xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20 
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24 
25 #include "fsl_spdif.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SPDIF_TXFIFO_WML	0x8
29 #define FSL_SPDIF_RXFIFO_WML	0x8
30 
31 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
32 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
33 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
34 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
35 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
36 
37 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
38 
39 /* Index list for the values that has if (DPLL Locked) condition */
40 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
41 #define SRPC_NODPLL_START1	0x5
42 #define SRPC_NODPLL_START2	0xc
43 
44 #define DEFAULT_RXCLK_SRC	1
45 
46 /**
47  * struct fsl_spdif_soc_data: soc specific data
48  *
49  * @imx: for imx platform
50  * @shared_root_clock: flag of sharing a clock source with others;
51  *                     so the driver shouldn't set root clock rate
52  * @raw_capture_mode: if raw capture mode support
53  * @cchannel_192b: if there are registers for 192bits C channel data
54  * @interrupts: interrupt number
55  * @tx_burst: tx maxburst size
56  * @rx_burst: rx maxburst size
57  * @tx_formats: tx supported data format
58  */
59 struct fsl_spdif_soc_data {
60 	bool imx;
61 	bool shared_root_clock;
62 	bool raw_capture_mode;
63 	bool cchannel_192b;
64 	u32 interrupts;
65 	u32 tx_burst;
66 	u32 rx_burst;
67 	u64 tx_formats;
68 };
69 
70 /*
71  * SPDIF control structure
72  * Defines channel status, subcode and Q sub
73  */
74 struct spdif_mixer_control {
75 	/* spinlock to access control data */
76 	spinlock_t ctl_lock;
77 
78 	/* IEC958 channel tx status bit */
79 	unsigned char ch_status[4];
80 
81 	/* User bits */
82 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
83 
84 	/* Q subcode part of user bits */
85 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
86 
87 	/* Buffer offset for U/Q */
88 	u32 upos;
89 	u32 qpos;
90 
91 	/* Ready buffer index of the two buffers */
92 	u32 ready_buf;
93 };
94 
95 /**
96  * struct fsl_spdif_priv - Freescale SPDIF private data
97  * @soc: SPDIF soc data
98  * @fsl_spdif_control: SPDIF control data
99  * @cpu_dai_drv: cpu dai driver
100  * @pdev: platform device pointer
101  * @regmap: regmap handler
102  * @dpll_locked: dpll lock flag
103  * @txrate: the best rates for playback
104  * @txclk_df: STC_TXCLK_DF dividers value for playback
105  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
106  * @txclk_src: STC_TXCLK_SRC values for playback
107  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
108  * @txclk: tx clock sources for playback
109  * @rxclk: rx clock sources for capture
110  * @coreclk: core clock for register access via DMA
111  * @sysclk: system clock for rx clock rate measurement
112  * @spbaclk: SPBA clock (optional, depending on SoC design)
113  * @dma_params_tx: DMA parameters for transmit channel
114  * @dma_params_rx: DMA parameters for receive channel
115  * @regcache_srpc: regcache for SRPC
116  * @bypass: status of bypass input to output
117  */
118 struct fsl_spdif_priv {
119 	const struct fsl_spdif_soc_data *soc;
120 	struct spdif_mixer_control fsl_spdif_control;
121 	struct snd_soc_dai_driver cpu_dai_drv;
122 	struct platform_device *pdev;
123 	struct regmap *regmap;
124 	bool dpll_locked;
125 	u32 txrate[SPDIF_TXRATE_MAX];
126 	u8 txclk_df[SPDIF_TXRATE_MAX];
127 	u16 sysclk_df[SPDIF_TXRATE_MAX];
128 	u8 txclk_src[SPDIF_TXRATE_MAX];
129 	u8 rxclk_src;
130 	struct clk *txclk[STC_TXCLK_SRC_MAX];
131 	struct clk *rxclk;
132 	struct clk *coreclk;
133 	struct clk *sysclk;
134 	struct clk *spbaclk;
135 	struct snd_dmaengine_dai_dma_data dma_params_tx;
136 	struct snd_dmaengine_dai_dma_data dma_params_rx;
137 	/* regcache for SRPC */
138 	u32 regcache_srpc;
139 	bool bypass;
140 };
141 
142 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
143 	.imx = false,
144 	.shared_root_clock = false,
145 	.raw_capture_mode = false,
146 	.interrupts = 1,
147 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
148 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
149 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
150 };
151 
152 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
153 	.imx = true,
154 	.shared_root_clock = false,
155 	.raw_capture_mode = false,
156 	.interrupts = 1,
157 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
158 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
159 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
160 };
161 
162 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
163 	.imx = true,
164 	.shared_root_clock = true,
165 	.raw_capture_mode = false,
166 	.interrupts = 1,
167 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
168 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
169 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
170 
171 };
172 
173 static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
174 	.imx = true,
175 	.shared_root_clock = true,
176 	.raw_capture_mode = false,
177 	.interrupts = 2,
178 	.tx_burst = 2,		/* Applied for EDMA */
179 	.rx_burst = 2,		/* Applied for EDMA */
180 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,  /* Applied for EDMA */
181 };
182 
183 static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
184 	.imx = true,
185 	.shared_root_clock = false,
186 	.raw_capture_mode = true,
187 	.interrupts = 1,
188 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
189 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
190 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
191 };
192 
193 static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
194 	.imx = true,
195 	.shared_root_clock = true,
196 	.raw_capture_mode = false,
197 	.interrupts = 1,
198 	.tx_burst = 2,		/* Applied for EDMA */
199 	.rx_burst = 2,		/* Applied for EDMA */
200 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,	/* Applied for EDMA */
201 	.cchannel_192b = true,
202 };
203 
204 /* Check if clk is a root clock that does not share clock source with others */
205 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
206 {
207 	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
208 }
209 
210 /* DPLL locked and lock loss interrupt handler */
211 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
212 {
213 	struct regmap *regmap = spdif_priv->regmap;
214 	struct platform_device *pdev = spdif_priv->pdev;
215 	u32 locked;
216 
217 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
218 	locked &= SRPC_DPLL_LOCKED;
219 
220 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
221 			locked ? "locked" : "loss lock");
222 
223 	spdif_priv->dpll_locked = locked ? true : false;
224 }
225 
226 /* Receiver found illegal symbol interrupt handler */
227 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
228 {
229 	struct regmap *regmap = spdif_priv->regmap;
230 	struct platform_device *pdev = spdif_priv->pdev;
231 
232 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
233 
234 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
235 	if (!spdif_priv->dpll_locked)
236 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
237 }
238 
239 /* U/Q Channel receive register full */
240 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
241 {
242 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
243 	struct regmap *regmap = spdif_priv->regmap;
244 	struct platform_device *pdev = spdif_priv->pdev;
245 	u32 *pos, size, val, reg;
246 
247 	switch (name) {
248 	case 'U':
249 		pos = &ctrl->upos;
250 		size = SPDIF_UBITS_SIZE;
251 		reg = REG_SPDIF_SRU;
252 		break;
253 	case 'Q':
254 		pos = &ctrl->qpos;
255 		size = SPDIF_QSUB_SIZE;
256 		reg = REG_SPDIF_SRQ;
257 		break;
258 	default:
259 		dev_err(&pdev->dev, "unsupported channel name\n");
260 		return;
261 	}
262 
263 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
264 
265 	if (*pos >= size * 2) {
266 		*pos = 0;
267 	} else if (unlikely((*pos % size) + 3 > size)) {
268 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
269 		return;
270 	}
271 
272 	regmap_read(regmap, reg, &val);
273 	ctrl->subcode[*pos++] = val >> 16;
274 	ctrl->subcode[*pos++] = val >> 8;
275 	ctrl->subcode[*pos++] = val;
276 }
277 
278 /* U/Q Channel sync found */
279 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
280 {
281 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
282 	struct platform_device *pdev = spdif_priv->pdev;
283 
284 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
285 
286 	/* U/Q buffer reset */
287 	if (ctrl->qpos == 0)
288 		return;
289 
290 	/* Set ready to this buffer */
291 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
292 }
293 
294 /* U/Q Channel framing error */
295 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
296 {
297 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
298 	struct regmap *regmap = spdif_priv->regmap;
299 	struct platform_device *pdev = spdif_priv->pdev;
300 	u32 val;
301 
302 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
303 
304 	/* Read U/Q data to clear the irq and do buffer reset */
305 	regmap_read(regmap, REG_SPDIF_SRU, &val);
306 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
307 
308 	/* Drop this U/Q buffer */
309 	ctrl->ready_buf = 0;
310 	ctrl->upos = 0;
311 	ctrl->qpos = 0;
312 }
313 
314 /* Get spdif interrupt status and clear the interrupt */
315 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
316 {
317 	struct regmap *regmap = spdif_priv->regmap;
318 	u32 val, val2;
319 
320 	regmap_read(regmap, REG_SPDIF_SIS, &val);
321 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
322 
323 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
324 
325 	return val;
326 }
327 
328 static irqreturn_t spdif_isr(int irq, void *devid)
329 {
330 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
331 	struct platform_device *pdev = spdif_priv->pdev;
332 	u32 sis;
333 
334 	sis = spdif_intr_status_clear(spdif_priv);
335 
336 	if (sis & INT_DPLL_LOCKED)
337 		spdif_irq_dpll_lock(spdif_priv);
338 
339 	if (sis & INT_TXFIFO_UNOV)
340 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
341 
342 	if (sis & INT_TXFIFO_RESYNC)
343 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
344 
345 	if (sis & INT_CNEW)
346 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
347 
348 	if (sis & INT_VAL_NOGOOD)
349 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
350 
351 	if (sis & INT_SYM_ERR)
352 		spdif_irq_sym_error(spdif_priv);
353 
354 	if (sis & INT_BIT_ERR)
355 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
356 
357 	if (sis & INT_URX_FUL)
358 		spdif_irq_uqrx_full(spdif_priv, 'U');
359 
360 	if (sis & INT_URX_OV)
361 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
362 
363 	if (sis & INT_QRX_FUL)
364 		spdif_irq_uqrx_full(spdif_priv, 'Q');
365 
366 	if (sis & INT_QRX_OV)
367 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
368 
369 	if (sis & INT_UQ_SYNC)
370 		spdif_irq_uq_sync(spdif_priv);
371 
372 	if (sis & INT_UQ_ERR)
373 		spdif_irq_uq_err(spdif_priv);
374 
375 	if (sis & INT_RXFIFO_UNOV)
376 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
377 
378 	if (sis & INT_RXFIFO_RESYNC)
379 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
380 
381 	if (sis & INT_LOSS_LOCK)
382 		spdif_irq_dpll_lock(spdif_priv);
383 
384 	/* FIXME: Write Tx FIFO to clear TxEm */
385 	if (sis & INT_TX_EM)
386 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
387 
388 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
389 	if (sis & INT_RXFIFO_FUL)
390 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
391 
392 	return IRQ_HANDLED;
393 }
394 
395 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
396 {
397 	struct regmap *regmap = spdif_priv->regmap;
398 	u32 val, cycle = 1000;
399 
400 	regcache_cache_bypass(regmap, true);
401 
402 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
403 
404 	/*
405 	 * RESET bit would be cleared after finishing its reset procedure,
406 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
407 	 */
408 	do {
409 		regmap_read(regmap, REG_SPDIF_SCR, &val);
410 	} while ((val & SCR_SOFT_RESET) && cycle--);
411 
412 	regcache_cache_bypass(regmap, false);
413 	regcache_mark_dirty(regmap);
414 	regcache_sync(regmap);
415 
416 	if (cycle)
417 		return 0;
418 	else
419 		return -EBUSY;
420 }
421 
422 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
423 				u8 mask, u8 cstatus)
424 {
425 	ctrl->ch_status[3] &= ~mask;
426 	ctrl->ch_status[3] |= cstatus & mask;
427 }
428 
429 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
430 {
431 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
432 	struct regmap *regmap = spdif_priv->regmap;
433 	struct platform_device *pdev = spdif_priv->pdev;
434 	u32 ch_status;
435 
436 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
437 		    (bitrev8(ctrl->ch_status[1]) << 8) |
438 		    bitrev8(ctrl->ch_status[2]);
439 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
440 
441 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
442 
443 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
444 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
445 
446 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
447 
448 	if (spdif_priv->soc->cchannel_192b) {
449 		ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
450 			    (bitrev8(ctrl->ch_status[1]) << 16) |
451 			    (bitrev8(ctrl->ch_status[2]) << 8) |
452 			    bitrev8(ctrl->ch_status[3]);
453 
454 		regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000);
455 
456 		/*
457 		 * The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
458 		 * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
459 		 * then can get correct result with HDMI analyzer capture.
460 		 * There is a hardware bug here.
461 		 */
462 		regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status);
463 	}
464 }
465 
466 /* Set SPDIF PhaseConfig register for rx clock */
467 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
468 				enum spdif_gainsel gainsel, int dpll_locked)
469 {
470 	struct regmap *regmap = spdif_priv->regmap;
471 	u8 clksrc = spdif_priv->rxclk_src;
472 
473 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
474 		return -EINVAL;
475 
476 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
477 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
478 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
479 
480 	return 0;
481 }
482 
483 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
484 				int sample_rate)
485 {
486 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
487 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
488 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
489 	struct regmap *regmap = spdif_priv->regmap;
490 	struct platform_device *pdev = spdif_priv->pdev;
491 	unsigned long csfs = 0;
492 	u32 stc, mask, rate;
493 	u16 sysclk_df;
494 	u8 clk, txclk_df;
495 	int ret;
496 
497 	switch (sample_rate) {
498 	case 32000:
499 		rate = SPDIF_TXRATE_32000;
500 		csfs = IEC958_AES3_CON_FS_32000;
501 		break;
502 	case 44100:
503 		rate = SPDIF_TXRATE_44100;
504 		csfs = IEC958_AES3_CON_FS_44100;
505 		break;
506 	case 48000:
507 		rate = SPDIF_TXRATE_48000;
508 		csfs = IEC958_AES3_CON_FS_48000;
509 		break;
510 	case 88200:
511 		rate = SPDIF_TXRATE_88200;
512 		csfs = IEC958_AES3_CON_FS_88200;
513 		break;
514 	case 96000:
515 		rate = SPDIF_TXRATE_96000;
516 		csfs = IEC958_AES3_CON_FS_96000;
517 		break;
518 	case 176400:
519 		rate = SPDIF_TXRATE_176400;
520 		csfs = IEC958_AES3_CON_FS_176400;
521 		break;
522 	case 192000:
523 		rate = SPDIF_TXRATE_192000;
524 		csfs = IEC958_AES3_CON_FS_192000;
525 		break;
526 	default:
527 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
528 		return -EINVAL;
529 	}
530 
531 	clk = spdif_priv->txclk_src[rate];
532 	if (clk >= STC_TXCLK_SRC_MAX) {
533 		dev_err(&pdev->dev, "tx clock source is out of range\n");
534 		return -EINVAL;
535 	}
536 
537 	txclk_df = spdif_priv->txclk_df[rate];
538 	if (txclk_df == 0) {
539 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
540 		return -EINVAL;
541 	}
542 
543 	sysclk_df = spdif_priv->sysclk_df[rate];
544 
545 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
546 		goto clk_set_bypass;
547 
548 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
549 	ret = clk_set_rate(spdif_priv->txclk[clk],
550 			   64 * sample_rate * txclk_df);
551 	if (ret) {
552 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
553 		return ret;
554 	}
555 
556 clk_set_bypass:
557 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
558 			(64 * sample_rate * txclk_df * sysclk_df));
559 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
560 			clk_get_rate(spdif_priv->txclk[clk]));
561 
562 	/* set fs field in consumer channel status */
563 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
564 
565 	/* select clock source and divisor */
566 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
567 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
568 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
569 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
570 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
571 
572 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
573 			spdif_priv->txrate[rate], sample_rate);
574 
575 	return 0;
576 }
577 
578 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
579 			     struct snd_soc_dai *cpu_dai)
580 {
581 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
582 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
583 	struct platform_device *pdev = spdif_priv->pdev;
584 	struct regmap *regmap = spdif_priv->regmap;
585 	u32 scr, mask;
586 	int ret;
587 
588 	/* Reset module and interrupts only for first initialization */
589 	if (!snd_soc_dai_active(cpu_dai)) {
590 		ret = spdif_softreset(spdif_priv);
591 		if (ret) {
592 			dev_err(&pdev->dev, "failed to soft reset\n");
593 			return ret;
594 		}
595 
596 		/* Disable all the interrupts */
597 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
598 	}
599 
600 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
601 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
602 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
603 			SCR_TXFIFO_FSEL_IF8;
604 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
605 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
606 			SCR_TXFIFO_FSEL_MASK;
607 	} else {
608 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
609 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
610 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
611 	}
612 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
613 
614 	/* Power up SPDIF module */
615 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
616 
617 	return 0;
618 }
619 
620 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
621 				struct snd_soc_dai *cpu_dai)
622 {
623 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
624 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
625 	struct regmap *regmap = spdif_priv->regmap;
626 	u32 scr, mask;
627 
628 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
629 		scr = 0;
630 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
631 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
632 			SCR_TXFIFO_FSEL_MASK;
633 		/* Disable TX clock */
634 		regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0);
635 	} else {
636 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
637 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
638 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
639 	}
640 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
641 
642 	/* Power down SPDIF module only if tx&rx are both inactive */
643 	if (!snd_soc_dai_active(cpu_dai)) {
644 		spdif_intr_status_clear(spdif_priv);
645 		regmap_update_bits(regmap, REG_SPDIF_SCR,
646 				SCR_LOW_POWER, SCR_LOW_POWER);
647 	}
648 }
649 
650 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
651 				struct snd_pcm_hw_params *params,
652 				struct snd_soc_dai *dai)
653 {
654 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
655 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
656 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
657 	struct platform_device *pdev = spdif_priv->pdev;
658 	u32 sample_rate = params_rate(params);
659 	int ret = 0;
660 
661 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
662 		ret  = spdif_set_sample_rate(substream, sample_rate);
663 		if (ret) {
664 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
665 					__func__, sample_rate);
666 			return ret;
667 		}
668 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
669 				  IEC958_AES3_CON_CLOCK_1000PPM);
670 		spdif_write_channel_status(spdif_priv);
671 	} else {
672 		/* Setup rx clock source */
673 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
674 	}
675 
676 	return ret;
677 }
678 
679 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
680 				int cmd, struct snd_soc_dai *dai)
681 {
682 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
683 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
684 	struct regmap *regmap = spdif_priv->regmap;
685 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
686 	u32 intr = SIE_INTR_FOR(tx);
687 	u32 dmaen = SCR_DMA_xX_EN(tx);
688 
689 	switch (cmd) {
690 	case SNDRV_PCM_TRIGGER_START:
691 	case SNDRV_PCM_TRIGGER_RESUME:
692 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
693 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
694 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
695 		break;
696 	case SNDRV_PCM_TRIGGER_STOP:
697 	case SNDRV_PCM_TRIGGER_SUSPEND:
698 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
699 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
700 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
701 		break;
702 	default:
703 		return -EINVAL;
704 	}
705 
706 	return 0;
707 }
708 
709 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
710 	.startup = fsl_spdif_startup,
711 	.hw_params = fsl_spdif_hw_params,
712 	.trigger = fsl_spdif_trigger,
713 	.shutdown = fsl_spdif_shutdown,
714 };
715 
716 
717 /*
718  * FSL SPDIF IEC958 controller(mixer) functions
719  *
720  *	Channel status get/put control
721  *	User bit value get/put control
722  *	Valid bit value get control
723  *	DPLL lock status get control
724  *	User bit sync mode selection control
725  */
726 
727 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
728 				struct snd_ctl_elem_info *uinfo)
729 {
730 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
731 	uinfo->count = 1;
732 
733 	return 0;
734 }
735 
736 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
737 				struct snd_ctl_elem_value *uvalue)
738 {
739 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
740 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
741 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
742 
743 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
744 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
745 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
746 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
747 
748 	return 0;
749 }
750 
751 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
752 				struct snd_ctl_elem_value *uvalue)
753 {
754 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
755 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
756 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
757 
758 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
759 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
760 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
761 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
762 
763 	spdif_write_channel_status(spdif_priv);
764 
765 	return 0;
766 }
767 
768 /* Get channel status from SPDIF_RX_CCHAN register */
769 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
770 				struct snd_ctl_elem_value *ucontrol)
771 {
772 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
773 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
774 	struct regmap *regmap = spdif_priv->regmap;
775 	u32 cstatus, val;
776 
777 	regmap_read(regmap, REG_SPDIF_SIS, &val);
778 	if (!(val & INT_CNEW))
779 		return -EAGAIN;
780 
781 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
782 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
783 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
784 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
785 
786 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
787 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
788 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
789 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
790 
791 	/* Clear intr */
792 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
793 
794 	return 0;
795 }
796 
797 /*
798  * Get User bits (subcode) from chip value which readed out
799  * in UChannel register.
800  */
801 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
802 				struct snd_ctl_elem_value *ucontrol)
803 {
804 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
805 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
806 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
807 	unsigned long flags;
808 	int ret = -EAGAIN;
809 
810 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
811 	if (ctrl->ready_buf) {
812 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
813 		memcpy(&ucontrol->value.iec958.subcode[0],
814 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
815 		ret = 0;
816 	}
817 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
818 
819 	return ret;
820 }
821 
822 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
823 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
824 				struct snd_ctl_elem_info *uinfo)
825 {
826 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
827 	uinfo->count = SPDIF_QSUB_SIZE;
828 
829 	return 0;
830 }
831 
832 /* Get Q subcode from chip value which readed out in QChannel register */
833 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
834 				struct snd_ctl_elem_value *ucontrol)
835 {
836 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
837 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
838 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
839 	unsigned long flags;
840 	int ret = -EAGAIN;
841 
842 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
843 	if (ctrl->ready_buf) {
844 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
845 		memcpy(&ucontrol->value.bytes.data[0],
846 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
847 		ret = 0;
848 	}
849 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
850 
851 	return ret;
852 }
853 
854 /* Get valid good bit from interrupt status register */
855 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
856 				 struct snd_ctl_elem_value *ucontrol)
857 {
858 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
859 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
860 	struct regmap *regmap = spdif_priv->regmap;
861 	u32 val;
862 
863 	regmap_read(regmap, REG_SPDIF_SIS, &val);
864 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
865 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
866 
867 	return 0;
868 }
869 
870 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
871 				 struct snd_ctl_elem_value *ucontrol)
872 {
873 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
874 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
875 	struct regmap *regmap = spdif_priv->regmap;
876 	u32 val;
877 
878 	regmap_read(regmap, REG_SPDIF_SCR, &val);
879 	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
880 	val = 1 - val;
881 	ucontrol->value.integer.value[0] = val;
882 
883 	return 0;
884 }
885 
886 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
887 				 struct snd_ctl_elem_value *ucontrol)
888 {
889 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
890 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
891 	struct regmap *regmap = spdif_priv->regmap;
892 	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
893 
894 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
895 
896 	return 0;
897 }
898 
899 static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
900 				struct snd_ctl_elem_value *ucontrol)
901 {
902 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
903 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
904 	struct regmap *regmap = spdif_priv->regmap;
905 	u32 val;
906 
907 	regmap_read(regmap, REG_SPDIF_SCR, &val);
908 	val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
909 	ucontrol->value.integer.value[0] = val;
910 
911 	return 0;
912 }
913 
914 static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
915 				struct snd_ctl_elem_value *ucontrol)
916 {
917 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
918 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
919 	struct regmap *regmap = spdif_priv->regmap;
920 	u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);
921 
922 	if (val)
923 		cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
924 	else
925 		cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;
926 
927 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);
928 
929 	return 0;
930 }
931 
932 static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
933 				struct snd_ctl_elem_value *ucontrol)
934 {
935 	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
936 	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
937 
938 	ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;
939 
940 	return 0;
941 }
942 
943 static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
944 				struct snd_ctl_elem_value *ucontrol)
945 {
946 	struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
947 	struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
948 	struct snd_soc_card *card = dai->component->card;
949 	bool set = (ucontrol->value.integer.value[0] != 0);
950 	struct regmap *regmap = priv->regmap;
951 	struct snd_soc_pcm_runtime *rtd;
952 	u32 scr, mask;
953 	int stream;
954 
955 	rtd = snd_soc_get_pcm_runtime(card, card->dai_link);
956 
957 	if (priv->bypass == set)
958 		return 0; /* nothing to do */
959 
960 	if (snd_soc_dai_active(dai)) {
961 		dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
962 		return -EBUSY;
963 	}
964 
965 	pm_runtime_get_sync(dai->dev);
966 
967 	if (set) {
968 		/* Disable interrupts */
969 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
970 
971 		/* Configure BYPASS mode */
972 		scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
973 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
974 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
975 		/* Power up SPDIF module */
976 		mask |= SCR_LOW_POWER;
977 	} else {
978 		/* Power down SPDIF module, disable TX */
979 		scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
980 		mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
981 	}
982 
983 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
984 
985 	/* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
986 	for_each_pcm_streams(stream)
987 		rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);
988 
989 	priv->bypass = set;
990 	pm_runtime_put_sync(dai->dev);
991 
992 	return 0;
993 }
994 
995 /* DPLL lock information */
996 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
997 				struct snd_ctl_elem_info *uinfo)
998 {
999 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1000 	uinfo->count = 1;
1001 	uinfo->value.integer.min = 16000;
1002 	uinfo->value.integer.max = 192000;
1003 
1004 	return 0;
1005 }
1006 
1007 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
1008 	24, 16, 12, 8, 6, 4, 3,
1009 };
1010 
1011 /* Get RX data clock rate given the SPDIF bus_clk */
1012 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
1013 				enum spdif_gainsel gainsel)
1014 {
1015 	struct regmap *regmap = spdif_priv->regmap;
1016 	struct platform_device *pdev = spdif_priv->pdev;
1017 	u64 tmpval64, busclk_freq = 0;
1018 	u32 freqmeas, phaseconf;
1019 	u8 clksrc;
1020 
1021 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
1022 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
1023 
1024 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
1025 
1026 	/* Get bus clock from system */
1027 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
1028 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
1029 
1030 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
1031 	tmpval64 = (u64) busclk_freq * freqmeas;
1032 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
1033 	do_div(tmpval64, 128 * 1024);
1034 
1035 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
1036 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
1037 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
1038 
1039 	return (int)tmpval64;
1040 }
1041 
1042 /*
1043  * Get DPLL lock or not info from stable interrupt status register.
1044  * User application must use this control to get locked,
1045  * then can do next PCM operation
1046  */
1047 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
1048 				struct snd_ctl_elem_value *ucontrol)
1049 {
1050 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1051 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1052 	int rate = 0;
1053 
1054 	if (spdif_priv->dpll_locked)
1055 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
1056 
1057 	ucontrol->value.integer.value[0] = rate;
1058 
1059 	return 0;
1060 }
1061 
1062 /*
1063  * User bit sync mode:
1064  * 1 CD User channel subcode
1065  * 0 Non-CD data
1066  */
1067 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
1068 			       struct snd_ctl_elem_value *ucontrol)
1069 {
1070 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1071 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1072 	struct regmap *regmap = spdif_priv->regmap;
1073 	u32 val;
1074 
1075 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
1076 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * User bit sync mode:
1083  * 1 CD User channel subcode
1084  * 0 Non-CD data
1085  */
1086 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
1087 				struct snd_ctl_elem_value *ucontrol)
1088 {
1089 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1090 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1091 	struct regmap *regmap = spdif_priv->regmap;
1092 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
1093 
1094 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
1095 
1096 	return 0;
1097 }
1098 
1099 /* FSL SPDIF IEC958 controller defines */
1100 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
1101 	/* Status cchanel controller */
1102 	{
1103 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1104 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1105 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1106 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1107 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1108 		.info = fsl_spdif_info,
1109 		.get = fsl_spdif_pb_get,
1110 		.put = fsl_spdif_pb_put,
1111 	},
1112 	{
1113 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1114 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
1115 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1116 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1117 		.info = fsl_spdif_info,
1118 		.get = fsl_spdif_capture_get,
1119 	},
1120 	/* User bits controller */
1121 	{
1122 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1123 		.name = "IEC958 Subcode Capture Default",
1124 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1125 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1126 		.info = fsl_spdif_info,
1127 		.get = fsl_spdif_subcode_get,
1128 	},
1129 	{
1130 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1131 		.name = "IEC958 Q-subcode Capture Default",
1132 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1133 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1134 		.info = fsl_spdif_qinfo,
1135 		.get = fsl_spdif_qget,
1136 	},
1137 	/* Valid bit error controller */
1138 	{
1139 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1140 		.name = "IEC958 RX V-Bit Errors",
1141 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1142 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1143 		.info = snd_ctl_boolean_mono_info,
1144 		.get = fsl_spdif_rx_vbit_get,
1145 	},
1146 	{
1147 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1148 		.name = "IEC958 TX V-Bit",
1149 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1150 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1151 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1152 		.info = snd_ctl_boolean_mono_info,
1153 		.get = fsl_spdif_tx_vbit_get,
1154 		.put = fsl_spdif_tx_vbit_put,
1155 	},
1156 	/* DPLL lock info get controller */
1157 	{
1158 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1159 		.name = "RX Sample Rate",
1160 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1161 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1162 		.info = fsl_spdif_rxrate_info,
1163 		.get = fsl_spdif_rxrate_get,
1164 	},
1165 	/* RX bypass controller */
1166 	{
1167 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1168 		.name = "Bypass Mode",
1169 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1170 		.info = snd_ctl_boolean_mono_info,
1171 		.get = fsl_spdif_bypass_get,
1172 		.put = fsl_spdif_bypass_put,
1173 	},
1174 	/* User bit sync mode set/get controller */
1175 	{
1176 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1177 		.name = "IEC958 USyncMode CDText",
1178 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1179 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1180 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1181 		.info = snd_ctl_boolean_mono_info,
1182 		.get = fsl_spdif_usync_get,
1183 		.put = fsl_spdif_usync_put,
1184 	},
1185 };
1186 
1187 static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
1188 	{
1189 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1190 		.name = "IEC958 Raw Capture Mode",
1191 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1192 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1193 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1194 		.info = snd_ctl_boolean_mono_info,
1195 		.get = fsl_spdif_rx_rcm_get,
1196 		.put = fsl_spdif_rx_rcm_put,
1197 	},
1198 };
1199 
1200 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1201 {
1202 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1203 
1204 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1205 				  &spdif_private->dma_params_rx);
1206 
1207 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1208 
1209 	if (spdif_private->soc->raw_capture_mode)
1210 		snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm,
1211 					 ARRAY_SIZE(fsl_spdif_ctrls_rcm));
1212 
1213 	/*Clear the val bit for Tx*/
1214 	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1215 			   SCR_VAL_MASK, SCR_VAL_CLEAR);
1216 
1217 	return 0;
1218 }
1219 
1220 static struct snd_soc_dai_driver fsl_spdif_dai = {
1221 	.probe = &fsl_spdif_dai_probe,
1222 	.playback = {
1223 		.stream_name = "CPU-Playback",
1224 		.channels_min = 2,
1225 		.channels_max = 2,
1226 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1227 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1228 	},
1229 	.capture = {
1230 		.stream_name = "CPU-Capture",
1231 		.channels_min = 2,
1232 		.channels_max = 2,
1233 		.rates = FSL_SPDIF_RATES_CAPTURE,
1234 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1235 	},
1236 	.ops = &fsl_spdif_dai_ops,
1237 };
1238 
1239 static const struct snd_soc_component_driver fsl_spdif_component = {
1240 	.name		= "fsl-spdif",
1241 };
1242 
1243 /* FSL SPDIF REGMAP */
1244 static const struct reg_default fsl_spdif_reg_defaults[] = {
1245 	{REG_SPDIF_SCR,    0x00000400},
1246 	{REG_SPDIF_SRCD,   0x00000000},
1247 	{REG_SPDIF_SIE,	   0x00000000},
1248 	{REG_SPDIF_STL,	   0x00000000},
1249 	{REG_SPDIF_STR,	   0x00000000},
1250 	{REG_SPDIF_STCSCH, 0x00000000},
1251 	{REG_SPDIF_STCSCL, 0x00000000},
1252 	{REG_SPDIF_STCSPH, 0x00000000},
1253 	{REG_SPDIF_STCSPL, 0x00000000},
1254 	{REG_SPDIF_STC,	   0x00020f00},
1255 };
1256 
1257 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1258 {
1259 	switch (reg) {
1260 	case REG_SPDIF_SCR:
1261 	case REG_SPDIF_SRCD:
1262 	case REG_SPDIF_SRPC:
1263 	case REG_SPDIF_SIE:
1264 	case REG_SPDIF_SIS:
1265 	case REG_SPDIF_SRL:
1266 	case REG_SPDIF_SRR:
1267 	case REG_SPDIF_SRCSH:
1268 	case REG_SPDIF_SRCSL:
1269 	case REG_SPDIF_SRU:
1270 	case REG_SPDIF_SRQ:
1271 	case REG_SPDIF_STCSCH:
1272 	case REG_SPDIF_STCSCL:
1273 	case REG_SPDIF_STCSPH:
1274 	case REG_SPDIF_STCSPL:
1275 	case REG_SPDIF_SRFM:
1276 	case REG_SPDIF_STC:
1277 	case REG_SPDIF_SRCCA_31_0:
1278 	case REG_SPDIF_SRCCA_63_32:
1279 	case REG_SPDIF_SRCCA_95_64:
1280 	case REG_SPDIF_SRCCA_127_96:
1281 	case REG_SPDIF_SRCCA_159_128:
1282 	case REG_SPDIF_SRCCA_191_160:
1283 	case REG_SPDIF_STCCA_31_0:
1284 	case REG_SPDIF_STCCA_63_32:
1285 	case REG_SPDIF_STCCA_95_64:
1286 	case REG_SPDIF_STCCA_127_96:
1287 	case REG_SPDIF_STCCA_159_128:
1288 	case REG_SPDIF_STCCA_191_160:
1289 		return true;
1290 	default:
1291 		return false;
1292 	}
1293 }
1294 
1295 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1296 {
1297 	switch (reg) {
1298 	case REG_SPDIF_SRPC:
1299 	case REG_SPDIF_SIS:
1300 	case REG_SPDIF_SRL:
1301 	case REG_SPDIF_SRR:
1302 	case REG_SPDIF_SRCSH:
1303 	case REG_SPDIF_SRCSL:
1304 	case REG_SPDIF_SRU:
1305 	case REG_SPDIF_SRQ:
1306 	case REG_SPDIF_SRFM:
1307 	case REG_SPDIF_SRCCA_31_0:
1308 	case REG_SPDIF_SRCCA_63_32:
1309 	case REG_SPDIF_SRCCA_95_64:
1310 	case REG_SPDIF_SRCCA_127_96:
1311 	case REG_SPDIF_SRCCA_159_128:
1312 	case REG_SPDIF_SRCCA_191_160:
1313 		return true;
1314 	default:
1315 		return false;
1316 	}
1317 }
1318 
1319 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1320 {
1321 	switch (reg) {
1322 	case REG_SPDIF_SCR:
1323 	case REG_SPDIF_SRCD:
1324 	case REG_SPDIF_SRPC:
1325 	case REG_SPDIF_SIE:
1326 	case REG_SPDIF_SIC:
1327 	case REG_SPDIF_STL:
1328 	case REG_SPDIF_STR:
1329 	case REG_SPDIF_STCSCH:
1330 	case REG_SPDIF_STCSCL:
1331 	case REG_SPDIF_STCSPH:
1332 	case REG_SPDIF_STCSPL:
1333 	case REG_SPDIF_STC:
1334 	case REG_SPDIF_STCCA_31_0:
1335 	case REG_SPDIF_STCCA_63_32:
1336 	case REG_SPDIF_STCCA_95_64:
1337 	case REG_SPDIF_STCCA_127_96:
1338 	case REG_SPDIF_STCCA_159_128:
1339 	case REG_SPDIF_STCCA_191_160:
1340 		return true;
1341 	default:
1342 		return false;
1343 	}
1344 }
1345 
1346 static const struct regmap_config fsl_spdif_regmap_config = {
1347 	.reg_bits = 32,
1348 	.reg_stride = 4,
1349 	.val_bits = 32,
1350 
1351 	.max_register = REG_SPDIF_STCCA_191_160,
1352 	.reg_defaults = fsl_spdif_reg_defaults,
1353 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1354 	.readable_reg = fsl_spdif_readable_reg,
1355 	.volatile_reg = fsl_spdif_volatile_reg,
1356 	.writeable_reg = fsl_spdif_writeable_reg,
1357 	.cache_type = REGCACHE_FLAT,
1358 };
1359 
1360 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1361 				struct clk *clk, u64 savesub,
1362 				enum spdif_txrate index, bool round)
1363 {
1364 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1365 				    192000, };
1366 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1367 	u64 rate_ideal, rate_actual, sub;
1368 	u32 arate;
1369 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1370 	u8 txclk_df;
1371 
1372 	/* The sysclk has an extra divisor [2, 512] */
1373 	sysclk_dfmin = is_sysclk ? 2 : 1;
1374 	sysclk_dfmax = is_sysclk ? 512 : 1;
1375 
1376 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1377 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1378 			rate_ideal = rate[index] * txclk_df * 64ULL;
1379 			if (round)
1380 				rate_actual = clk_round_rate(clk, rate_ideal);
1381 			else
1382 				rate_actual = clk_get_rate(clk);
1383 
1384 			arate = rate_actual / 64;
1385 			arate /= txclk_df * sysclk_df;
1386 
1387 			if (arate == rate[index]) {
1388 				/* We are lucky */
1389 				savesub = 0;
1390 				spdif_priv->txclk_df[index] = txclk_df;
1391 				spdif_priv->sysclk_df[index] = sysclk_df;
1392 				spdif_priv->txrate[index] = arate;
1393 				goto out;
1394 			} else if (arate / rate[index] == 1) {
1395 				/* A little bigger than expect */
1396 				sub = (u64)(arate - rate[index]) * 100000;
1397 				do_div(sub, rate[index]);
1398 				if (sub >= savesub)
1399 					continue;
1400 				savesub = sub;
1401 				spdif_priv->txclk_df[index] = txclk_df;
1402 				spdif_priv->sysclk_df[index] = sysclk_df;
1403 				spdif_priv->txrate[index] = arate;
1404 			} else if (rate[index] / arate == 1) {
1405 				/* A little smaller than expect */
1406 				sub = (u64)(rate[index] - arate) * 100000;
1407 				do_div(sub, rate[index]);
1408 				if (sub >= savesub)
1409 					continue;
1410 				savesub = sub;
1411 				spdif_priv->txclk_df[index] = txclk_df;
1412 				spdif_priv->sysclk_df[index] = sysclk_df;
1413 				spdif_priv->txrate[index] = arate;
1414 			}
1415 		}
1416 	}
1417 
1418 out:
1419 	return savesub;
1420 }
1421 
1422 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1423 				enum spdif_txrate index)
1424 {
1425 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1426 				    192000, };
1427 	struct platform_device *pdev = spdif_priv->pdev;
1428 	struct device *dev = &pdev->dev;
1429 	u64 savesub = 100000, ret;
1430 	struct clk *clk;
1431 	int i;
1432 
1433 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1434 		clk = spdif_priv->txclk[i];
1435 		if (IS_ERR(clk)) {
1436 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1437 			return PTR_ERR(clk);
1438 		}
1439 		if (!clk_get_rate(clk))
1440 			continue;
1441 
1442 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1443 					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1444 		if (savesub == ret)
1445 			continue;
1446 
1447 		savesub = ret;
1448 		spdif_priv->txclk_src[index] = i;
1449 
1450 		/* To quick catch a divisor, we allow a 0.1% deviation */
1451 		if (savesub < 100)
1452 			break;
1453 	}
1454 
1455 	dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1456 			spdif_priv->txclk_src[index], rate[index]);
1457 	dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1458 			spdif_priv->txclk_df[index], rate[index]);
1459 	if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk))
1460 		dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1461 				spdif_priv->sysclk_df[index], rate[index]);
1462 	dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1463 			rate[index], spdif_priv->txrate[index]);
1464 
1465 	return 0;
1466 }
1467 
1468 static int fsl_spdif_probe(struct platform_device *pdev)
1469 {
1470 	struct fsl_spdif_priv *spdif_priv;
1471 	struct spdif_mixer_control *ctrl;
1472 	struct resource *res;
1473 	void __iomem *regs;
1474 	int irq, ret, i;
1475 	char tmp[16];
1476 
1477 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1478 	if (!spdif_priv)
1479 		return -ENOMEM;
1480 
1481 	spdif_priv->pdev = pdev;
1482 
1483 	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1484 
1485 	/* Initialize this copy of the CPU DAI driver structure */
1486 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1487 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1488 	spdif_priv->cpu_dai_drv.playback.formats =
1489 				spdif_priv->soc->tx_formats;
1490 
1491 	/* Get the addresses and IRQ */
1492 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1493 	if (IS_ERR(regs))
1494 		return PTR_ERR(regs);
1495 
1496 	spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1497 	if (IS_ERR(spdif_priv->regmap)) {
1498 		dev_err(&pdev->dev, "regmap init failed\n");
1499 		return PTR_ERR(spdif_priv->regmap);
1500 	}
1501 
1502 	for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1503 		irq = platform_get_irq(pdev, i);
1504 		if (irq < 0)
1505 			return irq;
1506 
1507 		ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1508 				       dev_name(&pdev->dev), spdif_priv);
1509 		if (ret) {
1510 			dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1511 			return ret;
1512 		}
1513 	}
1514 
1515 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1516 		sprintf(tmp, "rxtx%d", i);
1517 		spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp);
1518 		if (IS_ERR(spdif_priv->txclk[i])) {
1519 			dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
1520 			return PTR_ERR(spdif_priv->txclk[i]);
1521 		}
1522 	}
1523 
1524 	/* Get system clock for rx clock rate calculation */
1525 	spdif_priv->sysclk = spdif_priv->txclk[5];
1526 	if (IS_ERR(spdif_priv->sysclk)) {
1527 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1528 		return PTR_ERR(spdif_priv->sysclk);
1529 	}
1530 
1531 	/* Get core clock for data register access via DMA */
1532 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1533 	if (IS_ERR(spdif_priv->coreclk)) {
1534 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1535 		return PTR_ERR(spdif_priv->coreclk);
1536 	}
1537 
1538 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1539 	if (IS_ERR(spdif_priv->spbaclk))
1540 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1541 
1542 	/* Select clock source for rx/tx clock */
1543 	spdif_priv->rxclk = spdif_priv->txclk[1];
1544 	if (IS_ERR(spdif_priv->rxclk)) {
1545 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1546 		return PTR_ERR(spdif_priv->rxclk);
1547 	}
1548 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1549 
1550 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1551 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1552 		if (ret)
1553 			return ret;
1554 	}
1555 
1556 	/* Initial spinlock for control data */
1557 	ctrl = &spdif_priv->fsl_spdif_control;
1558 	spin_lock_init(&ctrl->ctl_lock);
1559 
1560 	/* Init tx channel status default value */
1561 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1562 			     IEC958_AES0_CON_EMPHASIS_5015;
1563 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1564 	ctrl->ch_status[2] = 0x00;
1565 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1566 			     IEC958_AES3_CON_CLOCK_1000PPM;
1567 
1568 	spdif_priv->dpll_locked = false;
1569 
1570 	spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1571 	spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1572 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1573 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1574 
1575 	/* Register with ASoC */
1576 	dev_set_drvdata(&pdev->dev, spdif_priv);
1577 	pm_runtime_enable(&pdev->dev);
1578 	regcache_cache_only(spdif_priv->regmap, true);
1579 
1580 	/*
1581 	 * Register platform component before registering cpu dai for there
1582 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1583 	 */
1584 	ret = imx_pcm_dma_init(pdev);
1585 	if (ret) {
1586 		dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n");
1587 		goto err_pm_disable;
1588 	}
1589 
1590 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1591 					      &spdif_priv->cpu_dai_drv, 1);
1592 	if (ret) {
1593 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1594 		goto err_pm_disable;
1595 	}
1596 
1597 	return ret;
1598 
1599 err_pm_disable:
1600 	pm_runtime_disable(&pdev->dev);
1601 	return ret;
1602 }
1603 
1604 static int fsl_spdif_remove(struct platform_device *pdev)
1605 {
1606 	pm_runtime_disable(&pdev->dev);
1607 
1608 	return 0;
1609 }
1610 
1611 #ifdef CONFIG_PM
1612 static int fsl_spdif_runtime_suspend(struct device *dev)
1613 {
1614 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1615 	int i;
1616 
1617 	/* Disable all the interrupts */
1618 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0);
1619 
1620 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1621 			&spdif_priv->regcache_srpc);
1622 	regcache_cache_only(spdif_priv->regmap, true);
1623 
1624 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
1625 		clk_disable_unprepare(spdif_priv->txclk[i]);
1626 
1627 	if (!IS_ERR(spdif_priv->spbaclk))
1628 		clk_disable_unprepare(spdif_priv->spbaclk);
1629 	clk_disable_unprepare(spdif_priv->coreclk);
1630 
1631 	return 0;
1632 }
1633 
1634 static int fsl_spdif_runtime_resume(struct device *dev)
1635 {
1636 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1637 	int ret;
1638 	int i;
1639 
1640 	ret = clk_prepare_enable(spdif_priv->coreclk);
1641 	if (ret) {
1642 		dev_err(dev, "failed to enable core clock\n");
1643 		return ret;
1644 	}
1645 
1646 	if (!IS_ERR(spdif_priv->spbaclk)) {
1647 		ret = clk_prepare_enable(spdif_priv->spbaclk);
1648 		if (ret) {
1649 			dev_err(dev, "failed to enable spba clock\n");
1650 			goto disable_core_clk;
1651 		}
1652 	}
1653 
1654 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1655 		ret = clk_prepare_enable(spdif_priv->txclk[i]);
1656 		if (ret)
1657 			goto disable_tx_clk;
1658 	}
1659 
1660 	regcache_cache_only(spdif_priv->regmap, false);
1661 	regcache_mark_dirty(spdif_priv->regmap);
1662 
1663 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1664 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1665 			spdif_priv->regcache_srpc);
1666 
1667 	ret = regcache_sync(spdif_priv->regmap);
1668 	if (ret)
1669 		goto disable_tx_clk;
1670 
1671 	return 0;
1672 
1673 disable_tx_clk:
1674 	for (i--; i >= 0; i--)
1675 		clk_disable_unprepare(spdif_priv->txclk[i]);
1676 	if (!IS_ERR(spdif_priv->spbaclk))
1677 		clk_disable_unprepare(spdif_priv->spbaclk);
1678 disable_core_clk:
1679 	clk_disable_unprepare(spdif_priv->coreclk);
1680 
1681 	return ret;
1682 }
1683 #endif /* CONFIG_PM */
1684 
1685 static const struct dev_pm_ops fsl_spdif_pm = {
1686 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1687 				pm_runtime_force_resume)
1688 	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1689 			   NULL)
1690 };
1691 
1692 static const struct of_device_id fsl_spdif_dt_ids[] = {
1693 	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1694 	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1695 	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1696 	{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1697 	{ .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
1698 	{ .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
1699 	{}
1700 };
1701 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1702 
1703 static struct platform_driver fsl_spdif_driver = {
1704 	.driver = {
1705 		.name = "fsl-spdif-dai",
1706 		.of_match_table = fsl_spdif_dt_ids,
1707 		.pm = &fsl_spdif_pm,
1708 	},
1709 	.probe = fsl_spdif_probe,
1710 	.remove = fsl_spdif_remove,
1711 };
1712 
1713 module_platform_driver(fsl_spdif_driver);
1714 
1715 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1716 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1717 MODULE_LICENSE("GPL v2");
1718 MODULE_ALIAS("platform:fsl-spdif-dai");
1719