk_disable_unprepare(spdif_priv->txclk[i]); 474 } else { 475 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO; 476 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| 477 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; 478 clk_disable_unprepare(spdif_priv->rxclk); 479 } 480 regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); 481 482 /* Power down SPDIF module only if tx&rx are both inactive */ 483 if (!cpu_dai->active) { 484 spdif_intr_status_clear(spdif_priv); 485 regmap_update_bits(regmap, REG_SPDIF_SCR, 486 SCR_LOW_POWER, SCR_LOW_POWER); 487 } 488 } 489 490 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream, 491 struct snd_pcm_hw_params *params, 492 struct snd_soc_dai *dai) 493 { 494 struct snd_soc_pcm_runtime *rtd = substream->private_data; 495 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 496 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 497 struct platform_device *pdev = spdif_priv->pdev; 498 u32 sample_rate = params_rate(params); 499 int ret = 0; 500 501 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 502 ret = spdif_set_sample_rate(substream, sample_rate); 503 if (ret) { 504 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n", 505 __func__, sample_rate); 506 return ret; 507 } 508 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK, 509 IEC958_AES3_CON_CLOCK_1000PPM); 510 spdif_write_channel_status(spdif_priv); 511 } else { 512 /* Setup rx clock source */ 513 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1); 514 } 515 516 return ret; 517 } 518 519 static int fsl_spdif_trigger(struct snd_pcm_substream *substream, 520 int cmd, struct snd_soc_dai *dai) 521 { 522 struct snd_soc_pcm_runtime *rtd = substream->private_data; 523 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai); 524 struct regmap *regmap = spdif_priv->regmap; 525 int is_playack = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 526 u32 intr = is_playack ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE; 527 u32 dmaen = is_playack ? SCR_DMA_TX_EN : SCR_DMA_RX_EN;; 528 529 switch (cmd) { 530 case SNDRV_PCM_TRIGGER_START: 531 case SNDRV_PCM_TRIGGER_RESUME: 532 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 533 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr); 534 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen); 535 break; 536 case SNDRV_PCM_TRIGGER_STOP: 537 case SNDRV_PCM_TRIGGER_SUSPEND: 538 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 539 regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0); 540 regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0); 541 break; 542 default: 543 return -EINVAL; 544 } 545 546 return 0; 547 } 548 549 static struct snd_soc_dai_ops fsl_spdif_dai_ops = { 550 .startup = fsl_spdif_startup, 551 .hw_params = fsl_spdif_hw_params, 552 .trigger = fsl_spdif_trigger, 553 .shutdown = fsl_spdif_shutdown, 554 }; 555 556 557 /* 558 * FSL SPDIF IEC958 controller(mixer) functions 559 * 560 * Channel status get/put control 561 * User bit value get/put control 562 * Valid bit value get control 563 * DPLL lock status get control 564 * User bit sync mode selection control 565 */ 566 567 static int fsl_spdif_info(struct snd_kcontrol *kcontrol, 568 struct snd_ctl_elem_info *uinfo) 569 { 570 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 571 uinfo->count = 1; 572 573 return 0; 574 } 575 576 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol, 577 struct snd_ctl_elem_value *uvalue) 578 { 579 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 580 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 581 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 582 583 uvalue->value.iec958.status[0] = ctrl->ch_status[0]; 584 uvalue->value.iec958.status[1] = ctrl->ch_status[1]; 585 uvalue->value.iec958.status[2] = ctrl->ch_status[2]; 586 uvalue->value.iec958.status[3] = ctrl->ch_status[3]; 587 588 return 0; 589 } 590 591 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol, 592 struct snd_ctl_elem_value *uvalue) 593 { 594 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 595 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 596 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 597 598 ctrl->ch_status[0] = uvalue->value.iec958.status[0]; 599 ctrl->ch_status[1] = uvalue->value.iec958.status[1]; 600 ctrl->ch_status[2] = uvalue->value.iec958.status[2]; 601 ctrl->ch_status[3] = uvalue->value.iec958.status[3]; 602 603 spdif_write_channel_status(spdif_priv); 604 605 return 0; 606 } 607 608 /* Get channel status from SPDIF_RX_CCHAN register */ 609 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol, 610 struct snd_ctl_elem_value *ucontrol) 611 { 612 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 613 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 614 struct regmap *regmap = spdif_priv->regmap; 615 u32 cstatus, val; 616 617 regmap_read(regmap, REG_SPDIF_SIS, &val); 618 if (!(val & INT_CNEW)) { 619 return -EAGAIN; 620 } 621 622 regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus); 623 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF; 624 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF; 625 ucontrol->value.iec958.status[2] = cstatus & 0xFF; 626 627 regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus); 628 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF; 629 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF; 630 ucontrol->value.iec958.status[5] = cstatus & 0xFF; 631 632 /* Clear intr */ 633 regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW); 634 635 return 0; 636 } 637 638 /* 639 * Get User bits (subcode) from chip value which readed out 640 * in UChannel register. 641 */ 642 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol, 643 struct snd_ctl_elem_value *ucontrol) 644 { 645 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 646 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 647 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 648 unsigned long flags; 649 int ret = 0; 650 651 spin_lock_irqsave(&ctrl->ctl_lock, flags); 652 if (ctrl->ready_buf) { 653 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE; 654 memcpy(&ucontrol->value.iec958.subcode[0], 655 &ctrl->subcode[idx], SPDIF_UBITS_SIZE); 656 } else { 657 ret = -EAGAIN; 658 } 659 spin_unlock_irqrestore(&ctrl->ctl_lock, flags); 660 661 return ret; 662 } 663 664 /* Q-subcode infomation. The byte size is SPDIF_UBITS_SIZE/8 */ 665 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol, 666 struct snd_ctl_elem_info *uinfo) 667 { 668 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 669 uinfo->count = SPDIF_QSUB_SIZE; 670 671 return 0; 672 } 673 674 /* Get Q subcode from chip value which readed out in QChannel register */ 675 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol, 676 struct snd_ctl_elem_value *ucontrol) 677 { 678 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 679 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 680 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; 681 unsigned long flags; 682 int ret = 0; 683 684 spin_lock_irqsave(&ctrl->ctl_lock, flags); 685 if (ctrl->ready_buf) { 686 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE; 687 memcpy(&ucontrol->value.bytes.data[0], 688 &ctrl->qsub[idx], SPDIF_QSUB_SIZE); 689 } else { 690 ret = -EAGAIN; 691 } 692 spin_unlock_irqrestore(&ctrl->ctl_lock, flags); 693 694 return ret; 695 } 696 697 /* Valid bit infomation */ 698 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol, 699 struct snd_ctl_elem_info *uinfo) 700 { 701 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 702 uinfo->count = 1; 703 uinfo->value.integer.min = 0; 704 uinfo->value.integer.max = 1; 705 706 return 0; 707 } 708 709 /* Get valid good bit from interrupt status register */ 710 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol, 711 struct snd_ctl_elem_value *ucontrol) 712 { 713 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 714 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 715 struct regmap *regmap = spdif_priv->regmap; 716 u32 val; 717 718 val = regmap_read(regmap, REG_SPDIF_SIS, &val); 719 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0; 720 regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD); 721 722 return 0; 723 } 724 725 /* DPLL lock infomation */ 726 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol, 727 struct snd_ctl_elem_info *uinfo) 728 { 729 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 730 uinfo->count = 1; 731 uinfo->value.integer.min = 16000; 732 uinfo->value.integer.max = 96000; 733 734 return 0; 735 } 736 737 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = { 738 24, 16, 12, 8, 6, 4, 3, 739 }; 740 741 /* Get RX data clock rate given the SPDIF bus_clk */ 742 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv, 743 enum spdif_gainsel gainsel) 744 { 745 struct regmap *regmap = spdif_priv->regmap; 746 struct platform_device *pdev = spdif_priv->pdev; 747 u64 tmpval64, busclk_freq = 0; 748 u32 freqmeas, phaseconf; 749 u8 clksrc; 750 751 regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas); 752 regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf); 753 754 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf; 755 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) { 756 /* Get bus clock from system */ 757 busclk_freq = clk_get_rate(spdif_priv->rxclk); 758 } 759 760 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */ 761 tmpval64 = (u64) busclk_freq * freqmeas; 762 do_div(tmpval64, gainsel_multi[gainsel] * 1024); 763 do_div(tmpval64, 128 * 1024); 764 765 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas); 766 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq); 767 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64); 768 769 return (int)tmpval64; 770 } 771 772 /* 773 * Get DPLL lock or not info from stable interrupt status register. 774 * User application must use this control to get locked, 775 * then can do next PCM operation 776 */ 777 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol, 778 struct snd_ctl_elem_value *ucontrol) 779 { 780 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 781 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 782 int rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL); 783 784 if (spdif_priv->dpll_locked) 785 ucontrol->value.integer.value[0] = rate; 786 else 787 ucontrol->value.integer.value[0] = 0; 788 789 return 0; 790 } 791 792 /* User bit sync mode info */ 793 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol, 794 struct snd_ctl_elem_info *uinfo) 795 { 796 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 797 uinfo->count = 1; 798 uinfo->value.integer.min = 0; 799 uinfo->value.integer.max = 1; 800 801 return 0; 802 } 803 804 /* 805 * User bit sync mode: 806 * 1 CD User channel subcode 807 * 0 Non-CD data 808 */ 809 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol, 810 struct snd_ctl_elem_value *ucontrol) 811 { 812 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 813 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 814 struct regmap *regmap = spdif_priv->regmap; 815 u32 val; 816 817 regmap_read(regmap, REG_SPDIF_SRCD, &val); 818 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0; 819 820 return 0; 821 } 822 823 /* 824 * User bit sync mode: 825 * 1 CD User channel subcode 826 * 0 Non-CD data 827 */ 828 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol, 829 struct snd_ctl_elem_value *ucontrol) 830 { 831 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); 832 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); 833 struct regmap *regmap = spdif_priv->regmap; 834 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET; 835 836 regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val); 837 838 return 0; 839 } 840 841 /* FSL SPDIF IEC958 controller defines */ 842 static struct snd_kcontrol_new fsl_spdif_ctrls[] = { 843 /* Status cchanel controller */ 844 { 845 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 846 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 847 .access = SNDRV_CTL_ELEM_ACCESS_READ | 848 SNDRV_CTL_ELEM_ACCESS_WRITE | 849 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 850 .info = fsl_spdif_info, 851 .get = fsl_spdif_pb_get, 852 .put = fsl_spdif_pb_put, 853 }, 854 { 855 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 856 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), 857 .access = SNDRV_CTL_ELEM_ACCESS_READ | 858 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 859 .info = fsl_spdif_info, 860 .get = fsl_spdif_capture_get, 861 }, 862 /* User bits controller */ 863 { 864 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 865 .name = "IEC958 Subcode Capture Default", 866 .access = SNDRV_CTL_ELEM_ACCESS_READ | 867 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 868 .info = fsl_spdif_info, 869 .get = fsl_spdif_subcode_get, 870 }, 871 { 872 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 873 .name = "IEC958 Q-subcode Capture Default", 874 .access = SNDRV_CTL_ELEM_ACCESS_READ | 875 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 876 .info = fsl_spdif_qinfo, 877 .get = fsl_spdif_qget, 878 }, 879 /* Valid bit error controller */ 880 { 881 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 882 .name = "IEC958 V-Bit Errors", 883 .access = SNDRV_CTL_ELEM_ACCESS_READ | 884 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 885 .info = fsl_spdif_vbit_info, 886 .get = fsl_spdif_vbit_get, 887 }, 888 /* DPLL lock info get controller */ 889 { 890 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 891 .name = "RX Sample Rate", 892 .access = SNDRV_CTL_ELEM_ACCESS_READ | 893 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 894 .info = fsl_spdif_rxrate_info, 895 .get = fsl_spdif_rxrate_get, 896 }, 897 /* User bit sync mode set/get controller */ 898 { 899 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 900 .name = "IEC958 USyncMode CDText", 901 .access = SNDRV_CTL_ELEM_ACCESS_READ | 902 SNDRV_CTL_ELEM_ACCESS_WRITE | 903 SNDRV_CTL_ELEM_ACCESS_VOLATILE, 904 .info = fsl_spdif_usync_info, 905 .get = fsl_spdif_usync_get, 906 .put = fsl_spdif_usync_put, 907 }, 908 }; 909 910 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai) 911 { 912 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai); 913 914 snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx, 915 &spdif_private->dma_params_rx); 916 917 snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls)); 918 919 return 0; 920 } 921 922 static struct snd_soc_dai_driver fsl_spdif_dai = { 923 .probe = &fsl_spdif_dai_probe, 924 .playback = { 925 .channels_min = 2, 926 .channels_max = 2, 927 .rates = FSL_SPDIF_RATES_PLAYBACK, 928 .formats = FSL_SPDIF_FORMATS_PLAYBACK, 929 }, 930 .capture = { 931 .channels_min = 2, 932 .channels_max = 2, 933 .rates = FSL_SPDIF_RATES_CAPTURE, 934 .formats = FSL_SPDIF_FORMATS_CAPTURE, 935 }, 936 .ops = &fsl_spdif_dai_ops, 937 }; 938 939 static const struct snd_soc_component_driver fsl_spdif_component = { 940 .name = "fsl-spdif", 941 }; 942 943 /* FSL SPDIF REGMAP */ 944 945 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg) 946 { 947 switch (reg) { 948 case REG_SPDIF_SCR: 949 case REG_SPDIF_SRCD: 950 case REG_SPDIF_SRPC: 951 case REG_SPDIF_SIE: 952 case REG_SPDIF_SIS: 953 case REG_SPDIF_SRL: 954 case REG_SPDIF_SRR: 955 case REG_SPDIF_SRCSH: 956 case REG_SPDIF_SRCSL: 957 case REG_SPDIF_SRU: 958 case REG_SPDIF_SRQ: 959 case REG_SPDIF_STCSCH: 960 case REG_SPDIF_STCSCL: 961 case REG_SPDIF_SRFM: 962 case REG_SPDIF_STC: 963 return true; 964 default: 965 return false; 966 } 967 } 968 969 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg) 970 { 971 switch (reg) { 972 case REG_SPDIF_SCR: 973 case REG_SPDIF_SRCD: 974 case REG_SPDIF_SRPC: 975 case REG_SPDIF_SIE: 976 case REG_SPDIF_SIC: 977 case REG_SPDIF_STL: 978 case REG_SPDIF_STR: 979 case REG_SPDIF_STCSCH: 980 case REG_SPDIF_STCSCL: 981 case REG_SPDIF_STC: 982 return true; 983 default: 984 return false; 985 } 986 } 987 988 static struct regmap_config fsl_spdif_regmap_config = { 989 .reg_bits = 32, 990 .reg_stride = 4, 991 .val_bits = 32, 992 993 .max_register = REG_SPDIF_STC, 994 .readable_reg = fsl_spdif_readable_reg, 995 .writeable_reg = fsl_spdif_writeable_reg, 996 }; 997 998 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv, 999 struct clk *clk, u64 savesub, 1000 enum spdif_txrate index) 1001 { 1002 const u32 rate[] = { 32000, 44100, 48000 }; 1003 u64 rate_ideal, rate_actual, sub; 1004 u32 div, arate; 1005 1006 for (div = 1; div <= 128; div++) { 1007 rate_ideal = rate[index] * (div + 1) * 64; 1008 rate_actual = clk_round_rate(clk, rate_ideal); 1009 1010 arate = rate_actual / 64; 1011 arate /= div; 1012 1013 if (arate == rate[index]) { 1014 /* We are lucky */ 1015 savesub = 0; 1016 spdif_priv->txclk_div[index] = div; 1017 break; 1018 } else if (arate / rate[index] == 1) { 1019 /* A little bigger than expect */ 1020 sub = (arate - rate[index]) * 100000; 1021 do_div(sub, rate[index]); 1022 if (sub < savesub) { 1023 savesub = sub; 1024 spdif_priv->txclk_div[index] = div; 1025 } 1026 } else if (rate[index] / arate == 1) { 1027 /* A little smaller than expect */ 1028 sub = (rate[index] - arate) * 100000; 1029 do_div(sub, rate[index]); 1030 if (sub < savesub) { 1031 savesub = sub; 1032 spdif_priv->txclk_div[index] = div; 1033 } 1034 } 1035 } 1036 1037 return savesub; 1038 } 1039 1040 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, 1041 enum spdif_txrate index) 1042 { 1043 const u32 rate[] = { 32000, 44100, 48000 }; 1044 struct platform_device *pdev = spdif_priv->pdev; 1045 struct device *dev = &pdev->dev; 1046 u64 savesub = 100000, ret; 1047 struct clk *clk; 1048 char tmp[16]; 1049 int i; 1050 1051 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { 1052 sprintf(tmp, "rxtx%d", i); 1053 clk = devm_clk_get(&pdev->dev, tmp); 1054 if (IS_ERR(clk)) { 1055 dev_err(dev, "no rxtx%d clock in devicetree\n", i); 1056 return PTR_ERR(clk); 1057 } 1058 if (!clk_get_rate(clk)) 1059 continue; 1060 1061 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index); 1062 if (savesub == ret) 1063 continue; 1064 1065 savesub = ret; 1066 spdif_priv->txclk[index] = clk; 1067 spdif_priv->txclk_src[index] = i; 1068 1069 /* To quick catch a divisor, we allow a 0.1% deviation */ 1070 if (savesub < 100) 1071 break; 1072 } 1073 1074 dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n", 1075 spdif_priv->txclk_src[index], rate[index]); 1076 dev_dbg(&pdev->dev, "use divisor %d for %dHz sample rate\n", 1077 spdif_priv->txclk_div[index], rate[index]); 1078 1079 return 0; 1080 } 1081 1082 static int fsl_spdif_probe(struct platform_device *pdev) 1083 { 1084 struct device_node *np = pdev->dev.of_node; 1085 struct fsl_spdif_priv *spdif_priv; 1086 struct spdif_mixer_control *ctrl; 1087 struct resource *res; 1088 void __iomem *regs; 1089 int irq, ret, i; 1090 1091 if (!np) 1092 return -ENODEV; 1093 1094 spdif_priv = devm_kzalloc(&pdev->dev, 1095 sizeof(struct fsl_spdif_priv) + strlen(np->name) + 1, 1096 GFP_KERNEL); 1097 if (!spdif_priv) 1098 return -ENOMEM; 1099 1100 strcpy(spdif_priv->name, np->name); 1101 1102 spdif_priv->pdev = pdev; 1103 1104 /* Initialize this copy of the CPU DAI driver structure */ 1105 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai)); 1106 spdif_priv->cpu_dai_drv.name = spdif_priv->name; 1107 1108 if (of_property_read_bool(np, "big-endian")) 1109 fsl_spdif_regmap_config.val_format_endian = REGMAP_ENDIAN_BIG; 1110 1111 /* Get the addresses and IRQ */ 1112 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1113 regs = devm_ioremap_resource(&pdev->dev, res); 1114 if (IS_ERR(regs)) 1115 return PTR_ERR(regs); 1116 1117 spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev, 1118 "core", regs, &fsl_spdif_regmap_config); 1119 if (IS_ERR(spdif_priv->regmap)) { 1120 dev_err(&pdev->dev, "regmap init failed\n"); 1121 return PTR_ERR(spdif_priv->regmap); 1122 } 1123 1124 irq = platform_get_irq(pdev, 0); 1125 if (irq < 0) { 1126 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name); 1127 return irq; 1128 } 1129 1130 ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0, 1131 spdif_priv->name, spdif_priv); 1132 if (ret) { 1133 dev_err(&pdev->dev, "could not claim irq %u\n", irq); 1134 return ret; 1135 } 1136 1137 /* Select clock source for rx/tx clock */ 1138 spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1"); 1139 if (IS_ERR(spdif_priv->rxclk)) { 1140 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n"); 1141 return PTR_ERR(spdif_priv->rxclk); 1142 } 1143 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC; 1144 1145 for (i = 0; i < SPDIF_TXRATE_MAX; i++) { 1146 ret = fsl_spdif_probe_txclk(spdif_priv, i); 1147 if (ret) 1148 return ret; 1149 } 1150 1151 /* Initial spinlock for control data */ 1152 ctrl = &spdif_priv->fsl_spdif_control; 1153 spin_lock_init(&ctrl->ctl_lock); 1154 1155 /* Init tx channel status default value */ 1156 ctrl->ch_status[0] = 1157 IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_5015; 1158 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID; 1159 ctrl->ch_status[2] = 0x00; 1160 ctrl->ch_status[3] = 1161 IEC958_AES3_CON_FS_44100 | IEC958_AES3_CON_CLOCK_1000PPM; 1162 1163 spdif_priv->dpll_locked = false; 1164 1165 spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML; 1166 spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML; 1167 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL; 1168 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL; 1169 1170 /* Register with ASoC */ 1171 dev_set_drvdata(&pdev->dev, spdif_priv); 1172 1173 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component, 1174 &spdif_priv->cpu_dai_drv, 1); 1175 if (ret) { 1176 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); 1177 return ret; 1178 } 1179 1180 ret = imx_pcm_dma_init(pdev); 1181 if (ret) 1182 dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret); 1183 1184 return ret; 1185 } 1186 1187 static const struct of_device_id fsl_spdif_dt_ids[] = { 1188 { .compatible = "fsl,imx35-spdif", }, 1189 {} 1190 }; 1191 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids); 1192 1193 static struct platform_driver fsl_spdif_driver = { 1194 .driver = { 1195 .name = "fsl-spdif-dai", 1196 .owner = THIS_MODULE, 1197 .of_match_table = fsl_spdif_dt_ids, 1198 }, 1199 .probe = fsl_spdif_probe, 1200 }; 1201 1202 module_platform_driver(fsl_spdif_driver); 1203 1204 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 1205 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver"); 1206 MODULE_LICENSE("GPL v2"); 1207 MODULE_ALIAS("platform:fsl-spdif-dai"); 1208