xref: /openbmc/linux/sound/soc/fsl/fsl_spdif.c (revision 221e8c12)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Copyright (C) 2013 Freescale Semiconductor, Inc.
6 //
7 // Based on stmp3xxx_spdif_dai.c
8 // Vladimir Barinov <vbarinov@embeddedalley.com>
9 // Copyright 2008 SigmaTel, Inc
10 // Copyright 2008 Embedded Alley Solutions, Inc
11 
12 #include <linux/bitrev.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
19 #include <linux/pm_runtime.h>
20 
21 #include <sound/asoundef.h>
22 #include <sound/dmaengine_pcm.h>
23 #include <sound/soc.h>
24 
25 #include "fsl_spdif.h"
26 #include "imx-pcm.h"
27 
28 #define FSL_SPDIF_TXFIFO_WML	0x8
29 #define FSL_SPDIF_RXFIFO_WML	0x8
30 
31 #define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
32 #define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
33 				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
34 				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
35 				INT_LOSS_LOCK | INT_DPLL_LOCKED)
36 
37 #define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
38 
39 /* Index list for the values that has if (DPLL Locked) condition */
40 static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
41 #define SRPC_NODPLL_START1	0x5
42 #define SRPC_NODPLL_START2	0xc
43 
44 #define DEFAULT_RXCLK_SRC	1
45 
46 /**
47  * struct fsl_spdif_soc_data: soc specific data
48  *
49  * @imx: for imx platform
50  * @shared_root_clock: flag of sharing a clock source with others;
51  *                     so the driver shouldn't set root clock rate
52  * @interrupts: interrupt number
53  * @tx_burst: tx maxburst size
54  * @rx_burst: rx maxburst size
55  * @tx_formats: tx supported data format
56  */
57 struct fsl_spdif_soc_data {
58 	bool imx;
59 	bool shared_root_clock;
60 	u32 interrupts;
61 	u32 tx_burst;
62 	u32 rx_burst;
63 	u64 tx_formats;
64 };
65 
66 /*
67  * SPDIF control structure
68  * Defines channel status, subcode and Q sub
69  */
70 struct spdif_mixer_control {
71 	/* spinlock to access control data */
72 	spinlock_t ctl_lock;
73 
74 	/* IEC958 channel tx status bit */
75 	unsigned char ch_status[4];
76 
77 	/* User bits */
78 	unsigned char subcode[2 * SPDIF_UBITS_SIZE];
79 
80 	/* Q subcode part of user bits */
81 	unsigned char qsub[2 * SPDIF_QSUB_SIZE];
82 
83 	/* Buffer offset for U/Q */
84 	u32 upos;
85 	u32 qpos;
86 
87 	/* Ready buffer index of the two buffers */
88 	u32 ready_buf;
89 };
90 
91 /**
92  * struct fsl_spdif_priv - Freescale SPDIF private data
93  * @soc: SPDIF soc data
94  * @fsl_spdif_control: SPDIF control data
95  * @cpu_dai_drv: cpu dai driver
96  * @pdev: platform device pointer
97  * @regmap: regmap handler
98  * @dpll_locked: dpll lock flag
99  * @txrate: the best rates for playback
100  * @txclk_df: STC_TXCLK_DF dividers value for playback
101  * @sysclk_df: STC_SYSCLK_DF dividers value for playback
102  * @txclk_src: STC_TXCLK_SRC values for playback
103  * @rxclk_src: SRPC_CLKSRC_SEL values for capture
104  * @txclk: tx clock sources for playback
105  * @rxclk: rx clock sources for capture
106  * @coreclk: core clock for register access via DMA
107  * @sysclk: system clock for rx clock rate measurement
108  * @spbaclk: SPBA clock (optional, depending on SoC design)
109  * @dma_params_tx: DMA parameters for transmit channel
110  * @dma_params_rx: DMA parameters for receive channel
111  * @regcache_srpc: regcache for SRPC
112  */
113 struct fsl_spdif_priv {
114 	const struct fsl_spdif_soc_data *soc;
115 	struct spdif_mixer_control fsl_spdif_control;
116 	struct snd_soc_dai_driver cpu_dai_drv;
117 	struct platform_device *pdev;
118 	struct regmap *regmap;
119 	bool dpll_locked;
120 	u32 txrate[SPDIF_TXRATE_MAX];
121 	u8 txclk_df[SPDIF_TXRATE_MAX];
122 	u16 sysclk_df[SPDIF_TXRATE_MAX];
123 	u8 txclk_src[SPDIF_TXRATE_MAX];
124 	u8 rxclk_src;
125 	struct clk *txclk[SPDIF_TXRATE_MAX];
126 	struct clk *rxclk;
127 	struct clk *coreclk;
128 	struct clk *sysclk;
129 	struct clk *spbaclk;
130 	struct snd_dmaengine_dai_dma_data dma_params_tx;
131 	struct snd_dmaengine_dai_dma_data dma_params_rx;
132 	/* regcache for SRPC */
133 	u32 regcache_srpc;
134 };
135 
136 static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
137 	.imx = false,
138 	.shared_root_clock = false,
139 	.interrupts = 1,
140 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
141 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
142 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
143 };
144 
145 static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
146 	.imx = true,
147 	.shared_root_clock = false,
148 	.interrupts = 1,
149 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
150 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
151 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
152 };
153 
154 static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
155 	.imx = true,
156 	.shared_root_clock = true,
157 	.interrupts = 1,
158 	.tx_burst = FSL_SPDIF_TXFIFO_WML,
159 	.rx_burst = FSL_SPDIF_RXFIFO_WML,
160 	.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
161 
162 };
163 
164 static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
165 	.imx = true,
166 	.shared_root_clock = true,
167 	.interrupts = 2,
168 	.tx_burst = 2,		/* Applied for EDMA */
169 	.rx_burst = 2,		/* Applied for EDMA */
170 	.tx_formats = SNDRV_PCM_FMTBIT_S24_LE,  /* Applied for EDMA */
171 };
172 
173 /* Check if clk is a root clock that does not share clock source with others */
174 static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
175 {
176 	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
177 }
178 
179 /* DPLL locked and lock loss interrupt handler */
180 static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
181 {
182 	struct regmap *regmap = spdif_priv->regmap;
183 	struct platform_device *pdev = spdif_priv->pdev;
184 	u32 locked;
185 
186 	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
187 	locked &= SRPC_DPLL_LOCKED;
188 
189 	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
190 			locked ? "locked" : "loss lock");
191 
192 	spdif_priv->dpll_locked = locked ? true : false;
193 }
194 
195 /* Receiver found illegal symbol interrupt handler */
196 static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
197 {
198 	struct regmap *regmap = spdif_priv->regmap;
199 	struct platform_device *pdev = spdif_priv->pdev;
200 
201 	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
202 
203 	/* Clear illegal symbol if DPLL unlocked since no audio stream */
204 	if (!spdif_priv->dpll_locked)
205 		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
206 }
207 
208 /* U/Q Channel receive register full */
209 static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
210 {
211 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
212 	struct regmap *regmap = spdif_priv->regmap;
213 	struct platform_device *pdev = spdif_priv->pdev;
214 	u32 *pos, size, val, reg;
215 
216 	switch (name) {
217 	case 'U':
218 		pos = &ctrl->upos;
219 		size = SPDIF_UBITS_SIZE;
220 		reg = REG_SPDIF_SRU;
221 		break;
222 	case 'Q':
223 		pos = &ctrl->qpos;
224 		size = SPDIF_QSUB_SIZE;
225 		reg = REG_SPDIF_SRQ;
226 		break;
227 	default:
228 		dev_err(&pdev->dev, "unsupported channel name\n");
229 		return;
230 	}
231 
232 	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
233 
234 	if (*pos >= size * 2) {
235 		*pos = 0;
236 	} else if (unlikely((*pos % size) + 3 > size)) {
237 		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
238 		return;
239 	}
240 
241 	regmap_read(regmap, reg, &val);
242 	ctrl->subcode[*pos++] = val >> 16;
243 	ctrl->subcode[*pos++] = val >> 8;
244 	ctrl->subcode[*pos++] = val;
245 }
246 
247 /* U/Q Channel sync found */
248 static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
249 {
250 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
251 	struct platform_device *pdev = spdif_priv->pdev;
252 
253 	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
254 
255 	/* U/Q buffer reset */
256 	if (ctrl->qpos == 0)
257 		return;
258 
259 	/* Set ready to this buffer */
260 	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
261 }
262 
263 /* U/Q Channel framing error */
264 static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
265 {
266 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
267 	struct regmap *regmap = spdif_priv->regmap;
268 	struct platform_device *pdev = spdif_priv->pdev;
269 	u32 val;
270 
271 	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
272 
273 	/* Read U/Q data to clear the irq and do buffer reset */
274 	regmap_read(regmap, REG_SPDIF_SRU, &val);
275 	regmap_read(regmap, REG_SPDIF_SRQ, &val);
276 
277 	/* Drop this U/Q buffer */
278 	ctrl->ready_buf = 0;
279 	ctrl->upos = 0;
280 	ctrl->qpos = 0;
281 }
282 
283 /* Get spdif interrupt status and clear the interrupt */
284 static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
285 {
286 	struct regmap *regmap = spdif_priv->regmap;
287 	u32 val, val2;
288 
289 	regmap_read(regmap, REG_SPDIF_SIS, &val);
290 	regmap_read(regmap, REG_SPDIF_SIE, &val2);
291 
292 	regmap_write(regmap, REG_SPDIF_SIC, val & val2);
293 
294 	return val;
295 }
296 
297 static irqreturn_t spdif_isr(int irq, void *devid)
298 {
299 	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
300 	struct platform_device *pdev = spdif_priv->pdev;
301 	u32 sis;
302 
303 	sis = spdif_intr_status_clear(spdif_priv);
304 
305 	if (sis & INT_DPLL_LOCKED)
306 		spdif_irq_dpll_lock(spdif_priv);
307 
308 	if (sis & INT_TXFIFO_UNOV)
309 		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
310 
311 	if (sis & INT_TXFIFO_RESYNC)
312 		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
313 
314 	if (sis & INT_CNEW)
315 		dev_dbg(&pdev->dev, "isr: cstatus new\n");
316 
317 	if (sis & INT_VAL_NOGOOD)
318 		dev_dbg(&pdev->dev, "isr: validity flag no good\n");
319 
320 	if (sis & INT_SYM_ERR)
321 		spdif_irq_sym_error(spdif_priv);
322 
323 	if (sis & INT_BIT_ERR)
324 		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
325 
326 	if (sis & INT_URX_FUL)
327 		spdif_irq_uqrx_full(spdif_priv, 'U');
328 
329 	if (sis & INT_URX_OV)
330 		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
331 
332 	if (sis & INT_QRX_FUL)
333 		spdif_irq_uqrx_full(spdif_priv, 'Q');
334 
335 	if (sis & INT_QRX_OV)
336 		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
337 
338 	if (sis & INT_UQ_SYNC)
339 		spdif_irq_uq_sync(spdif_priv);
340 
341 	if (sis & INT_UQ_ERR)
342 		spdif_irq_uq_err(spdif_priv);
343 
344 	if (sis & INT_RXFIFO_UNOV)
345 		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
346 
347 	if (sis & INT_RXFIFO_RESYNC)
348 		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
349 
350 	if (sis & INT_LOSS_LOCK)
351 		spdif_irq_dpll_lock(spdif_priv);
352 
353 	/* FIXME: Write Tx FIFO to clear TxEm */
354 	if (sis & INT_TX_EM)
355 		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
356 
357 	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
358 	if (sis & INT_RXFIFO_FUL)
359 		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
360 
361 	return IRQ_HANDLED;
362 }
363 
364 static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
365 {
366 	struct regmap *regmap = spdif_priv->regmap;
367 	u32 val, cycle = 1000;
368 
369 	regcache_cache_bypass(regmap, true);
370 
371 	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
372 
373 	/*
374 	 * RESET bit would be cleared after finishing its reset procedure,
375 	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
376 	 */
377 	do {
378 		regmap_read(regmap, REG_SPDIF_SCR, &val);
379 	} while ((val & SCR_SOFT_RESET) && cycle--);
380 
381 	regcache_cache_bypass(regmap, false);
382 	regcache_mark_dirty(regmap);
383 	regcache_sync(regmap);
384 
385 	if (cycle)
386 		return 0;
387 	else
388 		return -EBUSY;
389 }
390 
391 static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
392 				u8 mask, u8 cstatus)
393 {
394 	ctrl->ch_status[3] &= ~mask;
395 	ctrl->ch_status[3] |= cstatus & mask;
396 }
397 
398 static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
399 {
400 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
401 	struct regmap *regmap = spdif_priv->regmap;
402 	struct platform_device *pdev = spdif_priv->pdev;
403 	u32 ch_status;
404 
405 	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
406 		    (bitrev8(ctrl->ch_status[1]) << 8) |
407 		    bitrev8(ctrl->ch_status[2]);
408 	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
409 
410 	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
411 
412 	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
413 	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
414 
415 	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
416 }
417 
418 /* Set SPDIF PhaseConfig register for rx clock */
419 static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
420 				enum spdif_gainsel gainsel, int dpll_locked)
421 {
422 	struct regmap *regmap = spdif_priv->regmap;
423 	u8 clksrc = spdif_priv->rxclk_src;
424 
425 	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
426 		return -EINVAL;
427 
428 	regmap_update_bits(regmap, REG_SPDIF_SRPC,
429 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
430 			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
431 
432 	return 0;
433 }
434 
435 static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
436 				int sample_rate)
437 {
438 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
439 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
440 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
441 	struct regmap *regmap = spdif_priv->regmap;
442 	struct platform_device *pdev = spdif_priv->pdev;
443 	unsigned long csfs = 0;
444 	u32 stc, mask, rate;
445 	u16 sysclk_df;
446 	u8 clk, txclk_df;
447 	int ret;
448 
449 	switch (sample_rate) {
450 	case 32000:
451 		rate = SPDIF_TXRATE_32000;
452 		csfs = IEC958_AES3_CON_FS_32000;
453 		break;
454 	case 44100:
455 		rate = SPDIF_TXRATE_44100;
456 		csfs = IEC958_AES3_CON_FS_44100;
457 		break;
458 	case 48000:
459 		rate = SPDIF_TXRATE_48000;
460 		csfs = IEC958_AES3_CON_FS_48000;
461 		break;
462 	case 88200:
463 		rate = SPDIF_TXRATE_88200;
464 		csfs = IEC958_AES3_CON_FS_88200;
465 		break;
466 	case 96000:
467 		rate = SPDIF_TXRATE_96000;
468 		csfs = IEC958_AES3_CON_FS_96000;
469 		break;
470 	case 176400:
471 		rate = SPDIF_TXRATE_176400;
472 		csfs = IEC958_AES3_CON_FS_176400;
473 		break;
474 	case 192000:
475 		rate = SPDIF_TXRATE_192000;
476 		csfs = IEC958_AES3_CON_FS_192000;
477 		break;
478 	default:
479 		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
480 		return -EINVAL;
481 	}
482 
483 	clk = spdif_priv->txclk_src[rate];
484 	if (clk >= STC_TXCLK_SRC_MAX) {
485 		dev_err(&pdev->dev, "tx clock source is out of range\n");
486 		return -EINVAL;
487 	}
488 
489 	txclk_df = spdif_priv->txclk_df[rate];
490 	if (txclk_df == 0) {
491 		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
492 		return -EINVAL;
493 	}
494 
495 	sysclk_df = spdif_priv->sysclk_df[rate];
496 
497 	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
498 		goto clk_set_bypass;
499 
500 	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
501 	ret = clk_set_rate(spdif_priv->txclk[rate],
502 			   64 * sample_rate * txclk_df);
503 	if (ret) {
504 		dev_err(&pdev->dev, "failed to set tx clock rate\n");
505 		return ret;
506 	}
507 
508 clk_set_bypass:
509 	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
510 			(64 * sample_rate * txclk_df * sysclk_df));
511 	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
512 			clk_get_rate(spdif_priv->txclk[rate]));
513 
514 	/* set fs field in consumer channel status */
515 	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
516 
517 	/* select clock source and divisor */
518 	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
519 	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
520 	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
521 	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
522 	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
523 
524 	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
525 			spdif_priv->txrate[rate], sample_rate);
526 
527 	return 0;
528 }
529 
530 static int fsl_spdif_startup(struct snd_pcm_substream *substream,
531 			     struct snd_soc_dai *cpu_dai)
532 {
533 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
534 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
535 	struct platform_device *pdev = spdif_priv->pdev;
536 	struct regmap *regmap = spdif_priv->regmap;
537 	u32 scr, mask;
538 	int ret;
539 
540 	/* Reset module and interrupts only for first initialization */
541 	if (!snd_soc_dai_active(cpu_dai)) {
542 		ret = spdif_softreset(spdif_priv);
543 		if (ret) {
544 			dev_err(&pdev->dev, "failed to soft reset\n");
545 			return ret;
546 		}
547 
548 		/* Disable all the interrupts */
549 		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
550 	}
551 
552 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
553 		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
554 			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
555 			SCR_TXFIFO_FSEL_IF8;
556 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
557 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
558 			SCR_TXFIFO_FSEL_MASK;
559 	} else {
560 		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
561 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
562 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
563 	}
564 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
565 
566 	/* Power up SPDIF module */
567 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
568 
569 	return 0;
570 }
571 
572 static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
573 				struct snd_soc_dai *cpu_dai)
574 {
575 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
576 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
577 	struct regmap *regmap = spdif_priv->regmap;
578 	u32 scr, mask;
579 
580 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
581 		scr = 0;
582 		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
583 			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
584 			SCR_TXFIFO_FSEL_MASK;
585 	} else {
586 		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
587 		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
588 			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
589 	}
590 	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
591 
592 	/* Power down SPDIF module only if tx&rx are both inactive */
593 	if (!snd_soc_dai_active(cpu_dai)) {
594 		spdif_intr_status_clear(spdif_priv);
595 		regmap_update_bits(regmap, REG_SPDIF_SCR,
596 				SCR_LOW_POWER, SCR_LOW_POWER);
597 	}
598 }
599 
600 static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
601 				struct snd_pcm_hw_params *params,
602 				struct snd_soc_dai *dai)
603 {
604 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
605 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
606 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
607 	struct platform_device *pdev = spdif_priv->pdev;
608 	u32 sample_rate = params_rate(params);
609 	int ret = 0;
610 
611 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
612 		ret  = spdif_set_sample_rate(substream, sample_rate);
613 		if (ret) {
614 			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
615 					__func__, sample_rate);
616 			return ret;
617 		}
618 		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
619 				  IEC958_AES3_CON_CLOCK_1000PPM);
620 		spdif_write_channel_status(spdif_priv);
621 	} else {
622 		/* Setup rx clock source */
623 		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
624 	}
625 
626 	return ret;
627 }
628 
629 static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
630 				int cmd, struct snd_soc_dai *dai)
631 {
632 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
633 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
634 	struct regmap *regmap = spdif_priv->regmap;
635 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
636 	u32 intr = SIE_INTR_FOR(tx);
637 	u32 dmaen = SCR_DMA_xX_EN(tx);
638 
639 	switch (cmd) {
640 	case SNDRV_PCM_TRIGGER_START:
641 	case SNDRV_PCM_TRIGGER_RESUME:
642 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
643 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
644 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
645 		break;
646 	case SNDRV_PCM_TRIGGER_STOP:
647 	case SNDRV_PCM_TRIGGER_SUSPEND:
648 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
649 		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
650 		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
651 		break;
652 	default:
653 		return -EINVAL;
654 	}
655 
656 	return 0;
657 }
658 
659 static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
660 	.startup = fsl_spdif_startup,
661 	.hw_params = fsl_spdif_hw_params,
662 	.trigger = fsl_spdif_trigger,
663 	.shutdown = fsl_spdif_shutdown,
664 };
665 
666 
667 /*
668  * FSL SPDIF IEC958 controller(mixer) functions
669  *
670  *	Channel status get/put control
671  *	User bit value get/put control
672  *	Valid bit value get control
673  *	DPLL lock status get control
674  *	User bit sync mode selection control
675  */
676 
677 static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
678 				struct snd_ctl_elem_info *uinfo)
679 {
680 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
681 	uinfo->count = 1;
682 
683 	return 0;
684 }
685 
686 static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
687 				struct snd_ctl_elem_value *uvalue)
688 {
689 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
690 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
691 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
692 
693 	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
694 	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
695 	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
696 	uvalue->value.iec958.status[3] = ctrl->ch_status[3];
697 
698 	return 0;
699 }
700 
701 static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
702 				struct snd_ctl_elem_value *uvalue)
703 {
704 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
705 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
706 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
707 
708 	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
709 	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
710 	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
711 	ctrl->ch_status[3] = uvalue->value.iec958.status[3];
712 
713 	spdif_write_channel_status(spdif_priv);
714 
715 	return 0;
716 }
717 
718 /* Get channel status from SPDIF_RX_CCHAN register */
719 static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
720 				struct snd_ctl_elem_value *ucontrol)
721 {
722 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
723 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
724 	struct regmap *regmap = spdif_priv->regmap;
725 	u32 cstatus, val;
726 
727 	regmap_read(regmap, REG_SPDIF_SIS, &val);
728 	if (!(val & INT_CNEW))
729 		return -EAGAIN;
730 
731 	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
732 	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
733 	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
734 	ucontrol->value.iec958.status[2] = cstatus & 0xFF;
735 
736 	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
737 	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
738 	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
739 	ucontrol->value.iec958.status[5] = cstatus & 0xFF;
740 
741 	/* Clear intr */
742 	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
743 
744 	return 0;
745 }
746 
747 /*
748  * Get User bits (subcode) from chip value which readed out
749  * in UChannel register.
750  */
751 static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
752 				struct snd_ctl_elem_value *ucontrol)
753 {
754 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
755 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
756 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
757 	unsigned long flags;
758 	int ret = -EAGAIN;
759 
760 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
761 	if (ctrl->ready_buf) {
762 		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
763 		memcpy(&ucontrol->value.iec958.subcode[0],
764 				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
765 		ret = 0;
766 	}
767 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
768 
769 	return ret;
770 }
771 
772 /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
773 static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
774 				struct snd_ctl_elem_info *uinfo)
775 {
776 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
777 	uinfo->count = SPDIF_QSUB_SIZE;
778 
779 	return 0;
780 }
781 
782 /* Get Q subcode from chip value which readed out in QChannel register */
783 static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
784 				struct snd_ctl_elem_value *ucontrol)
785 {
786 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
787 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
788 	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
789 	unsigned long flags;
790 	int ret = -EAGAIN;
791 
792 	spin_lock_irqsave(&ctrl->ctl_lock, flags);
793 	if (ctrl->ready_buf) {
794 		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
795 		memcpy(&ucontrol->value.bytes.data[0],
796 				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
797 		ret = 0;
798 	}
799 	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
800 
801 	return ret;
802 }
803 
804 /* Valid bit information */
805 static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
806 				struct snd_ctl_elem_info *uinfo)
807 {
808 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
809 	uinfo->count = 1;
810 	uinfo->value.integer.min = 0;
811 	uinfo->value.integer.max = 1;
812 
813 	return 0;
814 }
815 
816 /* Get valid good bit from interrupt status register */
817 static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
818 				 struct snd_ctl_elem_value *ucontrol)
819 {
820 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
821 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
822 	struct regmap *regmap = spdif_priv->regmap;
823 	u32 val;
824 
825 	regmap_read(regmap, REG_SPDIF_SIS, &val);
826 	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
827 	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
828 
829 	return 0;
830 }
831 
832 static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
833 				 struct snd_ctl_elem_value *ucontrol)
834 {
835 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
836 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
837 	struct regmap *regmap = spdif_priv->regmap;
838 	u32 val;
839 
840 	regmap_read(regmap, REG_SPDIF_SCR, &val);
841 	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
842 	val = 1 - val;
843 	ucontrol->value.integer.value[0] = val;
844 
845 	return 0;
846 }
847 
848 static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
849 				 struct snd_ctl_elem_value *ucontrol)
850 {
851 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
852 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
853 	struct regmap *regmap = spdif_priv->regmap;
854 	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
855 
856 	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
857 
858 	return 0;
859 }
860 
861 /* DPLL lock information */
862 static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
863 				struct snd_ctl_elem_info *uinfo)
864 {
865 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
866 	uinfo->count = 1;
867 	uinfo->value.integer.min = 16000;
868 	uinfo->value.integer.max = 192000;
869 
870 	return 0;
871 }
872 
873 static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
874 	24, 16, 12, 8, 6, 4, 3,
875 };
876 
877 /* Get RX data clock rate given the SPDIF bus_clk */
878 static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
879 				enum spdif_gainsel gainsel)
880 {
881 	struct regmap *regmap = spdif_priv->regmap;
882 	struct platform_device *pdev = spdif_priv->pdev;
883 	u64 tmpval64, busclk_freq = 0;
884 	u32 freqmeas, phaseconf;
885 	u8 clksrc;
886 
887 	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
888 	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
889 
890 	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
891 
892 	/* Get bus clock from system */
893 	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
894 		busclk_freq = clk_get_rate(spdif_priv->sysclk);
895 
896 	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
897 	tmpval64 = (u64) busclk_freq * freqmeas;
898 	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
899 	do_div(tmpval64, 128 * 1024);
900 
901 	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
902 	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
903 	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
904 
905 	return (int)tmpval64;
906 }
907 
908 /*
909  * Get DPLL lock or not info from stable interrupt status register.
910  * User application must use this control to get locked,
911  * then can do next PCM operation
912  */
913 static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
914 				struct snd_ctl_elem_value *ucontrol)
915 {
916 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
917 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
918 	int rate = 0;
919 
920 	if (spdif_priv->dpll_locked)
921 		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
922 
923 	ucontrol->value.integer.value[0] = rate;
924 
925 	return 0;
926 }
927 
928 /* User bit sync mode info */
929 static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
930 				struct snd_ctl_elem_info *uinfo)
931 {
932 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
933 	uinfo->count = 1;
934 	uinfo->value.integer.min = 0;
935 	uinfo->value.integer.max = 1;
936 
937 	return 0;
938 }
939 
940 /*
941  * User bit sync mode:
942  * 1 CD User channel subcode
943  * 0 Non-CD data
944  */
945 static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
946 			       struct snd_ctl_elem_value *ucontrol)
947 {
948 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
949 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
950 	struct regmap *regmap = spdif_priv->regmap;
951 	u32 val;
952 
953 	regmap_read(regmap, REG_SPDIF_SRCD, &val);
954 	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
955 
956 	return 0;
957 }
958 
959 /*
960  * User bit sync mode:
961  * 1 CD User channel subcode
962  * 0 Non-CD data
963  */
964 static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
965 				struct snd_ctl_elem_value *ucontrol)
966 {
967 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
968 	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
969 	struct regmap *regmap = spdif_priv->regmap;
970 	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
971 
972 	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
973 
974 	return 0;
975 }
976 
977 /* FSL SPDIF IEC958 controller defines */
978 static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
979 	/* Status cchanel controller */
980 	{
981 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
982 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
983 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
984 			SNDRV_CTL_ELEM_ACCESS_WRITE |
985 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
986 		.info = fsl_spdif_info,
987 		.get = fsl_spdif_pb_get,
988 		.put = fsl_spdif_pb_put,
989 	},
990 	{
991 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
992 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
993 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
994 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
995 		.info = fsl_spdif_info,
996 		.get = fsl_spdif_capture_get,
997 	},
998 	/* User bits controller */
999 	{
1000 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1001 		.name = "IEC958 Subcode Capture Default",
1002 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1003 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1004 		.info = fsl_spdif_info,
1005 		.get = fsl_spdif_subcode_get,
1006 	},
1007 	{
1008 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1009 		.name = "IEC958 Q-subcode Capture Default",
1010 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1011 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1012 		.info = fsl_spdif_qinfo,
1013 		.get = fsl_spdif_qget,
1014 	},
1015 	/* Valid bit error controller */
1016 	{
1017 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1018 		.name = "IEC958 RX V-Bit Errors",
1019 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1020 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1021 		.info = fsl_spdif_vbit_info,
1022 		.get = fsl_spdif_rx_vbit_get,
1023 	},
1024 	{
1025 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1026 		.name = "IEC958 TX V-Bit",
1027 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1028 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1029 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1030 		.info = fsl_spdif_vbit_info,
1031 		.get = fsl_spdif_tx_vbit_get,
1032 		.put = fsl_spdif_tx_vbit_put,
1033 	},
1034 	/* DPLL lock info get controller */
1035 	{
1036 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1037 		.name = "RX Sample Rate",
1038 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1039 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1040 		.info = fsl_spdif_rxrate_info,
1041 		.get = fsl_spdif_rxrate_get,
1042 	},
1043 	/* User bit sync mode set/get controller */
1044 	{
1045 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1046 		.name = "IEC958 USyncMode CDText",
1047 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
1048 			SNDRV_CTL_ELEM_ACCESS_WRITE |
1049 			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1050 		.info = fsl_spdif_usync_info,
1051 		.get = fsl_spdif_usync_get,
1052 		.put = fsl_spdif_usync_put,
1053 	},
1054 };
1055 
1056 static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1057 {
1058 	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1059 
1060 	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1061 				  &spdif_private->dma_params_rx);
1062 
1063 	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1064 
1065 	/*Clear the val bit for Tx*/
1066 	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1067 			   SCR_VAL_MASK, SCR_VAL_CLEAR);
1068 
1069 	return 0;
1070 }
1071 
1072 static struct snd_soc_dai_driver fsl_spdif_dai = {
1073 	.probe = &fsl_spdif_dai_probe,
1074 	.playback = {
1075 		.stream_name = "CPU-Playback",
1076 		.channels_min = 2,
1077 		.channels_max = 2,
1078 		.rates = FSL_SPDIF_RATES_PLAYBACK,
1079 		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1080 	},
1081 	.capture = {
1082 		.stream_name = "CPU-Capture",
1083 		.channels_min = 2,
1084 		.channels_max = 2,
1085 		.rates = FSL_SPDIF_RATES_CAPTURE,
1086 		.formats = FSL_SPDIF_FORMATS_CAPTURE,
1087 	},
1088 	.ops = &fsl_spdif_dai_ops,
1089 };
1090 
1091 static const struct snd_soc_component_driver fsl_spdif_component = {
1092 	.name		= "fsl-spdif",
1093 };
1094 
1095 /* FSL SPDIF REGMAP */
1096 static const struct reg_default fsl_spdif_reg_defaults[] = {
1097 	{REG_SPDIF_SCR,    0x00000400},
1098 	{REG_SPDIF_SRCD,   0x00000000},
1099 	{REG_SPDIF_SIE,	   0x00000000},
1100 	{REG_SPDIF_STL,	   0x00000000},
1101 	{REG_SPDIF_STR,	   0x00000000},
1102 	{REG_SPDIF_STCSCH, 0x00000000},
1103 	{REG_SPDIF_STCSCL, 0x00000000},
1104 	{REG_SPDIF_STC,	   0x00020f00},
1105 };
1106 
1107 static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1108 {
1109 	switch (reg) {
1110 	case REG_SPDIF_SCR:
1111 	case REG_SPDIF_SRCD:
1112 	case REG_SPDIF_SRPC:
1113 	case REG_SPDIF_SIE:
1114 	case REG_SPDIF_SIS:
1115 	case REG_SPDIF_SRL:
1116 	case REG_SPDIF_SRR:
1117 	case REG_SPDIF_SRCSH:
1118 	case REG_SPDIF_SRCSL:
1119 	case REG_SPDIF_SRU:
1120 	case REG_SPDIF_SRQ:
1121 	case REG_SPDIF_STCSCH:
1122 	case REG_SPDIF_STCSCL:
1123 	case REG_SPDIF_SRFM:
1124 	case REG_SPDIF_STC:
1125 		return true;
1126 	default:
1127 		return false;
1128 	}
1129 }
1130 
1131 static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1132 {
1133 	switch (reg) {
1134 	case REG_SPDIF_SRPC:
1135 	case REG_SPDIF_SIS:
1136 	case REG_SPDIF_SRL:
1137 	case REG_SPDIF_SRR:
1138 	case REG_SPDIF_SRCSH:
1139 	case REG_SPDIF_SRCSL:
1140 	case REG_SPDIF_SRU:
1141 	case REG_SPDIF_SRQ:
1142 	case REG_SPDIF_SRFM:
1143 		return true;
1144 	default:
1145 		return false;
1146 	}
1147 }
1148 
1149 static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1150 {
1151 	switch (reg) {
1152 	case REG_SPDIF_SCR:
1153 	case REG_SPDIF_SRCD:
1154 	case REG_SPDIF_SRPC:
1155 	case REG_SPDIF_SIE:
1156 	case REG_SPDIF_SIC:
1157 	case REG_SPDIF_STL:
1158 	case REG_SPDIF_STR:
1159 	case REG_SPDIF_STCSCH:
1160 	case REG_SPDIF_STCSCL:
1161 	case REG_SPDIF_STC:
1162 		return true;
1163 	default:
1164 		return false;
1165 	}
1166 }
1167 
1168 static const struct regmap_config fsl_spdif_regmap_config = {
1169 	.reg_bits = 32,
1170 	.reg_stride = 4,
1171 	.val_bits = 32,
1172 
1173 	.max_register = REG_SPDIF_STC,
1174 	.reg_defaults = fsl_spdif_reg_defaults,
1175 	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1176 	.readable_reg = fsl_spdif_readable_reg,
1177 	.volatile_reg = fsl_spdif_volatile_reg,
1178 	.writeable_reg = fsl_spdif_writeable_reg,
1179 	.cache_type = REGCACHE_FLAT,
1180 };
1181 
1182 static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1183 				struct clk *clk, u64 savesub,
1184 				enum spdif_txrate index, bool round)
1185 {
1186 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1187 				    192000, };
1188 	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1189 	u64 rate_ideal, rate_actual, sub;
1190 	u32 arate;
1191 	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1192 	u8 txclk_df;
1193 
1194 	/* The sysclk has an extra divisor [2, 512] */
1195 	sysclk_dfmin = is_sysclk ? 2 : 1;
1196 	sysclk_dfmax = is_sysclk ? 512 : 1;
1197 
1198 	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1199 		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1200 			rate_ideal = rate[index] * txclk_df * 64ULL;
1201 			if (round)
1202 				rate_actual = clk_round_rate(clk, rate_ideal);
1203 			else
1204 				rate_actual = clk_get_rate(clk);
1205 
1206 			arate = rate_actual / 64;
1207 			arate /= txclk_df * sysclk_df;
1208 
1209 			if (arate == rate[index]) {
1210 				/* We are lucky */
1211 				savesub = 0;
1212 				spdif_priv->txclk_df[index] = txclk_df;
1213 				spdif_priv->sysclk_df[index] = sysclk_df;
1214 				spdif_priv->txrate[index] = arate;
1215 				goto out;
1216 			} else if (arate / rate[index] == 1) {
1217 				/* A little bigger than expect */
1218 				sub = (u64)(arate - rate[index]) * 100000;
1219 				do_div(sub, rate[index]);
1220 				if (sub >= savesub)
1221 					continue;
1222 				savesub = sub;
1223 				spdif_priv->txclk_df[index] = txclk_df;
1224 				spdif_priv->sysclk_df[index] = sysclk_df;
1225 				spdif_priv->txrate[index] = arate;
1226 			} else if (rate[index] / arate == 1) {
1227 				/* A little smaller than expect */
1228 				sub = (u64)(rate[index] - arate) * 100000;
1229 				do_div(sub, rate[index]);
1230 				if (sub >= savesub)
1231 					continue;
1232 				savesub = sub;
1233 				spdif_priv->txclk_df[index] = txclk_df;
1234 				spdif_priv->sysclk_df[index] = sysclk_df;
1235 				spdif_priv->txrate[index] = arate;
1236 			}
1237 		}
1238 	}
1239 
1240 out:
1241 	return savesub;
1242 }
1243 
1244 static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1245 				enum spdif_txrate index)
1246 {
1247 	static const u32 rate[] = { 32000, 44100, 48000, 88200, 96000, 176400,
1248 				    192000, };
1249 	struct platform_device *pdev = spdif_priv->pdev;
1250 	struct device *dev = &pdev->dev;
1251 	u64 savesub = 100000, ret;
1252 	struct clk *clk;
1253 	char tmp[16];
1254 	int i;
1255 
1256 	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1257 		sprintf(tmp, "rxtx%d", i);
1258 		clk = devm_clk_get(dev, tmp);
1259 		if (IS_ERR(clk)) {
1260 			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1261 			return PTR_ERR(clk);
1262 		}
1263 		if (!clk_get_rate(clk))
1264 			continue;
1265 
1266 		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1267 					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1268 		if (savesub == ret)
1269 			continue;
1270 
1271 		savesub = ret;
1272 		spdif_priv->txclk[index] = clk;
1273 		spdif_priv->txclk_src[index] = i;
1274 
1275 		/* To quick catch a divisor, we allow a 0.1% deviation */
1276 		if (savesub < 100)
1277 			break;
1278 	}
1279 
1280 	dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1281 			spdif_priv->txclk_src[index], rate[index]);
1282 	dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1283 			spdif_priv->txclk_df[index], rate[index]);
1284 	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1285 		dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1286 				spdif_priv->sysclk_df[index], rate[index]);
1287 	dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1288 			rate[index], spdif_priv->txrate[index]);
1289 
1290 	return 0;
1291 }
1292 
1293 static int fsl_spdif_probe(struct platform_device *pdev)
1294 {
1295 	struct fsl_spdif_priv *spdif_priv;
1296 	struct spdif_mixer_control *ctrl;
1297 	struct resource *res;
1298 	void __iomem *regs;
1299 	int irq, ret, i;
1300 
1301 	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1302 	if (!spdif_priv)
1303 		return -ENOMEM;
1304 
1305 	spdif_priv->pdev = pdev;
1306 
1307 	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1308 
1309 	/* Initialize this copy of the CPU DAI driver structure */
1310 	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1311 	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1312 	spdif_priv->cpu_dai_drv.playback.formats =
1313 				spdif_priv->soc->tx_formats;
1314 
1315 	/* Get the addresses and IRQ */
1316 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1317 	regs = devm_ioremap_resource(&pdev->dev, res);
1318 	if (IS_ERR(regs))
1319 		return PTR_ERR(regs);
1320 
1321 	spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1322 			"core", regs, &fsl_spdif_regmap_config);
1323 	if (IS_ERR(spdif_priv->regmap)) {
1324 		dev_err(&pdev->dev, "regmap init failed\n");
1325 		return PTR_ERR(spdif_priv->regmap);
1326 	}
1327 
1328 	for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1329 		irq = platform_get_irq(pdev, i);
1330 		if (irq < 0) {
1331 			dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1332 			return irq;
1333 		}
1334 
1335 		ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1336 				       dev_name(&pdev->dev), spdif_priv);
1337 		if (ret) {
1338 			dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1339 			return ret;
1340 		}
1341 	}
1342 
1343 	/* Get system clock for rx clock rate calculation */
1344 	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
1345 	if (IS_ERR(spdif_priv->sysclk)) {
1346 		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1347 		return PTR_ERR(spdif_priv->sysclk);
1348 	}
1349 
1350 	/* Get core clock for data register access via DMA */
1351 	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1352 	if (IS_ERR(spdif_priv->coreclk)) {
1353 		dev_err(&pdev->dev, "no core clock in devicetree\n");
1354 		return PTR_ERR(spdif_priv->coreclk);
1355 	}
1356 
1357 	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1358 	if (IS_ERR(spdif_priv->spbaclk))
1359 		dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1360 
1361 	/* Select clock source for rx/tx clock */
1362 	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
1363 	if (IS_ERR(spdif_priv->rxclk)) {
1364 		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1365 		return PTR_ERR(spdif_priv->rxclk);
1366 	}
1367 	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1368 
1369 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1370 		ret = fsl_spdif_probe_txclk(spdif_priv, i);
1371 		if (ret)
1372 			return ret;
1373 	}
1374 
1375 	/* Initial spinlock for control data */
1376 	ctrl = &spdif_priv->fsl_spdif_control;
1377 	spin_lock_init(&ctrl->ctl_lock);
1378 
1379 	/* Init tx channel status default value */
1380 	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1381 			     IEC958_AES0_CON_EMPHASIS_5015;
1382 	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1383 	ctrl->ch_status[2] = 0x00;
1384 	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1385 			     IEC958_AES3_CON_CLOCK_1000PPM;
1386 
1387 	spdif_priv->dpll_locked = false;
1388 
1389 	spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1390 	spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1391 	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1392 	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1393 
1394 	/* Register with ASoC */
1395 	dev_set_drvdata(&pdev->dev, spdif_priv);
1396 	pm_runtime_enable(&pdev->dev);
1397 	regcache_cache_only(spdif_priv->regmap, true);
1398 
1399 	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1400 					      &spdif_priv->cpu_dai_drv, 1);
1401 	if (ret) {
1402 		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1403 		return ret;
1404 	}
1405 
1406 	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1407 	if (ret && ret != -EPROBE_DEFER)
1408 		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);
1409 
1410 	return ret;
1411 }
1412 
1413 #ifdef CONFIG_PM
1414 static int fsl_spdif_runtime_suspend(struct device *dev)
1415 {
1416 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1417 	int i;
1418 
1419 	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1420 			&spdif_priv->regcache_srpc);
1421 	regcache_cache_only(spdif_priv->regmap, true);
1422 
1423 	clk_disable_unprepare(spdif_priv->rxclk);
1424 
1425 	for (i = 0; i < SPDIF_TXRATE_MAX; i++)
1426 		clk_disable_unprepare(spdif_priv->txclk[i]);
1427 
1428 	if (!IS_ERR(spdif_priv->spbaclk))
1429 		clk_disable_unprepare(spdif_priv->spbaclk);
1430 	clk_disable_unprepare(spdif_priv->coreclk);
1431 
1432 	return 0;
1433 }
1434 
1435 static int fsl_spdif_runtime_resume(struct device *dev)
1436 {
1437 	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1438 	int ret;
1439 	int i;
1440 
1441 	ret = clk_prepare_enable(spdif_priv->coreclk);
1442 	if (ret) {
1443 		dev_err(dev, "failed to enable core clock\n");
1444 		return ret;
1445 	}
1446 
1447 	if (!IS_ERR(spdif_priv->spbaclk)) {
1448 		ret = clk_prepare_enable(spdif_priv->spbaclk);
1449 		if (ret) {
1450 			dev_err(dev, "failed to enable spba clock\n");
1451 			goto disable_core_clk;
1452 		}
1453 	}
1454 
1455 	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
1456 		ret = clk_prepare_enable(spdif_priv->txclk[i]);
1457 		if (ret)
1458 			goto disable_tx_clk;
1459 	}
1460 
1461 	ret = clk_prepare_enable(spdif_priv->rxclk);
1462 	if (ret)
1463 		goto disable_tx_clk;
1464 
1465 	regcache_cache_only(spdif_priv->regmap, false);
1466 	regcache_mark_dirty(spdif_priv->regmap);
1467 
1468 	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1469 			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1470 			spdif_priv->regcache_srpc);
1471 
1472 	ret = regcache_sync(spdif_priv->regmap);
1473 	if (ret)
1474 		goto disable_rx_clk;
1475 
1476 	return 0;
1477 
1478 disable_rx_clk:
1479 	clk_disable_unprepare(spdif_priv->rxclk);
1480 disable_tx_clk:
1481 	for (i--; i >= 0; i--)
1482 		clk_disable_unprepare(spdif_priv->txclk[i]);
1483 	if (!IS_ERR(spdif_priv->spbaclk))
1484 		clk_disable_unprepare(spdif_priv->spbaclk);
1485 disable_core_clk:
1486 	clk_disable_unprepare(spdif_priv->coreclk);
1487 
1488 	return ret;
1489 }
1490 #endif /* CONFIG_PM */
1491 
1492 static const struct dev_pm_ops fsl_spdif_pm = {
1493 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1494 				pm_runtime_force_resume)
1495 	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1496 			   NULL)
1497 };
1498 
1499 static const struct of_device_id fsl_spdif_dt_ids[] = {
1500 	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1501 	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1502 	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1503 	{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1504 	{}
1505 };
1506 MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1507 
1508 static struct platform_driver fsl_spdif_driver = {
1509 	.driver = {
1510 		.name = "fsl-spdif-dai",
1511 		.of_match_table = fsl_spdif_dt_ids,
1512 		.pm = &fsl_spdif_pm,
1513 	},
1514 	.probe = fsl_spdif_probe,
1515 };
1516 
1517 module_platform_driver(fsl_spdif_driver);
1518 
1519 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1520 MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1521 MODULE_LICENSE("GPL v2");
1522 MODULE_ALIAS("platform:fsl-spdif-dai");
1523