xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision a36954f5)
1 /*
2  * Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  *
6  * Based on stmp3xxx_spdif_dai.c
7  * Vladimir Barinov <vbarinov@embeddedalley.com>
8  * Copyright 2008 SigmaTel, Inc
9  * Copyright 2008 Embedded Alley Solutions, Inc
10  *
11  * This file is licensed under the terms of the GNU General Public License
12  * version 2.  This program  is licensed "as is" without any warranty of any
13  * kind, whether express or implied.
14  */
15 
16 #include <linux/bitrev.h>
17 #include <linux/clk.h>
18 #include <linux/module.h>
19 #include <linux/of_address.h>
20 #include <linux/of_device.h>
21 #include <linux/of_irq.h>
22 #include <linux/regmap.h>
23 
24 #include <sound/asoundef.h>
25 #include <sound/dmaengine_pcm.h>
26 #include <sound/soc.h>
27 
28 #include "fsl_spdif.h"
29 #include "imx-pcm.h"
30 
31 #define FSL_SPDIF_TXFIFO_WML	0x8
32 #define FSL_SPDIF_RXFIFO_WML	0x8
33 
34 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
35 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
36 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
37 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
38 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
39 
40 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
41 
42 /* Index list for the values that has if (DPLL Locked) condition */
43 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
44 #define SRPC_NODPLL_START1	0x5
45 #define SRPC_NODPLL_START2	0xc
46 
47 #define DEFAULT_RXCLK_SRC	1
48 
49 /*
50  * SPDIF control structure
51  * Defines channel status, subcode and Q sub
52  */
53 struct spdif_mixer_control {
54 	/* spinlock to access control data */
55 	spinlock_t ctl_lock;
56 
57 	/* IEC958 channel tx status bit */
58 	unsigned char ch_status[4];
59 
60 	/* User bits */
61 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
62 
63 	/* Q subcode part of user bits */
64 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
65 
66 	/* Buffer offset for U/Q */
67 	u32 upos;
68 	u32 qpos;
69 
70 	/* Ready buffer index of the two buffers */
71 	u32 ready_buf;
72 };
73 
74 /**
75  * fsl_spdif_priv: Freescale SPDIF private data
76  *
77  * @fsl_spdif_control: SPDIF control data
78  * @cpu_dai_drv: cpu dai driver
79  * @pdev: platform device pointer
80  * @regmap: regmap handler
81  * @dpll_locked: dpll lock flag
82  * @txrate: the best rates for playback
83  * @txclk_df: STC_TXCLK_DF dividers value for playback
84  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
85  * @txclk_src: STC_TXCLK_SRC values for playback
86  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
87  * @txclk: tx clock sources for playback
88  * @rxclk: rx clock sources for capture
89  * @coreclk: core clock for register access via DMA
90  * @sysclk: system clock for rx clock rate measurement
91  * @spbaclk: SPBA clock (optional, depending on SoC design)
92  * @dma_params_tx: DMA parameters for transmit channel
93  * @dma_params_rx: DMA parameters for receive channel
94  */
95 struct fsl_spdif_priv {
96 	struct spdif_mixer_control fsl_spdif_control;
97 	struct snd_soc_dai_driver cpu_dai_drv;
98 	struct platform_device *pdev;
99 	struct regmap *regmap;
100 	bool dpll_locked;
101 	u32 txrate[SPDIF_TXRATE_MAX];
102 	u8 txclk_df[SPDIF_TXRATE_MAX];
103 	u8 sysclk_df[SPDIF_TXRATE_MAX];
104 	u8 txclk_src[SPDIF_TXRATE_MAX];
105 	u8 rxclk_src;
106 	struct clk *txclk[SPDIF_TXRATE_MAX];
107 	struct clk *rxclk;
108 	struct clk *coreclk;
109 	struct clk *sysclk;
110 	struct clk *spbaclk;
111 	struct snd_dmaengine_dai_dma_data dma_params_tx;
112 	struct snd_dmaengine_dai_dma_data dma_params_rx;
113 	/* regcache for SRPC */
114 	u32 regcache_srpc;
115 };
116 
117 /* DPLL locked and lock loss interrupt handler */
118 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
119 {
120 	struct regmap *regmap = spdif_priv->regmap;
121 	struct platform_device *pdev = spdif_priv->pdev;
122 	u32 locked;
123 
124 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
125 	locked &= SRPC_DPLL_LOCKED;
126 
127 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
128 			locked ? "locked" : "loss lock");
129 
130 	spdif_priv->dpll_locked = locked ? true : false;
131 }
132 
133 /* Receiver found illegal symbol interrupt handler */
134 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
135 {
136 	struct regmap *regmap = spdif_priv->regmap;
137 	struct platform_device *pdev = spdif_priv->pdev;
138 
139 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
140 
141 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
142 	if (!spdif_priv->dpll_locked)
143 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
144 }
145 
146 /* U/Q Channel receive register full */
147 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
148 {
149 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
150 	struct regmap *regmap = spdif_priv->regmap;
151 	struct platform_device *pdev = spdif_priv->pdev;
152 	u32 *pos, size, val, reg;
153 
154 	switch (name) {
155 	case 'U':
156 		pos = &ctrl->upos;
157 		size = SPDIF_UBITS_SIZE;
158 		reg = REG_SPDIF_SRU;
159 		break;
160 	case 'Q':
161 		pos = &ctrl->qpos;
162 		size = SPDIF_QSUB_SIZE;
163 		reg = REG_SPDIF_SRQ;
164 		break;
165 	default:
166 		dev_err(&pdev->dev, "unsupported channel name\n");
167 		return;
168 	}
169 
170 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
171 
172 	if (*pos >= size * 2) {
173 		*pos = 0;
174 	} else if (unlikely((*pos % size) + 3 > size)) {
175 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
176 		return;
177 	}
178 
179 	regmap_read(regmap, reg, &val);
180 	ctrl->subcode[*pos++] = val >> 16;
181 	ctrl->subcode[*pos++] = val >> 8;
182 	ctrl->subcode[*pos++] = val;
183 }
184 
185 /* U/Q Channel sync found */
186 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
187 {
188 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
189 	struct platform_device *pdev = spdif_priv->pdev;
190 
191 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
192 
193 	/* U/Q buffer reset */
194 	if (ctrl->qpos == 0)
195 		return;
196 
197 	/* Set ready to this buffer */
198 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
199 }
200 
201 /* U/Q Channel framing error */
202 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
203 {
204 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
205 	struct regmap *regmap = spdif_priv->regmap;
206 	struct platform_device *pdev = spdif_priv->pdev;
207 	u32 val;
208 
209 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
210 
211 	/* Read U/Q data to clear the irq and do buffer reset */
212 	regmap_read(regmap, REG_SPDIF_SRU, &val);
213 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
214 
215 	/* Drop this U/Q buffer */
216 	ctrl->ready_buf = 0;
217 	ctrl->upos = 0;
218 	ctrl->qpos = 0;
219 }
220 
221 /* Get spdif interrupt status and clear the interrupt */
222 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
223 {
224 	struct regmap *regmap = spdif_priv->regmap;
225 	u32 val, val2;
226 
227 	regmap_read(regmap, REG_SPDIF_SIS, &val);
228 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
229 
230 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
231 
232 	return val;
233 }
234 
235 static irqreturn_t spdif_isr(int irq, void *devid)
236 {
237 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
238 	struct platform_device *pdev = spdif_priv->pdev;
239 	u32 sis;
240 
241 	sis = spdif_intr_status_clear(spdif_priv);
242 
243 	if (sis & INT_DPLL_LOCKED)
244 		spdif_irq_dpll_lock(spdif_priv);
245 
246 	if (sis & INT_TXFIFO_UNOV)
247 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
248 
249 	if (sis & INT_TXFIFO_RESYNC)
250 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
251 
252 	if (sis & INT_CNEW)
253 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
254 
255 	if (sis & INT_VAL_NOGOOD)
256 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
257 
258 	if (sis & INT_SYM_ERR)
259 		spdif_irq_sym_error(spdif_priv);
260 
261 	if (sis & INT_BIT_ERR)
262 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
263 
264 	if (sis & INT_URX_FUL)
265 		spdif_irq_uqrx_full(spdif_priv, 'U');
266 
267 	if (sis & INT_URX_OV)
268 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
269 
270 	if (sis & INT_QRX_FUL)
271 		spdif_irq_uqrx_full(spdif_priv, 'Q');
272 
273 	if (sis & INT_QRX_OV)
274 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
275 
276 	if (sis & INT_UQ_SYNC)
277 		spdif_irq_uq_sync(spdif_priv);
278 
279 	if (sis & INT_UQ_ERR)
280 		spdif_irq_uq_err(spdif_priv);
281 
282 	if (sis & INT_RXFIFO_UNOV)
283 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
284 
285 	if (sis & INT_RXFIFO_RESYNC)
286 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
287 
288 	if (sis & INT_LOSS_LOCK)
289 		spdif_irq_dpll_lock(spdif_priv);
290 
291 	/* FIXME: Write Tx FIFO to clear TxEm */
292 	if (sis & INT_TX_EM)
293 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
294 
295 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
296 	if (sis & INT_RXFIFO_FUL)
297 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
298 
299 	return IRQ_HANDLED;
300 }
301 
302 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
303 {
304 	struct regmap *regmap = spdif_priv->regmap;
305 	u32 val, cycle = 1000;
306 
307 	regcache_cache_bypass(regmap, true);
308 
309 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
310 
311 	/*
312 	 * RESET bit would be cleared after finishing its reset procedure,
313 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
314 	 */
315 	do {
316 		regmap_read(regmap, REG_SPDIF_SCR, &val);
317 	} while ((val & SCR_SOFT_RESET) && cycle--);
318 
319 	regcache_cache_bypass(regmap, false);
320 	regcache_mark_dirty(regmap);
321 	regcache_sync(regmap);
322 
323 	if (cycle)
324 		return 0;
325 	else
326 		return -EBUSY;
327 }
328 
329 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
330 				u8 mask, u8 cstatus)
331 {
332 	ctrl->ch_status[3] &= ~mask;
333 	ctrl->ch_status[3] |= cstatus & mask;
334 }
335 
336 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
337 {
338 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
339 	struct regmap *regmap = spdif_priv->regmap;
340 	struct platform_device *pdev = spdif_priv->pdev;
341 	u32 ch_status;
342 
343 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
344 		    (bitrev8(ctrl->ch_status[1]) << 8) |
345 		    bitrev8(ctrl->ch_status[2]);
346 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
347 
348 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
349 
350 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
351 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
352 
353 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
354 }
355 
356 /* Set SPDIF PhaseConfig register for rx clock */
357 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
358 				enum spdif_gainsel gainsel, int dpll_locked)
359 {
360 	struct regmap *regmap = spdif_priv->regmap;
361 	u8 clksrc = spdif_priv->rxclk_src;
362 
363 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
364 		return -EINVAL;
365 
366 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
367 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
368 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
369 
370 	return 0;
371 }
372 
373 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
374 				int sample_rate)
375 {
376 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
377 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
378 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
379 	struct regmap *regmap = spdif_priv->regmap;
380 	struct platform_device *pdev = spdif_priv->pdev;
381 	unsigned long csfs = 0;
382 	u32 stc, mask, rate;
383 	u8 clk, txclk_df, sysclk_df;
384 	int ret;
385 
386 	switch (sample_rate) {
387 	case 32000:
388 		rate = SPDIF_TXRATE_32000;
389 		csfs = IEC958_AES3_CON_FS_32000;
390 		break;
391 	case 44100:
392 		rate = SPDIF_TXRATE_44100;
393 		csfs = IEC958_AES3_CON_FS_44100;
394 		break;
395 	case 48000:
396 		rate = SPDIF_TXRATE_48000;
397 		csfs = IEC958_AES3_CON_FS_48000;
398 		break;
399 	case 96000:
400 		rate = SPDIF_TXRATE_96000;
401 		csfs = IEC958_AES3_CON_FS_96000;
402 		break;
403 	case 192000:
404 		rate = SPDIF_TXRATE_192000;
405 		csfs = IEC958_AES3_CON_FS_192000;
406 		break;
407 	default:
408 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
409 		return -EINVAL;
410 	}
411 
412 	clk = spdif_priv->txclk_src[rate];
413 	if (clk >= STC_TXCLK_SRC_MAX) {
414 		dev_err(&pdev->dev, "tx clock source is out of range\n");
415 		return -EINVAL;
416 	}
417 
418 	txclk_df = spdif_priv->txclk_df[rate];
419 	if (txclk_df == 0) {
420 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
421 		return -EINVAL;
422 	}
423 
424 	sysclk_df = spdif_priv->sysclk_df[rate];
425 
426 	/* Don't mess up the clocks from other modules */
427 	if (clk != STC_TXCLK_SPDIF_ROOT)
428 		goto clk_set_bypass;
429 
430 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
431 	ret = clk_set_rate(spdif_priv->txclk[rate],
432 			   64 * sample_rate * txclk_df);
433 	if (ret) {
434 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
435 		return ret;
436 	}
437 
438 clk_set_bypass:
439 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
440 			(64 * sample_rate * txclk_df * sysclk_df));
441 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
442 			clk_get_rate(spdif_priv->txclk[rate]));
443 
444 	/* set fs field in consumer channel status */
445 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
446 
447 	/* select clock source and divisor */
448 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
449 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
450 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
451 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
452 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
453 
454 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
455 			spdif_priv->txrate[rate], sample_rate);
456 
457 	return 0;
458 }
459 
460 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
461 			     struct snd_soc_dai *cpu_dai)
462 {
463 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
464 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
465 	struct platform_device *pdev = spdif_priv->pdev;
466 	struct regmap *regmap = spdif_priv->regmap;
467 	u32 scr, mask;
468 	int i;
469 	int ret;
470 
471 	/* Reset module and interrupts only for first initialization */
472 	if (!cpu_dai->active) {
473 		ret = clk_prepare_enable(spdif_priv->coreclk);
474 		if (ret) {
475 			dev_err(&pdev->dev, "failed to enable core clock\n");
476 			return ret;
477 		}
478 
479 		if (!IS_ERR(spdif_priv->spbaclk)) {
480 			ret = clk_prepare_enable(spdif_priv->spbaclk);
481 			if (ret) {
482 				dev_err(&pdev->dev, "failed to enable spba clock\n");
483 				goto err_spbaclk;
484 			}
485 		}
486 
487 		ret = spdif_softreset(spdif_priv);
488 		if (ret) {
489 			dev_err(&pdev->dev, "failed to soft reset\n");
490 			goto err;
491 		}
492 
493 		/* Disable all the interrupts */
494 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
495 	}
496 
497 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
498 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
499 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
500 			SCR_TXFIFO_FSEL_IF8;
501 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
502 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
503 			SCR_TXFIFO_FSEL_MASK;
504 		for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
505 			ret = clk_prepare_enable(spdif_priv->txclk[i]);
506 			if (ret)
507 				goto disable_txclk;
508 		}
509 	} else {
510 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
511 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
512 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
513 		ret = clk_prepare_enable(spdif_priv->rxclk);
514 		if (ret)
515 			goto err;
516 	}
517 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
518 
519 	/* Power up SPDIF module */
520 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
521 
522 	return 0;
523 
524 disable_txclk:
525 	for (i--; i >= 0; i--)
526 		clk_disable_unprepare(spdif_priv->txclk[i]);
527 err:
528 	if (!IS_ERR(spdif_priv->spbaclk))
529 		clk_disable_unprepare(spdif_priv->spbaclk);
530 err_spbaclk:
531 	clk_disable_unprepare(spdif_priv->coreclk);
532 
533 	return ret;
534 }
535 
536 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
537 				struct snd_soc_dai *cpu_dai)
538 {
539 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
540 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
541 	struct regmap *regmap = spdif_priv->regmap;
542 	u32 scr, mask, i;
543 
544 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
545 		scr = 0;
546 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
547 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
548 			SCR_TXFIFO_FSEL_MASK;
549 		for (i = 0; i < SPDIF_TXRATE_MAX; i++)
550 			clk_disable_unprepare(spdif_priv->txclk[i]);
551 	} else {
552 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
553 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
554 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
555 		clk_disable_unprepare(spdif_priv->rxclk);
556 	}
557 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
558 
559 	/* Power down SPDIF module only if tx&rx are both inactive */
560 	if (!cpu_dai->active) {
561 		spdif_intr_status_clear(spdif_priv);
562 		regmap_update_bits(regmap, REG_SPDIF_SCR,
563 				SCR_LOW_POWER, SCR_LOW_POWER);
564 		if (!IS_ERR(spdif_priv->spbaclk))
565 			clk_disable_unprepare(spdif_priv->spbaclk);
566 		clk_disable_unprepare(spdif_priv->coreclk);
567 	}
568 }
569 
570 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
571 				struct snd_pcm_hw_params *params,
572 				struct snd_soc_dai *dai)
573 {
574 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
575 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
576 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
577 	struct platform_device *pdev = spdif_priv->pdev;
578 	u32 sample_rate = params_rate(params);
579 	int ret = 0;
580 
581 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
582 		ret  = spdif_set_sample_rate(substream, sample_rate);
583 		if (ret) {
584 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
585 					__func__, sample_rate);
586 			return ret;
587 		}
588 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
589 				  IEC958_AES3_CON_CLOCK_1000PPM);
590 		spdif_write_channel_status(spdif_priv);
591 	} else {
592 		/* Setup rx clock source */
593 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
594 	}
595 
596 	return ret;
597 }
598 
599 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
600 				int cmd, struct snd_soc_dai *dai)
601 {
602 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
603 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
604 	struct regmap *regmap = spdif_priv->regmap;
605 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
606 	u32 intr = SIE_INTR_FOR(tx);
607 	u32 dmaen = SCR_DMA_xX_EN(tx);
608 
609 	switch (cmd) {
610 	case SNDRV_PCM_TRIGGER_START:
611 	case SNDRV_PCM_TRIGGER_RESUME:
612 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
613 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
614 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
615 		break;
616 	case SNDRV_PCM_TRIGGER_STOP:
617 	case SNDRV_PCM_TRIGGER_SUSPEND:
618 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
619 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
620 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
621 		break;
622 	default:
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 static struct snd_soc_dai_ops fsl_spdif_dai_ops = {
630 	.startup = fsl_spdif_startup,
631 	.hw_params = fsl_spdif_hw_params,
632 	.trigger = fsl_spdif_trigger,
633 	.shutdown = fsl_spdif_shutdown,
634 };
635 
636 
637 /*
638  * FSL SPDIF IEC958 controller(mixer) functions
639  *
640  *	Channel status get/put control
641  *	User bit value get/put control
642  *	Valid bit value get control
643  *	DPLL lock status get control
644  *	User bit sync mode selection control
645  */
646 
647 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
648 				struct snd_ctl_elem_info *uinfo)
649 {
650 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
651 	uinfo->count = 1;
652 
653 	return 0;
654 }
655 
656 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
657 				struct snd_ctl_elem_value *uvalue)
658 {
659 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
660 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
661 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
662 
663 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
664 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
665 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
666 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
667 
668 	return 0;
669 }
670 
671 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
672 				struct snd_ctl_elem_value *uvalue)
673 {
674 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
675 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
676 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
677 
678 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
679 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
680 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
681 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
682 
683 	spdif_write_channel_status(spdif_priv);
684 
685 	return 0;
686 }
687 
688 /* Get channel status from SPDIF_RX_CCHAN register */
689 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
690 				struct snd_ctl_elem_value *ucontrol)
691 {
692 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
693 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
694 	struct regmap *regmap = spdif_priv->regmap;
695 	u32 cstatus, val;
696 
697 	regmap_read(regmap, REG_SPDIF_SIS, &val);
698 	if (!(val & INT_CNEW))
699 		return -EAGAIN;
700 
701 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
702 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
703 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
704 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
705 
706 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
707 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
708 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
709 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
710 
711 	/* Clear intr */
712 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
713 
714 	return 0;
715 }
716 
717 /*
718  * Get User bits (subcode) from chip value which readed out
719  * in UChannel register.
720  */
721 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
722 				struct snd_ctl_elem_value *ucontrol)
723 {
724 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
725 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
726 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
727 	unsigned long flags;
728 	int ret = -EAGAIN;
729 
730 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
731 	if (ctrl->ready_buf) {
732 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
733 		memcpy(&ucontrol->value.iec958.subcode[0],
734 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
735 		ret = 0;
736 	}
737 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
738 
739 	return ret;
740 }
741 
742 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
743 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
744 				struct snd_ctl_elem_info *uinfo)
745 {
746 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
747 	uinfo->count = SPDIF_QSUB_SIZE;
748 
749 	return 0;
750 }
751 
752 /* Get Q subcode from chip value which readed out in QChannel register */
753 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
754 				struct snd_ctl_elem_value *ucontrol)
755 {
756 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
757 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
758 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
759 	unsigned long flags;
760 	int ret = -EAGAIN;
761 
762 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
763 	if (ctrl->ready_buf) {
764 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
765 		memcpy(&ucontrol->value.bytes.data[0],
766 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
767 		ret = 0;
768 	}
769 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
770 
771 	return ret;
772 }
773 
774 /* Valid bit information */
775 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
776 				struct snd_ctl_elem_info *uinfo)
777 {
778 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
779 	uinfo->count = 1;
780 	uinfo->value.integer.min = 0;
781 	uinfo->value.integer.max = 1;
782 
783 	return 0;
784 }
785 
786 /* Get valid good bit from interrupt status register */
787 static int fsl_spdif_vbit_get(struct snd_kcontrol *kcontrol,
788 				struct snd_ctl_elem_value *ucontrol)
789 {
790 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
791 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
792 	struct regmap *regmap = spdif_priv->regmap;
793 	u32 val;
794 
795 	regmap_read(regmap, REG_SPDIF_SIS, &val);
796 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
797 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
798 
799 	return 0;
800 }
801 
802 /* DPLL lock information */
803 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
804 				struct snd_ctl_elem_info *uinfo)
805 {
806 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
807 	uinfo->count = 1;
808 	uinfo->value.integer.min = 16000;
809 	uinfo->value.integer.max = 96000;
810 
811 	return 0;
812 }
813 
814 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
815 	24, 16, 12, 8, 6, 4, 3,
816 };
817 
818 /* Get RX data clock rate given the SPDIF bus_clk */
819 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
820 				enum spdif_gainsel gainsel)
821 {
822 	struct regmap *regmap = spdif_priv->regmap;
823 	struct platform_device *pdev = spdif_priv->pdev;
824 	u64 tmpval64, busclk_freq = 0;
825 	u32 freqmeas, phaseconf;
826 	u8 clksrc;
827 
828 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
829 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
830 
831 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
832 
833 	/* Get bus clock from system */
834 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
835 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
836 
837 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
838 	tmpval64 = (u64) busclk_freq * freqmeas;
839 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
840 	do_div(tmpval64, 128 * 1024);
841 
842 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
843 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
844 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
845 
846 	return (int)tmpval64;
847 }
848 
849 /*
850  * Get DPLL lock or not info from stable interrupt status register.
851  * User application must use this control to get locked,
852  * then can do next PCM operation
853  */
854 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
855 				struct snd_ctl_elem_value *ucontrol)
856 {
857 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
858 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
859 	int rate = 0;
860 
861 	if (spdif_priv->dpll_locked)
862 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
863 
864 	ucontrol->value.integer.value[0] = rate;
865 
866 	return 0;
867 }
868 
869 /* User bit sync mode info */
870 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
871 				struct snd_ctl_elem_info *uinfo)
872 {
873 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
874 	uinfo->count = 1;
875 	uinfo->value.integer.min = 0;
876 	uinfo->value.integer.max = 1;
877 
878 	return 0;
879 }
880 
881 /*
882  * User bit sync mode:
883  * 1 CD User channel subcode
884  * 0 Non-CD data
885  */
886 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
887 			       struct snd_ctl_elem_value *ucontrol)
888 {
889 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
890 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
891 	struct regmap *regmap = spdif_priv->regmap;
892 	u32 val;
893 
894 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
895 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
896 
897 	return 0;
898 }
899 
900 /*
901  * User bit sync mode:
902  * 1 CD User channel subcode
903  * 0 Non-CD data
904  */
905 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
906 				struct snd_ctl_elem_value *ucontrol)
907 {
908 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
909 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
910 	struct regmap *regmap = spdif_priv->regmap;
911 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
912 
913 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
914 
915 	return 0;
916 }
917 
918 /* FSL SPDIF IEC958 controller defines */
919 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
920 	/* Status cchanel controller */
921 	{
922 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
923 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
924 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
925 			SNDRV_CTL_ELEM_ACCESS_WRITE |
926 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
927 		.info = fsl_spdif_info,
928 		.get = fsl_spdif_pb_get,
929 		.put = fsl_spdif_pb_put,
930 	},
931 	{
932 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
933 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
934 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
935 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
936 		.info = fsl_spdif_info,
937 		.get = fsl_spdif_capture_get,
938 	},
939 	/* User bits controller */
940 	{
941 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
942 		.name = "IEC958 Subcode Capture Default",
943 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
944 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
945 		.info = fsl_spdif_info,
946 		.get = fsl_spdif_subcode_get,
947 	},
948 	{
949 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
950 		.name = "IEC958 Q-subcode Capture Default",
951 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
952 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
953 		.info = fsl_spdif_qinfo,
954 		.get = fsl_spdif_qget,
955 	},
956 	/* Valid bit error controller */
957 	{
958 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
959 		.name = "IEC958 V-Bit Errors",
960 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
961 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
962 		.info = fsl_spdif_vbit_info,
963 		.get = fsl_spdif_vbit_get,
964 	},
965 	/* DPLL lock info get controller */
966 	{
967 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
968 		.name = "RX Sample Rate",
969 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
970 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
971 		.info = fsl_spdif_rxrate_info,
972 		.get = fsl_spdif_rxrate_get,
973 	},
974 	/* User bit sync mode set/get controller */
975 	{
976 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
977 		.name = "IEC958 USyncMode CDText",
978 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
979 			SNDRV_CTL_ELEM_ACCESS_WRITE |
980 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
981 		.info = fsl_spdif_usync_info,
982 		.get = fsl_spdif_usync_get,
983 		.put = fsl_spdif_usync_put,
984 	},
985 };
986 
987 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
988 {
989 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
990 
991 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
992 				  &spdif_private->dma_params_rx);
993 
994 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
995 
996 	return 0;
997 }
998 
999 static struct snd_soc_dai_driver fsl_spdif_dai = {
1000 	.probe = &fsl_spdif_dai_probe,
1001 	.playback = {
1002 		.stream_name = "CPU-Playback",
1003 		.channels_min = 2,
1004 		.channels_max = 2,
1005 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1006 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1007 	},
1008 	.capture = {
1009 		.stream_name = "CPU-Capture",
1010 		.channels_min = 2,
1011 		.channels_max = 2,
1012 		.rates = FSL_SPDIF_RATES_CAPTURE,
1013 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1014 	},
1015 	.ops = &fsl_spdif_dai_ops,
1016 };
1017 
1018 static const struct snd_soc_component_driver fsl_spdif_component = {
1019 	.name		= "fsl-spdif",
1020 };
1021 
1022 /* FSL SPDIF REGMAP */
1023 static const struct reg_default fsl_spdif_reg_defaults[] = {
1024 	{REG_SPDIF_SCR,    0x00000400},
1025 	{REG_SPDIF_SRCD,   0x00000000},
1026 	{REG_SPDIF_SIE,	   0x00000000},
1027 	{REG_SPDIF_STL,	   0x00000000},
1028 	{REG_SPDIF_STR,	   0x00000000},
1029 	{REG_SPDIF_STCSCH, 0x00000000},
1030 	{REG_SPDIF_STCSCL, 0x00000000},
1031 	{REG_SPDIF_STC,	   0x00020f00},
1032 };
1033 
1034 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1035 {
1036 	switch (reg) {
1037 	case REG_SPDIF_SCR:
1038 	case REG_SPDIF_SRCD:
1039 	case REG_SPDIF_SRPC:
1040 	case REG_SPDIF_SIE:
1041 	case REG_SPDIF_SIS:
1042 	case REG_SPDIF_SRL:
1043 	case REG_SPDIF_SRR:
1044 	case REG_SPDIF_SRCSH:
1045 	case REG_SPDIF_SRCSL:
1046 	case REG_SPDIF_SRU:
1047 	case REG_SPDIF_SRQ:
1048 	case REG_SPDIF_STCSCH:
1049 	case REG_SPDIF_STCSCL:
1050 	case REG_SPDIF_SRFM:
1051 	case REG_SPDIF_STC:
1052 		return true;
1053 	default:
1054 		return false;
1055 	}
1056 }
1057 
1058 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1059 {
1060 	switch (reg) {
1061 	case REG_SPDIF_SRPC:
1062 	case REG_SPDIF_SIS:
1063 	case REG_SPDIF_SRL:
1064 	case REG_SPDIF_SRR:
1065 	case REG_SPDIF_SRCSH:
1066 	case REG_SPDIF_SRCSL:
1067 	case REG_SPDIF_SRU:
1068 	case REG_SPDIF_SRQ:
1069 	case REG_SPDIF_SRFM:
1070 		return true;
1071 	default:
1072 		return false;
1073 	}
1074 }
1075 
1076 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1077 {
1078 	switch (reg) {
1079 	case REG_SPDIF_SCR:
1080 	case REG_SPDIF_SRCD:
1081 	case REG_SPDIF_SRPC:
1082 	case REG_SPDIF_SIE:
1083 	case REG_SPDIF_SIC:
1084 	case REG_SPDIF_STL:
1085 	case REG_SPDIF_STR:
1086 	case REG_SPDIF_STCSCH:
1087 	case REG_SPDIF_STCSCL:
1088 	case REG_SPDIF_STC:
1089 		return true;
1090 	default:
1091 		return false;
1092 	}
1093 }
1094 
1095 static const struct regmap_config fsl_spdif_regmap_config = {
1096 	.reg_bits = 32,
1097 	.reg_stride = 4,
1098 	.val_bits = 32,
1099 
1100 	.max_register = REG_SPDIF_STC,
1101 	.reg_defaults = fsl_spdif_reg_defaults,
1102 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1103 	.readable_reg = fsl_spdif_readable_reg,
1104 	.volatile_reg = fsl_spdif_volatile_reg,
1105 	.writeable_reg = fsl_spdif_writeable_reg,
1106 	.cache_type = REGCACHE_FLAT,
1107 };
1108 
1109 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1110 				struct clk *clk, u64 savesub,
1111 				enum spdif_txrate index, bool round)
1112 {
1113 	const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1114 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1115 	u64 rate_ideal, rate_actual, sub;
1116 	u32 sysclk_dfmin, sysclk_dfmax;
1117 	u32 txclk_df, sysclk_df, arate;
1118 
1119 	/* The sysclk has an extra divisor [2, 512] */
1120 	sysclk_dfmin = is_sysclk ? 2 : 1;
1121 	sysclk_dfmax = is_sysclk ? 512 : 1;
1122 
1123 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1124 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1125 			rate_ideal = rate[index] * txclk_df * 64;
1126 			if (round)
1127 				rate_actual = clk_round_rate(clk, rate_ideal);
1128 			else
1129 				rate_actual = clk_get_rate(clk);
1130 
1131 			arate = rate_actual / 64;
1132 			arate /= txclk_df * sysclk_df;
1133 
1134 			if (arate == rate[index]) {
1135 				/* We are lucky */
1136 				savesub = 0;
1137 				spdif_priv->txclk_df[index] = txclk_df;
1138 				spdif_priv->sysclk_df[index] = sysclk_df;
1139 				spdif_priv->txrate[index] = arate;
1140 				goto out;
1141 			} else if (arate / rate[index] == 1) {
1142 				/* A little bigger than expect */
1143 				sub = (u64)(arate - rate[index]) * 100000;
1144 				do_div(sub, rate[index]);
1145 				if (sub >= savesub)
1146 					continue;
1147 				savesub = sub;
1148 				spdif_priv->txclk_df[index] = txclk_df;
1149 				spdif_priv->sysclk_df[index] = sysclk_df;
1150 				spdif_priv->txrate[index] = arate;
1151 			} else if (rate[index] / arate == 1) {
1152 				/* A little smaller than expect */
1153 				sub = (u64)(rate[index] - arate) * 100000;
1154 				do_div(sub, rate[index]);
1155 				if (sub >= savesub)
1156 					continue;
1157 				savesub = sub;
1158 				spdif_priv->txclk_df[index] = txclk_df;
1159 				spdif_priv->sysclk_df[index] = sysclk_df;
1160 				spdif_priv->txrate[index] = arate;
1161 			}
1162 		}
1163 	}
1164 
1165 out:
1166 	return savesub;
1167 }
1168 
1169 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1170 				enum spdif_txrate index)
1171 {
1172 	const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1173 	struct platform_device *pdev = spdif_priv->pdev;
1174 	struct device *dev = &pdev->dev;
1175 	u64 savesub = 100000, ret;
1176 	struct clk *clk;
1177 	char tmp[16];
1178 	int i;
1179 
1180 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1181 		sprintf(tmp, "rxtx%d", i);
1182 		clk = devm_clk_get(&pdev->dev, tmp);
1183 		if (IS_ERR(clk)) {
1184 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1185 			return PTR_ERR(clk);
1186 		}
1187 		if (!clk_get_rate(clk))
1188 			continue;
1189 
1190 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1191 					     i == STC_TXCLK_SPDIF_ROOT);
1192 		if (savesub == ret)
1193 			continue;
1194 
1195 		savesub = ret;
1196 		spdif_priv->txclk[index] = clk;
1197 		spdif_priv->txclk_src[index] = i;
1198 
1199 		/* To quick catch a divisor, we allow a 0.1% deviation */
1200 		if (savesub < 100)
1201 			break;
1202 	}
1203 
1204 	dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1205 			spdif_priv->txclk_src[index], rate[index]);
1206 	dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
1207 			spdif_priv->txclk_df[index], rate[index]);
1208 	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1209 		dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
1210 				spdif_priv->sysclk_df[index], rate[index]);
1211 	dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
1212 			rate[index], spdif_priv->txrate[index]);
1213 
1214 	return 0;
1215 }
1216 
1217 static int fsl_spdif_probe(struct platform_device *pdev)
1218 {
1219 	struct device_node *np = pdev->dev.of_node;
1220 	struct fsl_spdif_priv *spdif_priv;
1221 	struct spdif_mixer_control *ctrl;
1222 	struct resource *res;
1223 	void __iomem *regs;
1224 	int irq, ret, i;
1225 
1226 	if (!np)
1227 		return -ENODEV;
1228 
1229 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1230 	if (!spdif_priv)
1231 		return -ENOMEM;
1232 
1233 	spdif_priv->pdev = pdev;
1234 
1235 	/* Initialize this copy of the CPU DAI driver structure */
1236 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1237 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1238 
1239 	/* Get the addresses and IRQ */
1240 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1241 	regs = devm_ioremap_resource(&pdev->dev, res);
1242 	if (IS_ERR(regs))
1243 		return PTR_ERR(regs);
1244 
1245 	spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1246 			"core", regs, &fsl_spdif_regmap_config);
1247 	if (IS_ERR(spdif_priv->regmap)) {
1248 		dev_err(&pdev->dev, "regmap init failed\n");
1249 		return PTR_ERR(spdif_priv->regmap);
1250 	}
1251 
1252 	irq = platform_get_irq(pdev, 0);
1253 	if (irq < 0) {
1254 		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1255 		return irq;
1256 	}
1257 
1258 	ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1259 			       dev_name(&pdev->dev), spdif_priv);
1260 	if (ret) {
1261 		dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1262 		return ret;
1263 	}
1264 
1265 	/* Get system clock for rx clock rate calculation */
1266 	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1267 	if (IS_ERR(spdif_priv->sysclk)) {
1268 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1269 		return PTR_ERR(spdif_priv->sysclk);
1270 	}
1271 
1272 	/* Get core clock for data register access via DMA */
1273 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1274 	if (IS_ERR(spdif_priv->coreclk)) {
1275 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1276 		return PTR_ERR(spdif_priv->coreclk);
1277 	}
1278 
1279 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1280 	if (IS_ERR(spdif_priv->spbaclk))
1281 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1282 
1283 	/* Select clock source for rx/tx clock */
1284 	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1285 	if (IS_ERR(spdif_priv->rxclk)) {
1286 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1287 		return PTR_ERR(spdif_priv->rxclk);
1288 	}
1289 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1290 
1291 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1292 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1293 		if (ret)
1294 			return ret;
1295 	}
1296 
1297 	/* Initial spinlock for control data */
1298 	ctrl = &spdif_priv->fsl_spdif_control;
1299 	spin_lock_init(&ctrl->ctl_lock);
1300 
1301 	/* Init tx channel status default value */
1302 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1303 			     IEC958_AES0_CON_EMPHASIS_5015;
1304 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1305 	ctrl->ch_status[2] = 0x00;
1306 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1307 			     IEC958_AES3_CON_CLOCK_1000PPM;
1308 
1309 	spdif_priv->dpll_locked = false;
1310 
1311 	spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
1312 	spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
1313 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1314 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1315 
1316 	/* Register with ASoC */
1317 	dev_set_drvdata(&pdev->dev, spdif_priv);
1318 
1319 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1320 					      &spdif_priv->cpu_dai_drv, 1);
1321 	if (ret) {
1322 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1323 		return ret;
1324 	}
1325 
1326 	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1327 	if (ret)
1328 		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1329 
1330 	return ret;
1331 }
1332 
1333 #ifdef CONFIG_PM_SLEEP
1334 static int fsl_spdif_suspend(struct device *dev)
1335 {
1336 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1337 
1338 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1339 			&spdif_priv->regcache_srpc);
1340 
1341 	regcache_cache_only(spdif_priv->regmap, true);
1342 	regcache_mark_dirty(spdif_priv->regmap);
1343 
1344 	return 0;
1345 }
1346 
1347 static int fsl_spdif_resume(struct device *dev)
1348 {
1349 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1350 
1351 	regcache_cache_only(spdif_priv->regmap, false);
1352 
1353 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1354 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1355 			spdif_priv->regcache_srpc);
1356 
1357 	return regcache_sync(spdif_priv->regmap);
1358 }
1359 #endif /* CONFIG_PM_SLEEP */
1360 
1361 static const struct dev_pm_ops fsl_spdif_pm = {
1362 	SET_SYSTEM_SLEEP_PM_OPS(fsl_spdif_suspend, fsl_spdif_resume)
1363 };
1364 
1365 static const struct of_device_id fsl_spdif_dt_ids[] = {
1366 	{ .compatible = "fsl,imx35-spdif", },
1367 	{ .compatible = "fsl,vf610-spdif", },
1368 	{}
1369 };
1370 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1371 
1372 static struct platform_driver fsl_spdif_driver = {
1373 	.driver = {
1374 		.name = "fsl-spdif-dai",
1375 		.of_match_table = fsl_spdif_dt_ids,
1376 		.pm = &fsl_spdif_pm,
1377 	},
1378 	.probe = fsl_spdif_probe,
1379 };
1380 
1381 module_platform_driver(fsl_spdif_driver);
1382 
1383 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1384 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1385 MODULE_LICENSE("GPL v2");
1386 MODULE_ALIAS("platform:fsl-spdif-dai");
1387