xref: /openbmc/linux/sound/soc/fsl/fsl_easrc.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright 2019 NXP
3 
4 #include <linux/atomic.h>
5 #include <linux/clk.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/firmware.h>
9 #include <linux/interrupt.h>
10 #include <linux/kobject.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/miscdevice.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/of_irq.h>
17 #include <linux/of_platform.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sysfs.h>
22 #include <linux/types.h>
23 #include <linux/gcd.h>
24 #include <sound/dmaengine_pcm.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/tlv.h>
29 #include <sound/core.h>
30 
31 #include "fsl_easrc.h"
32 #include "imx-pcm.h"
33 
34 #define FSL_EASRC_FORMATS       (SNDRV_PCM_FMTBIT_S16_LE | \
35 				 SNDRV_PCM_FMTBIT_U16_LE | \
36 				 SNDRV_PCM_FMTBIT_S24_LE | \
37 				 SNDRV_PCM_FMTBIT_S24_3LE | \
38 				 SNDRV_PCM_FMTBIT_U24_LE | \
39 				 SNDRV_PCM_FMTBIT_U24_3LE | \
40 				 SNDRV_PCM_FMTBIT_S32_LE | \
41 				 SNDRV_PCM_FMTBIT_U32_LE | \
42 				 SNDRV_PCM_FMTBIT_S20_3LE | \
43 				 SNDRV_PCM_FMTBIT_U20_3LE | \
44 				 SNDRV_PCM_FMTBIT_FLOAT_LE)
45 
46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
47 				     struct snd_ctl_elem_value *ucontrol)
48 {
49 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
50 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
51 	struct fsl_easrc_priv *easrc_priv = easrc->private;
52 	struct soc_mreg_control *mc =
53 		(struct soc_mreg_control *)kcontrol->private_value;
54 	unsigned int regval = ucontrol->value.integer.value[0];
55 
56 	easrc_priv->bps_iec958[mc->regbase] = regval;
57 
58 	return 0;
59 }
60 
61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
62 				     struct snd_ctl_elem_value *ucontrol)
63 {
64 	struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
65 	struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
66 	struct fsl_easrc_priv *easrc_priv = easrc->private;
67 	struct soc_mreg_control *mc =
68 		(struct soc_mreg_control *)kcontrol->private_value;
69 
70 	ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
71 
72 	return 0;
73 }
74 
75 static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
76 			     struct snd_ctl_elem_value *ucontrol)
77 {
78 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
79 	struct soc_mreg_control *mc =
80 		(struct soc_mreg_control *)kcontrol->private_value;
81 	unsigned int regval;
82 
83 	regval = snd_soc_component_read(component, mc->regbase);
84 
85 	ucontrol->value.integer.value[0] = regval;
86 
87 	return 0;
88 }
89 
90 static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
91 			     struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_mreg_control *mc =
95 		(struct soc_mreg_control *)kcontrol->private_value;
96 	unsigned int regval = ucontrol->value.integer.value[0];
97 	int ret;
98 
99 	ret = snd_soc_component_write(component, mc->regbase, regval);
100 	if (ret < 0)
101 		return ret;
102 
103 	return 0;
104 }
105 
106 #define SOC_SINGLE_REG_RW(xname, xreg) \
107 {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
108 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
109 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
110 	.put = fsl_easrc_set_reg, \
111 	.private_value = (unsigned long)&(struct soc_mreg_control) \
112 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
113 		  .invert = 0, .min = 0, .max = 0xffffffff, } }
114 
115 #define SOC_SINGLE_VAL_RW(xname, xreg) \
116 {	.iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
117 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
118 	.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
119 	.put = fsl_easrc_iec958_put_bits, \
120 	.private_value = (unsigned long)&(struct soc_mreg_control) \
121 		{ .regbase = xreg, .regcount = 1, .nbits = 32, \
122 		  .invert = 0, .min = 0, .max = 2, } }
123 
124 static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
125 	SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
126 	SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
127 	SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
128 	SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
129 
130 	SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
131 	SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
132 	SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
133 	SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
134 
135 	SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
136 	SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
137 	SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
138 	SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
139 
140 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
141 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
142 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
143 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
144 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
145 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
146 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
147 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
148 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
149 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
150 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
151 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
152 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
153 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
154 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
155 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
156 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
157 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
158 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
159 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
160 	SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
161 	SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
162 	SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
163 	SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
164 };
165 
166 /*
167  * fsl_easrc_set_rs_ratio
168  *
169  * According to the resample taps, calculate the resample ratio
170  * ratio = in_rate / out_rate
171  */
172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
173 {
174 	struct fsl_asrc *easrc = ctx->asrc;
175 	struct fsl_easrc_priv *easrc_priv = easrc->private;
176 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
177 	unsigned int in_rate = ctx_priv->in_params.norm_rate;
178 	unsigned int out_rate = ctx_priv->out_params.norm_rate;
179 	unsigned int frac_bits;
180 	u64 val;
181 	u32 *r;
182 
183 	switch (easrc_priv->rs_num_taps) {
184 	case EASRC_RS_32_TAPS:
185 		/* integer bits = 5; */
186 		frac_bits = 39;
187 		break;
188 	case EASRC_RS_64_TAPS:
189 		/* integer bits = 6; */
190 		frac_bits = 38;
191 		break;
192 	case EASRC_RS_128_TAPS:
193 		/* integer bits = 7; */
194 		frac_bits = 37;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	val = (u64)in_rate << frac_bits;
201 	do_div(val, out_rate);
202 	r = (uint32_t *)&val;
203 
204 	if (r[1] & 0xFFFFF000) {
205 		dev_err(&easrc->pdev->dev, "ratio exceed range\n");
206 		return -EINVAL;
207 	}
208 
209 	regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
210 		     EASRC_RRL_RS_RL(r[0]));
211 	regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
212 		     EASRC_RRH_RS_RH(r[1]));
213 
214 	return 0;
215 }
216 
217 /* Normalize input and output sample rates */
218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
219 {
220 	struct fsl_easrc_ctx_priv *ctx_priv;
221 	int a, b;
222 
223 	if (!ctx)
224 		return;
225 
226 	ctx_priv = ctx->private;
227 
228 	a = ctx_priv->in_params.sample_rate;
229 	b = ctx_priv->out_params.sample_rate;
230 
231 	a = gcd(a, b);
232 
233 	/* Divide by gcd to normalize the rate */
234 	ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
235 	ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
236 }
237 
238 /* Resets the pointer of the coeff memory pointers */
239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
240 					 unsigned int ctx_id, int mem_type)
241 {
242 	struct device *dev;
243 	u32 reg, mask, val;
244 
245 	if (!easrc)
246 		return -ENODEV;
247 
248 	dev = &easrc->pdev->dev;
249 
250 	switch (mem_type) {
251 	case EASRC_PF_COEFF_MEM:
252 		/* This resets the prefilter memory pointer addr */
253 		if (ctx_id >= EASRC_CTX_MAX_NUM) {
254 			dev_err(dev, "Invalid context id[%d]\n", ctx_id);
255 			return -EINVAL;
256 		}
257 
258 		reg = REG_EASRC_CCE1(ctx_id);
259 		mask = EASRC_CCE1_COEF_MEM_RST_MASK;
260 		val = EASRC_CCE1_COEF_MEM_RST;
261 		break;
262 	case EASRC_RS_COEFF_MEM:
263 		/* This resets the resampling memory pointer addr */
264 		reg = REG_EASRC_CRCC;
265 		mask = EASRC_CRCC_RS_CPR_MASK;
266 		val = EASRC_CRCC_RS_CPR;
267 		break;
268 	default:
269 		dev_err(dev, "Unknown memory type\n");
270 		return -EINVAL;
271 	}
272 
273 	/*
274 	 * To reset the write pointer back to zero, the register field
275 	 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
276 	 * 0x0 to 0x1 to 0x0.
277 	 */
278 	regmap_update_bits(easrc->regmap, reg, mask, 0);
279 	regmap_update_bits(easrc->regmap, reg, mask, val);
280 	regmap_update_bits(easrc->regmap, reg, mask, 0);
281 
282 	return 0;
283 }
284 
285 static inline uint32_t bits_taps_to_val(unsigned int t)
286 {
287 	switch (t) {
288 	case EASRC_RS_32_TAPS:
289 		return 32;
290 	case EASRC_RS_64_TAPS:
291 		return 64;
292 	case EASRC_RS_128_TAPS:
293 		return 128;
294 	}
295 
296 	return 0;
297 }
298 
299 static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
300 {
301 	struct device *dev = &easrc->pdev->dev;
302 	struct fsl_easrc_priv *easrc_priv = easrc->private;
303 	struct asrc_firmware_hdr *hdr =  easrc_priv->firmware_hdr;
304 	struct interp_params *interp = easrc_priv->interp;
305 	struct interp_params *selected_interp = NULL;
306 	unsigned int num_coeff;
307 	unsigned int i;
308 	u64 *coef;
309 	u32 *r;
310 	int ret;
311 
312 	if (!hdr) {
313 		dev_err(dev, "firmware not loaded!\n");
314 		return -ENODEV;
315 	}
316 
317 	for (i = 0; i < hdr->interp_scen; i++) {
318 		if ((interp[i].num_taps - 1) !=
319 		    bits_taps_to_val(easrc_priv->rs_num_taps))
320 			continue;
321 
322 		coef = interp[i].coeff;
323 		selected_interp = &interp[i];
324 		dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
325 			selected_interp->num_taps,
326 			selected_interp->num_phases);
327 		break;
328 	}
329 
330 	if (!selected_interp) {
331 		dev_err(dev, "failed to get interpreter configuration\n");
332 		return -EINVAL;
333 	}
334 
335 	/*
336 	 * RS_LOW - first half of center tap of the sinc function
337 	 * RS_HIGH - second half of center tap of the sinc function
338 	 * This is due to the fact the resampling function must be
339 	 * symetrical - i.e. odd number of taps
340 	 */
341 	r = (uint32_t *)&selected_interp->center_tap;
342 	regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
343 	regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
344 
345 	/*
346 	 * Write Number of Resampling Coefficient Taps
347 	 * 00b - 32-Tap Resampling Filter
348 	 * 01b - 64-Tap Resampling Filter
349 	 * 10b - 128-Tap Resampling Filter
350 	 * 11b - N/A
351 	 */
352 	regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
353 			   EASRC_CRCC_RS_TAPS_MASK,
354 			   EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
355 
356 	/* Reset prefilter coefficient pointer back to 0 */
357 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
358 	if (ret)
359 		return ret;
360 
361 	/*
362 	 * When the filter is programmed to run in:
363 	 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
364 	 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
365 	 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
366 	 * This means the number of writes is constant no matter
367 	 * the mode we are using
368 	 */
369 	num_coeff = 16 * 128 * 4;
370 
371 	for (i = 0; i < num_coeff; i++) {
372 		r = (uint32_t *)&coef[i];
373 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
374 			     EASRC_CRCM_RS_CWD(r[0]));
375 		regmap_write(easrc->regmap, REG_EASRC_CRCM,
376 			     EASRC_CRCM_RS_CWD(r[1]));
377 	}
378 
379 	return 0;
380 }
381 
382 /**
383  *  fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
384  *  For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
385  *      scale it by multiplying filter coefficients by 2^31
386  *  For input int[16, 24, 32] -> output float32
387  *      scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
388  *  input:
389  *      @easrc:  Structure pointer of fsl_asrc
390  *      @infilter : Pointer to non-scaled input filter
391  *      @shift:  The multiply factor
392  *  output:
393  *      @outfilter: scaled filter
394  */
395 static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
396 				      u64 *infilter,
397 				      u64 *outfilter,
398 				      int shift)
399 {
400 	struct device *dev = &easrc->pdev->dev;
401 	u64 coef = *infilter;
402 	s64 exp  = (coef & 0x7ff0000000000000ll) >> 52;
403 	u64 outcoef;
404 
405 	/*
406 	 * If exponent is zero (value == 0), or 7ff (value == NaNs)
407 	 * dont touch the content
408 	 */
409 	if (exp == 0 || exp == 0x7ff) {
410 		*outfilter = coef;
411 		return 0;
412 	}
413 
414 	/* coef * 2^shift ==> exp + shift */
415 	exp += shift;
416 
417 	if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
418 		dev_err(dev, "coef out of range\n");
419 		return -EINVAL;
420 	}
421 
422 	outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
423 	*outfilter = outcoef;
424 
425 	return 0;
426 }
427 
428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
429 					u64 *coef, int n_taps, int shift)
430 {
431 	struct device *dev = &easrc->pdev->dev;
432 	int ret = 0;
433 	int i;
434 	u32 *r;
435 	u64 tmp;
436 
437 	/* If STx_NUM_TAPS is set to 0x0 then return */
438 	if (!n_taps)
439 		return 0;
440 
441 	if (!coef) {
442 		dev_err(dev, "coef table is NULL\n");
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * When switching between stages, the address pointer
448 	 * should be reset back to 0x0 before performing a write
449 	 */
450 	ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
451 	if (ret)
452 		return ret;
453 
454 	for (i = 0; i < (n_taps + 1) / 2; i++) {
455 		ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
456 		if (ret)
457 			return ret;
458 
459 		r = (uint32_t *)&tmp;
460 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
461 			     EASRC_PCF_CD(r[0]));
462 		regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
463 			     EASRC_PCF_CD(r[1]));
464 	}
465 
466 	return 0;
467 }
468 
469 static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
470 				      unsigned int ctx_id)
471 {
472 	struct prefil_params *prefil, *selected_prefil = NULL;
473 	struct fsl_easrc_ctx_priv *ctx_priv;
474 	struct fsl_easrc_priv *easrc_priv;
475 	struct asrc_firmware_hdr *hdr;
476 	struct fsl_asrc_pair *ctx;
477 	struct device *dev;
478 	u32 inrate, outrate, offset = 0;
479 	u32 in_s_rate, out_s_rate;
480 	snd_pcm_format_t in_s_fmt, out_s_fmt;
481 	int ret, i;
482 
483 	if (!easrc)
484 		return -ENODEV;
485 
486 	dev = &easrc->pdev->dev;
487 
488 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
489 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
490 		return -EINVAL;
491 	}
492 
493 	easrc_priv = easrc->private;
494 
495 	ctx = easrc->pair[ctx_id];
496 	ctx_priv = ctx->private;
497 
498 	in_s_rate = ctx_priv->in_params.sample_rate;
499 	out_s_rate = ctx_priv->out_params.sample_rate;
500 	in_s_fmt = ctx_priv->in_params.sample_format;
501 	out_s_fmt = ctx_priv->out_params.sample_format;
502 
503 	ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
504 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
505 
506 	ctx_priv->st1_num_taps = 0;
507 	ctx_priv->st2_num_taps = 0;
508 
509 	regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
510 	regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
511 
512 	/*
513 	 * The audio float point data range is (-1, 1), the asrc would output
514 	 * all zero for float point input and integer output case, that is to
515 	 * drop the fractional part of the data directly.
516 	 *
517 	 * In order to support float to int conversion or int to float
518 	 * conversion we need to do special operation on the coefficient to
519 	 * enlarge/reduce the data to the expected range.
520 	 *
521 	 * For float to int case:
522 	 * Up sampling:
523 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
524 	 *    in 64 bits floating point.
525 	 *    double value = (double)(((uint64_t)1) << 31)
526 	 * 2. Program 1 tap prefilter with center tap above.
527 	 *
528 	 * Down sampling,
529 	 * 1. If the filter is single stage filter, add "shift" to the exponent
530 	 *    of stage 1 coefficients.
531 	 * 2. If the filter is two stage filter , add "shift" to the exponent
532 	 *    of stage 2 coefficients.
533 	 *
534 	 * The "shift" is 31, same for int16, int24, int32 case.
535 	 *
536 	 * For int to float case:
537 	 * Up sampling:
538 	 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
539 	 *    in 64 bits floating point.
540 	 * 2. Program 1 tap prefilter with center tap above.
541 	 *
542 	 * Down sampling,
543 	 * 1. If the filter is single stage filter, subtract "shift" to the
544 	 *    exponent of stage 1 coefficients.
545 	 * 2. If the filter is two stage filter , subtract "shift" to the
546 	 *    exponent of stage 2 coefficients.
547 	 *
548 	 * The "shift" is 15,23,31, different for int16, int24, int32 case.
549 	 *
550 	 */
551 	if (out_s_rate >= in_s_rate) {
552 		if (out_s_rate == in_s_rate)
553 			regmap_update_bits(easrc->regmap,
554 					   REG_EASRC_CCE1(ctx_id),
555 					   EASRC_CCE1_RS_BYPASS_MASK,
556 					   EASRC_CCE1_RS_BYPASS);
557 
558 		ctx_priv->st1_num_taps = 1;
559 		ctx_priv->st1_coeff    = &easrc_priv->const_coeff;
560 		ctx_priv->st1_num_exp  = 1;
561 		ctx_priv->st2_num_taps = 0;
562 
563 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
564 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
565 			ctx_priv->st1_addexp = 31;
566 		else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
567 			 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
568 			ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
569 	} else {
570 		inrate = ctx_priv->in_params.norm_rate;
571 		outrate = ctx_priv->out_params.norm_rate;
572 
573 		hdr = easrc_priv->firmware_hdr;
574 		prefil = easrc_priv->prefil;
575 
576 		for (i = 0; i < hdr->prefil_scen; i++) {
577 			if (inrate == prefil[i].insr &&
578 			    outrate == prefil[i].outsr) {
579 				selected_prefil = &prefil[i];
580 				dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
581 					selected_prefil->insr,
582 					selected_prefil->outsr,
583 					selected_prefil->st1_taps,
584 					selected_prefil->st2_taps);
585 				break;
586 			}
587 		}
588 
589 		if (!selected_prefil) {
590 			dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
591 				in_s_rate, inrate,
592 				out_s_rate, outrate);
593 			return -EINVAL;
594 		}
595 
596 		/*
597 		 * In prefilter coeff array, first st1_num_taps represent the
598 		 * stage1 prefilter coefficients followed by next st2_num_taps
599 		 * representing stage 2 coefficients
600 		 */
601 		ctx_priv->st1_num_taps = selected_prefil->st1_taps;
602 		ctx_priv->st1_coeff    = selected_prefil->coeff;
603 		ctx_priv->st1_num_exp  = selected_prefil->st1_exp;
604 
605 		offset = ((selected_prefil->st1_taps + 1) / 2);
606 		ctx_priv->st2_num_taps = selected_prefil->st2_taps;
607 		ctx_priv->st2_coeff    = selected_prefil->coeff + offset;
608 
609 		if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
610 		    out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
611 			/* only change stage2 coefficient for 2 stage case */
612 			if (ctx_priv->st2_num_taps > 0)
613 				ctx_priv->st2_addexp = 31;
614 			else
615 				ctx_priv->st1_addexp = 31;
616 		} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
617 			   out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
618 			if (ctx_priv->st2_num_taps > 0)
619 				ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
620 			else
621 				ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
622 		}
623 	}
624 
625 	ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
626 				  ctx_priv->st2_num_taps / 2;
627 	ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
628 
629 	if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
630 		ctx_priv->out_missed_sample += 1;
631 	/*
632 	 * To modify the value of a prefilter coefficient, the user must
633 	 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
634 	 * while the respective context RUN_EN bit is set to 0b0
635 	 */
636 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
637 			   EASRC_CC_EN_MASK, 0);
638 
639 	if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
640 		dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
641 			ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
642 		ret = -EINVAL;
643 		goto ctx_error;
644 	}
645 
646 	/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
647 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
648 			   EASRC_CCE2_ST1_TAPS_MASK,
649 			   EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
650 
651 	/* Prefilter Coefficient Write Select to write in ST1 coeff */
652 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
653 			   EASRC_CCE1_COEF_WS_MASK,
654 			   EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
655 
656 	ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
657 					   ctx_priv->st1_coeff,
658 					   ctx_priv->st1_num_taps,
659 					   ctx_priv->st1_addexp);
660 	if (ret)
661 		goto ctx_error;
662 
663 	if (ctx_priv->st2_num_taps > 0) {
664 		if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
665 			dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
666 				ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
667 			ret = -EINVAL;
668 			goto ctx_error;
669 		}
670 
671 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
672 				   EASRC_CCE1_PF_TSEN_MASK,
673 				   EASRC_CCE1_PF_TSEN);
674 		/*
675 		 * Enable prefilter stage1 writeback floating point
676 		 * which is used for FLOAT_LE case
677 		 */
678 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
679 				   EASRC_CCE1_PF_ST1_WBFP_MASK,
680 				   EASRC_CCE1_PF_ST1_WBFP);
681 
682 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
683 				   EASRC_CCE1_PF_EXP_MASK,
684 				   EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
685 
686 		/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
687 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
688 				   EASRC_CCE2_ST2_TAPS_MASK,
689 				   EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
690 
691 		/* Prefilter Coefficient Write Select to write in ST2 coeff */
692 		regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
693 				   EASRC_CCE1_COEF_WS_MASK,
694 				   EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
695 
696 		ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
697 						   ctx_priv->st2_coeff,
698 						   ctx_priv->st2_num_taps,
699 						   ctx_priv->st2_addexp);
700 		if (ret)
701 			goto ctx_error;
702 	}
703 
704 	return 0;
705 
706 ctx_error:
707 	return ret;
708 }
709 
710 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
711 				     struct fsl_easrc_slot *slot)
712 {
713 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
714 	int st1_mem_alloc = 0, st2_mem_alloc = 0;
715 	int pf_mem_alloc = 0;
716 	int max_channels = 8 - slot->num_channel;
717 	int channels = 0;
718 
719 	if (ctx_priv->st1_num_taps > 0) {
720 		if (ctx_priv->st2_num_taps > 0)
721 			st1_mem_alloc =
722 				(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
723 		else
724 			st1_mem_alloc = ctx_priv->st1_num_taps;
725 	}
726 
727 	if (ctx_priv->st2_num_taps > 0)
728 		st2_mem_alloc = ctx_priv->st2_num_taps;
729 
730 	pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
731 
732 	if (pf_mem_alloc != 0)
733 		channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
734 	else
735 		channels = 8;
736 
737 	if (channels < max_channels)
738 		max_channels = channels;
739 
740 	return max_channels;
741 }
742 
743 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
744 				     struct fsl_easrc_slot *slot,
745 				     unsigned int slot_ctx_idx,
746 				     unsigned int *req_channels,
747 				     unsigned int *start_channel,
748 				     unsigned int *avail_channel)
749 {
750 	struct fsl_asrc *easrc = ctx->asrc;
751 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
752 	int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
753 	unsigned int reg0, reg1, reg2, reg3;
754 	unsigned int addr;
755 
756 	if (slot->slot_index == 0) {
757 		reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
758 		reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
759 		reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
760 		reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
761 	} else {
762 		reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
763 		reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
764 		reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
765 		reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
766 	}
767 
768 	if (*req_channels <= *avail_channel) {
769 		slot->num_channel = *req_channels;
770 		*req_channels = 0;
771 	} else {
772 		slot->num_channel = *avail_channel;
773 		*req_channels -= *avail_channel;
774 	}
775 
776 	slot->min_channel = *start_channel;
777 	slot->max_channel = *start_channel + slot->num_channel - 1;
778 	slot->ctx_index = ctx->index;
779 	slot->busy = true;
780 	*start_channel += slot->num_channel;
781 
782 	regmap_update_bits(easrc->regmap, reg0,
783 			   EASRC_DPCS0R0_MAXCH_MASK,
784 			   EASRC_DPCS0R0_MAXCH(slot->max_channel));
785 
786 	regmap_update_bits(easrc->regmap, reg0,
787 			   EASRC_DPCS0R0_MINCH_MASK,
788 			   EASRC_DPCS0R0_MINCH(slot->min_channel));
789 
790 	regmap_update_bits(easrc->regmap, reg0,
791 			   EASRC_DPCS0R0_NUMCH_MASK,
792 			   EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
793 
794 	regmap_update_bits(easrc->regmap, reg0,
795 			   EASRC_DPCS0R0_CTXNUM_MASK,
796 			   EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
797 
798 	if (ctx_priv->st1_num_taps > 0) {
799 		if (ctx_priv->st2_num_taps > 0)
800 			st1_mem_alloc =
801 				(ctx_priv->st1_num_taps - 1) * slot->num_channel *
802 				ctx_priv->st1_num_exp + slot->num_channel;
803 		else
804 			st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
805 
806 		slot->pf_mem_used = st1_mem_alloc;
807 		regmap_update_bits(easrc->regmap, reg2,
808 				   EASRC_DPCS0R2_ST1_MA_MASK,
809 				   EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
810 
811 		if (slot->slot_index == 1)
812 			addr = PREFILTER_MEM_LEN - st1_mem_alloc;
813 		else
814 			addr = 0;
815 
816 		regmap_update_bits(easrc->regmap, reg2,
817 				   EASRC_DPCS0R2_ST1_SA_MASK,
818 				   EASRC_DPCS0R2_ST1_SA(addr));
819 	}
820 
821 	if (ctx_priv->st2_num_taps > 0) {
822 		st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
823 
824 		regmap_update_bits(easrc->regmap, reg1,
825 				   EASRC_DPCS0R1_ST1_EXP_MASK,
826 				   EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
827 
828 		st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
829 		slot->pf_mem_used += st2_mem_alloc;
830 		regmap_update_bits(easrc->regmap, reg3,
831 				   EASRC_DPCS0R3_ST2_MA_MASK,
832 				   EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
833 
834 		if (slot->slot_index == 1)
835 			addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
836 		else
837 			addr = st1_mem_alloc;
838 
839 		regmap_update_bits(easrc->regmap, reg3,
840 				   EASRC_DPCS0R3_ST2_SA_MASK,
841 				   EASRC_DPCS0R3_ST2_SA(addr));
842 	}
843 
844 	regmap_update_bits(easrc->regmap, reg0,
845 			   EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
846 
847 	return 0;
848 }
849 
850 /*
851  * fsl_easrc_config_slot
852  *
853  * A single context can be split amongst any of the 4 context processing pipes
854  * in the design.
855  * The total number of channels consumed within the context processor must be
856  * less than or equal to 8. if a single context is configured to contain more
857  * than 8 channels then it must be distributed across multiple context
858  * processing pipe slots.
859  *
860  */
861 static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
862 {
863 	struct fsl_easrc_priv *easrc_priv = easrc->private;
864 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
865 	int req_channels = ctx->channels;
866 	int start_channel = 0, avail_channel;
867 	struct fsl_easrc_slot *slot0, *slot1;
868 	struct fsl_easrc_slot *slota, *slotb;
869 	int i, ret;
870 
871 	if (req_channels <= 0)
872 		return -EINVAL;
873 
874 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
875 		slot0 = &easrc_priv->slot[i][0];
876 		slot1 = &easrc_priv->slot[i][1];
877 
878 		if (slot0->busy && slot1->busy) {
879 			continue;
880 		} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
881 			 (slot1->busy && slot1->ctx_index == ctx->index)) {
882 			continue;
883 		} else if (!slot0->busy) {
884 			slota = slot0;
885 			slotb = slot1;
886 			slota->slot_index = 0;
887 		} else if (!slot1->busy) {
888 			slota = slot1;
889 			slotb = slot0;
890 			slota->slot_index = 1;
891 		}
892 
893 		if (!slota || !slotb)
894 			continue;
895 
896 		avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
897 		if (avail_channel <= 0)
898 			continue;
899 
900 		ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
901 						&start_channel, &avail_channel);
902 		if (ret)
903 			return ret;
904 
905 		if (req_channels > 0)
906 			continue;
907 		else
908 			break;
909 	}
910 
911 	if (req_channels > 0) {
912 		dev_err(&easrc->pdev->dev, "no avail slot.\n");
913 		return -EINVAL;
914 	}
915 
916 	return 0;
917 }
918 
919 /*
920  * fsl_easrc_release_slot
921  *
922  * Clear the slot configuration
923  */
924 static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
925 {
926 	struct fsl_easrc_priv *easrc_priv = easrc->private;
927 	struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
928 	int i;
929 
930 	for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
931 		if (easrc_priv->slot[i][0].busy &&
932 		    easrc_priv->slot[i][0].ctx_index == ctx->index) {
933 			easrc_priv->slot[i][0].busy = false;
934 			easrc_priv->slot[i][0].num_channel = 0;
935 			easrc_priv->slot[i][0].pf_mem_used = 0;
936 			/* set registers */
937 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
938 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
939 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
940 			regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
941 		}
942 
943 		if (easrc_priv->slot[i][1].busy &&
944 		    easrc_priv->slot[i][1].ctx_index == ctx->index) {
945 			easrc_priv->slot[i][1].busy = false;
946 			easrc_priv->slot[i][1].num_channel = 0;
947 			easrc_priv->slot[i][1].pf_mem_used = 0;
948 			/* set registers */
949 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
950 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
951 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
952 			regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
953 		}
954 	}
955 
956 	return 0;
957 }
958 
959 /*
960  * fsl_easrc_config_context
961  *
962  * Configure the register relate with context.
963  */
964 static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
965 {
966 	struct fsl_easrc_ctx_priv *ctx_priv;
967 	struct fsl_asrc_pair *ctx;
968 	struct device *dev;
969 	unsigned long lock_flags;
970 	int ret;
971 
972 	if (!easrc)
973 		return -ENODEV;
974 
975 	dev = &easrc->pdev->dev;
976 
977 	if (ctx_id >= EASRC_CTX_MAX_NUM) {
978 		dev_err(dev, "Invalid context id[%d]\n", ctx_id);
979 		return -EINVAL;
980 	}
981 
982 	ctx = easrc->pair[ctx_id];
983 
984 	ctx_priv = ctx->private;
985 
986 	fsl_easrc_normalize_rates(ctx);
987 
988 	ret = fsl_easrc_set_rs_ratio(ctx);
989 	if (ret)
990 		return ret;
991 
992 	/* Initialize the context coeficients */
993 	ret = fsl_easrc_prefilter_config(easrc, ctx->index);
994 	if (ret)
995 		return ret;
996 
997 	spin_lock_irqsave(&easrc->lock, lock_flags);
998 	ret = fsl_easrc_config_slot(easrc, ctx->index);
999 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1000 	if (ret)
1001 		return ret;
1002 
1003 	/*
1004 	 * Both prefilter and resampling filters can use following
1005 	 * initialization modes:
1006 	 * 2 - zero-fil mode
1007 	 * 1 - replication mode
1008 	 * 0 - software control
1009 	 */
1010 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1011 			   EASRC_CCE1_RS_INIT_MASK,
1012 			   EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1013 
1014 	regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1015 			   EASRC_CCE1_PF_INIT_MASK,
1016 			   EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1017 
1018 	/*
1019 	 * Context Input FIFO Watermark
1020 	 * DMA request is generated when input FIFO < FIFO_WTMK
1021 	 */
1022 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1023 			   EASRC_CC_FIFO_WTMK_MASK,
1024 			   EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1025 
1026 	/*
1027 	 * Context Output FIFO Watermark
1028 	 * DMA request is generated when output FIFO > FIFO_WTMK
1029 	 * So we set fifo_wtmk -1 to register.
1030 	 */
1031 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1032 			   EASRC_COC_FIFO_WTMK_MASK,
1033 			   EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1034 
1035 	/* Number of channels */
1036 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1037 			   EASRC_CC_CHEN_MASK,
1038 			   EASRC_CC_CHEN(ctx->channels - 1));
1039 	return 0;
1040 }
1041 
1042 static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1043 				    struct fsl_easrc_data_fmt *fmt,
1044 				    snd_pcm_format_t raw_fmt)
1045 {
1046 	struct fsl_asrc *easrc = ctx->asrc;
1047 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1048 	int ret;
1049 
1050 	if (!fmt)
1051 		return -EINVAL;
1052 
1053 	/*
1054 	 * Context Input Floating Point Format
1055 	 * 0 - Integer Format
1056 	 * 1 - Single Precision FP Format
1057 	 */
1058 	fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1059 	fmt->sample_pos = 0;
1060 	fmt->iec958 = 0;
1061 
1062 	/* Get the data width */
1063 	switch (snd_pcm_format_width(raw_fmt)) {
1064 	case 16:
1065 		fmt->width = EASRC_WIDTH_16_BIT;
1066 		fmt->addexp = 15;
1067 		break;
1068 	case 20:
1069 		fmt->width = EASRC_WIDTH_20_BIT;
1070 		fmt->addexp = 19;
1071 		break;
1072 	case 24:
1073 		fmt->width = EASRC_WIDTH_24_BIT;
1074 		fmt->addexp = 23;
1075 		break;
1076 	case 32:
1077 		fmt->width = EASRC_WIDTH_32_BIT;
1078 		fmt->addexp = 31;
1079 		break;
1080 	default:
1081 		return -EINVAL;
1082 	}
1083 
1084 	switch (raw_fmt) {
1085 	case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1086 		fmt->width = easrc_priv->bps_iec958[ctx->index];
1087 		fmt->iec958 = 1;
1088 		fmt->floating_point = 0;
1089 		if (fmt->width == EASRC_WIDTH_16_BIT) {
1090 			fmt->sample_pos = 12;
1091 			fmt->addexp = 15;
1092 		} else if (fmt->width == EASRC_WIDTH_20_BIT) {
1093 			fmt->sample_pos = 8;
1094 			fmt->addexp = 19;
1095 		} else if (fmt->width == EASRC_WIDTH_24_BIT) {
1096 			fmt->sample_pos = 4;
1097 			fmt->addexp = 23;
1098 		}
1099 		break;
1100 	default:
1101 		break;
1102 	}
1103 
1104 	/*
1105 	 * Data Endianness
1106 	 * 0 - Little-Endian
1107 	 * 1 - Big-Endian
1108 	 */
1109 	ret = snd_pcm_format_big_endian(raw_fmt);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	fmt->endianness = ret;
1114 
1115 	/*
1116 	 * Input Data sign
1117 	 * 0b - Signed Format
1118 	 * 1b - Unsigned Format
1119 	 */
1120 	fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1121 
1122 	return 0;
1123 }
1124 
1125 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1126 				    snd_pcm_format_t *in_raw_format,
1127 				    snd_pcm_format_t *out_raw_format)
1128 {
1129 	struct fsl_asrc *easrc = ctx->asrc;
1130 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1131 	struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1132 	struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1133 	int ret = 0;
1134 
1135 	/* Get the bitfield values for input data format */
1136 	if (in_raw_format && out_raw_format) {
1137 		ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 
1142 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1143 			   EASRC_CC_BPS_MASK,
1144 			   EASRC_CC_BPS(in_fmt->width));
1145 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1146 			   EASRC_CC_ENDIANNESS_MASK,
1147 			   in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1148 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1149 			   EASRC_CC_FMT_MASK,
1150 			   in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1151 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1152 			   EASRC_CC_INSIGN_MASK,
1153 			   in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1154 
1155 	/* In Sample Position */
1156 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1157 			   EASRC_CC_SAMPLE_POS_MASK,
1158 			   EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1159 
1160 	/* Get the bitfield values for input data format */
1161 	if (in_raw_format && out_raw_format) {
1162 		ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1168 			   EASRC_COC_BPS_MASK,
1169 			   EASRC_COC_BPS(out_fmt->width));
1170 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1171 			   EASRC_COC_ENDIANNESS_MASK,
1172 			   out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1173 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1174 			   EASRC_COC_FMT_MASK,
1175 			   out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1176 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1177 			   EASRC_COC_OUTSIGN_MASK,
1178 			   out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1179 
1180 	/* Out Sample Position */
1181 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1182 			   EASRC_COC_SAMPLE_POS_MASK,
1183 			   EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1184 
1185 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1186 			   EASRC_COC_IEC_EN_MASK,
1187 			   out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1188 
1189 	return ret;
1190 }
1191 
1192 /*
1193  * The ASRC provides interleaving support in hardware to ensure that a
1194  * variety of sample sources can be internally combined
1195  * to conform with this format. Interleaving parameters are accessed
1196  * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1197  */
1198 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1199 {
1200 	struct fsl_easrc_ctx_priv *ctx_priv;
1201 	struct fsl_asrc *easrc;
1202 
1203 	if (!ctx)
1204 		return -ENODEV;
1205 
1206 	easrc = ctx->asrc;
1207 	ctx_priv = ctx->private;
1208 
1209 	/* input interleaving parameters */
1210 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1211 			   EASRC_CIA_ITER_MASK,
1212 			   EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1213 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1214 			   EASRC_CIA_GRLEN_MASK,
1215 			   EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1216 	regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1217 			   EASRC_CIA_ACCLEN_MASK,
1218 			   EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1219 
1220 	/* output interleaving parameters */
1221 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1222 			   EASRC_COA_ITER_MASK,
1223 			   EASRC_COA_ITER(ctx_priv->out_params.iterations));
1224 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1225 			   EASRC_COA_GRLEN_MASK,
1226 			   EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1227 	regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1228 			   EASRC_COA_ACCLEN_MASK,
1229 			   EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Request one of the available contexts
1236  *
1237  * Returns a negative number on error and >=0 as context id
1238  * on success
1239  */
1240 static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1241 {
1242 	enum asrc_pair_index index = ASRC_INVALID_PAIR;
1243 	struct fsl_asrc *easrc = ctx->asrc;
1244 	struct device *dev;
1245 	unsigned long lock_flags;
1246 	int ret = 0;
1247 	int i;
1248 
1249 	dev = &easrc->pdev->dev;
1250 
1251 	spin_lock_irqsave(&easrc->lock, lock_flags);
1252 
1253 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1254 		if (easrc->pair[i])
1255 			continue;
1256 
1257 		index = i;
1258 		break;
1259 	}
1260 
1261 	if (index == ASRC_INVALID_PAIR) {
1262 		dev_err(dev, "all contexts are busy\n");
1263 		ret = -EBUSY;
1264 	} else if (channels > easrc->channel_avail) {
1265 		dev_err(dev, "can't give the required channels: %d\n",
1266 			channels);
1267 		ret = -EINVAL;
1268 	} else {
1269 		ctx->index = index;
1270 		ctx->channels = channels;
1271 		easrc->pair[index] = ctx;
1272 		easrc->channel_avail -= channels;
1273 	}
1274 
1275 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * Release the context
1282  *
1283  * This funciton is mainly doing the revert thing in request context
1284  */
1285 static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1286 {
1287 	unsigned long lock_flags;
1288 	struct fsl_asrc *easrc;
1289 
1290 	if (!ctx)
1291 		return;
1292 
1293 	easrc = ctx->asrc;
1294 
1295 	spin_lock_irqsave(&easrc->lock, lock_flags);
1296 
1297 	fsl_easrc_release_slot(easrc, ctx->index);
1298 
1299 	easrc->channel_avail += ctx->channels;
1300 	easrc->pair[ctx->index] = NULL;
1301 
1302 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
1303 }
1304 
1305 /*
1306  * Start the context
1307  *
1308  * Enable the DMA request and context
1309  */
1310 static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1311 {
1312 	struct fsl_asrc *easrc = ctx->asrc;
1313 
1314 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1315 			   EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1316 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1317 			   EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1318 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1319 			   EASRC_CC_EN_MASK, EASRC_CC_EN);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Stop the context
1325  *
1326  * Disable the DMA request and context
1327  */
1328 static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1329 {
1330 	struct fsl_asrc *easrc = ctx->asrc;
1331 	int val, i;
1332 	int size;
1333 	int retry = 200;
1334 
1335 	regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1336 
1337 	if (val & EASRC_CC_EN_MASK) {
1338 		regmap_update_bits(easrc->regmap,
1339 				   REG_EASRC_CC(ctx->index),
1340 				   EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1341 		do {
1342 			regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1343 			val &= EASRC_SFS_NSGO_MASK;
1344 			size = val >> EASRC_SFS_NSGO_SHIFT;
1345 
1346 			/* Read FIFO, drop the data */
1347 			for (i = 0; i < size * ctx->channels; i++)
1348 				regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1349 			/* Check RUN_STOP_DONE */
1350 			regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1351 			if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1352 				/*Clear RUN_STOP_DONE*/
1353 				regmap_write_bits(easrc->regmap,
1354 						  REG_EASRC_IRQF,
1355 						  EASRC_IRQF_RSD(1 << ctx->index),
1356 						  EASRC_IRQF_RSD(1 << ctx->index));
1357 				break;
1358 			}
1359 			udelay(100);
1360 		} while (--retry);
1361 
1362 		if (retry == 0)
1363 			dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1364 	}
1365 
1366 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1367 			   EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1368 	regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1369 			   EASRC_CC_FWMDE_MASK, 0);
1370 	regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1371 			   EASRC_COC_FWMDE_MASK, 0);
1372 	return 0;
1373 }
1374 
1375 static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1376 						  bool dir)
1377 {
1378 	struct fsl_asrc *easrc = ctx->asrc;
1379 	enum asrc_pair_index index = ctx->index;
1380 	char name[8];
1381 
1382 	/* Example of dma name: ctx0_rx */
1383 	sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1384 
1385 	return dma_request_slave_channel(&easrc->pdev->dev, name);
1386 };
1387 
1388 static const unsigned int easrc_rates[] = {
1389 	8000, 11025, 12000, 16000,
1390 	22050, 24000, 32000, 44100,
1391 	48000, 64000, 88200, 96000,
1392 	128000, 176400, 192000, 256000,
1393 	352800, 384000, 705600, 768000,
1394 };
1395 
1396 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1397 	.count = ARRAY_SIZE(easrc_rates),
1398 	.list = easrc_rates,
1399 };
1400 
1401 static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1402 			     struct snd_soc_dai *dai)
1403 {
1404 	return snd_pcm_hw_constraint_list(substream->runtime, 0,
1405 					  SNDRV_PCM_HW_PARAM_RATE,
1406 					  &easrc_rate_constraints);
1407 }
1408 
1409 static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1410 			     int cmd, struct snd_soc_dai *dai)
1411 {
1412 	struct snd_pcm_runtime *runtime = substream->runtime;
1413 	struct fsl_asrc_pair *ctx = runtime->private_data;
1414 	int ret;
1415 
1416 	switch (cmd) {
1417 	case SNDRV_PCM_TRIGGER_START:
1418 	case SNDRV_PCM_TRIGGER_RESUME:
1419 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1420 		ret = fsl_easrc_start_context(ctx);
1421 		if (ret)
1422 			return ret;
1423 		break;
1424 	case SNDRV_PCM_TRIGGER_STOP:
1425 	case SNDRV_PCM_TRIGGER_SUSPEND:
1426 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1427 		ret = fsl_easrc_stop_context(ctx);
1428 		if (ret)
1429 			return ret;
1430 		break;
1431 	default:
1432 		return -EINVAL;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1439 			       struct snd_pcm_hw_params *params,
1440 			       struct snd_soc_dai *dai)
1441 {
1442 	struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1443 	struct snd_pcm_runtime *runtime = substream->runtime;
1444 	struct device *dev = &easrc->pdev->dev;
1445 	struct fsl_asrc_pair *ctx = runtime->private_data;
1446 	struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1447 	unsigned int channels = params_channels(params);
1448 	unsigned int rate = params_rate(params);
1449 	snd_pcm_format_t format = params_format(params);
1450 	int ret;
1451 
1452 	ret = fsl_easrc_request_context(channels, ctx);
1453 	if (ret) {
1454 		dev_err(dev, "failed to request context\n");
1455 		return ret;
1456 	}
1457 
1458 	ctx_priv->ctx_streams |= BIT(substream->stream);
1459 
1460 	/*
1461 	 * Set the input and output ratio so we can compute
1462 	 * the resampling ratio in RS_LOW/HIGH
1463 	 */
1464 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1465 		ctx_priv->in_params.sample_rate = rate;
1466 		ctx_priv->in_params.sample_format = format;
1467 		ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1468 		ctx_priv->out_params.sample_format = easrc->asrc_format;
1469 	} else {
1470 		ctx_priv->out_params.sample_rate = rate;
1471 		ctx_priv->out_params.sample_format = format;
1472 		ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1473 		ctx_priv->in_params.sample_format = easrc->asrc_format;
1474 	}
1475 
1476 	ctx->channels = channels;
1477 	ctx_priv->in_params.fifo_wtmk  = 0x20;
1478 	ctx_priv->out_params.fifo_wtmk = 0x20;
1479 
1480 	/*
1481 	 * Do only rate conversion and keep the same format for input
1482 	 * and output data
1483 	 */
1484 	ret = fsl_easrc_set_ctx_format(ctx,
1485 				       &ctx_priv->in_params.sample_format,
1486 				       &ctx_priv->out_params.sample_format);
1487 	if (ret) {
1488 		dev_err(dev, "failed to set format %d", ret);
1489 		return ret;
1490 	}
1491 
1492 	ret = fsl_easrc_config_context(easrc, ctx->index);
1493 	if (ret) {
1494 		dev_err(dev, "failed to config context\n");
1495 		return ret;
1496 	}
1497 
1498 	ctx_priv->in_params.iterations = 1;
1499 	ctx_priv->in_params.group_len = ctx->channels;
1500 	ctx_priv->in_params.access_len = ctx->channels;
1501 	ctx_priv->out_params.iterations = 1;
1502 	ctx_priv->out_params.group_len = ctx->channels;
1503 	ctx_priv->out_params.access_len = ctx->channels;
1504 
1505 	ret = fsl_easrc_set_ctx_organziation(ctx);
1506 	if (ret) {
1507 		dev_err(dev, "failed to set fifo organization\n");
1508 		return ret;
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1515 			     struct snd_soc_dai *dai)
1516 {
1517 	struct snd_pcm_runtime *runtime = substream->runtime;
1518 	struct fsl_asrc_pair *ctx = runtime->private_data;
1519 	struct fsl_easrc_ctx_priv *ctx_priv;
1520 
1521 	if (!ctx)
1522 		return -EINVAL;
1523 
1524 	ctx_priv = ctx->private;
1525 
1526 	if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1527 		ctx_priv->ctx_streams &= ~BIT(substream->stream);
1528 		fsl_easrc_release_context(ctx);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1535 	.startup = fsl_easrc_startup,
1536 	.trigger = fsl_easrc_trigger,
1537 	.hw_params = fsl_easrc_hw_params,
1538 	.hw_free = fsl_easrc_hw_free,
1539 };
1540 
1541 static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1542 {
1543 	struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1544 
1545 	snd_soc_dai_init_dma_data(cpu_dai,
1546 				  &easrc->dma_params_tx,
1547 				  &easrc->dma_params_rx);
1548 	return 0;
1549 }
1550 
1551 static struct snd_soc_dai_driver fsl_easrc_dai = {
1552 	.probe = fsl_easrc_dai_probe,
1553 	.playback = {
1554 		.stream_name = "ASRC-Playback",
1555 		.channels_min = 1,
1556 		.channels_max = 32,
1557 		.rate_min = 8000,
1558 		.rate_max = 768000,
1559 		.rates = SNDRV_PCM_RATE_KNOT,
1560 		.formats = FSL_EASRC_FORMATS,
1561 	},
1562 	.capture = {
1563 		.stream_name = "ASRC-Capture",
1564 		.channels_min = 1,
1565 		.channels_max = 32,
1566 		.rate_min = 8000,
1567 		.rate_max = 768000,
1568 		.rates = SNDRV_PCM_RATE_KNOT,
1569 		.formats = FSL_EASRC_FORMATS |
1570 			   SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1571 	},
1572 	.ops = &fsl_easrc_dai_ops,
1573 };
1574 
1575 static const struct snd_soc_component_driver fsl_easrc_component = {
1576 	.name			= "fsl-easrc-dai",
1577 	.controls		= fsl_easrc_snd_controls,
1578 	.num_controls		= ARRAY_SIZE(fsl_easrc_snd_controls),
1579 	.legacy_dai_naming	= 1,
1580 };
1581 
1582 static const struct reg_default fsl_easrc_reg_defaults[] = {
1583 	{REG_EASRC_WRFIFO(0),	0x00000000},
1584 	{REG_EASRC_WRFIFO(1),	0x00000000},
1585 	{REG_EASRC_WRFIFO(2),	0x00000000},
1586 	{REG_EASRC_WRFIFO(3),	0x00000000},
1587 	{REG_EASRC_RDFIFO(0),	0x00000000},
1588 	{REG_EASRC_RDFIFO(1),	0x00000000},
1589 	{REG_EASRC_RDFIFO(2),	0x00000000},
1590 	{REG_EASRC_RDFIFO(3),	0x00000000},
1591 	{REG_EASRC_CC(0),	0x00000000},
1592 	{REG_EASRC_CC(1),	0x00000000},
1593 	{REG_EASRC_CC(2),	0x00000000},
1594 	{REG_EASRC_CC(3),	0x00000000},
1595 	{REG_EASRC_CCE1(0),	0x00000000},
1596 	{REG_EASRC_CCE1(1),	0x00000000},
1597 	{REG_EASRC_CCE1(2),	0x00000000},
1598 	{REG_EASRC_CCE1(3),	0x00000000},
1599 	{REG_EASRC_CCE2(0),	0x00000000},
1600 	{REG_EASRC_CCE2(1),	0x00000000},
1601 	{REG_EASRC_CCE2(2),	0x00000000},
1602 	{REG_EASRC_CCE2(3),	0x00000000},
1603 	{REG_EASRC_CIA(0),	0x00000000},
1604 	{REG_EASRC_CIA(1),	0x00000000},
1605 	{REG_EASRC_CIA(2),	0x00000000},
1606 	{REG_EASRC_CIA(3),	0x00000000},
1607 	{REG_EASRC_DPCS0R0(0),	0x00000000},
1608 	{REG_EASRC_DPCS0R0(1),	0x00000000},
1609 	{REG_EASRC_DPCS0R0(2),	0x00000000},
1610 	{REG_EASRC_DPCS0R0(3),	0x00000000},
1611 	{REG_EASRC_DPCS0R1(0),	0x00000000},
1612 	{REG_EASRC_DPCS0R1(1),	0x00000000},
1613 	{REG_EASRC_DPCS0R1(2),	0x00000000},
1614 	{REG_EASRC_DPCS0R1(3),	0x00000000},
1615 	{REG_EASRC_DPCS0R2(0),	0x00000000},
1616 	{REG_EASRC_DPCS0R2(1),	0x00000000},
1617 	{REG_EASRC_DPCS0R2(2),	0x00000000},
1618 	{REG_EASRC_DPCS0R2(3),	0x00000000},
1619 	{REG_EASRC_DPCS0R3(0),	0x00000000},
1620 	{REG_EASRC_DPCS0R3(1),	0x00000000},
1621 	{REG_EASRC_DPCS0R3(2),	0x00000000},
1622 	{REG_EASRC_DPCS0R3(3),	0x00000000},
1623 	{REG_EASRC_DPCS1R0(0),	0x00000000},
1624 	{REG_EASRC_DPCS1R0(1),	0x00000000},
1625 	{REG_EASRC_DPCS1R0(2),	0x00000000},
1626 	{REG_EASRC_DPCS1R0(3),	0x00000000},
1627 	{REG_EASRC_DPCS1R1(0),	0x00000000},
1628 	{REG_EASRC_DPCS1R1(1),	0x00000000},
1629 	{REG_EASRC_DPCS1R1(2),	0x00000000},
1630 	{REG_EASRC_DPCS1R1(3),	0x00000000},
1631 	{REG_EASRC_DPCS1R2(0),	0x00000000},
1632 	{REG_EASRC_DPCS1R2(1),	0x00000000},
1633 	{REG_EASRC_DPCS1R2(2),	0x00000000},
1634 	{REG_EASRC_DPCS1R2(3),	0x00000000},
1635 	{REG_EASRC_DPCS1R3(0),	0x00000000},
1636 	{REG_EASRC_DPCS1R3(1),	0x00000000},
1637 	{REG_EASRC_DPCS1R3(2),	0x00000000},
1638 	{REG_EASRC_DPCS1R3(3),	0x00000000},
1639 	{REG_EASRC_COC(0),	0x00000000},
1640 	{REG_EASRC_COC(1),	0x00000000},
1641 	{REG_EASRC_COC(2),	0x00000000},
1642 	{REG_EASRC_COC(3),	0x00000000},
1643 	{REG_EASRC_COA(0),	0x00000000},
1644 	{REG_EASRC_COA(1),	0x00000000},
1645 	{REG_EASRC_COA(2),	0x00000000},
1646 	{REG_EASRC_COA(3),	0x00000000},
1647 	{REG_EASRC_SFS(0),	0x00000000},
1648 	{REG_EASRC_SFS(1),	0x00000000},
1649 	{REG_EASRC_SFS(2),	0x00000000},
1650 	{REG_EASRC_SFS(3),	0x00000000},
1651 	{REG_EASRC_RRL(0),	0x00000000},
1652 	{REG_EASRC_RRL(1),	0x00000000},
1653 	{REG_EASRC_RRL(2),	0x00000000},
1654 	{REG_EASRC_RRL(3),	0x00000000},
1655 	{REG_EASRC_RRH(0),	0x00000000},
1656 	{REG_EASRC_RRH(1),	0x00000000},
1657 	{REG_EASRC_RRH(2),	0x00000000},
1658 	{REG_EASRC_RRH(3),	0x00000000},
1659 	{REG_EASRC_RUC(0),	0x00000000},
1660 	{REG_EASRC_RUC(1),	0x00000000},
1661 	{REG_EASRC_RUC(2),	0x00000000},
1662 	{REG_EASRC_RUC(3),	0x00000000},
1663 	{REG_EASRC_RUR(0),	0x7FFFFFFF},
1664 	{REG_EASRC_RUR(1),	0x7FFFFFFF},
1665 	{REG_EASRC_RUR(2),	0x7FFFFFFF},
1666 	{REG_EASRC_RUR(3),	0x7FFFFFFF},
1667 	{REG_EASRC_RCTCL,	0x00000000},
1668 	{REG_EASRC_RCTCH,	0x00000000},
1669 	{REG_EASRC_PCF(0),	0x00000000},
1670 	{REG_EASRC_PCF(1),	0x00000000},
1671 	{REG_EASRC_PCF(2),	0x00000000},
1672 	{REG_EASRC_PCF(3),	0x00000000},
1673 	{REG_EASRC_CRCM,	0x00000000},
1674 	{REG_EASRC_CRCC,	0x00000000},
1675 	{REG_EASRC_IRQC,	0x00000FFF},
1676 	{REG_EASRC_IRQF,	0x00000000},
1677 	{REG_EASRC_CS0(0),	0x00000000},
1678 	{REG_EASRC_CS0(1),	0x00000000},
1679 	{REG_EASRC_CS0(2),	0x00000000},
1680 	{REG_EASRC_CS0(3),	0x00000000},
1681 	{REG_EASRC_CS1(0),	0x00000000},
1682 	{REG_EASRC_CS1(1),	0x00000000},
1683 	{REG_EASRC_CS1(2),	0x00000000},
1684 	{REG_EASRC_CS1(3),	0x00000000},
1685 	{REG_EASRC_CS2(0),	0x00000000},
1686 	{REG_EASRC_CS2(1),	0x00000000},
1687 	{REG_EASRC_CS2(2),	0x00000000},
1688 	{REG_EASRC_CS2(3),	0x00000000},
1689 	{REG_EASRC_CS3(0),	0x00000000},
1690 	{REG_EASRC_CS3(1),	0x00000000},
1691 	{REG_EASRC_CS3(2),	0x00000000},
1692 	{REG_EASRC_CS3(3),	0x00000000},
1693 	{REG_EASRC_CS4(0),	0x00000000},
1694 	{REG_EASRC_CS4(1),	0x00000000},
1695 	{REG_EASRC_CS4(2),	0x00000000},
1696 	{REG_EASRC_CS4(3),	0x00000000},
1697 	{REG_EASRC_CS5(0),	0x00000000},
1698 	{REG_EASRC_CS5(1),	0x00000000},
1699 	{REG_EASRC_CS5(2),	0x00000000},
1700 	{REG_EASRC_CS5(3),	0x00000000},
1701 	{REG_EASRC_DBGC,	0x00000000},
1702 	{REG_EASRC_DBGS,	0x00000000},
1703 };
1704 
1705 static const struct regmap_range fsl_easrc_readable_ranges[] = {
1706 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1707 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1708 	regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1709 };
1710 
1711 static const struct regmap_access_table fsl_easrc_readable_table = {
1712 	.yes_ranges = fsl_easrc_readable_ranges,
1713 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1714 };
1715 
1716 static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1717 	regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1718 	regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1719 	regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1720 	regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1721 };
1722 
1723 static const struct regmap_access_table fsl_easrc_writeable_table = {
1724 	.yes_ranges = fsl_easrc_writeable_ranges,
1725 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1726 };
1727 
1728 static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1729 	regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1730 	regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1731 	regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1732 	regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1733 };
1734 
1735 static const struct regmap_access_table fsl_easrc_volatileable_table = {
1736 	.yes_ranges = fsl_easrc_volatileable_ranges,
1737 	.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1738 };
1739 
1740 static const struct regmap_config fsl_easrc_regmap_config = {
1741 	.reg_bits = 32,
1742 	.reg_stride = 4,
1743 	.val_bits = 32,
1744 
1745 	.max_register = REG_EASRC_DBGS,
1746 	.reg_defaults = fsl_easrc_reg_defaults,
1747 	.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1748 	.rd_table = &fsl_easrc_readable_table,
1749 	.wr_table = &fsl_easrc_writeable_table,
1750 	.volatile_table = &fsl_easrc_volatileable_table,
1751 	.cache_type = REGCACHE_RBTREE,
1752 };
1753 
1754 #ifdef DEBUG
1755 static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1756 {
1757 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1758 	struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1759 	struct interp_params *interp = easrc_priv->interp;
1760 	struct prefil_params *prefil = easrc_priv->prefil;
1761 	struct device *dev = &easrc->pdev->dev;
1762 	int i;
1763 
1764 	if (firm->magic != FIRMWARE_MAGIC) {
1765 		dev_err(dev, "Wrong magic. Something went wrong!");
1766 		return;
1767 	}
1768 
1769 	dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1770 	dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1771 	dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1772 	dev_dbg(dev, "\nInterpolation scenarios:\n");
1773 
1774 	for (i = 0; i < firm->interp_scen; i++) {
1775 		if (interp[i].magic != FIRMWARE_MAGIC) {
1776 			dev_dbg(dev, "%d. wrong interp magic: %x\n",
1777 				i, interp[i].magic);
1778 			continue;
1779 		}
1780 		dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1781 			interp[i].num_taps, interp[i].num_phases,
1782 			interp[i].center_tap);
1783 	}
1784 
1785 	for (i = 0; i < firm->prefil_scen; i++) {
1786 		if (prefil[i].magic != FIRMWARE_MAGIC) {
1787 			dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1788 				i, prefil[i].magic);
1789 			continue;
1790 		}
1791 		dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1792 			prefil[i].insr, prefil[i].outsr,
1793 			prefil[i].st1_taps, prefil[i].st2_taps);
1794 	}
1795 
1796 	dev_dbg(dev, "end of firmware dump\n");
1797 }
1798 #endif
1799 
1800 static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1801 {
1802 	struct fsl_easrc_priv *easrc_priv;
1803 	const struct firmware **fw_p;
1804 	u32 pnum, inum, offset;
1805 	const u8 *data;
1806 	int ret;
1807 
1808 	if (!easrc)
1809 		return -EINVAL;
1810 
1811 	easrc_priv = easrc->private;
1812 	fw_p = &easrc_priv->fw;
1813 
1814 	ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1815 	if (ret)
1816 		return ret;
1817 
1818 	data = easrc_priv->fw->data;
1819 
1820 	easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1821 	pnum = easrc_priv->firmware_hdr->prefil_scen;
1822 	inum = easrc_priv->firmware_hdr->interp_scen;
1823 
1824 	if (inum) {
1825 		offset = sizeof(struct asrc_firmware_hdr);
1826 		easrc_priv->interp = (struct interp_params *)(data + offset);
1827 	}
1828 
1829 	if (pnum) {
1830 		offset = sizeof(struct asrc_firmware_hdr) +
1831 				inum * sizeof(struct interp_params);
1832 		easrc_priv->prefil = (struct prefil_params *)(data + offset);
1833 	}
1834 
1835 #ifdef DEBUG
1836 	fsl_easrc_dump_firmware(easrc);
1837 #endif
1838 
1839 	return 0;
1840 }
1841 
1842 static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1843 {
1844 	struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1845 	struct device *dev = &easrc->pdev->dev;
1846 	int val;
1847 
1848 	regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1849 
1850 	if (val & EASRC_IRQF_OER_MASK)
1851 		dev_dbg(dev, "output FIFO underflow\n");
1852 
1853 	if (val & EASRC_IRQF_IFO_MASK)
1854 		dev_dbg(dev, "input FIFO overflow\n");
1855 
1856 	return IRQ_HANDLED;
1857 }
1858 
1859 static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1860 {
1861 	return REG_EASRC_FIFO(dir, index);
1862 }
1863 
1864 static const struct of_device_id fsl_easrc_dt_ids[] = {
1865 	{ .compatible = "fsl,imx8mn-easrc",},
1866 	{}
1867 };
1868 MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1869 
1870 static int fsl_easrc_probe(struct platform_device *pdev)
1871 {
1872 	struct fsl_easrc_priv *easrc_priv;
1873 	struct device *dev = &pdev->dev;
1874 	struct fsl_asrc *easrc;
1875 	struct resource *res;
1876 	struct device_node *np;
1877 	void __iomem *regs;
1878 	u32 asrc_fmt = 0;
1879 	int ret, irq;
1880 
1881 	easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1882 	if (!easrc)
1883 		return -ENOMEM;
1884 
1885 	easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1886 	if (!easrc_priv)
1887 		return -ENOMEM;
1888 
1889 	easrc->pdev = pdev;
1890 	easrc->private = easrc_priv;
1891 	np = dev->of_node;
1892 
1893 	regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894 	if (IS_ERR(regs))
1895 		return PTR_ERR(regs);
1896 
1897 	easrc->paddr = res->start;
1898 
1899 	easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1900 	if (IS_ERR(easrc->regmap)) {
1901 		dev_err(dev, "failed to init regmap");
1902 		return PTR_ERR(easrc->regmap);
1903 	}
1904 
1905 	irq = platform_get_irq(pdev, 0);
1906 	if (irq < 0)
1907 		return irq;
1908 
1909 	ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1910 			       dev_name(dev), easrc);
1911 	if (ret) {
1912 		dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1913 		return ret;
1914 	}
1915 
1916 	easrc->mem_clk = devm_clk_get(dev, "mem");
1917 	if (IS_ERR(easrc->mem_clk)) {
1918 		dev_err(dev, "failed to get mem clock\n");
1919 		return PTR_ERR(easrc->mem_clk);
1920 	}
1921 
1922 	/* Set default value */
1923 	easrc->channel_avail = 32;
1924 	easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1925 	easrc->request_pair = fsl_easrc_request_context;
1926 	easrc->release_pair = fsl_easrc_release_context;
1927 	easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1928 	easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1929 
1930 	easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1931 	easrc_priv->const_coeff = 0x3FF0000000000000;
1932 
1933 	ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1934 	if (ret) {
1935 		dev_err(dev, "failed to asrc rate\n");
1936 		return ret;
1937 	}
1938 
1939 	ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt);
1940 	easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt;
1941 	if (ret) {
1942 		dev_err(dev, "failed to asrc format\n");
1943 		return ret;
1944 	}
1945 
1946 	if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) {
1947 		dev_warn(dev, "unsupported format, switching to S24_LE\n");
1948 		easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1949 	}
1950 
1951 	ret = of_property_read_string(np, "firmware-name",
1952 				      &easrc_priv->fw_name);
1953 	if (ret) {
1954 		dev_err(dev, "failed to get firmware name\n");
1955 		return ret;
1956 	}
1957 
1958 	platform_set_drvdata(pdev, easrc);
1959 	pm_runtime_enable(dev);
1960 
1961 	spin_lock_init(&easrc->lock);
1962 
1963 	regcache_cache_only(easrc->regmap, true);
1964 
1965 	ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1966 					      &fsl_easrc_dai, 1);
1967 	if (ret) {
1968 		dev_err(dev, "failed to register ASoC DAI\n");
1969 		return ret;
1970 	}
1971 
1972 	ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1973 					      NULL, 0);
1974 	if (ret) {
1975 		dev_err(&pdev->dev, "failed to register ASoC platform\n");
1976 		return ret;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 static int fsl_easrc_remove(struct platform_device *pdev)
1983 {
1984 	pm_runtime_disable(&pdev->dev);
1985 
1986 	return 0;
1987 }
1988 
1989 static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev)
1990 {
1991 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
1992 	struct fsl_easrc_priv *easrc_priv = easrc->private;
1993 	unsigned long lock_flags;
1994 
1995 	regcache_cache_only(easrc->regmap, true);
1996 
1997 	clk_disable_unprepare(easrc->mem_clk);
1998 
1999 	spin_lock_irqsave(&easrc->lock, lock_flags);
2000 	easrc_priv->firmware_loaded = 0;
2001 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2002 
2003 	return 0;
2004 }
2005 
2006 static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev)
2007 {
2008 	struct fsl_asrc *easrc = dev_get_drvdata(dev);
2009 	struct fsl_easrc_priv *easrc_priv = easrc->private;
2010 	struct fsl_easrc_ctx_priv *ctx_priv;
2011 	struct fsl_asrc_pair *ctx;
2012 	unsigned long lock_flags;
2013 	int ret;
2014 	int i;
2015 
2016 	ret = clk_prepare_enable(easrc->mem_clk);
2017 	if (ret)
2018 		return ret;
2019 
2020 	regcache_cache_only(easrc->regmap, false);
2021 	regcache_mark_dirty(easrc->regmap);
2022 	regcache_sync(easrc->regmap);
2023 
2024 	spin_lock_irqsave(&easrc->lock, lock_flags);
2025 	if (easrc_priv->firmware_loaded) {
2026 		spin_unlock_irqrestore(&easrc->lock, lock_flags);
2027 		goto skip_load;
2028 	}
2029 	easrc_priv->firmware_loaded = 1;
2030 	spin_unlock_irqrestore(&easrc->lock, lock_flags);
2031 
2032 	ret = fsl_easrc_get_firmware(easrc);
2033 	if (ret) {
2034 		dev_err(dev, "failed to get firmware\n");
2035 		goto disable_mem_clk;
2036 	}
2037 
2038 	/*
2039 	 * Write Resampling Coefficients
2040 	 * The coefficient RAM must be configured prior to beginning of
2041 	 * any context processing within the ASRC
2042 	 */
2043 	ret = fsl_easrc_resampler_config(easrc);
2044 	if (ret) {
2045 		dev_err(dev, "resampler config failed\n");
2046 		goto disable_mem_clk;
2047 	}
2048 
2049 	for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2050 		ctx = easrc->pair[i];
2051 		if (!ctx)
2052 			continue;
2053 
2054 		ctx_priv = ctx->private;
2055 		fsl_easrc_set_rs_ratio(ctx);
2056 		ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2057 					      ctx_priv->out_params.sample_rate /
2058 					      ctx_priv->in_params.sample_rate;
2059 		if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2060 		    % ctx_priv->in_params.sample_rate != 0)
2061 			ctx_priv->out_missed_sample += 1;
2062 
2063 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2064 						   ctx_priv->st1_coeff,
2065 						   ctx_priv->st1_num_taps,
2066 						   ctx_priv->st1_addexp);
2067 		if (ret)
2068 			goto disable_mem_clk;
2069 
2070 		ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2071 						   ctx_priv->st2_coeff,
2072 						   ctx_priv->st2_num_taps,
2073 						   ctx_priv->st2_addexp);
2074 		if (ret)
2075 			goto disable_mem_clk;
2076 	}
2077 
2078 skip_load:
2079 	return 0;
2080 
2081 disable_mem_clk:
2082 	clk_disable_unprepare(easrc->mem_clk);
2083 	return ret;
2084 }
2085 
2086 static const struct dev_pm_ops fsl_easrc_pm_ops = {
2087 	SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
2088 			   fsl_easrc_runtime_resume,
2089 			   NULL)
2090 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2091 				pm_runtime_force_resume)
2092 };
2093 
2094 static struct platform_driver fsl_easrc_driver = {
2095 	.probe = fsl_easrc_probe,
2096 	.remove = fsl_easrc_remove,
2097 	.driver = {
2098 		.name = "fsl-easrc",
2099 		.pm = &fsl_easrc_pm_ops,
2100 		.of_match_table = fsl_easrc_dt_ids,
2101 	},
2102 };
2103 module_platform_driver(fsl_easrc_driver);
2104 
2105 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2106 MODULE_LICENSE("GPL v2");
2107