xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision 802b8362)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20 
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24 
25 #include "fsl_spdif.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SPDIF_TXFIFO_WML	0x8
29 #define FSL_SPDIF_RXFIFO_WML	0x8
30 
31 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
32 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
33 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
34 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
35 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
36 
37 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
38 
39 /* Index list for the values that has if (DPLL Locked) condition */
40 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
41 #define SRPC_NODPLL_START1	0x5
42 #define SRPC_NODPLL_START2	0xc
43 
44 #define DEFAULT_RXCLK_SRC	1
45 
46 /**
47  * struct fsl_spdif_soc_data: soc specific data
48  *
49  * @imx: for imx platform
50  * @shared_root_clock: flag of sharing a clock source with others;
51  *                     so the driver shouldn't set root clock rate
52  */
53 struct fsl_spdif_soc_data {
54 	bool imx;
55 	bool shared_root_clock;
56 };
57 
58 /*
59  * SPDIF control structure
60  * Defines channel status, subcode and Q sub
61  */
62 struct spdif_mixer_control {
63 	/* spinlock to access control data */
64 	spinlock_t ctl_lock;
65 
66 	/* IEC958 channel tx status bit */
67 	unsigned char ch_status[4];
68 
69 	/* User bits */
70 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
71 
72 	/* Q subcode part of user bits */
73 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
74 
75 	/* Buffer offset for U/Q */
76 	u32 upos;
77 	u32 qpos;
78 
79 	/* Ready buffer index of the two buffers */
80 	u32 ready_buf;
81 };
82 
83 /**
84  * struct fsl_spdif_priv - Freescale SPDIF private data
85  * @soc: SPDIF soc data
86  * @fsl_spdif_control: SPDIF control data
87  * @cpu_dai_drv: cpu dai driver
88  * @pdev: platform device pointer
89  * @regmap: regmap handler
90  * @dpll_locked: dpll lock flag
91  * @txrate: the best rates for playback
92  * @txclk_df: STC_TXCLK_DF dividers value for playback
93  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
94  * @txclk_src: STC_TXCLK_SRC values for playback
95  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
96  * @txclk: tx clock sources for playback
97  * @rxclk: rx clock sources for capture
98  * @coreclk: core clock for register access via DMA
99  * @sysclk: system clock for rx clock rate measurement
100  * @spbaclk: SPBA clock (optional, depending on SoC design)
101  * @dma_params_tx: DMA parameters for transmit channel
102  * @dma_params_rx: DMA parameters for receive channel
103  * @regcache_srpc: regcache for SRPC
104  */
105 struct fsl_spdif_priv {
106 	const struct fsl_spdif_soc_data *soc;
107 	struct spdif_mixer_control fsl_spdif_control;
108 	struct snd_soc_dai_driver cpu_dai_drv;
109 	struct platform_device *pdev;
110 	struct regmap *regmap;
111 	bool dpll_locked;
112 	u32 txrate[SPDIF_TXRATE_MAX];
113 	u8 txclk_df[SPDIF_TXRATE_MAX];
114 	u16 sysclk_df[SPDIF_TXRATE_MAX];
115 	u8 txclk_src[SPDIF_TXRATE_MAX];
116 	u8 rxclk_src;
117 	struct clk *txclk[SPDIF_TXRATE_MAX];
118 	struct clk *rxclk;
119 	struct clk *coreclk;
120 	struct clk *sysclk;
121 	struct clk *spbaclk;
122 	struct snd_dmaengine_dai_dma_data dma_params_tx;
123 	struct snd_dmaengine_dai_dma_data dma_params_rx;
124 	/* regcache for SRPC */
125 	u32 regcache_srpc;
126 };
127 
128 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
129 	.imx = false,
130 	.shared_root_clock = false,
131 };
132 
133 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
134 	.imx = true,
135 	.shared_root_clock = false,
136 };
137 
138 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
139 	.imx = true,
140 	.shared_root_clock = true,
141 };
142 
143 /* Check if clk is a root clock that does not share clock source with others */
144 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
145 {
146 	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
147 }
148 
149 /* DPLL locked and lock loss interrupt handler */
150 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
151 {
152 	struct regmap *regmap = spdif_priv->regmap;
153 	struct platform_device *pdev = spdif_priv->pdev;
154 	u32 locked;
155 
156 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
157 	locked &= SRPC_DPLL_LOCKED;
158 
159 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
160 			locked ? "locked" : "loss lock");
161 
162 	spdif_priv->dpll_locked = locked ? true : false;
163 }
164 
165 /* Receiver found illegal symbol interrupt handler */
166 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
167 {
168 	struct regmap *regmap = spdif_priv->regmap;
169 	struct platform_device *pdev = spdif_priv->pdev;
170 
171 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
172 
173 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
174 	if (!spdif_priv->dpll_locked)
175 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
176 }
177 
178 /* U/Q Channel receive register full */
179 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
180 {
181 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
182 	struct regmap *regmap = spdif_priv->regmap;
183 	struct platform_device *pdev = spdif_priv->pdev;
184 	u32 *pos, size, val, reg;
185 
186 	switch (name) {
187 	case 'U':
188 		pos = &ctrl->upos;
189 		size = SPDIF_UBITS_SIZE;
190 		reg = REG_SPDIF_SRU;
191 		break;
192 	case 'Q':
193 		pos = &ctrl->qpos;
194 		size = SPDIF_QSUB_SIZE;
195 		reg = REG_SPDIF_SRQ;
196 		break;
197 	default:
198 		dev_err(&pdev->dev, "unsupported channel name\n");
199 		return;
200 	}
201 
202 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
203 
204 	if (*pos >= size * 2) {
205 		*pos = 0;
206 	} else if (unlikely((*pos % size) + 3 > size)) {
207 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
208 		return;
209 	}
210 
211 	regmap_read(regmap, reg, &val);
212 	ctrl->subcode[*pos++] = val >> 16;
213 	ctrl->subcode[*pos++] = val >> 8;
214 	ctrl->subcode[*pos++] = val;
215 }
216 
217 /* U/Q Channel sync found */
218 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
219 {
220 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
221 	struct platform_device *pdev = spdif_priv->pdev;
222 
223 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
224 
225 	/* U/Q buffer reset */
226 	if (ctrl->qpos == 0)
227 		return;
228 
229 	/* Set ready to this buffer */
230 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
231 }
232 
233 /* U/Q Channel framing error */
234 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
235 {
236 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
237 	struct regmap *regmap = spdif_priv->regmap;
238 	struct platform_device *pdev = spdif_priv->pdev;
239 	u32 val;
240 
241 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
242 
243 	/* Read U/Q data to clear the irq and do buffer reset */
244 	regmap_read(regmap, REG_SPDIF_SRU, &val);
245 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
246 
247 	/* Drop this U/Q buffer */
248 	ctrl->ready_buf = 0;
249 	ctrl->upos = 0;
250 	ctrl->qpos = 0;
251 }
252 
253 /* Get spdif interrupt status and clear the interrupt */
254 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
255 {
256 	struct regmap *regmap = spdif_priv->regmap;
257 	u32 val, val2;
258 
259 	regmap_read(regmap, REG_SPDIF_SIS, &val);
260 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
261 
262 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
263 
264 	return val;
265 }
266 
267 static irqreturn_t spdif_isr(int irq, void *devid)
268 {
269 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
270 	struct platform_device *pdev = spdif_priv->pdev;
271 	u32 sis;
272 
273 	sis = spdif_intr_status_clear(spdif_priv);
274 
275 	if (sis & INT_DPLL_LOCKED)
276 		spdif_irq_dpll_lock(spdif_priv);
277 
278 	if (sis & INT_TXFIFO_UNOV)
279 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
280 
281 	if (sis & INT_TXFIFO_RESYNC)
282 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
283 
284 	if (sis & INT_CNEW)
285 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
286 
287 	if (sis & INT_VAL_NOGOOD)
288 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
289 
290 	if (sis & INT_SYM_ERR)
291 		spdif_irq_sym_error(spdif_priv);
292 
293 	if (sis & INT_BIT_ERR)
294 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
295 
296 	if (sis & INT_URX_FUL)
297 		spdif_irq_uqrx_full(spdif_priv, 'U');
298 
299 	if (sis & INT_URX_OV)
300 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
301 
302 	if (sis & INT_QRX_FUL)
303 		spdif_irq_uqrx_full(spdif_priv, 'Q');
304 
305 	if (sis & INT_QRX_OV)
306 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
307 
308 	if (sis & INT_UQ_SYNC)
309 		spdif_irq_uq_sync(spdif_priv);
310 
311 	if (sis & INT_UQ_ERR)
312 		spdif_irq_uq_err(spdif_priv);
313 
314 	if (sis & INT_RXFIFO_UNOV)
315 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
316 
317 	if (sis & INT_RXFIFO_RESYNC)
318 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
319 
320 	if (sis & INT_LOSS_LOCK)
321 		spdif_irq_dpll_lock(spdif_priv);
322 
323 	/* FIXME: Write Tx FIFO to clear TxEm */
324 	if (sis & INT_TX_EM)
325 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
326 
327 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
328 	if (sis & INT_RXFIFO_FUL)
329 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
330 
331 	return IRQ_HANDLED;
332 }
333 
334 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
335 {
336 	struct regmap *regmap = spdif_priv->regmap;
337 	u32 val, cycle = 1000;
338 
339 	regcache_cache_bypass(regmap, true);
340 
341 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
342 
343 	/*
344 	 * RESET bit would be cleared after finishing its reset procedure,
345 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
346 	 */
347 	do {
348 		regmap_read(regmap, REG_SPDIF_SCR, &val);
349 	} while ((val & SCR_SOFT_RESET) && cycle--);
350 
351 	regcache_cache_bypass(regmap, false);
352 	regcache_mark_dirty(regmap);
353 	regcache_sync(regmap);
354 
355 	if (cycle)
356 		return 0;
357 	else
358 		return -EBUSY;
359 }
360 
361 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
362 				u8 mask, u8 cstatus)
363 {
364 	ctrl->ch_status[3] &= ~mask;
365 	ctrl->ch_status[3] |= cstatus & mask;
366 }
367 
368 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
369 {
370 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
371 	struct regmap *regmap = spdif_priv->regmap;
372 	struct platform_device *pdev = spdif_priv->pdev;
373 	u32 ch_status;
374 
375 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
376 		    (bitrev8(ctrl->ch_status[1]) << 8) |
377 		    bitrev8(ctrl->ch_status[2]);
378 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
379 
380 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
381 
382 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
383 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
384 
385 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
386 }
387 
388 /* Set SPDIF PhaseConfig register for rx clock */
389 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
390 				enum spdif_gainsel gainsel, int dpll_locked)
391 {
392 	struct regmap *regmap = spdif_priv->regmap;
393 	u8 clksrc = spdif_priv->rxclk_src;
394 
395 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
396 		return -EINVAL;
397 
398 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
399 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
400 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
401 
402 	return 0;
403 }
404 
405 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
406 				int sample_rate)
407 {
408 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
409 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
410 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
411 	struct regmap *regmap = spdif_priv->regmap;
412 	struct platform_device *pdev = spdif_priv->pdev;
413 	unsigned long csfs = 0;
414 	u32 stc, mask, rate;
415 	u16 sysclk_df;
416 	u8 clk, txclk_df;
417 	int ret;
418 
419 	switch (sample_rate) {
420 	case 32000:
421 		rate = SPDIF_TXRATE_32000;
422 		csfs = IEC958_AES3_CON_FS_32000;
423 		break;
424 	case 44100:
425 		rate = SPDIF_TXRATE_44100;
426 		csfs = IEC958_AES3_CON_FS_44100;
427 		break;
428 	case 48000:
429 		rate = SPDIF_TXRATE_48000;
430 		csfs = IEC958_AES3_CON_FS_48000;
431 		break;
432 	case 96000:
433 		rate = SPDIF_TXRATE_96000;
434 		csfs = IEC958_AES3_CON_FS_96000;
435 		break;
436 	case 192000:
437 		rate = SPDIF_TXRATE_192000;
438 		csfs = IEC958_AES3_CON_FS_192000;
439 		break;
440 	default:
441 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
442 		return -EINVAL;
443 	}
444 
445 	clk = spdif_priv->txclk_src[rate];
446 	if (clk >= STC_TXCLK_SRC_MAX) {
447 		dev_err(&pdev->dev, "tx clock source is out of range\n");
448 		return -EINVAL;
449 	}
450 
451 	txclk_df = spdif_priv->txclk_df[rate];
452 	if (txclk_df == 0) {
453 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
454 		return -EINVAL;
455 	}
456 
457 	sysclk_df = spdif_priv->sysclk_df[rate];
458 
459 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
460 		goto clk_set_bypass;
461 
462 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
463 	ret = clk_set_rate(spdif_priv->txclk[rate],
464 			   64 * sample_rate * txclk_df);
465 	if (ret) {
466 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
467 		return ret;
468 	}
469 
470 clk_set_bypass:
471 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
472 			(64 * sample_rate * txclk_df * sysclk_df));
473 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
474 			clk_get_rate(spdif_priv->txclk[rate]));
475 
476 	/* set fs field in consumer channel status */
477 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
478 
479 	/* select clock source and divisor */
480 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
481 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
482 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
483 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
484 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
485 
486 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
487 			spdif_priv->txrate[rate], sample_rate);
488 
489 	return 0;
490 }
491 
492 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
493 			     struct snd_soc_dai *cpu_dai)
494 {
495 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
496 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
497 	struct platform_device *pdev = spdif_priv->pdev;
498 	struct regmap *regmap = spdif_priv->regmap;
499 	u32 scr, mask;
500 	int ret;
501 
502 	/* Reset module and interrupts only for first initialization */
503 	if (!snd_soc_dai_active(cpu_dai)) {
504 		ret = spdif_softreset(spdif_priv);
505 		if (ret) {
506 			dev_err(&pdev->dev, "failed to soft reset\n");
507 			return ret;
508 		}
509 
510 		/* Disable all the interrupts */
511 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
512 	}
513 
514 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
515 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
516 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
517 			SCR_TXFIFO_FSEL_IF8;
518 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
519 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
520 			SCR_TXFIFO_FSEL_MASK;
521 	} else {
522 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
523 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
524 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
525 	}
526 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
527 
528 	/* Power up SPDIF module */
529 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
530 
531 	return 0;
532 }
533 
534 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
535 				struct snd_soc_dai *cpu_dai)
536 {
537 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
538 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
539 	struct regmap *regmap = spdif_priv->regmap;
540 	u32 scr, mask;
541 
542 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
543 		scr = 0;
544 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
545 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
546 			SCR_TXFIFO_FSEL_MASK;
547 	} else {
548 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
549 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
550 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
551 	}
552 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
553 
554 	/* Power down SPDIF module only if tx&rx are both inactive */
555 	if (!snd_soc_dai_active(cpu_dai)) {
556 		spdif_intr_status_clear(spdif_priv);
557 		regmap_update_bits(regmap, REG_SPDIF_SCR,
558 				SCR_LOW_POWER, SCR_LOW_POWER);
559 	}
560 }
561 
562 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
563 				struct snd_pcm_hw_params *params,
564 				struct snd_soc_dai *dai)
565 {
566 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
567 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
568 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
569 	struct platform_device *pdev = spdif_priv->pdev;
570 	u32 sample_rate = params_rate(params);
571 	int ret = 0;
572 
573 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
574 		ret  = spdif_set_sample_rate(substream, sample_rate);
575 		if (ret) {
576 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
577 					__func__, sample_rate);
578 			return ret;
579 		}
580 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
581 				  IEC958_AES3_CON_CLOCK_1000PPM);
582 		spdif_write_channel_status(spdif_priv);
583 	} else {
584 		/* Setup rx clock source */
585 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
586 	}
587 
588 	return ret;
589 }
590 
591 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
592 				int cmd, struct snd_soc_dai *dai)
593 {
594 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
595 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
596 	struct regmap *regmap = spdif_priv->regmap;
597 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
598 	u32 intr = SIE_INTR_FOR(tx);
599 	u32 dmaen = SCR_DMA_xX_EN(tx);
600 
601 	switch (cmd) {
602 	case SNDRV_PCM_TRIGGER_START:
603 	case SNDRV_PCM_TRIGGER_RESUME:
604 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
605 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
606 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
607 		break;
608 	case SNDRV_PCM_TRIGGER_STOP:
609 	case SNDRV_PCM_TRIGGER_SUSPEND:
610 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
611 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
612 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
613 		break;
614 	default:
615 		return -EINVAL;
616 	}
617 
618 	return 0;
619 }
620 
621 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
622 	.startup = fsl_spdif_startup,
623 	.hw_params = fsl_spdif_hw_params,
624 	.trigger = fsl_spdif_trigger,
625 	.shutdown = fsl_spdif_shutdown,
626 };
627 
628 
629 /*
630  * FSL SPDIF IEC958 controller(mixer) functions
631  *
632  *	Channel status get/put control
633  *	User bit value get/put control
634  *	Valid bit value get control
635  *	DPLL lock status get control
636  *	User bit sync mode selection control
637  */
638 
639 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
640 				struct snd_ctl_elem_info *uinfo)
641 {
642 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
643 	uinfo->count = 1;
644 
645 	return 0;
646 }
647 
648 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
649 				struct snd_ctl_elem_value *uvalue)
650 {
651 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
652 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
653 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
654 
655 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
656 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
657 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
658 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
659 
660 	return 0;
661 }
662 
663 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
664 				struct snd_ctl_elem_value *uvalue)
665 {
666 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
667 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
668 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
669 
670 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
671 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
672 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
673 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
674 
675 	spdif_write_channel_status(spdif_priv);
676 
677 	return 0;
678 }
679 
680 /* Get channel status from SPDIF_RX_CCHAN register */
681 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
682 				struct snd_ctl_elem_value *ucontrol)
683 {
684 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
685 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
686 	struct regmap *regmap = spdif_priv->regmap;
687 	u32 cstatus, val;
688 
689 	regmap_read(regmap, REG_SPDIF_SIS, &val);
690 	if (!(val & INT_CNEW))
691 		return -EAGAIN;
692 
693 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
694 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
695 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
696 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
697 
698 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
699 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
700 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
701 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
702 
703 	/* Clear intr */
704 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
705 
706 	return 0;
707 }
708 
709 /*
710  * Get User bits (subcode) from chip value which readed out
711  * in UChannel register.
712  */
713 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
714 				struct snd_ctl_elem_value *ucontrol)
715 {
716 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
717 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
718 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
719 	unsigned long flags;
720 	int ret = -EAGAIN;
721 
722 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
723 	if (ctrl->ready_buf) {
724 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
725 		memcpy(&ucontrol->value.iec958.subcode[0],
726 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
727 		ret = 0;
728 	}
729 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
730 
731 	return ret;
732 }
733 
734 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
735 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
736 				struct snd_ctl_elem_info *uinfo)
737 {
738 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
739 	uinfo->count = SPDIF_QSUB_SIZE;
740 
741 	return 0;
742 }
743 
744 /* Get Q subcode from chip value which readed out in QChannel register */
745 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
746 				struct snd_ctl_elem_value *ucontrol)
747 {
748 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
749 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
750 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
751 	unsigned long flags;
752 	int ret = -EAGAIN;
753 
754 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
755 	if (ctrl->ready_buf) {
756 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
757 		memcpy(&ucontrol->value.bytes.data[0],
758 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
759 		ret = 0;
760 	}
761 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
762 
763 	return ret;
764 }
765 
766 /* Valid bit information */
767 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
768 				struct snd_ctl_elem_info *uinfo)
769 {
770 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
771 	uinfo->count = 1;
772 	uinfo->value.integer.min = 0;
773 	uinfo->value.integer.max = 1;
774 
775 	return 0;
776 }
777 
778 /* Get valid good bit from interrupt status register */
779 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
780 				 struct snd_ctl_elem_value *ucontrol)
781 {
782 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
783 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
784 	struct regmap *regmap = spdif_priv->regmap;
785 	u32 val;
786 
787 	regmap_read(regmap, REG_SPDIF_SIS, &val);
788 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
789 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
790 
791 	return 0;
792 }
793 
794 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
795 				 struct snd_ctl_elem_value *ucontrol)
796 {
797 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
798 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
799 	struct regmap *regmap = spdif_priv->regmap;
800 	u32 val;
801 
802 	regmap_read(regmap, REG_SPDIF_SCR, &val);
803 	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
804 	val = 1 - val;
805 	ucontrol->value.integer.value[0] = val;
806 
807 	return 0;
808 }
809 
810 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
811 				 struct snd_ctl_elem_value *ucontrol)
812 {
813 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
814 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
815 	struct regmap *regmap = spdif_priv->regmap;
816 	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
817 
818 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
819 
820 	return 0;
821 }
822 
823 /* DPLL lock information */
824 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
825 				struct snd_ctl_elem_info *uinfo)
826 {
827 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
828 	uinfo->count = 1;
829 	uinfo->value.integer.min = 16000;
830 	uinfo->value.integer.max = 96000;
831 
832 	return 0;
833 }
834 
835 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
836 	24, 16, 12, 8, 6, 4, 3,
837 };
838 
839 /* Get RX data clock rate given the SPDIF bus_clk */
840 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
841 				enum spdif_gainsel gainsel)
842 {
843 	struct regmap *regmap = spdif_priv->regmap;
844 	struct platform_device *pdev = spdif_priv->pdev;
845 	u64 tmpval64, busclk_freq = 0;
846 	u32 freqmeas, phaseconf;
847 	u8 clksrc;
848 
849 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
850 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
851 
852 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
853 
854 	/* Get bus clock from system */
855 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
856 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
857 
858 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
859 	tmpval64 = (u64) busclk_freq * freqmeas;
860 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
861 	do_div(tmpval64, 128 * 1024);
862 
863 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
864 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
865 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
866 
867 	return (int)tmpval64;
868 }
869 
870 /*
871  * Get DPLL lock or not info from stable interrupt status register.
872  * User application must use this control to get locked,
873  * then can do next PCM operation
874  */
875 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
876 				struct snd_ctl_elem_value *ucontrol)
877 {
878 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
879 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
880 	int rate = 0;
881 
882 	if (spdif_priv->dpll_locked)
883 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
884 
885 	ucontrol->value.integer.value[0] = rate;
886 
887 	return 0;
888 }
889 
890 /* User bit sync mode info */
891 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
892 				struct snd_ctl_elem_info *uinfo)
893 {
894 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
895 	uinfo->count = 1;
896 	uinfo->value.integer.min = 0;
897 	uinfo->value.integer.max = 1;
898 
899 	return 0;
900 }
901 
902 /*
903  * User bit sync mode:
904  * 1 CD User channel subcode
905  * 0 Non-CD data
906  */
907 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
908 			       struct snd_ctl_elem_value *ucontrol)
909 {
910 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
911 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
912 	struct regmap *regmap = spdif_priv->regmap;
913 	u32 val;
914 
915 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
916 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
917 
918 	return 0;
919 }
920 
921 /*
922  * User bit sync mode:
923  * 1 CD User channel subcode
924  * 0 Non-CD data
925  */
926 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
927 				struct snd_ctl_elem_value *ucontrol)
928 {
929 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
930 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
931 	struct regmap *regmap = spdif_priv->regmap;
932 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
933 
934 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
935 
936 	return 0;
937 }
938 
939 /* FSL SPDIF IEC958 controller defines */
940 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
941 	/* Status cchanel controller */
942 	{
943 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
944 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
945 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
946 			SNDRV_CTL_ELEM_ACCESS_WRITE |
947 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
948 		.info = fsl_spdif_info,
949 		.get = fsl_spdif_pb_get,
950 		.put = fsl_spdif_pb_put,
951 	},
952 	{
953 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
954 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
955 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
956 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
957 		.info = fsl_spdif_info,
958 		.get = fsl_spdif_capture_get,
959 	},
960 	/* User bits controller */
961 	{
962 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
963 		.name = "IEC958 Subcode Capture Default",
964 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
965 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
966 		.info = fsl_spdif_info,
967 		.get = fsl_spdif_subcode_get,
968 	},
969 	{
970 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
971 		.name = "IEC958 Q-subcode Capture Default",
972 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
973 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
974 		.info = fsl_spdif_qinfo,
975 		.get = fsl_spdif_qget,
976 	},
977 	/* Valid bit error controller */
978 	{
979 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
980 		.name = "IEC958 RX V-Bit Errors",
981 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
982 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
983 		.info = fsl_spdif_vbit_info,
984 		.get = fsl_spdif_rx_vbit_get,
985 	},
986 	{
987 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
988 		.name = "IEC958 TX V-Bit",
989 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
990 			SNDRV_CTL_ELEM_ACCESS_WRITE |
991 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
992 		.info = fsl_spdif_vbit_info,
993 		.get = fsl_spdif_tx_vbit_get,
994 		.put = fsl_spdif_tx_vbit_put,
995 	},
996 	/* DPLL lock info get controller */
997 	{
998 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
999 		.name = "RX Sample Rate",
1000 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1001 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1002 		.info = fsl_spdif_rxrate_info,
1003 		.get = fsl_spdif_rxrate_get,
1004 	},
1005 	/* User bit sync mode set/get controller */
1006 	{
1007 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1008 		.name = "IEC958 USyncMode CDText",
1009 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1010 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1011 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1012 		.info = fsl_spdif_usync_info,
1013 		.get = fsl_spdif_usync_get,
1014 		.put = fsl_spdif_usync_put,
1015 	},
1016 };
1017 
1018 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1019 {
1020 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1021 
1022 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1023 				  &spdif_private->dma_params_rx);
1024 
1025 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1026 
1027 	/*Clear the val bit for Tx*/
1028 	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1029 			   SCR_VAL_MASK, SCR_VAL_CLEAR);
1030 
1031 	return 0;
1032 }
1033 
1034 static struct snd_soc_dai_driver fsl_spdif_dai = {
1035 	.probe = &fsl_spdif_dai_probe,
1036 	.playback = {
1037 		.stream_name = "CPU-Playback",
1038 		.channels_min = 2,
1039 		.channels_max = 2,
1040 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1041 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1042 	},
1043 	.capture = {
1044 		.stream_name = "CPU-Capture",
1045 		.channels_min = 2,
1046 		.channels_max = 2,
1047 		.rates = FSL_SPDIF_RATES_CAPTURE,
1048 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1049 	},
1050 	.ops = &fsl_spdif_dai_ops,
1051 };
1052 
1053 static const struct snd_soc_component_driver fsl_spdif_component = {
1054 	.name		= "fsl-spdif",
1055 };
1056 
1057 /* FSL SPDIF REGMAP */
1058 static const struct reg_default fsl_spdif_reg_defaults[] = {
1059 	{REG_SPDIF_SCR,    0x00000400},
1060 	{REG_SPDIF_SRCD,   0x00000000},
1061 	{REG_SPDIF_SIE,	   0x00000000},
1062 	{REG_SPDIF_STL,	   0x00000000},
1063 	{REG_SPDIF_STR,	   0x00000000},
1064 	{REG_SPDIF_STCSCH, 0x00000000},
1065 	{REG_SPDIF_STCSCL, 0x00000000},
1066 	{REG_SPDIF_STC,	   0x00020f00},
1067 };
1068 
1069 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1070 {
1071 	switch (reg) {
1072 	case REG_SPDIF_SCR:
1073 	case REG_SPDIF_SRCD:
1074 	case REG_SPDIF_SRPC:
1075 	case REG_SPDIF_SIE:
1076 	case REG_SPDIF_SIS:
1077 	case REG_SPDIF_SRL:
1078 	case REG_SPDIF_SRR:
1079 	case REG_SPDIF_SRCSH:
1080 	case REG_SPDIF_SRCSL:
1081 	case REG_SPDIF_SRU:
1082 	case REG_SPDIF_SRQ:
1083 	case REG_SPDIF_STCSCH:
1084 	case REG_SPDIF_STCSCL:
1085 	case REG_SPDIF_SRFM:
1086 	case REG_SPDIF_STC:
1087 		return true;
1088 	default:
1089 		return false;
1090 	}
1091 }
1092 
1093 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1094 {
1095 	switch (reg) {
1096 	case REG_SPDIF_SRPC:
1097 	case REG_SPDIF_SIS:
1098 	case REG_SPDIF_SRL:
1099 	case REG_SPDIF_SRR:
1100 	case REG_SPDIF_SRCSH:
1101 	case REG_SPDIF_SRCSL:
1102 	case REG_SPDIF_SRU:
1103 	case REG_SPDIF_SRQ:
1104 	case REG_SPDIF_SRFM:
1105 		return true;
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1112 {
1113 	switch (reg) {
1114 	case REG_SPDIF_SCR:
1115 	case REG_SPDIF_SRCD:
1116 	case REG_SPDIF_SRPC:
1117 	case REG_SPDIF_SIE:
1118 	case REG_SPDIF_SIC:
1119 	case REG_SPDIF_STL:
1120 	case REG_SPDIF_STR:
1121 	case REG_SPDIF_STCSCH:
1122 	case REG_SPDIF_STCSCL:
1123 	case REG_SPDIF_STC:
1124 		return true;
1125 	default:
1126 		return false;
1127 	}
1128 }
1129 
1130 static const struct regmap_config fsl_spdif_regmap_config = {
1131 	.reg_bits = 32,
1132 	.reg_stride = 4,
1133 	.val_bits = 32,
1134 
1135 	.max_register = REG_SPDIF_STC,
1136 	.reg_defaults = fsl_spdif_reg_defaults,
1137 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1138 	.readable_reg = fsl_spdif_readable_reg,
1139 	.volatile_reg = fsl_spdif_volatile_reg,
1140 	.writeable_reg = fsl_spdif_writeable_reg,
1141 	.cache_type = REGCACHE_FLAT,
1142 };
1143 
1144 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1145 				struct clk *clk, u64 savesub,
1146 				enum spdif_txrate index, bool round)
1147 {
1148 	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1149 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1150 	u64 rate_ideal, rate_actual, sub;
1151 	u32 arate;
1152 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1153 	u8 txclk_df;
1154 
1155 	/* The sysclk has an extra divisor [2, 512] */
1156 	sysclk_dfmin = is_sysclk ? 2 : 1;
1157 	sysclk_dfmax = is_sysclk ? 512 : 1;
1158 
1159 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1160 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1161 			rate_ideal = rate[index] * txclk_df * 64ULL;
1162 			if (round)
1163 				rate_actual = clk_round_rate(clk, rate_ideal);
1164 			else
1165 				rate_actual = clk_get_rate(clk);
1166 
1167 			arate = rate_actual / 64;
1168 			arate /= txclk_df * sysclk_df;
1169 
1170 			if (arate == rate[index]) {
1171 				/* We are lucky */
1172 				savesub = 0;
1173 				spdif_priv->txclk_df[index] = txclk_df;
1174 				spdif_priv->sysclk_df[index] = sysclk_df;
1175 				spdif_priv->txrate[index] = arate;
1176 				goto out;
1177 			} else if (arate / rate[index] == 1) {
1178 				/* A little bigger than expect */
1179 				sub = (u64)(arate - rate[index]) * 100000;
1180 				do_div(sub, rate[index]);
1181 				if (sub >= savesub)
1182 					continue;
1183 				savesub = sub;
1184 				spdif_priv->txclk_df[index] = txclk_df;
1185 				spdif_priv->sysclk_df[index] = sysclk_df;
1186 				spdif_priv->txrate[index] = arate;
1187 			} else if (rate[index] / arate == 1) {
1188 				/* A little smaller than expect */
1189 				sub = (u64)(rate[index] - arate) * 100000;
1190 				do_div(sub, rate[index]);
1191 				if (sub >= savesub)
1192 					continue;
1193 				savesub = sub;
1194 				spdif_priv->txclk_df[index] = txclk_df;
1195 				spdif_priv->sysclk_df[index] = sysclk_df;
1196 				spdif_priv->txrate[index] = arate;
1197 			}
1198 		}
1199 	}
1200 
1201 out:
1202 	return savesub;
1203 }
1204 
1205 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1206 				enum spdif_txrate index)
1207 {
1208 	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1209 	struct platform_device *pdev = spdif_priv->pdev;
1210 	struct device *dev = &pdev->dev;
1211 	u64 savesub = 100000, ret;
1212 	struct clk *clk;
1213 	char tmp[16];
1214 	int i;
1215 
1216 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1217 		sprintf(tmp, "rxtx%d", i);
1218 		clk = devm_clk_get(&pdev->dev, tmp);
1219 		if (IS_ERR(clk)) {
1220 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1221 			return PTR_ERR(clk);
1222 		}
1223 		if (!clk_get_rate(clk))
1224 			continue;
1225 
1226 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1227 					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1228 		if (savesub == ret)
1229 			continue;
1230 
1231 		savesub = ret;
1232 		spdif_priv->txclk[index] = clk;
1233 		spdif_priv->txclk_src[index] = i;
1234 
1235 		/* To quick catch a divisor, we allow a 0.1% deviation */
1236 		if (savesub < 100)
1237 			break;
1238 	}
1239 
1240 	dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1241 			spdif_priv->txclk_src[index], rate[index]);
1242 	dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
1243 			spdif_priv->txclk_df[index], rate[index]);
1244 	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1245 		dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
1246 				spdif_priv->sysclk_df[index], rate[index]);
1247 	dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
1248 			rate[index], spdif_priv->txrate[index]);
1249 
1250 	return 0;
1251 }
1252 
1253 static int fsl_spdif_probe(struct platform_device *pdev)
1254 {
1255 	struct device_node *np = pdev->dev.of_node;
1256 	struct fsl_spdif_priv *spdif_priv;
1257 	struct spdif_mixer_control *ctrl;
1258 	struct resource *res;
1259 	void __iomem *regs;
1260 	int irq, ret, i;
1261 
1262 	if (!np)
1263 		return -ENODEV;
1264 
1265 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1266 	if (!spdif_priv)
1267 		return -ENOMEM;
1268 
1269 	spdif_priv->pdev = pdev;
1270 
1271 	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1272 	if (!spdif_priv->soc) {
1273 		dev_err(&pdev->dev, "failed to get soc data\n");
1274 		return -ENODEV;
1275 	}
1276 
1277 	/* Initialize this copy of the CPU DAI driver structure */
1278 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1279 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1280 
1281 	/* Get the addresses and IRQ */
1282 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1283 	regs = devm_ioremap_resource(&pdev->dev, res);
1284 	if (IS_ERR(regs))
1285 		return PTR_ERR(regs);
1286 
1287 	spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1288 			"core", regs, &fsl_spdif_regmap_config);
1289 	if (IS_ERR(spdif_priv->regmap)) {
1290 		dev_err(&pdev->dev, "regmap init failed\n");
1291 		return PTR_ERR(spdif_priv->regmap);
1292 	}
1293 
1294 	irq = platform_get_irq(pdev, 0);
1295 	if (irq < 0)
1296 		return irq;
1297 
1298 	ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1299 			       dev_name(&pdev->dev), spdif_priv);
1300 	if (ret) {
1301 		dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1302 		return ret;
1303 	}
1304 
1305 	/* Get system clock for rx clock rate calculation */
1306 	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1307 	if (IS_ERR(spdif_priv->sysclk)) {
1308 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1309 		return PTR_ERR(spdif_priv->sysclk);
1310 	}
1311 
1312 	/* Get core clock for data register access via DMA */
1313 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1314 	if (IS_ERR(spdif_priv->coreclk)) {
1315 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1316 		return PTR_ERR(spdif_priv->coreclk);
1317 	}
1318 
1319 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1320 	if (IS_ERR(spdif_priv->spbaclk))
1321 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1322 
1323 	/* Select clock source for rx/tx clock */
1324 	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1325 	if (IS_ERR(spdif_priv->rxclk)) {
1326 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1327 		return PTR_ERR(spdif_priv->rxclk);
1328 	}
1329 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1330 
1331 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1332 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1333 		if (ret)
1334 			return ret;
1335 	}
1336 
1337 	/* Initial spinlock for control data */
1338 	ctrl = &spdif_priv->fsl_spdif_control;
1339 	spin_lock_init(&ctrl->ctl_lock);
1340 
1341 	/* Init tx channel status default value */
1342 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1343 			     IEC958_AES0_CON_EMPHASIS_5015;
1344 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1345 	ctrl->ch_status[2] = 0x00;
1346 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1347 			     IEC958_AES3_CON_CLOCK_1000PPM;
1348 
1349 	spdif_priv->dpll_locked = false;
1350 
1351 	spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
1352 	spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
1353 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1354 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1355 
1356 	/* Register with ASoC */
1357 	dev_set_drvdata(&pdev->dev, spdif_priv);
1358 	pm_runtime_enable(&pdev->dev);
1359 	regcache_cache_only(spdif_priv->regmap, true);
1360 
1361 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1362 					      &spdif_priv->cpu_dai_drv, 1);
1363 	if (ret) {
1364 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1365 		return ret;
1366 	}
1367 
1368 	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1369 	if (ret && ret != -EPROBE_DEFER)
1370 		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1371 
1372 	return ret;
1373 }
1374 
1375 #ifdef CONFIG_PM
1376 static int fsl_spdif_runtime_suspend(struct device *dev)
1377 {
1378 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1379 	int i;
1380 
1381 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1382 			&spdif_priv->regcache_srpc);
1383 	regcache_cache_only(spdif_priv->regmap, true);
1384 
1385 	clk_disable_unprepare(spdif_priv->rxclk);
1386 
1387 	for (i = 0; i < SPDIF_TXRATE_MAX; i++)
1388 		clk_disable_unprepare(spdif_priv->txclk[i]);
1389 
1390 	if (!IS_ERR(spdif_priv->spbaclk))
1391 		clk_disable_unprepare(spdif_priv->spbaclk);
1392 	clk_disable_unprepare(spdif_priv->coreclk);
1393 
1394 	return 0;
1395 }
1396 
1397 static int fsl_spdif_runtime_resume(struct device *dev)
1398 {
1399 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1400 	int ret;
1401 	int i;
1402 
1403 	ret = clk_prepare_enable(spdif_priv->coreclk);
1404 	if (ret) {
1405 		dev_err(dev, "failed to enable core clock\n");
1406 		return ret;
1407 	}
1408 
1409 	if (!IS_ERR(spdif_priv->spbaclk)) {
1410 		ret = clk_prepare_enable(spdif_priv->spbaclk);
1411 		if (ret) {
1412 			dev_err(dev, "failed to enable spba clock\n");
1413 			goto disable_core_clk;
1414 		}
1415 	}
1416 
1417 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1418 		ret = clk_prepare_enable(spdif_priv->txclk[i]);
1419 		if (ret)
1420 			goto disable_tx_clk;
1421 	}
1422 
1423 	ret = clk_prepare_enable(spdif_priv->rxclk);
1424 	if (ret)
1425 		goto disable_tx_clk;
1426 
1427 	regcache_cache_only(spdif_priv->regmap, false);
1428 	regcache_mark_dirty(spdif_priv->regmap);
1429 
1430 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1431 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1432 			spdif_priv->regcache_srpc);
1433 
1434 	ret = regcache_sync(spdif_priv->regmap);
1435 	if (ret)
1436 		goto disable_rx_clk;
1437 
1438 	return 0;
1439 
1440 disable_rx_clk:
1441 	clk_disable_unprepare(spdif_priv->rxclk);
1442 disable_tx_clk:
1443 	for (i--; i >= 0; i--)
1444 		clk_disable_unprepare(spdif_priv->txclk[i]);
1445 	if (!IS_ERR(spdif_priv->spbaclk))
1446 		clk_disable_unprepare(spdif_priv->spbaclk);
1447 disable_core_clk:
1448 	clk_disable_unprepare(spdif_priv->coreclk);
1449 
1450 	return ret;
1451 }
1452 #endif /* CONFIG_PM */
1453 
1454 static const struct dev_pm_ops fsl_spdif_pm = {
1455 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1456 				pm_runtime_force_resume)
1457 	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1458 			   NULL)
1459 };
1460 
1461 static const struct of_device_id fsl_spdif_dt_ids[] = {
1462 	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1463 	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1464 	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1465 	{}
1466 };
1467 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1468 
1469 static struct platform_driver fsl_spdif_driver = {
1470 	.driver = {
1471 		.name = "fsl-spdif-dai",
1472 		.of_match_table = fsl_spdif_dt_ids,
1473 		.pm = &fsl_spdif_pm,
1474 	},
1475 	.probe = fsl_spdif_probe,
1476 };
1477 
1478 module_platform_driver(fsl_spdif_driver);
1479 
1480 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1481 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1482 MODULE_LICENSE("GPL v2");
1483 MODULE_ALIAS("platform:fsl-spdif-dai");
1484